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Abstract Handling and stability properties of auto-

mobiles are most often studied from a practical point of

view by applying a reduced set of equations, where the

forward velocity is kept constant. At studying the full

set of equations of a basic nonlinear two-wheel vehicle

model, a supercritical Hopf bifurcation is found for an

oversteer vehicle. All state variables of the vehicle are

involved at small amplitude limit cycles in the vicinity

of the Hopf bifurcation point with the steering angle

(drive torque) as bifurcation parameter. At the tran-

sition to large amplitude relaxation cycles, the cyclic

motion of the vehicle may be separated into ‘slow’ lon-

gitudinal velocity-related segments, and ‘fast’ vehicle

yaw and side slip-related segments, indicating a singu-

lar perturbed system. Moreover, Canard phenomenon

is observed for both steering angle and drive torque

bifurcation parameters.
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1 Introduction

Nonlinear stability analysis at the limits of handling

of an automobile has become an important issue to

increase passive and active safety. Having automated

driving in mind, a clear understanding of nonlinear

vehicle dynamics is essential to suitably control actua-

tors that will replace the human driver.

When a human driver is controlling the lateral

dynamics of the car by steering, it has been shown

that the driver may destabilise the motion of the com-

bined nonlinear vehicle–driver system depending on

the available preview distance ahead of the vehicle.

Then, limit cycles of the steering wheel angle may

emerge when following a given trajectory [1–3]. How-

ever, it is more convenient so far, to consider stability

and handling behaviour of the vehicle for specific tra-

jectories only, such as straight-line driving and circular

cornering, as stability and steering behaviour are fun-

damentally related to each other [4]. For linear tyre

characteristics of the vehicle model, there is no differ-

ence in the stability analysis between the motion in a

straight-line or circular curve. It is a well-known result

of linear stability analysis, that the steady-state corner-

ing motion will become monotonically unstable for an

oversteer vehicle at the critical speed, resulting in a nar-

rowing spiral motion. The loss of stability occurs at zero

steering wheel angle, when slowly increasing speed and

slowly releasing the steering wheel to maintain steady-

state cornering at a constant radius of curvature. For

nonlinear tyre characteristics, the limit of stability can
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still simply be found from (measured) steering charac-

teristics, when the rate of change of steering angle w.r.t.

path curvature becomes zero for slowly tightening the

steering wheel at constant speed [4].

These findings are based on vehicle speed as given

parameter, with longitudinal and lateral dynamics

decoupled. Subsequently, this paper accounts for those

neglected coupling effects, which require a nonlinear

vehicle model with combined longitudinal and lateral

tyre forces. As an alternative to accelerator and gear

position applied by a driver, the effective torque at the

(substitutive) rear wheel is used as input to the vehicle

next to the steering angle. The velocity of the centre

of gravity of the vehicle, vehicle side slip angle, yaw

rate and angular velocity of the rear wheel are used as

a minimum set of state variables for a two-wheel vehi-

cle model. Instead of a monotonic loss of stability for

the linear oversteer vehicle for steady-state cornering, a

Hopf bifurcation has been found for the enhanced non-

linear vehicle model, already noted in [5] for a four-

wheel vehicle model, and continued limit cycles are

discussed. As a consequence of consideration of lon-

gitudinal dynamics in the equations of motion and the

influence of longitudinal tyre slip on the lateral tyre

force of an oversteer vehicle, the remarkable appear-

ance of Canard phenomenon could be revealed as a

main contribution of this paper.

Stability maps with steering angle and the drive

torque as bifurcation parameters have been presented in

[6] before. In contrast to this study, equilibrium points

of an understeer vehicle (without Hopf bifurcation)

were considered for continuation, while supercritical

Hopf bifurcations have been pointed out for different

characteristics of oversteer vehicles in [7]. Results have

been thoroughly discussed from a vehicle dynamics

point of view, focussing on respective handling dia-

grams. Longitudinal velocity and steering wheel angle

have been chosen as bifurcation parameters, and as a

consequence, the influence from longitudinal dynam-

ics has been neglected in [7]. In [8], the importance

of the longitudinal velocity in determining the location

of bifurcation points has been outlined, which was not

yet addressed in [9]. In the latter contribution, destabi-

lization is shown to be caused by a saddle-node bifur-

cation of a limit-oversteering vehicle, which strongly

depends on the saturation of the rear lateral tyre force.

As a consequence, a front wheel steering controller was

designed to compensate the instability against the non-

linear uncertainty from tyre behaviour; see also [10,11]

for an extension to rear-wheel steering.

Next to [6], longitudinal slip and respective longitu-

dinal vehicle dynamics have been included in [12,13],

resulting in smaller areas of attraction to a stable equi-

librium point. As a further extension to bifurcation

analysis of equilibrium points, a method to use bifurca-

tion and continuation procedures also for evaluation of

vehicle stability during acceleration and braking has

been proposed in [14]. A four-wheel vehicle model

was introduced in [15] to account for effects from roll

moment distribution for both under- and oversteer vehi-

cles on bifurcation locations, neglecting longitudinal

dynamics.

The remainder of this paper is organized as follows.

The vehicle model with respective tyre/axle character-

istics is introduced in Sect. 2, and characteristic han-

dling properties of an oversteer vehicle will be pre-

sented. In Sect. 3, the Hopf bifurcation, identified in

the previous section, will be addressed, and continued

limit cycles discussed in more detail. In the final sec-

tion, main conclusions will been drawn.

2 Vehicle model and handling properties

The basic planar two-wheel vehicle model with rear-

wheel drive has been chosen to study the motion and

stability properties of an automobile, as shown in Fig. 1.

The state of the system is represented by the velocity

of the vehicle v, the yaw rate ψ̇ , the vehicle side slip

angle β, and the angular velocity of the driven rear

wheel ωR . The human driver (or a respective control

system) applies a front steering angle δF and a drive

torque MR as input to the vehicle. Thus, the equations

of motion of the system read

mv̇ cos β − m(ψ̇ + β̇)v sin β = Fx R − FyF sin δF

(1a)

mv̇ sin β + m(ψ̇ + β̇)v cos β = Fy R + FyF cos δF

(1b)

Iψ ψ̈ = lF FyF cos δF − lR Fy R (1c)

Iωω̇R = MR − rR Fx R (1d)

Notation and parameters are given in Table 1.

For given v = const., small angles and subsequent

linearisation, longitudinal dynamics, (1a), (1d), decou-

ple from lateral dynamics (1b), (1c). To account for
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Fig. 1 Two-wheel vehicle model

coupling effects not only the full set of nonlinear equa-

tions in (1) has to be considered, but also the mutual

influence of longitudinal and lateral tyre forces. Fur-

ther, saturation of the tyre forces at large side slip angles

needs to be included in the tyre model. Here, the tyre

brush model is applied [16].

The lateral slip σyF of the front tyre is derived from

kinematic considerations

σyF = tan αF with tan(δF − αF ) =
v sin β + l f ψ̇

v cos β

(2)

The lateral and longitudinal slip σy R and σx R at the rear

tyre read

σy R = −
vsy R

|rRωR |
and σx R = −

vsx R

|rRωR |
(3)

with lateral and longitudinal slip velocities vsy R and

vsx R

vsy R = v sin β − lr ψ̇ and vsx R = v cos β − rRωR

(4)

The absolute slip at front tyre σF , where no longitu-

dinal force appears, as shown in Fig. 1, and at the rear

tyre σR ,

σF = |σyF | and σR =

√

σ 2
x R + σ 2

y R (5)

are input to the tyre brush model [16],

Fi =

{

μi Fzi (3θiσi − 3(θiσi )
2 + (θiσi )

3) for σi ≤ σsli

μi Fzi for σi > σsli

(6)

Table 1 Parameters of vehicle and simplified tyre/axle model

Parameter Abbr. Value Unit

Vehicle mass m 2000 kg

Vehicle yaw inertia Iψ 2650 kg m2

Axle inertia Iω 6 kg m2

Front axle position CG F lF 1.45 m

Rear axle position CG R lR 1.50 m

Effective tyre radius rR 0.35 m

Eff. Front axle slip stiffness 2cpF a2
F 3.6 × 105 N

Eff. Rear axle slip stiffness 2cpRa2
R 2.6 × 105 N

Maximum force coefficient μF , μR 1 –

where Fi with i = F, R represents the magnitude of

the total front and rear tyre/axle force, respectively.

The composite isotropic tyre/axle parameter θi

θi =
2cpi a

2
i

3μi Fzi

(7)

includes the constant vertical tyre force Fzi , resulting

from CG position and vehicle weight, the tyre slip

stiffness 2cpi a
2
i , as well as the maximum tyre force

coefficient μi , representing tyre–road contact condi-

tion. Total sliding of the respective tyre starts at slip

σsli = θ−1
i [16].

Lateral and longitudinal tyre/axle force Fyi and Fxi

finally read

Fyi = Fi

σyi

σi

and Fxi = Fi

σxi

σi

(8)

Parameters of the tyre/axle model are listed in Table 1,

and normalized slip characteristics derived with these

parameters for the front and rear tyre/axle are shown in

Fig. 2.

Above all, handling properties of a vehicle are typ-

ically evaluated from the steady-state ‘handling dia-

gram’, as shown in Fig. 3, where the steering angle

δF (top) and the vehicle side slip angle β (centre) are

plotted over the normal acceleration of the centre of

gravity of the vehicle. The drive torque MR required

to maintain constant velocity is shown at the bottom.

Since vehicle side slip angle β and yaw rate ψ̇ as well

as the steering angle δF are small for sufficiently large

radius of curvature ρ, and velocity v is constant, the

reduced set of equations (1b), (1c) is normally used

to study handling properties, see e.g., [16]. Respective

curves are denoted ‘pure lateral model’ in Fig. 3 and

show a good match with the full vehicle model up to
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Fig. 2 Normalized slip characteristics of front and rear simpli-

fied tyre/axle model

high normal accelerations. Since the mutual influence

of longitudinal and lateral tyre forces is not considered

in the pure lateral model, differences may be noted at

the limits of handling, in particular when inspecting the

required steering angle.

According to [16], ∂δF/∂v = 0 defines the bound-

ary between over- and understeer of the pure lateral

model for steady-state cornering at constant radius of

curvature ρ. Since ∂δF/∂v < 0 in Fig. 3, oversteer

handling characteristics are found for the vehicle setup

considered in this study. In [4] it has been revealed that

φF φR

∂δF

∂(l/ρ)

∣

∣

∣

∣

v=const.

> 0 (9)

is required for stable steady-state cornering and positive

slopes of the front and rear lateral tyre/axle forces char-

acteristic φF and φR at the respective steady-state side

slip angles. Thus, stability properties of the automo-

bile may be directly read off model-based or measured

handling diagrams [17], which is very useful from a

practical point of view.

Stability in first approximation of vehicle model (1)

at steady-state cornering is examined by inspecting

the eigenvalues of the system M�ẋ = A�x + B�u,

which results from linearisation, w.r.t. steady-state cor-

nering at varying operating points, with x = [v, ψ̇,

β, ωR]T and u = [δF , MR]T. Eigenvalues λk derive

from det(A−λM) = 0, and respective branches of real

parts are depicted in Fig. 4.

However, only up to three branches are shown, since

eigenvalues and corresponding eigenmodes mostly

dominated by wheel speed are below −200 1/s and of

less interest. In the vicinity of the critical speed [16],

two real eigenvalues combine to a conjugate-complex

eigenvalue (oscillatory mode), see also [5], with eigen-

Fig. 3 Oversteer vehicle: (top) front steering angle δF ; (centre)

vehicle side slip angle β; (bottom) drive torque MR ; constant

radius of curvature ρ = 50 m; Hopf bifurcation point ×: δF =

2.38◦, MR = 359.13 Nm

frequencies up to 0.5 Hz at the Hopf bifurcation point

indicated by ×. Inspecting corresponding eigenvectors,

all state variables are involved; however, main compo-

nents are related to vehicle velocity v and wheel speed

ωR . Transient tyre properties, e.g., [16], have been dis-

regarded, since they have only marginal impact on the

dynamics of the vehicle in the operational range of

interest, but add to the complexity of the model. Nev-

ertheless, the applied tyre model certainly may effect

the results [18], and more effort may be spent thereon

in the future.

For the sake of comparison, both branches of real

parts of the eigenvalues of the pure lateral model are

depicted in Fig. 4 as well. As expected, monotonic loss
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Fig. 4 Real parts of eigenvalues λk for the full and pure lateral

model: full operational range (top) and detail (bottom); constant

radius of curvature ρ = 50 m; Hopf bifurcation point ×: δF =

2.38◦, MR = 359.13 Nm

of stability is found in this case. A larger critical speed

for the loss of stability can be noticed for the pure lateral

model compared with the full vehicle model, basically

due to the disregarded mutual influence of longitudinal

and lateral tyre/axle forces.

In the next section, the dynamic behaviour of the

full vehicle model before and after a loss of stability

is assessed by means of numerical continuation of the

Hopf bifurcation in more detail. In this way, the effec-

tiveness of actuators on modifying the dynamics of the

vehicle can be obtained, if the inputs vary more slowly

than the vehicle dynamics. The maximum and mini-

mum control inputs, i.e., bifurcation parameters, result

in a range of possible trajectories illustrating the actu-

ator’s capabilities.

3 Numerical analysis of the Hopf bifurcation

3.1 Bifurcation diagram

At the Hopf bifurcation point shown in Fig. 4, a fam-

ily of periodic solutions bifurcates from the steady-

Fig. 5 Bifurcation diagram for periodic solutions. The solution

amplitude is characterized by the smallest value vx,min of the

forward velocity of the vehicle vx . The symbols ‘Sat Rear’ and

‘Sat Front’ indicate periodic orbits, at which the saturation of the

respective tyre force occurs first. (Color figure online)

state solutions. This branch of solutions was calculated

using the continuation software MatCont [19] and the

continuation package Hom [20], using the multiple

shooting method Bndsco [21] for solving the boundary

value problems. As distinguished bifurcation parame-

ter steering angle δF (and drive torque MR , but not

shown here) is used, the remaining parameters are kept

fixed.

The bifurcation diagram is displayed in Fig. 5: At

the Hopf point, section I, a family of stable periodic

solutions with small amplitude is found, which coex-

ists with the unstable steady state (dashed blue line). At

δF = 2.3◦ an almost vertical segment is observed, sec-

tion II: For an extremely small variation of the param-

eter δF , the diameter of the periodic solution increases

strongly. Along this steep part, the tyre forces reach

their saturation values. After both tyres experience

saturation, the steep segment finishes and for larger

periodic oscillations the steering angle decreases quickly,

section III, until the velocity component in the longitu-

dinal direction of the vehicle vx = v cos β approaches

zero, after which no more periodic solution can be

found.

A result similar to Fig. 5 is found with drive torque

MR as bifurcation parameter instead of the steer-

ing angle δF , however, in contrast to δF , amplitudes

increase with increasing MR .

The periodic solutions corresponding to the marked

points in Fig. 5 are displayed in the (v, ψ̇)-phase plane

(top) and (v, β)-phase plane (bottom) of Fig. 6: Three
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Fig. 6 Several periodic (full lines) and singular solutions

(dashed lines) in the (v, ψ̇)-phase plane (top), and (v, β)-phase

plane (bottom); line colours correspond to markers in Fig. 5.

(Color figure online)

orbits look very similar and almost agree for larger val-

ues of v, while the solution for δF = 0.5◦ significantly

differs from the other ones. Along the steep segments

at the leftmost parts of the orbits, the solution jumps

quickly from the upper branch to the lower one (top).

Corresponding trajectories of the centre of gravity

of the vehicle in the road plane are shown in Fig. 7.

Trajectories start at the Hopf bifurcation point. After a

period of transition (black lines), limit cycles emerge

for δF = 2.3◦ and δF = 0.5◦. The change of the

steering angle (as possible action of the driver) from

δF = 2.38◦ to δF = 2.3◦ is small from a practical

point of view; nevertheless, the steady limit cycle is

reached quickly for δF = 2.3◦. The respective limit

cycles are indicated by the colours corresponding to

Fig. 6 for illustration, before next limit cycles follow

(black lines again).

Trajectories found in section I, with increasing cycle

times from about 10 to 15 s as the steering angle δF

decreases, have almost circular shape. Since the devia-

Fig. 7 Trajectories of the centre of gravity of the vehicle in the

road plane. Initial states correspond to Hopf bifurcation point,

steering angle δF = 2.3◦ or δF = 0.5◦: black segments starting

at (0,0) represent transitions to limit cycles; coloured segments

represent one limit cycle corresponding to Fig. 6. (Color figure

online)

tions from the steady-state circular path are small, only

a slight ‘drift’ of the circular trajectory can be observed.

In contrast, for the pure lateral model, a saddle point

has been identified in [7], instead of the Hopf bifurca-

tion point, for a similar oversteer vehicle configuration,

besides a second saddle that define a basin of attraction

of a stable node. Although both models show a fun-

damentally different loss of stability, monotonic and

periodic, resulting motions are similar just after loss of

stability, and neglecting longitudinal dynamics is con-

firmed for section I.

Applying a constant steering angle, when stability is

lost close to the Hopf bifurcation point, in the ‘opposite’

direction, no limit cycle will appear, full blue line in

Fig. 5. Instead, a steady-steady circular path will result

corresponding to the chosen steering angle (and fixed

drive torque).

Trajectories found in section III show moderate

dynamics for a large part of the cycle time, but fast

longitudinal and lateral dynamics at the final part, as

shown in Figs. 7 and 8.

When velocity is increased beyond the critical speed,

while cornering at constant radius, it is known from

experience, that an expert driver may recover stability

[16], by steering to a large steering angle for a vehicle

with limit oversteer. This can also be concluded from

the respective handling diagram. Bifurcation analysis

may indicate, that instead of finding and adjusting a

stable singular point, a stable limit cycle nearby with

slow dynamics may be an alternative to large steering

activities.
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Fig. 8 Velocity v(t), yaw rate ψ̇(t) and β(t) of the periodic solu-

tions marked in Fig. 5, starting when the yaw rate ψ̇ is minimum

3.2 Observations in the regime of exploding solution

amplitudes

The most remarkable feature of the periodic solution

branch is the almost vertical segment, section II, in

the bifurcation diagram, Fig. 5: For a tiny variation of

the bifurcation parameter the diameters of the orbits

grow significantly and the periodic solutions seem to

just change their range for small values of the veloc-

ity v; during most of the time all these solutions seem

to follow slowly the same trajectory. Most of the tested

packages for solving boundary value problems failed

to converge in this parameter domain and very small

steps had to be used in the continuation method. The

largest one of the numerically computed Floquet mul-

tipliers, which should have been equal to 1, grew up

to 10,000, while the remaining multipliers were less

than 10−9, indicating a very strong contraction of

neighbouring solutions. Such a behaviour is frequently

observed close to homoclinic solutions, but no nearby

saddle point could be found and the periodic orbits

continuously increased in size, while they wouldn’t

have changed their size when approaching a homoclinic

orbit.

Since the motion along the smooth segments of the

periodic solutions was quite slow, we suspected, that

some kind of singular perturbations causes the strange

behaviour: The stiff tyre forces should constrain the

wheels to almost slip-free motions. As can be seen in

Fig. 8, the yaw rate ψ̇(t) varies strongly at the end-

points and behaves regularly in the interior domain,

while the velocity component v(t) just displays a kink

at the endpoints. Also ωR(t) shows a smooth behaviour,

while the angle β(t) displays similar boundary layers

as ψ̇ . One might therefore conclude that v and ωR are

the ‘slow’ variables and ψ̇ and β are the fast ones. But

in this model, we obtain a much better agreement with

the predictions from singular perturbation theory, if we

consider v as slow variable and ωR , ψ̇ and β as fast

ones.

In singular perturbation theory, one studies problems

with the structure

ε ẋ = f (x, y, ε), (10)

ẏ = g(x, y, ε), (11)

where ε is a small parameter. The fast and slow vari-

ables are given by x and y, respectively. Setting ε = 0

one obtains the reduced problem

0 = f (x, y, 0), (12)

ẏ = g(x, y, 0), (13)

which is a differential-algebraic system and governs the

slow behaviour. The algebraic equation (12) is solved

for the fast variables x: x = h( y) and the slow dynam-
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ics is governed by the reduced equation

ẏ = g(h( y), y, 0). (14)

Equation (12) need not be solvable for all possible val-

ues of y; if y(t) approaches a point, where (12) becomes

singular, the fast variable usually jumps away from the

critical manifold x = h( y). Also if the critical manifold

becomes unstable, the solutions usually drift quickly

away from it.

In our model, the fast dynamics is caused by the

large forces acting on the tyres. It would therefore seem

reasonable, to regard a common reciprocal of the tyre

stiffness parameters as perturbation parameter ε. But

one would have to make the tyres infinitely stiff for

studying the reduced problem with ε = 0.

Instead of explicitly choosing some perturbation

parameter ε and looking for the critical manifold with

ε = 0, we simply searched for fixed values of the veloc-

ity v the stationary values for the fast variables:

β̇ = 0, ψ̈ = 0, ω̇R = 0.

The corresponding families of partially stationary

solutions are displayed by dashed lines in Fig. 6: Along

the lower branch of these V-shaped curves we have

v̇ > 0, whereas at the upper part v decreases; the

eigenvalues are stable along the lower part and unsta-

ble along the upper part: The periodic solution for

δF = 0.5◦ closely follows the corresponding singu-

lar solution along the stable lower branch, while the

other three displayed periodic solutions follow it also

along the unstable upper part, until they jump back to

the lower branch.

This type of behaviour was already observed for

several nonlinear oscillations, like the Van der Pol-

equation, and accurately proven in [22] by geomet-

ric singular perturbation theory: Close to the tip of

the singular curve a family of periodic orbits grows

from a Hopf bifurcation and closely follows the sin-

gular curves. The quick increase in the solution ampli-

tudes for tiny variations of parameters is called ‘Canard

explosion’ and a corresponding bifurcation diagram is

shown in [22] (therein denoted Fig. 7a), which closely

resembles the diagram in Fig. 5.

4 Conclusions

Main findings of the analysis of the stability of steady-

state cornering of a basic nonlinear two-wheel vehicle

model with oversteer characteristic and coupled longi-

tudinal and lateral dynamics are

– A supercritical Hopf bifurcation point has been

found when stability is lost at large lateral accel-

eration. In contrast, an unstable saddle appears [7],

for a model that neglects longitudinal effects with

longitudinal velocity as a given parameter but sim-

ilar tyre/axle characteristics.

– Small amplitude limit cycles close to the Hopf

bifurcation point emerge with the steering angle

(drive torque) as bifurcation parameter, followed

by large amplitude relaxation cycles.

– Due to the large tyre forces, the system is singularly

perturbed and a ‘Canard explosion’ is observed,

during which relaxation oscillations occur.

– Evaluation of the small amplitude limit cycle

behaviour by respective phase plots and trajecto-

ries of the vehicle motion confirms the use of a

pure lateral vehicle model sufficiently close to the

loss of stability.

– Nonlinear stability and bifurcation analysis has

revealed that a stable limit cycle with small ampli-

tude and slow dynamics may be an attractive alter-

native to finding and adjusting stable singular points

for a human driver or steering robot.

To confirm and extend the results of this paper, the

influence of the applied tyre model shall be studied

in the future. Also the singular perturbation behaviour

needs to be investigated more rigorously.
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