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A practical method is developed for limit-cycle predictions in the nonlinear multivariable feedback control systems with large
transportation lags. All nonlinear elements considered are linear independent. It needs only to check maximal or minimal
frequency points of root loci of equivalent gains for finding a stable limit-cycle. This reduces the computation effort dramatically.
The information for stable limit-cycle checking can be shown in the parameter plane also. Sinusoidal input describing functions
with fundamental components are used to find equivalent gains of nonlinearities. The proposed method is illustrated by a simple
numerical example and applied to one 2 × 2 and two 3 × 3 complicated nonlinear multivariable feedback control systems.
Considered systems have large transportation lags. Digital simulation verifications give calculated results provide accurate limit
cycle predictions of considered systems. Comparisons are made also with other methods in the current literature.

1. Introduction

In current literature, for nonlinear multivariable systems
the Nyquist, inverse Nyquist and numerical optimization,
methods are usually used to predict the existence of limit
cycles. These methods are based upon the graphical or
numerical solutions of the linearized harmonic-balance
equations [1–10]. It has been shown that for multivariable
systems, over arbitrary ranges of amplitudes (Ai), frequency
(ω) and phases (θi), an infinite number of possible solutions
may exist. Gray has proposed a sequential computational
procedure to seek the solutions for only specified ranges of
discrete values of Ai, ω, and θi, these specified ranges are
determined by use of the Nyquist or inverse Nyquist plots
[4, 5]. Although the aforementioned methods are powerful,
large computational efforts are usually expected.

In general, real and imaginary parts of the characteristic
equation are used as two simultaneous equations to find
the solution of the limit cycle for single-input single-
output (SISO) nonlinear feedback control systems [11–17].
Therefore, single nonlinearity in the system can be solved
easily to find two parameters, that is, oscillation amplitude
(A) and frequency (ω) of a limit cycle. The accuracy of

calculation is dependent on the accuracy of equivalent gain
of the nonlinearity. The complexity of computation for
multiple nonlinearities in the system is dependent on the
connections of nonlinearities. Two nonlinearities subjected
to the same input cannot be considered independent of each
other. The relation between two nonlinearities separated by
a linear transfer function can be found by evaluating mag-
nitude and phase of the linear transfer function. Therefore,
they are dependent of each other also. The complexity of
computation for dependent nonlinearities is the same as the
single nonlinearity.

However, nonlinearities in multivariable feedback sys-
tems are usually independent of each other. Therefore,
infinite number of solutions of limit cycles satisfy the charac-
teristic equation for phase shifts are not in the characteristic
equation and the number of parameters to be found is
always greater than two. The number of parameters to be
found are n + 1 for an n × n multivariable feedback control
system with n nonlinearities in the diagonal terms, that is,
one for oscillating frequency and n for amplitudes of inputs
of n nonlinearities. It needs another n − 1 simultaneously
equations. The n harmonic-balance equations include phase
shifts and input amplitudes of nonlinearities will be used.
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The proposed method is based on the parameter-plane
analyses method [18] with the characteristic equation. The
nonlinearities are replaced by sinusoidal-input describing
functions (SIDFs) with fundamental components [8–10];
that is, quasilinear gains. An infinite number of possible limit
cycles found by real and imaginary parts of the characteristic
equation and shown by root loci in the parameter plane
first. Then, six criteria developed from the characteristic
equation and harmonic-balance equations are used to find
the unique solutions [18–22]. It is deduced to check maximal
frequency (ωmax) or minimal frequency (ωmin) points of root
loci only for finding a stable limit cycle. The information for
six criteria are (1) stable and unstable region separated by
the root-loci; (2) maximal values of SIDFs of nonlinearities;
(3) phase shifts of inputs of nonlinearities; (4) derivatives
of equivalent gains. The proposed method is applied to
nonlinear multivariable feedback systems with large trans-
portation lags. The transportation lag is periodic function of
the frequency (ω). Therefore, checking ωmax or ωmin points
in root loci can reduce the computation effort dramatically.

This merit of the work rather than the previous work
[18] is the six criteria are applied to check maximal frequency
(ωmax) or minimal frequency (ωmin) points of root loci only
for finding a stable limit cycle. It can reduce the computation
effort dramatically. The extreme property with respect to
frequency can be found by numerical equations to determine
the stability, maximal and minimal frequencies rather than
by the graphical method. Therefore, it has the potential to be
applied to higher dimensional systems.

This paper is organized as follows: (1) in Section 2, the
basic approach of the proposed method is discussed and
illustrated by a 2 × 2 numerical example. Six criteria for
finding unique solution are developed; (2) in Section 3,
the proposed method are applied to one 2 × 2 and two
3 × 3 complicated nonlinear multivariable feedback control
systems. Calculated results are verified by digital simulation
verifications. It will be seen that calculated results provide
accurate limit-cycle predictions of considered systems with
large transportation lags. Comparisons are made also with
other methods in the current literature.

2. The Basic Approach

Consider the nonlinear multivariable feedback system shown
in Figure 1. The relation between plant transfer function
matrix G(s) and nonlinearities N(−→a ) is

−→y = G(s)N
(−→a
)(−→r −−→a

)

, (1)

where G(s) is the transfer matrix of the linear elements,
N(−→a ) is the transfer matrix of equivalent gains of nonlinear
elements, −→r is the reference input vector, and −→a is a column
vector of sinusoidal inputs to these nonlinear elements, such
that

ai = Ai sin(ωt + θi), (i = 1, 2, . . . ,n), (2)

where Ai are amplitudes of ai, ω is the oscillating frequency,
θi are phase angles with respect to a reference input, and n is

N(⨯a) G(s)
⨯a⨯r ⨯y

+

−

Figure 1: A general block diagram of nonlinear multivariable feed-
back control systems.

the dimension of the considered multivariable feedback sys-
tem. The n linearized harmonic-balance equations governing
the existence of limit cycles can be expressed as

[G(s)N
(−→a
)

+ I]
⇀
a
∣

∣

∣

s= jω
=
−→
0 , (3)

for zero reference inputs −→r . The determinant
det[G(s)N(−→a ) + I] is the characteristic equation of the
considered system. It is independent of phase angle θi and
can be decomposed into two equations by taking real and
imaginary parts for s = jω. The solutions need to be found
for the considered nonlinear feedback control system are (Ai,
i = 1, 2, . . . ,n) and oscillating frequency ω of the limit-cycle.
The number of parameters n + 1 to be found is larger than
that of two decomposed characteristic equations. It implies
that there are an infinite number of solutions satisfy the
characteristic equation; that is, det[G(s)N(−→a ) + I]. It needs
another n− 1 simultaneously equations. For zero inputs, (1)
can be rewritten as

n
∑

j=1

⎡

⎣

n
∑

k=1

gik(s)nk j
(

a j

)

⎤

⎦a j = −ai, (4)

n
∑

j=1

⎡

⎣

n
∑

k=1

gik(s)nk j
(

a j

)

⎤

⎦A je
j(ω+θ j ) = −Aie

j(ω+θi), (5)

n
∑

j=1

⎡

⎣

n
∑

k=1

gik(s)nk j
(

a j

)

⎤

⎦A je
jθ j = −Aie

jθi , (6)

where gi j(s) is the (i, j)th element of G(s) and nk j(a j)
is (k, j)th element of N(−→a ). Equation (6) represents ith
harmonic-balance equation. Let a1 is the reference signal;
that is, θ1 = 0, then the another n − 1 simultaneous
equations are derived by (6) for finding solutions (i.e., Ai,
i = 1, 2, . . . ,n, and ω).

Note that nonlinearities in the off-diagonal and on-
diagonal terms are dependent for they have same input
signal. For instance, nonlinearities (ni1(a1), j = 1, 2 . . . ,n)
are dependent for they have same input a1. Nonlinearities in
ith feedback loop, outputs of (g ji( jω), j = 1, 2, . . . ,n) and
nii(ai) are dependent also. Therefore, nonlinearities in the
diagonal will be discussed in this paper only.

For illustration, assume that a 2× 2 nonlinear multivari-
able feedback system with two single-valued nonlinearities
in the diagonal terms is considered. The block diagram is
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shown in Figure 2. For s = jω, harmonic-balance equations
of channel 1 and channel 2 are

A1e
jθ1N1(a1)g11

(

jω
)

+ A2e
jθ2N2(a2)g12

(

jω
)

= −A1e
jθ1 ,

(7)

A1e
jθ1N1(a1)g21

(

jω
)

+ A2e
jθ2N2(a2)g22

(

jω
)

= −A2e
jθ2 ,

(8)

respectively. Assume that the input of N1 is the reference
input (i.e., θ1 = 0), (7) gives

e jθ2 = −
A1

[

1 + N1(a1)g11

(

jω
)]

A2N2(a2)g12

(

jω
) , (9)

∣

∣

∣e jθ2

∣

∣

∣ =

(

A1

A2

)

∣

∣

∣

∣

∣

1 + N1(a1)g11

(

jω
)

N2(a2)g12

(

jω
)

∣

∣

∣

∣

∣

≡Mθ2 = 1. (10)

Similarly, (8) gives

e jθ2 = −
A1N1(a1)g21

(

jω
)

A2

[

1 + N2(a2)g22

(

jω
)] , (11)

∣

∣

∣e jθ2

∣

∣

∣ =

(

A1

A2

)

∣

∣

∣

∣

∣

N1(a1)g21

(

jω
)

1 + N2(a2)g22

(

jω
)

∣

∣

∣

∣

∣

≡Mθ2 = 1. (12)

Equating (9) and (11) gives

1 + N1(a1)g11

(

jω
)

+ N2(a2)g22

(

jω
)

+ N1(a1)N2(a2)
[

g11

(

jω
)

g22

(

jω
)

− g12

(

jω
)

g21

(

jω
)]

= 0.

(13)

Equation (13) is the characteristic equation of the considered
system in ω. It is independent on the phase angle θ2. Equa-
tion (13) can be expressed as

1 + N1(a1)g11(s) + N2(a2)g22(s)

+ N1(a1)N2(a2)
[

g11(s)g22(s)− g12(s)g21(s)
]

= 0,
(14)

in s-domain also. Multiplying least common multiplier
(LCM) of denominators of g11( jω), g22( jω), and detG( jω)
to (13), and taking real and imaginary parts of it gives the
two following equations for limit-cycle evaluation:

B1(ω) + N1(a1)C1(ω) + N2(a2)D1(ω)

+ N1(a1)N2(a2)E1(ω) = 0,
(15)

B2(ω) + N1(a1)C2(ω) + N2(a2)D2(ω)

+ N1(a1)N2(a2)E2(ω) = 0,
(16)

where Bi(ω), Ci(ω), Di(ω), and Ei(ω) are polynomials of
ω. They will be illustrated by a simple numerical example.
Equation (15) gives

N2(a2) = −
B1(ω) + N1(a1)C1(ω)

D1(ω) + N1(a1)E1(ω)
, (17)

N1(a1) = −
B1(ω) + N2(a2)D1(ω)

C1(ω) + N2(a2)E1(ω)
, (18)

r1

r2

+
−

+ +

+

+

+

−

N1(a1) g11( jω)

g21( jω)

g12( jω)

g22( jω)

y1

y2
N2(a2)

a1 = A1 sin(ωt + θ1)

a2 = A2 sin(ωt + θ2)

Figure 2: Block diagram of a 2×2 nonlinear multivariable feedback
control system.

alternatively. Equation (16) gives

N2(a2) = −
B2(ω) + N1(a1)C2(ω)

D2(ω) + N1(a1)E2(ω)
, (19)

N1(a1) = −
B2(ω) + N2(a2)D2(ω)

C2(ω) + N2(a2)E2(ω)
, (20)

alternatively. Equating (17) and (19) gives

[C2(ω)E1(ω)− C1(ω)E2(ω)]N1(a1)2

+ [C2(ω)D1(ω) + B2(ω)E1(ω)− C1(ω)D2(ω)

−B1(ω)E2(ω)]N1(a1)

+ [B2(ω)D1(ω)− B1(ω)D2(ω)] = 0.

(21)

Equating (18) and (20) gives

[D2(ω)E1(ω)−D1(ω)E2(ω)]N2(a2)2

+ [C1(ω)D2(ω)−C2(ω)D1(ω) + B2(ω)E1(ω)

−B1(ω)E2(ω)]N2(a2)

+ [B2(ω)C1(ω)− B1(ω)C2(ω)] = 0.

(22)

For specified value of frequency ω, the value of N1(a1) can
be found by solving (21); the corresponding value of N2(a2)
can be found by (17) or (19). Similarly, N1(a1) can be
found form (18) or (20) for N2(a2) is found by (22). For
a number of suitable values of ω, real solutions of N1(a1)
and N2(a2) can be plotted in a N1(a1) versus N2(a2) plane,
that is, parameter plane [18]. Note that N1(a1) and N2(a2)
represents equivalent gains of nonlinearities.

A useful equivalent gain expression of nonlinearity is the
sinusoidal-input describing function (SIDF)

Ni(ai) = Fo +
∞
∑

n=1

(

Pn + jRn

)

= Nir(ai) + jN1i(ai),

(23)
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where

Fo =
1

Ai

∫ 2π

0
Y (t)d(ωt),

Pn =
1

Ai

∫ 2π

0
Y (t) cos(nωt)d(ωt),

Rn =
1

Ai

∫ 2π

0
Y (t) sin(nωt)d(ωt),

(24)

and Y (t) is the time function of nonlinearity with respect
to input signal Ai sinωt. Equation (23) is a function of
amplitude Ai of sinusoidal input only. Assume the nonlin-
earity is symmetric, then the DC component Fo is equal to
zero. In general, fundamental components P1 and R1 are
used to describe the nonlinearity [7–10]. Therefore, there
is a modeling error between describing function and the
real nonlinear element. It affects the accuracy of limit-cycle
prediction. The modeling error can be reduced by taking
extra more high order harmonic components of (23). It
implies that limitation of applying describing function for
nonlinearity is dependent on extra harmonic components
used [21]. In this paper, fundamental components are used.
The modeling error will be corrected by correction formula
developed by (10) and (12). Note that the nonlinearity is
called “single-valued nonlinearity” for R1 = 0 and called
“doubled-valued nonlinearity” for R1 /= 0. Inverting N1(a1)
and N2(a2) get A1 and A2, then solutions of (17)–(21) can be
plotted in A1 versus A2 plane also.

The above statement will be illustrated by a simple
numerical example. Consider a 2 × 2 plant with the transfer
function matrix [18]

G(s) = K

⎡

⎢

⎢

⎢

⎣

1

s(s + 1)2

0.3

s(s + 1)2

−0.2

s(s + 1)

1

s(s + 1)2

⎤

⎥

⎥

⎥

⎦

, (25)

where K is the loop gains. Nonlinearities are two identical
on-off relays with dead-zones having unit switching level (d)
and unit height (M). Six criteria will be developed and illus-
trated by this numerical example, systematically. Describing
functions with fundamental components of nonlinearities
are

Ni(ai) =
4M

πAi

(

1−
d2

A2
i

)1/2

, Ai ≥ d, i = 1, 2, (26)

where M = 1 and d = 1. The characteristic equation of the
closed-loop system in s-domain is

s6 + 4s5 + 6s4 + 4s3 + s2 + KN1(a1)
(

s3 + 2s2 + s
)

+ KN2(a2)
(

s3 + 2s2 + s
)

+ K2N1(a1)N2(a2)(0.006s + 1.06) = 0.

(27)

The real and imaginary parts of (27) for s = jω are

− ω6 + 6ω4 − ω2 + KN1(a1)
(

−2ω2
)

+ KN2(a2)
(

−2ω2
)

+ K2N1(a1)N2(a2)(1.06) = 0,
(28)

4ω5 − 4ω3 + KN1(a1)
(

−ω3 + ω
)

+ KN2(a2)
(

−ω3 + ω
)

+ K2N1(a1)N2(a2)(0.06ω) = 0.

(29)

For K = 2, and a number of frequency ω, simultaneous
solutions (N1(a1),N2(a2),ω) of (28) and (29) are calculated
and represented by two root loci (solid line), as shown in
Figure 3. The root-loci show there are an infinite sets of
possible solutions (N1(a1),N2(a2),ω) satisfy (28) and (29).
But, only one set of solution (N1(a1),N2(a2),ω) satisfies
for the considered system, that is, stable limit cycle. Other
solutions are called as “unstable limit cycle”. Therefore,
criteria for checking the existence of a stable limit cycle must
be developed. This is the motivation of the paper.

The criteria for checking existence of a limit cycle will be
explained by use of the illustrating example discussed above,
and applied to several 2×2 and 3×3 complicated numerical
examples. By use of Figure 3, six criteria of the system having
a stable limit cycle are developed and explained as follows.

Criterion 1. Every point on the root loci evaluated by (21),
(28), and (29), as shown in Figure 3, represents a set of
N1(a1), N2(a2), and ω, which can satisfy the condition of
having a limit cycle. Note that infinite possible solutions are
found.

Criterion 2. A limit cycle may exist only if the values of Ni(ai)
are less than the maximal gain Ni(ai)max of nonlinearities Ni.
Equation (26) gives the ranges of Ni(ai) are between 0 and
0.6366. Now, possible solutions of limit cycle are reduced on
the segment of the root-loci between points Q2 and Q3 only.

Criterion 3. If the root loci separate the stable and unstable
regions, then a stable limit cycle may exist at the root loci. The
reason is that the system will become stable (unstable) when
amplitude Ai increase (decrease). In other words, the system
becomes stable (unstable) when the amplitude Ai increase
(decrease), a stable limit cycle may exist on the stability
boundary, that is, on the root loci.

The stable and unstable regions are identified by the
root loci found for s = +σ ± jω and s = −σ ± jω with
(27). The value σ is a small positive value-0+ represents
the solution found with s = +σ ± jω, and small negative
value-0− represents the solution found with s = −σ ± jω.
Figure 3 shows small positive/negative values-0+/0− root-
locus classifies the stability of the system in the parameter
plane.

The descriptions of a stable limit cycle can be expressed
mathematically by the following equation:

∂σ

∂Ai
=

(

∂σ

∂Ni(ai)

)(

∂Ni(ai)

∂Ai

)

< 0, i = 1, 2. (30)
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ω = 1.2 rad/s

ω = 1.2 rad/s
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ω = 1.35 rad/sQ0(2.248, 2.266)

ωmax = 1.3882 rad/s

ω = 0.99 rad/s

ω = 0.99 rad/s

ω = 0.9 rad/s

ω = 0.9 rad/s

Q2

Q3

ωmin = 0.7888 rad/s
Q1(0.5719, 0.5691)

σ − 0

σ − 0−

σ − 0+

N1(a1)max0 1

1

2

2

3

Stable

Stable

Unstable

Figure 3: Root loci of limit cycles in the parameter plane.

The derivatives ∂σ/∂Ai ≤ 0 represent amplitude Ai of a
limit cycle is increased by unknown disturbance, then real
parts (σ) of characteristic roots of (27) become positive.
It implies that magnitude Ai will be converged by system
damp. In another way, magnitude Ai of a limit cycle is
decreased by unknown disturbance, then real part (σ) of
characteristic roots of (27) becomes negative. It implies that
amplitudeAi will be diverged. Note that ∂Ni(ai)/∂Ai of (19)
can be evaluated as

∂Ni(ai)

∂Ai
=

4M

πAi
2

⎡

⎣−

(

1−
d2

Ai
2

)1/2

+
d2

Ai
2

(

1−
d2

Ai
2

)−1/2
⎤

⎦.

(31)

Criteria 1–3 give possible solutions of a stable limit cycle are
at segment of the locus between Q2 and Q3; that is, they give
ranges of frequency ω and Ni(ai). But it still has an infinite
number of solutions.

Criterion 4. A stable limit cycle exists only for phase angles
found by (9) and (11) that are equal to each other; that is,

θ2
{9}
− θ2

{11}
= 0, (32)

where θ2
{9} and θ2

{11} represent phase angles found by (9)
and (11), respectively. This criterion will reduce the number
of possible solutions of limit cycles.

Criterion 5. A stable limit cycle exists only for magnitudes
found by (10) and (12) are equal; that is,

Mθ2
{10} −Mθ2

{12} = 0. (33)

Note that (9) and (11) give magnitudes of them are equal
to unities; that is, represented by (10) and (12). However,

a1 a2

t (s)

a1, a2

ω = 0.7883 rad/s

A1 = 1.9858 A2 = 1.8549

60 80

−2

0

2

Figure 4: Time responses of the illustrating example.

if nonlinearities are described by the sinusoidal input
describing function with fundamental components [7–10],
then modeling errors of the found Ai by inverting describing
functions of Ni(ai) make magnitudes of (10) and (12) are
not equal to unities exactly. Therefore, Mθ2

{10} = Mθ2
{12} =

1 cannot be used as criterion to find the solution except
that exact description of nonlinearity is used. Naturally,
Mθ2 equals to unity is expected, and it is dependent on
the accuracy of the nonlinearity described by SIDF. Note
that a rule of thumb for expects value of Mθ2 greater than
0.80 is used in this paper. Two correction equations will be
developed to correct the mathematical errors of describing
functions with fundamental components. Criteria 4 and 5
reduced the number of possible solutions. The next criterion
will be developed for finding unique solution.

Criterion 6. The unique solution of a stable limit cycle is
at the unique frequency point of the root locus; that is, the
solutions of (21) for N1(a1) are real and equal to each other.
This condition gives

[C2(ω)D1(ω) + B2(ω)E1(ω)− C1(ω)D2(ω)− B1(ω)E2(ω)]2

− 4[C2(ω)E1(ω)− C1(ω)E2(ω)]

× [B2(ω)D1(ω)− B1(ω)D2(ω)] = 0.

(34)

Similar equation can be derived for N2(a2) with (22).
Figure 3 shows the maximal frequency ωmax of the found
upper root locus is 1.38824 rad/s at point Q0(2.248, 2.266);
and the minimal frequency ωmin of the lower root locus is
0.78881 rad/s at Point Q1(0.5719, 0.5691). Q0 is a impossible
solution for it violates Criteria 2 and 3. Q1 is the unique
solution satisfies Criteria 2–5 and (34). Therefore, the unique
solution is found.

From the root loci shown in Figure 3, (34) can be
described by a graphical rule also. It is

∂Ni(ai)

∂ω
= 0. (35)

Equation (35) represents the departure point ωmin (point
Q1(0.5719, 0.5691) in Figure 3) of the root locus with respect
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Table 1: Calculated results of a stable (Point Q1) and a unstable limit cycle (Point Q3).

Point N1(a1) N2(a2) ω A1 A2 ∂N1(a1)/∂A1 ∂N2(a2)/∂A2 θ2
{9} θ2

{11} Mθ2

Q1 0.5719 0.5691 0.7888
1.904 1.889 −0.185 -0.1849 −70.39◦ −70.39◦ 0.93

1.175 1.179 +0.788 +0.762 −70.39◦ −70.39◦ 0.92

Q3 0.6366 0.5313 0.8002
1.414 1.136 0 +1.149 −88.49◦ −88.49◦ 1.12

1.414 2.112 0 −0.179 −88.49◦ −88.49◦ 0.61

N1(a1)

N1(a1)

N2(a2)

N1(a1)max

N
2
(a

2
) m

ax

ωmin = 0.7888 rad/s

0.99

0.99

0.9

0.9

0.8

0.8

0 0.5

0.5

1

1

1.5

Unstable

Stable

Figure 5: Root locus analyses for K = 1.7915.

+d +p

−d−p

−M

+M

Figure 6: The double-valued nonlinearity.

A1

A2

ω = 0.76 rad/s

ω = 0.76 rad/s

Q4(2.164, 2.163)

ωmin = 0.7576 rad/s

1 2

2

3

3

Unstable

Stable

Figure 7: Root loci of limit cycles with two doubled-valued nonlin-
earities.

to the frequency ω, or the approaching point ωmax (point
Q0(2.248, 2.266) in Figure 3) of root locus with respect to the
frequency ω.

If the solution satisfies all six criteria for a stable limit
cycle, then a stable limit cycle will exist. Table 1 gives
calculated results of point Q1(0.5719, 0.5691). Two sets of
(A1,A2) satisfy found N1(a1) and N2(a2). First set of (A1,A2)
= (1.9039,1.8885) is the desired solutions. Second set of
(A1,A2) = (1.175,1.1785) is impossible for its ∂N1(a1)/∂A1

and ∂N2(a2)/∂A2 violate Criterion 3. Calculated results for
Q3 are given in Table 1 also for illustrating it is an unstable
limit cycle. Note that (Ai) are found from (26), that is,
describing function of the relay with dead band; therefore,
Mθ2 found by (10) or (12) are usually not equal to unities for
mathematical errors of the nonlinearities. By multiplying a
scaling factor Sk to left and right side of (10) for |e− jθ2| = 1,
then (10) becomes

Sk

(

A1

A2

)

∣

∣

∣

∣

∣

1 + N1(a1)g11

(

jω
)

N2(a2)g12

(

jω
)

∣

∣

∣

∣

∣

≡ SkMθ2 = 1. (36)

An approximate formulation for Sk is

Sk ≈
1 + (1−Mθ2)/2

1− (1−Mθ2)/2
=

1.5− 0.5Mθ2

0.5 + 0.5Mθ2
. (37)

The error of SkMθ2 − 1 is less than 0.5% for 0.9 < Mθ2 < 1.1
(1.2% for 0.85 < Mθ2 < 1.15). Equations (36) and (37) give
the modified values (Aim) of (Ai) are

A1m = A1

[

1 +
(1−Mθ2)

2

]

= A1(1.5− 0.5Mθ2),

A2m = A2

[

1−
(1−Mθ2)

2

]

= A2(0.5 + 0.5Mθ2).

(38)

Using (38), the modified values are A1m = 1.9706 and
A2m = 1.8229. Figure 4 shows simulation verification result
of the considered system in which gives A1 = 1.9858, A2 =

1.8549, ω = 0.7883 rad/s, and θ2 = −69.97◦. They give
that calculated results (A1m = 1.9706 and A2m = 1.8229)
corrected by (38) give accurate prediction of the stable limit
cycle.

If the loop gain K is an adjustable parameter, then the
minimal value of K just having a stable limit cycle can
be found by the same evaluating procedures and criteria.
The found value is 1.7915. The root locus for K = 1.7915
is shown in Figure 5. It implies that there will have no
intersection between root locus and constant N1(a1)max, and
N2(a2)max lines. The system is asymptotically stable for K
is less than 1.7915. Therefore, the proposed method can be
used for designing nonlinear multivariable feedback control
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Figure 8: Time responses with two double-valued nonlinearities.

Table 2: The gains K for just having a limit cycle.

Methods Gain K

Proposed method 1.7915

Aizerman conjecture 1.79

Hirsch plot 1.25

Mee plot 1.50

Digital simulation 1.787

systems also, that is, not only for analyses. The comparisons
with other methods [6] for minimal K are given in Table 2.

The procedures for finding a stable limit cycle have been
developed and illustrated by a simple example with two
“single-valued nonlinearities”. If the nonlinearities are “two
double-valued nonlinearities”; that is, R1 /= 0 in (23). Then,
the characteristic (14) is rewritten as

1 +
[

N1r(a1) + jN1i(a1)
]

g11(s)

+
[

N2r(a2) + jN2i(a2)
]

g22(s)

+
[

N1r(a1) + jN1i(a1)
][

N2r(a2) + jN2i(a2)
]

×
[

g11(s)g22(s)− g12(s)g21(s)
]

= 0,

(39)

in s-domain, and the real and imaginary parts of (39) with
s = jω are

B1(ω) + [N1r(a1)C1(ω)−N1i(a1)C2(ω)]

+ [N2r(a2)D1(ω)−N2i(a2)D2(ω)]

+ {[N1r(a1)N2r(a2)−N1i(a1)N2i(a2)]E1(ω)

−[N1r(a1)N2i(a2) + N1i(a1)N2r(a2)]E2(ω)} = 0,

(40)

B2(ω) + [N1r(a1)C2(ω) + N1i(a1)C1(ω)]

+ [N2r(a2)D2(ω) + N2i(a2)D1(ω)]

+ {[N1r(a1)N2r(a2)−N1i(a1)N2i(a2)]E2(ω)

+[N1r(a1)N2i(a2) + N1i(a1)N2r(a2)]E1(ω)} = 0.

(41)

Then, parameter analyses in the N1(a1) versus N2(a2) plane
are replaced by those of in the A1 versus A2 plane. For

example, nonlinearities are replaced by two double-valued
nonlinearities shown in Figure 6. The describing functions
are

Ni(ai) = Nir(ai) + jNii(ai)

=
2M

πAi

⎡

⎣

(

1−
d2

Ai
2

)1/2

+

(

1−
p2

Ai
2

)1/2
⎤

⎦

− j
2M
(

p − d
)

πAi
2 , Ai ≥ p,

(42)

where M = 1, d = 0.9 and p = 1.1. Figure 7 shows the
root-loci of the system with new two-valued nonlinearities.
Six checking criteria gives Point Q4(2.164.2.163) represents
the unique solution (ωmin = 0.7476 rad/sec, A1 = 2.164,
A2 = 2.163, θ = −71.59◦, and Mθ2 = 0.9172). The corrected
amplitudes by (38) with Mθ2 = 0.9172 are A1m = 2.2536
and A2m = 2.0735. The simulation verification result is
shown in Figure 8, in which gives (ω = 0.7506 rad/sec, A1 =

2.2592, A2 = 2.0923 and θ = −67.82◦). It can be seen that
calculated results give accurate prediction for double-valued
nonlinearities also.

Six criteria for finding a stable limit cycle have been
developed for nonlinear multivariable feedback control
systems with single- and double-valued nonlinearities. The
same analyzing and design procedures with six checking
criteria will be applied to following 2 × 2 and 3 × 3
complicated nonlinear multivariable feedback systems. Note
that six criteria are deduced to check the ωmax or ωmin point
of root loci which satisfies Criteria 2 to 5. This reduce the
computing effort dramatically.

3. Numerical Examples

Example 1. Consider a nonlinear multivariable system with
transfer function matrix [23]

G(s) =

⎡

⎢

⎢

⎢

⎣

12.8e−s

16.7s + 1

18.9e−3s

21s + 1

6.6e−7s

10.9s + 1

19.4e−3s

14.4s + 1

⎤

⎥

⎥

⎥

⎦

. (43)

Two nonlinearities are shown in Figure 9. Equation (43)
gives the considered system is a large transportation lag
system. Similar to the procedure stated in Section 2, the
found root loci are shown in Figure 10. There are two ωmax

(Q6,Q8) and two ωmin (Q5,Q7) points of root loci. They
represent possible solutions of the stable limit cycle. But only
the Q5 is the solution for it satisfies Criterions 2 to 5. The
simulation verification is shown in Figure 11. Comparison
of the calculated and simulated results is given in Table 3. It
can be seen that calculated results give accurate prediction of
the considered system. Note that the transportation lag is a
periodic function of frequency ω. Therefore, Figure 10 gives
four maximal ad minimal frequency points of root loci. The
illustrating example stated in Section 2 gives one maximal
and one minimal frequency points (Figure 2) only for it is
a 2 × 2 system and has no transportation lag. Example 1
gives the proposed method give an effect way to find the
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Figure 9: Nonlinearities of Example 1.

Table 3: Calculated and simulated results of Example 1.

Osci. Freq. (rad/s) Channel no. 1 Channel no. 2 θ2 (deg) Mθ2

Calculation 0.4875
Nic(ai) 0.4541 0.2929

−53.3 0.95
Aic 1.0961 2.1390

Simulation 0.4836 Ais 1.0607 2.2454 −54.4

ωmax

ωmax ωmin

ωmin

ω

ω

ω

ω
ω

ωω

Q8

Q6 Q5

Q7

ωmin = 0.4875 rad/s (Q5)

ωmax = 0.5846 rad/s (Q6)

ωmin = 1.3754 rad/s (Q7)

ωmax = 1.7961 rad/s (Q8)

−1

−1

0 1

1

2

2

3

N2(a2)max

N2(a2)

N1(a1)

Figure 10: Root loci analyses of limit cycles of Example 1.
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Figure 11: Time responses of Example 1.

exact solution. The developed criteria for 2 × 2 systems are
extended to following 3× 3 systems.

Example 2. Consider a 3×3 multivariable process [24] given
by

G(s) = K

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−2e−s

10s + 1

1.5e−s

s + 1

e−s

s + 1

1.5e−s

s + 1

e−s

s + 1

−2e−s

10s + 1

e−s

s + 1

−2e−s

10s + 1

1.5e−s

s + 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (44)

where K is the loop gain. There are three relay nonlinearities
in the diagonal terms. The deadband (d) and magnitude
(M) of each nonlinearity are 0.5 and 1.0, respectively.
The describing functions of them are given in (26). The
harmonic-balance equations of the system are given by
⎡

⎢

⎢

⎢

⎣

A1e jθ1

A2e jθ2

A3e jθ3

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

N1(a1)g11(s) N2(a2)g12(s) N3(a3)g13(s)

N1(a1)g21(s) N2(a2)g22(s) N3(a3)g23(s)

N1(a1)g31(s) N2(a2)g32(s) N3(a3)g33(s)

⎤

⎥

⎥

⎥

⎦

×

⎡

⎢

⎢

⎢

⎣

−A1e jθ1

−A2e jθ2

−A3e jθ3

⎤

⎥

⎥

⎥

⎦

,

(45)

⎡

⎢

⎢

⎢

⎣

1 + N1(a1)g11(s) N2(a2)g12(s) N3(a3)g13(s)

N1(a1)g21(s) 1 + N2(a2)g22(s) N3(a3)g23(s)

N1(a1)g31(s) N2(a2)g32(s) 1 + N3(a3)g33(s)

⎤

⎥

⎥

⎥

⎦

×

⎡

⎢

⎢

⎢

⎣

A1e jθ1

A2e jθ2

A3e jθ3

⎤

⎥

⎥

⎥

⎦

=
−→
0 ,

(46)
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Figure 12: (a) Root loci analyses of limit cycles of Example 2. (b) ωmax versus N3(a3) of Example 2.

Table 4: The maximal frequency point ωmax of each constant-N3(a3) locus of Example 2.

N3(a3) 1.273 1.20 1.15 1.10 0.9968 0.90 0.70 0.30 0.10 0.00

ωmax (rad/s) 2.040 2.049 2.054 2.058 2.061 2.059 2.054 2.044 2.041 2.039

a1, a2, a3

t (s)

ω = 2.058 rad/s

1.264
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−1

0

1

2

Figure 13: Time responses of Example 2.

where gi j(s) is the (i, j)th element of G(s). Equation (46)

gives the characteristic equation of the system as

1 + N3(a3)g33(s)

+
{

g11(s) + N3(a3)
[

g11(s)g33(s)− g13(s)g31(s)
]}

N1(a1)

+
{

g22(s) + N3(a3)
[

g22(s)g33(s)− g32(s)g23(s)
]}

N2(a2)

+
{

g11(s)g22(s)− g12(s)g21(s) + N3(a3)Dg(s)
}

×N1(a1)N2(a2) = 0,

(47)

where Dg(s) represents the determinant of the transfer
function matrix G(s). For a specified value of N3(a3), the
characteristic equation is function of N1(a1), N2(a2), and
ω only. Therefore, the same analyzing procedures for 2 × 2
nonlinear multivariable systems described by (17)–(22) and
six criteria can be applied. Figure 12(a) shows parameter

analyses of several constant-N3(a3) loci between N3(a3)max =

1.273 and N3(a3) = 0.00 for K = 1.0. Each constant-
N3(a3) locus shows the maximal frequency ωmax which is
given in Table 4. Intersecting points between the dash-
dot line and constant-N3(a3) loci give ωmax of constant-
N3(a3) loci. Figure 12(b) shows ωmax locus versus N3(a3).
It gives the maximal frequency with respect to N3(a3) is
ωmax = 2.061 rad/s. The corresponding values of Ni(ai)
are the point Q9(0.9968, 0.9968) shown in Figure 13. It is
the unique solution of the stable limit cycle. The found
Ai are (A1,A2,A3) = (1.151, 1.151, 1.151). They are found
by inverting the describing functions. Figure 13 shows
simulation verification results in which gives (A1,A2,A3) =
(1.264, 1.264, 1.264) and ω = 2.058 rad/s. It can be seen that
calculated results are quite closed to simulated results for this
nonlinear 3× 3 multivariable feedback control system.

Example 3. Consider a 3 × 3 multivariable feedback control
system with the transfer function matrix [25]

G(s) =
1

10

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

119e−5s

21.7s + 1

40e−5s

337s + 1

2.1e−5s

10s + 1

77e−5s

50s + 1

76.7e−3s

28s + 1

5e−5s

10s + 1

93e−5s

50s + 1

−36.7e−5s

166s + 1

103.3e−4s

25s + 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (48)

There are three nonlinearities in the diagonal. Figure 14
shows nonlinearities. Figure 15(a) shows root loci of pos-
sible solutions of limit cycles in the N1(a1) versus N2(a2)
plane for specified values of N3(a3). The ωmax-locus shows
connections of each ωmax point of constant-N3(a3) locus.
The maximal value of the ωmax-locus shown in Figure 15(b)
gives ωmax = 0.3593 rad/s; that is, point Q10. The point
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Figure 15: (a) Root loci analyses of limit cycles of Example 3. (b) ωmax versus N3(a3) of Example 3.
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Figure 16: Time responses of Example 3.

Q10 represents existence of a stable limit cycle, that is,
ω = 0.3593 rad/s, N1(a1) = 0.6578, N2(a2) = 1.6919,
and N3(a3) = 0.910. The corresponding amplitudes are
A1 = 1.835, A2 = 0.7735, and A3 = 1.2215. They are
found by inverting the describing functions. Figure 16 shows
simulation verifications give A1 = 1.965, A2 = 0.8357,
A3 = 1.249, and ω = 0.3541 rad/s. It shows that calculated
results give accurate prediction of a stable limit cycle.

4. Discussions

From analyses and simulated results of Examples 1 to 3,
procedures for finding the stable limit cycle can be simplified
by only checking one or two points of root loci whether
they satisfy six criteria or not. Those points are minimal
or maximal frequency point (ωmin,ωmax) of the root loci of
the characteristic equation. Such that the proposed method
reduces the computational efforts largely. The simplified
procedures are given below:

(1) plotting root loci from the characteristic equation in
the parameter plane (or space);

(2) finding the maximal and minimal frequency points
(ωin,ωmax) of root loci;

(3) checking points (ωin,ωmax) satisfy Criteria 2 to 5 or
not.

5. Conclusions

In this paper, a practical method for limit-cycle predictions
in nonlinear multivariable feedback control system has
been presented and found to be much simpler than other
methods given in the current literature. It has been shown
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that calculated results give accurate predictions for consider
nonlinear multivariable feedback control systems.
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