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Limit Cycles With Chattering in
Relay Feedback Systems

Karl Henrik Johansson, Member, IEEE, Andrey E. Barabanov, and Karl Johan Åström, Fellow, IEEE

Abstract—Relay feedback has a large variety of applications
in control engineering. Several interesting phenomena occur in
simple relay systems. In this paper, scalar linear systems with relay
feedback are analyzed. It is shown that a limit cycle where part
of the limit cycle consists of fast relay switchings can occur. This
chattering is analyzed in detail and conditions for approximating
it by a sliding mode are derived. A result on existence of limit
cycles with chattering is given, and it is shown that the limit cycles
can have arbitrarily many relay switchings each period. Limit
cycles with regular sliding modes are also discussed. Examples
illustrate the results.

Index Terms—Discontinuous control, hybrid systems, nonlinear
dynamics, oscillations, relay control, sliding modes.

I. INTRODUCTION

RELAYS are common in control systems. They are used
both for mode switching and as models for physical

phenomena such as mechanical friction. Relay control is the
oldest control principle but is still the most applicable. An
early reference to on–off control is [1] (as pointed out in [2]),
in which Hawkin studied temperature control and noticed that
the relay controller caused oscillations. Simple mechanical
and electromechanical systems were an early motivation for
studying models with relay feedback [3], [4]. Other applications
were in aerospace [5], [6]. A self-oscillation adaptive system,
which has a relay with adjustable amplitude in the feedback
loop, was tested in several American aircrafts in the 1950s [7].

Recently, there has been renewed interest in relay feedback
systems due to a variety of new applications. Automatic tuning
of proportional-integral-derivative (PID) controllers using relay
feedback is based on the observation that if the controller is
replaced by a relay, there will often be a stable oscillation in
the process output [8]. The frequency and amplitude of this
oscillation can be used to determine PID controller parame-
ters similar to the classical approach by Ziegler and Nichols
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[9]. Another application of relay feedback is also in the design
of variable-structure systems [10]. The high-gain of the relay
makes it possible to design a control system that is robust to
parameter variations and disturbances. Hybrid control systems
have both continuous-time and discrete-event dynamics. An in-
teresting class of hybrid systems are switched control systems
[11], in which a relay feedback system is the simplest member.
Switched controllers have a richer structure than regular smooth
controllers and can, therefore, often give better control perfor-
mance. There exist, however, no unified approach today to de-
sign switched controllers. An interesting application of relay
feedback is in the design of delta–sigma modulators in signal
processing [12], [13]. Delta–sigma modulators have replaced
standard analog-to-digital (AD) and digital-to-analog (DA) con-
verters in many applications, because they are often simpler to
implement. The basic setup of a delta–sigma modulator is a filter
in a feedback loop with a quantizer, which can be modeled as
a relay. Modeling of quantization errors in digital control is an-
other motivation to study relay feedback [14].

Limit cycles and sliding modes are two important phenomena
that can occur in relay feedback systems. Research on both these
issues was very active in the former Soviet Union during the
1950s and 1960s. Major contributions to the work on oscilla-
tions can be found in [3] and [4] (see also [15] on the describing
function method to analyze these oscillations). While building a
mathematical framework for sliding modes, interesting proper-
ties of differential equations with discontinuous right-hand sides
were found. Uniqueness and existence of solutions and smooth
dependency on initial conditions of a solution (all well known
to hold for smooth differential equations) could easily be vio-
lated by a nonsmooth system. This was a topic for discussion
in which, for example, Filippov and Neimark took part in at the
first International Federation of Automatic Control (IFAC) con-
gress [16]. A standard reference on the concept of solution to
nonsmooth systems is Filippov’s monograph [17]. Utkin’s defi-
nition of sliding modes based on equivalent control is discussed
in [10]. A regular (first-order) sliding mode is a part of a tra-
jectory on a surface of dimension , where is the system
order. Higher order sliding modes belongs to a surface of lower
dimension. These sliding modes have many interesting prop-
erties, which, for example, can be exploited for control design
[18].

A linear system with relay feedback can show several inter-
esting phenomena. Local analysis of limit cycles are given in
[19]. Few results exist on global stability of limit cycles in higher
order system, but a recent contribution is given in [20]. The re-
sponse of a linear system with relay feedback can be compli-
cated. Cook showed that a low-order linear system can have a
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response that is extremely sensitive to the initial condition [21].
It was shown in [22] and [23] that there exist trajectories having
arbitrarily fast relay switchings even if an exact sliding mode is
not part of the trajectory. A necessary and sufficient condition
for this is that the first nonvanishing Markov parameter of the
linear part of the system is positive. It was shown by Anosov
[24] that the pole excess is important for the stability of the
origin in relay feedback systems. Systems with pole excess three
or higher are unstable. From a similar discussion, it is possible
to conclude that only systems with pole excess two can have a
trajectory with multiple fast relay switchings [22].

The main contribution of this paper is to give conditions for
existence of a new type of limit cycle. If the linear part of the
relay feedback system has pole excess one and certain other
conditions are fulfilled, then the system has a limit cycle with
sliding mode. Because the sliding mode is exact, it is easy to
analyze this system. If the linear system has pole excess two,
there exist limit cycles with arbitrarily many relay switchings
each period. In this case the map that describes one period of the
limit cycle is quite complicated. A simulated example of such
a limit cycle was first shown in [22]. The fast relay switchings
give rise to (what we call) chattering or fast oscillations in the
state variables (cf. [18] and [25]). An important step in being
able to analyze the limit cycle is to approximate the chattering
by a second-order sliding mode. An accurate formula is derived
in this paper for how the chattering evolves. It shows that the
chattering may be attracted to a second-order sliding mode de-
pending on the system parameters. To study the limit cycle with
chattering it is shown to be sufficient to study a second-order
sliding mode instead of the complicated map describing the
chattering trajectory. The main result of the paper (Theorem 3
in Section IV) gives sufficient conditions for the existence of
a limit cycle with chattering. The technique of analyzing chat-
tering by sliding mode approximation is related to averaging in
perturbation theory [26], [27].

The paper is organized as follows. Notation is introduced in
Section II. Sliding modes and limit cycles are defined. Sec-
tion III describes the phenomena of fast relay switchings that
we call chattering. It is proved that chattering takes place close
to a second-order sliding set. An accurate formula for the evo-
lution of the chattering is also derived. By using this result, it is
possible in Section IV to prove the main theorem of the paper.
It states that there exist limit cycles with chattering. These limit
cycles can have arbitrarily many relay switchings each period.
An example of a chattering limit cycle is also given. The paper
is concluded in Section V.

II. PRELIMINARIES

A. Notation

Consider a linear time-invariant system with relay feedback.
The linear system has scalar input and scalar output and it
is described by the minimal state-space representation

(1)

with . Let
denote the transfer function of the system. The relay feedback
is defined by

.
(2)

Note that the relay does not have hysteresis. The switching plane
is denoted .

An absolutely continuous function is called
a trajectory or a solution of (1) and (2) if it satisfies (1) and (2)
almost everywhere. Note that a differential equation with dis-
continuous right-hand sides may have nonunique trajectories;
see [17]. A limit cycle in this paper denotes the set of
values attained by a periodic trajectory that is isolated and not
an equilibrium [27]. The limit cycle is symmetric if for every

it is also true that . Let the Euclidean distance
from a point to a limit cycle be denoted . A limit
cycle is then stable if for each there exists such that

implies that for all .

B. Sliding Modes

A sliding mode is the part of a trajectory that belongs to the
switching plane: is a sliding mode for with

, if for all . Sliding modes
are treated thoroughly in [17]. Let be the
pole excess of , so that but for

. Then, the set

is called the th-order sliding set (cf. [18]). A sliding mode that
belongs to an th-order sliding set is an th-order sliding mode.
We will in particular study first- and second-order sliding modes
and the corresponding sets and .

There is an important distinction between first- and second-
order sliding modes for (1) and (2). If then a trajectory
with initial condition close to the set
will have a sliding mode. Such first-order sliding modes may
even be part of a limit cycle, as we will see Section II-C. If
instead and , then the set of initial con-
ditions that gives a (second-order) sliding mode is of measure
zero. What will happen then is that a trajectory with an initial
condition close to will wind around
the second-order sliding set. This phenomena give rise to a large
number of relay switchings and is therefore named chattering.
Chattering is described in detail in Section III. In Section IV, it is
shown that also chattering can be part of a limit cycle. Existence
of fast relay switchings and their connection to limit cycles are
discussed in [22]. From the analysis therein, it follows that if the
linear part of the relay feedback system has pole excess greater
than two, then there exists no limit cycle with a large number of
fast relay switchings.

C. Limit Cycles With Sliding Modes

This paper investigates complex chattering limit cycles. In
order to present the mechanism generating them, we briefly re-
call the simple case when the limit cycle of the relay feedback
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system has an exact (first-order) sliding mode. See [23] for fur-
ther discussion and proofs.

Consider the relay feedback system (1) and (2) with state-
space representation , where

...
. . .

...

...

Note that . This implies that there is a subset of
the first-order sliding set that is attractive in the sense that the
set of initial conditions that gives a sliding mode is of positive
measure.

There are several ways to derive the sliding mode for a dif-
ferential equation with discontinuous right-hand side [17]. For
linear systems with relay feedback, they all agree. System (1)
and (2) with parameterization has sliding set equal
to . The equivalent control
[10] is . Applying this to (1) gives
the first-order sliding mode as together with the solution
to

where

...
. . .

... (3)

Hence, we have the well-known fact that the sliding mode is
stable in the sense that as , if all zeros of

are in the open left-half plane.
Local stability of limit cycles with first-order sliding modes

can be straightforwardly analyzed by studying a Poincaré map
that consists of two parts: one part corresponding to the trajec-
tory being strictly on one side of and one (sliding mode) part
corresponding to the trajectory belonging to . A limit cycle
with first-order sliding modes is stable if all eigenvalues of

(4)

are in the open unit disc. The limit cycle is unstable if at least
one eigenvalue is outside the unit disc. Here, denotes the pro-
jection , the projection

, the projection ,
and the unit column vector of length with unity in the

first position. Moreover, denotes the
initial point of the (nonsliding) part of the limit cycle outside ,

the final point of this part,
the final point of the sliding mode part, and .
Sliding limit cycles are further analyzed in [28], where it is
shown that limit cycles with several first-order sliding segments
exist and can be analyzed similarly as previously shown.

III. CHATTERING

If and , then the set of initial conditions that
gives a second-order sliding mode is of measure zero. Instead tra-
jectories close to may give rise to
chattering. In this section, a detailed analysis of the chattering is
given and a formula is proved that shows that in many cases the
chattering can be approximated by a second-order sliding mode.
In Section IV, this result is used to show existence of limit cy-
cles with chattering. “Chattering” discussed here should not be
mixed up with fast relay switchings occurring in systems with
relay imperfections such as hysteresis. The system description
here is exact. Chattering is a trajectory with a finite number of
relay switchings close to a second-order sliding mode.

Consider the relay feedback system (1) and (2) with state-
space representation , where

...
. . .

...

...

Note that this parameterization corresponds to a linear system
with pole excess two, such that and .
Since , trajectories close to the set

will give fast relay switchings [22]. Due to the choice of
parameterization, the fast behavior takes place in the variables

and . Therefore, they are called the chattering variables,
as opposed to the nonchattering variables .

The second-order sliding mode can be derived similarly to the
first-order sliding mode in Section II. It is given by
and the solution of

where

...
. . .

... (5)
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A trajectory starting at a point with ,
sufficiently small, and will wind around the set

. This follows from Theorem 1 given next, which states a
first-order approximation for the amplitude of the chattering.

Theorem 1: Consider (1) and (2) with parameterization
and order over a time interval , .

Let the initial state be ,
where is a variable but are fixed. Let
the switching times be denoted by , , i.e., let

be the time instances such that . If
for all , then the chattering variable satisfies

as (6)

and the envelope of the peaks of the chattering variable is
given by

(7)

where as uniformly for all
.

Proof: See the Appendix.
Remark 1: The nonchattering variables

are close to the corresponding sliding mode
. This follows from that the solution of a linear system

depends continuously on the initial data. Hence

for , where as and
is given by (5).

Remark 2: The variable is almost constant over
compared to the chattering variable . Therefore, (7) gives
that the sign of determines if the chattering in has an
increasing or decreasing amplitude.

The following result is a formula for the number of switchings
on a chattering trajectory.

Theorem 2: Given the assumptions of Theorem 1, the
number of switchings on the interval is equal to

(8)

where as uniformly for
.
Proof: See the Appendix.

Remark 3: Equation (7) captures the behavior of chattering
quite well. Consider a chattering solution that starts with and

small and smaller than one. Since changes rapidly
in comparison with , (7) tells that oscillates with expo-
nentially decreasing amplitude if . The length of the
switching intervals will decrease as decreases. As ap-
proaches one, however, it follows from (8) that the intervals be-

Fig. 1. Chattering for a fourth-order system (solid) together with accurate
envelope estimate from Theorem 1 (dashed). Note that the chattering ends
when x becomes greater than one. Furthermore, as predicted, the length of
the switching intervals decreases until x becomes close to one and then the
intervals increase.

tween the switchings increase again. Note that (7) and (8) are
not proved for and that the expressions are singular
for . This case needs further research.

Example 1: Consider

with state-space representation

and relay feedback. Let . Fig. 1 shows a simulation of
the system starting in (solid line)
together with the continuous estimate of the envelope of ob-
tained from Theorem 1 (dashed lines). We see that the estimate
from the theorem is accurate. The chattering ends when be-
comes greater than one. Note that the switching periods increase
close to the end point of the chattering, as was mentioned in Re-
mark 3. The estimated number of switchings from Theorem 2 is

151, while the true number is 152.

IV. LIMIT CYCLES WITH CHATTERING

In this section, the main result of the paper is presented. We
will show that limit cycles with chattering can be analyzed, sim-
ilar to limit cycles with first-order sliding modes, by using The-
orem 1. This will lead to conditions for existence of chattering
limit cycles. A chattering limit cycle consists of two symmetric
half-periods, each of them has one chattering part (which has a
finite, typically large, number of relay switchings) and one non-
chattering part.

To prove existence of a chattering limit cycle, we need to con-
firm that the chattering is sufficiently close to a second-order
sliding mode. The analysis of chattering in Section III showed
that the chattering variable can be approximated to a high ac-
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curacy by a product of one time-dependent factor and one factor
depending only on the nonchattering variable , see (7) of The-
orem 1. The variables are almost constant compared
to the chattering variables and , so the second factor of (7)
is almost constant during chattering. If the first factor, which is
an exponential function in , is decreasing, then there is contrac-
tion in the chattering variable . It then follows from (6) that
there is also a contraction in the chattering variable . During
the chattering, the variables can be approximated by
the differential equation for the sliding mode with an accuracy
proportional to the amplitude of . If also this differential equa-
tion gives a contraction, then the two contractions form a con-
tracting mapping for the full system. Such a system has a limit
cycle containing one chattering part and one nonchattering part.
This is formulated in the following theorem.

Theorem 3: Consider (1) and (2) with and let
. Assume

with and let be
defined as in (5) but with replaced by . If the following
conditions hold:

1) matrix is Hurwitz and the eigenvalue of with largest
real part is unique;

2) ;
3) the solution of

reaches the hyperplane at , it holds
that for , and ;

4) for all , where
and .

Then there exists such that for every , (1)
and (2) have a symmetric limit cycle with chattering.

Proof: See the Appendix.
Remark 4: The number of relay switchings each period

can be made arbitrarily large by choosing sufficiently
small. This follows from that a second-order sliding mode for
the system is long if the unstable zeros of are close to the
origin (i.e., if is small). Therefore, the number of fast relay
switchings each period of a chattering limit cycle increases
as the distance to the origin for the unstable zeros decreases.
Note also that if the unstable zeros are close to the origin then

, because and is Hurwitz. It then follows
from Theorem 1 that the variables and have decaying
amplitudes during the chattering. Hence, the chattering brings
the trajectory close to the second-order sliding set.

Remark 5: The location of the zeros of has a nice geo-
metric interpretation. First note that the assumptions

and Hurwitz imply positive steady-state gain of
, i.e., . The stable equi-

librium point of is equal to . Hence,
gives that . Therefore, a relay switching is

guaranteed to occur for any trajectory with such that
. It is easy to see that belongs to the hyperplane

. A Taylor expansion
of shows that is small, if all zeros of are
close to the origin (compared to the zeros of ), i.e., if is

Fig. 2. Limit cycle with chattering for a system in Example 2. The dashed line
is the second-order sliding set S .

small. The trajectory of will thus approach a point
close to . The assumption of Theorem 1
is thus fulfilled if is sufficiently small.

Remark 6: The Jacobian of the Poincaré map consisting
of one part outside and one (exact) second-order sliding mode
part is given by

where the notation is similar to (4).
Remark 7: A ball with center in

and radius proportional to is invariant under
the system dynamics, as is shown in the proof of the theorem.
Note that although this ball captures the recurrence of the limit
cycle (and although the ball can be made arbitrarily small), it
does not follow that the limit cycle is stable.

The key condition of Theorem 3 is that the zeros of
should be close to the origin. The other four conditions are, for
example, always fulfilled in the following fourth-order case.

Proposition 1: Suppose the dimension of (1) and (2) is
. If all poles of are real and stable,

all zeros are real and unstable, and , then Conditions
1)–4) of Theorem 3 are satisfied.

Proof: See the Appendix.
The following example illustrates a chattering limit cycle.
Example 2: Consider the system in Example 1 again. The

parameter gives zeros that are sufficiently close to the
origin to give a limit cycle with chattering. Fig. 2 shows the
limit cycle in the subspace . The fast oscillations
close to during the chattering
are magnified in Fig. 3. Fig. 4 shows the four state variables
during the chattering. In agreement with the analysis above, the
chattering starts at , ends at , and is
almost constant. By approximating the chattering with a second-
order sliding mode, it is possible to get a rough estimate of the
behavior. For the example, this leads to a nonsliding time of

and a sliding time of , while for the chattering
limit cycle simulations give the times 7.4 and 4.2. The Jacobian
in Remark 6 is . Note that the existence of the
limit cycle in this example is not formally proved by Theorem
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Fig. 3. A closer look on the winding around the second-order sliding set S
(dashed line) for the limit cycle in Fig. 2.

Fig. 4. Chattering part of the limit cycle in Example 2. The behavior is well
described by the presented theory. Note the chattering in x and x , how this
chattering starts when x = �1 and ends when x = 1, and that x is almost
constant.

3, because the theorem does not provide a bound on how close
to the origin the zeros have to be.

V. CONCLUSION

A large number of fast relay switchings can appear in linear
systems with relay feedback if the linear part has pole excess
two. This chattering was analyzed in detail in this paper and a
sufficient condition for existence was derived. It was also shown
that chattering may be part of a limit cycle. The limit cycle can
have arbitrarily many relay switchings each period. The main
result of this paper stated that the chattering in the limit cycle
can be approximated by a sliding mode.

Chattering occurs in systems with pole excess two. Many
consecutive fast switchings can, however, not occur in systems
with higher order pole excess. This can be understood intu-
itively, since a system whose first nonvanishing Markov param-
eter is of order have fast behavior similar to . A
double integrator gives a periodic solution with arbitrarily short
period, while higher-order integrators are unstable under relay

feedback. It is shown in [22] that for systems with pole excess
three or higher there exist limit cycles with only a few extra
switchings each period.

APPENDIX

A. Proof of Theorem 1

Consider with , small, and .
For up to next switching instant, it holds that

where is constant and

Note that it follows from that there will be
a next switching if is sufficiently small. For the sake of
simplicity, introduce the notation

where the last equation holds if the order . If , this
equation and the following still holds, but with . Note
that and that . Now, assume that
is the next switching instant, i.e., . Then, it
holds that

(9)

and

(10)

for small . Introduce as an approximation of to the accuracy
of through the equation

(11)

Then, since for small

we get

(12)
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as . It is obvious from this expression that
has the same order as as . For this reason, the

expressions and are equivalent for every
. In particular, from we have that

as for all , which
proves (6).

In the following, it will be shown that is proportional
to and the relation (7) will be derived. Let
be the starting point for the next part of the trajectory in the
chattering mode between two successive switchings. The map

describes the envelope of in the chattering
mode. By substituting with and taking into account that

at any switching point, we get from (10) and (11)
that

Then, (12) gives

(13)

where the last equality follows from (9). The chattering variable
thus shifts sign in successive switching points. After ne-

glecting these sign shifts, the last equation looks very similar
to a one-step iteration of a numerical solution of a differential
equation. Next, we show that such a differential equation exists
and that it describes the envelope of at the switching in-
stants . It is surprising that this equation can be analytically
integrated.

Consider three successive switching points at the time in-
stants 0, , and . The relay output has opposite sign in
the intervals and . This influences and , so
that they show a gap in two successive switching points, whereas
they are close with a step of two switchings. Denote in three
successive switching points by , , and . Denote by
and the corresponding values for and . It was previ-
ously proven that

Therefore, after two successive switching points

Straightforward calculations using (12), (13), and
show that

(14)

Furthermore

This gives the differential equation associated with the peak
values of the chattering variable as

where is the solution to the sliding mode
equation with given by (5). We have

Therefore, the associated differential equation can be rewritten
as

Integration of this equation leads to the formula for and the
proof is completed.

B. Proof of Theorem 2

Introduce a slower time associated with the number of
switchings on a trajectory. The monotonous function
indicates the time instants of switchings for an integer argu-
ment: is switching instant number . Equation (14)
in the proof of Theorem 1 states that the increments of this
function can be approximated as

Since the increments are small as , the function
can be approximated by the solution of the differential equation

The inverse function satisfies

It remains now only to substitute with the expression given
in Theorem 1 and integrate over .

C. Proof of Theorem 3

We will show that a trajectory starting close to the second-
order sliding set has one part outside and one chattering
part. By application of Theorem 1 and the fixed point theorem,
it will be proved that two such parts form a limit cycle.



JOHANSSON et al.: LIMIT CYCLES WITH CHATTERING 1421

Consider the trajectory defined in Condition 3) and let
. Then it holds that . Let be a solution

of (1) and (2) with

It follows from the assumption in Condition 3)
that . With and ,
this implies that and for small .
Thus, the solution can, for small , be written as

where

...
...

...
...

and

...

...

Denote by the first instant when . This instant
exists because as by Con-
ditions 1) and 2). Note that

The first entry of the first term of the right-hand side is positive
for all , because by Condition 4). Denote by

the eigenvalue of with the largest real part. Then is real
and negative by Condition 1). The corresponding eigenvector of

is

...

All entries are positive, because of the following argument.
Since is a stable polynomial and , it holds that

for some stable polynomial
. Obviously, , for

, and . We prove by mathematical induction
that for all . It then follows that is
positive. First, note that . Assume that
for . Then

Since as , it holds that
, where as . The scalar follows

from the equation and is, hence, given by
.

Define the vector-valued function by
the equation

Then, . All entries
, , are proportional to and negative for suffi-

ciently small , since .
For small , it holds that and . A

quick jump occurs, because . The motion is
similar to the one described in the proof of Theorem 1. It follows
that it takes the time to reach

, where . Therefore,
since , we have

...

...

For small , all the entries , , remain negative.
For small , is positive and . It

follows from the (1) and (2) that the function satisfies

whenever . The structure of the matrix indicates that
if for and then for .
Hence, the values of , , decrease, the value
of becomes negative, and reaches zero at

. All the entries of , , and
are proportional to . Therefore, the time length of the
motion with does not tend to zero as , in contrast
to . It is easy from the relation to derive
that for . The same argument proves
that these “nonchattering” variables decrease on the next switch
intervals provided that is not close to one. All conditions
of Theorem 1 hold on the interval for
any fixed . Hence, the chattering mode starts at the point
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, where we recall that is defined as the first time instant
when .

The trajectory , , can be approximated according
to Theorem 1 and Remark 1. The nonchattering part of the state

is close to the solution of

Make the following change of variables: and
for . It is easy to see that

the new state vector satisfies the equation

According to Condition 3), this trajectory reaches the hy-
perplane at time , i.e., .
The condition implies that the sliding mode
for a trajectory that starts in is not broken
on the interval . This gives that the end point of the
sliding mode corresponds to or equivalently

, where the
sliding time is given by .

According to Theorem 1, the chattering variable is pro-
portional to the initial value . Thus, starting
from the point the trajectory reaches the point

by passing through the nonchat-
tering part and the chattering part. Denote the corresponding
map by , i.e.,

Next, it will be proved that the mapping can be defined in
a neighborhood of the point and that this mapping is a
contraction. The existence of a symmetric limit cycle follows
by the fixed-point theorem.

Let be the ball in the hyperplane with a center
at and with the radius . Consider a trajectory
starting from a point . Similarly to the trajectory ,
the first part of is nonchattering and lies in the set .
A switch to occurs at the time instant , and
as uniformly in . Hence, it holds that

Since the dominant parts of the values and are
equal, the next chattering parts of these trajectories are close. In
the normalized time the trajectory of the state
vector is close to defined in Condition 3). In
particular, there exists an instant where the sliding mode is
broken. The vector is the value of the function

on the vector . Thus, the function is well-defined on
. It holds that . Therefore, the

mapping transforms the ball into itself for small . The
mapping is continuous, because the time interval is uniformly
bounded and the vector field of the relay system generates tra-
jectories which continuously depend on the initial states, where
the latter follows from Theorem 1. Any continuous mapping of a
ball into itself has a fixed point, hence, a fixed point of exists

in . The fixed point defines the limit cycle. This concludes
the proof.

D. Proof of Proposition 1

Conditions 1) and 2) are obviously satisfied. To show Con-
dition 3), first assume that where

. Then

which has the solution

Hence, there exists such that . It is easy to
see that for . Furthermore

Thus, Condition 3) holds if . A similar calculation
shows that Condition 3) also holds if .

Finally, to check Condition 4), note that is equal to
the impulse response of a system with transfer function

where are the eigenvalues of . The impulse response
is equal to

where denotes the inverse Laplace transform and convo-
lution. This completes the proof.
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