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We find limiting distributions of the nonparametric maximum likelihood
estimator (MLE) of a log-concave density, that is, a density of the form
f0 = expϕ0 where ϕ0 is a concave function on R. The pointwise limiting dis-
tributions depend on the second and third derivatives at 0 of Hk , the “lower
invelope” of an integrated Brownian motion process minus a drift term de-
pending on the number of vanishing derivatives of ϕ0 = logf0 at the point
of interest. We also establish the limiting distribution of the resulting estima-
tor of the mode M(f0) and establish a new local asymptotic minimax lower
bound which shows the optimality of our mode estimator in terms of both
rate of convergence and dependence of constants on population values.

1. Introduction.

1.1. Log-concave densities. A probability density f on the real line is called
log-concave if it can be written as

f (x) = expϕ(x)

for some concave function ϕ : R → [−∞,∞). We let LC denote the class of all
log-concave densities on R. As shown by Ibragimov (1956), a density function f

is log-concave if and only if its convolution with any unimodal density is again
unimodal. Thus, the class of log-concave densities is often referred to as the class
of “strongly unimodal” densities. Furthermore, the class LC of log-concave densi-
ties is exactly the class of Polyá frequency functions of order 2, PFF2 as noted by
Pal, Woodroofe and Meyer (2007); see also Dharmadhikari and Joag-Dev (1988),
page 150, and Marshall and Olkin (1979), page 492.

The log-concave shape constraint is appealing for many reasons:
(1) Many parametric models, for a certain range of their parameters, are in fact

log-concave, for example, normal, uniform, gamma(r, λ) for r ≥ 1, beta(a, b) for
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a ≥ 1 and b ≥ 1, generalized Pareto, Gumbel, Fréchet, logistic or Laplace, to men-
tion only some of these models. Therefore, assuming log-concavity offers a flexi-
ble nonparametric alternative to purely parametric models. Note that a log-concave
density need not be symmetric.

(2) Every log-concave density is automatically unimodal. Furthermore, log-
concavity of a density f immediately implies specific shape constraints for
certain functions derived from f [see Barlow and Proschan (1975), Marshall
and Olkin (1979, 2007), Dharmadhikari and Joag-Dev (1988), An (1998) and
Bagnoli and Bergstrom (2005)]. Thus, having an estimator (and its limiting dis-
tribution) for f at hand provides, almost automatically, estimators (and limit-
ing distributions) for those functions. Corollary 2.3 illustrates this for the hazard
rate.

(3) Although the nonparametric MLE of a unimodal density does not exist [see,
e.g., Birgé (1997)], the nonparametric MLE of a log-concave density exists, is
unique and has desirable consistency and rates of convergence properties. Thus, the
class of log-concave (or strongly unimodal) densities may be a useful and valuable
surrogate for the larger class U of unimodal densities.

(4) Tests for multimodality and mixing can be based on a semiparametric model
with densities of the form fc,ϕ(x) = exp(ϕ(x) + cx2), where ϕ is concave and
c > 0, as shown by Walther (2002).

(5) Chang and Walther (2007) further show that the EM-algorithm can be ex-
tended to work for log-concave component densities.

(6) First attempts to estimate a log-concave density in R
d were made by Cule,

Gramacy and Samworth (2007).
(7) The log-concave density estimator can be used to improve accuracy in the

estimation of the so-called “tail index” of a generalized Pareto distribution [see
Müller and Rufibach (2009)].

(8) It should be noted that no arbitrary choices such as bandwidth, kernel or
prior are involved in the estimation of a log-concave density; these are all obviated
by this shape restriction.

(9) We expect good adaptivity properties of the MLE f̂n in the class LC.
For properties of (random variables with) log-concave densities, we re-

fer to Dharmadhikari and Joag-Dev (1988), Marshall and Olkin (1979) and
Rufibach (2006). Log-concavity of a density f implies certain shape constraints
for functions derived from f , such as the distribution function, the tail or hazard
function. See An (1998) for comparisons with the related notion of a log-convex
density.

1.2. Log-concave density estimation. Now let X(1) < X(2) < · · · < X(n) be
the order statistics of n independent random variables X1, . . . ,Xn, distributed ac-
cording to a log-concave probability density f0 = expϕ0 on R. The distribution
function corresponding to f0 is denoted by F0.
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The maximum likelihood estimator (MLE) of a log-concave density was intro-
duced in Rufibach (2006) and Dümbgen and Rufibach (2009). Algorithmic aspects
were treated in Rufibach (2007) and in a more general framework in Dümbgen,
Hüsler and Rufibach (2007), while consistency with respect to the Hellinger met-
ric was established by Pal, Woodroofe and Meyer (2007), and rates of convergence
of f̂n and F̂n were established by Dümbgen and Rufibach (2009). Since the deriva-
tion of the MLE of a log-concave density is extensively treated in these references,
we only briefly recall its definition and the properties relevant for this paper.

If C denotes the class of all concave functions ϕ : R → [−∞,∞), the estima-
tor ϕ̂n of ϕ0 is the maximizer of the “adjusted” criterion function

L(ϕ) =
∫

R

ϕ(x)dFn(x) −
∫

R

expϕ(x)dx

over C, where Fn is the empirical distribution function of the observations. The
log-concave density estimator is then f̂n := exp ϕ̂n, which exists and is unique.

1.3. Characterization of ϕ̂n. For any continuous piecewise linear function
hn : [X(1),X(n)] → R, such that the knots of hn coincide with (some of) the or-
der statistics X(1), . . . ,X(n), introduce the set of knots Ŝn(hn) of hn as

Ŝn(hn) := {
t ∈ (

X(1),X(n)

)
:h′

n(t−) > h′
n(t+)

} ∪ {
X(1),X(n)

}
.

Dümbgen and Rufibach (2009) found that ϕ̂n is piecewise linear, that ϕ̂n = −∞
on R \ [X(1),X(n)] and that the knots of ϕ̂n only occur at (some of the) ordered
observations X(1) < · · · < X(n). The latter property is entirely different from the
estimation of a k-monotone density for k > 1 (see below), where the knots fall
strictly between observations with probability equal to 1.

According to Theorem 2.4 in Dümbgen and Rufibach (2009), the estimator ϕ̂n

has the following characterization. For x ≥ X(1) (recall that ϕ̂n := −∞ outside
[X(1),X(n)]), define the processes

F̂n(x) :=
∫ x

X(1)

exp(ϕ̂n(t)) dt, Ĥn(x) :=
∫ x

X(1)

F̂n(t) dt,

Hn(x) :=
∫ x

X(1)

Fn(t) dt =
∫ x

−∞
Fn(t) dt.

Then, the concave function ϕ̂n is the MLE of the log-density ϕ0 if, and only if,

Ĥn(x)

{≤ Hn(x), for all x ≥ X(1),
= Hn(x), if x ∈ Ŝn(ϕ̂n).

(1.1)

1.4. Other shape constraints. Maximum likelihood estimation of a monotone
density f0 on [0,∞) was first studied by Grenander (1956). Under the assump-
tion that f0 is C1 in a neighborhood of a point x0 > 0, such that f ′

0(x0) < 0,
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Prakasa Rao (1969) established the (local) asymptotic distribution theory of the
Grenander estimator f̂n:

n1/3(
f̂n(x0) − f0(x0)

) d→ |f ′
0(x0)f0(x0)/2|1/3

Z,

where Z is the slope at zero of the (least) concave majorant of the process
W(t) − t2, t ∈ R for two-sided Brownian motion W starting at 0.

Under the assumption that the true density f0 is convex on [0,∞) and that f0
is C2 in a neighborhood of x0 with f ′′

0 (x0) > 0, Groeneboom, Jongbloed and Well-
ner (2001b) show that the MLE f̂n (as well as the least squares estimator of f0)
satisfies

n2/5(
f̂n(x0) − f0(x0)

) d→ (24−1f 2
0 (x0)f

′′
0 (x0))

1/5
H

′′(0),

where H is a particular upper invelope of an integrated two-sided Brownian mo-
tion +t4 [see also Groeneboom, Jongbloed and Wellner (2001a)].

The classes of monotone and convex decreasing densities are particular cases
of the class of k-monotone densities. Modulo a spline interpolation conjecture,
Balabdaoui and Wellner (2007) were able to adapt the approach of Groeneboom,
Jongbloed and Wellner (2001b) to this general class of densities.

We find that log-concave estimation shares many similarities with the afore-
mentioned shape-constrained estimation problems. In particular, the limiting dis-
tribution of the MLE, our nonparametric estimator, involves a stochastic process
whose second derivative is concave and which stays below an integrated Brownian
motion minus tk+2. The even integer k determines the number of vanishing deriva-
tives of the true concave function ϕ0 at the estimation point x0. Using Theorem 2.1,
one can derive a procedure for estimation of k. This is relevant in practical applica-
tions of our results, that is, construction of confidence intervals for the mode using
the limiting distribution given in Theorem 2.1. These problems are the subject of
ongoing research.

1.5. Organization of the paper. In Section 2, we establish the limiting distrib-
utions of the ML estimators, ϕ̂n and f̂n, at a fixed point x0 ∈ R under some spec-
ified working assumptions. The characterization of either ϕ̂n or f̂n given in (1.1)
coincides, except for the direction of the inequality, with that of the least-squares
estimator of a convex decreasing density, studied by Groeneboom, Jongbloed and
Wellner (2001b); see their Lemma 2.2, page 1657. This enables us to adopt the
general scheme of the proof in their paper.

Log-concave densities f and their logarithm ϕ can easily have vanishing sec-
ond and higher derivatives at fixed points; an explicit example will be given in
Section 2. Thus, the formulation of our asymptotic results allows higher deriva-
tives of the concave function ϕ0 to vanish at the estimation point. This is some-
what more general than the assumptions of Groeneboom, Jongbloed and Well-
ner (2001b) (where a natural assumption is that the second derivative is positive
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at the point of interest, but similar vanishing of second derivatives and existence
of a nonzero higher order derivative can also easily occur), but it is analogous to
the results of Wright (1981) and Leurgans (1982) for nonparametric estimation
of a monotone regression function. Similar results for the Grenander estimator
of a monotone density are stated by Anevski and Hössjer (2006). We find that
the respective limiting distributions of the MLE and its first derivative depend on
a stochastic process, Hk , equal almost surely to the “lower invelope” (or just “in-
velope”) on R of the integrated Brownian motion minus tk+2, where k is the order
of the first nonzero derivative of ϕ0 at the point of interest.

In Section 3, the estimation point x0 is taken to be equal to the mode, m0,
defined to be the smallest point in the modal interval of the log-concave density f0.
A natural estimator of m0, which we denote by M̂n, can be taken to be the smallest
number maximizing the MLE ϕ̂n or, equivalently, the smallest number maximizing
the MLE f̂n. In this section, we establish our second main result: the asymptotic
distribution of M̂n. Under the assumption that the second derivative f ′′

0 (m0) < 0,
we show that this distribution depends on the random variable defined to be the
argmax or mode of H

(2)
2 on R. When the second, third and higher derivatives of

order k − 1 or lower vanish at m0 but f
(k)
0 (m0) < 0, then the limit distribution

depends on the mode of H
(2)
k .

Proofs are deferred to Section 4.
To illustrate all the quantities for which we provide limiting distributions, in

Figure 1 we give plots of f̂n, ϕ̂n, F̂n and λ̂n = f̂n/(1 − F̂n), based on two sam-
ples of sizes n = 20 and n = 200 drawn from a Gamma(2,1) density f0(x) =
xe−x1[0,∞)(x). All these plots were generated using the R-package logcondens
[see Rufibach and Dümbgen (2007)].

2. Limiting distribution theory. To state the main result, we make the fol-
lowing assumptions.

2.1. Assumptions. Fix x0 ∈ R. We suppose that the true density f0 = expϕ0
satisfies the following assumptions:

(A1) The density function f0 ∈ LC.
(A2) f0(x0) > 0.
(A3) The function ϕ0 is at least twice continuously differentiable in a neigh-

borhood of x0.
(A4) If ϕ′′

0 (x0) 	= 0, then k = 2. Otherwise, suppose that k is the smallest integer

such that ϕ
(j)
0 (x0) = 0, j = 2, . . . , k − 1, and ϕ

(k)
0 (x0) 	= 0, and ϕ

(k)
0 is continuous

in a neighborhood of x0.

Note that concavity of ϕ0 and (A3) and (A4) imply that k is necessarily even
and that ϕ

(k)
0 (x0) < 0. Indeed, suppose that k > 2. Using Taylor expansion of ϕ′′

0
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FIG. 1. Examples for log-concave density, log-density, CDF, and hazard rate estimation for
n = 20,200 (−− true functions, − estimators). The dotted vertical lines indicate the set Ŝn(ϕ̂n).
The · − ·− vertical lines are placed at the mode of the estimated density.
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up to degree k − 2, there exists a small h > 0 for which we can write

ϕ′′
0 (x) = ϕ

(k)
0 (x0)

(k − 2)! (x − x0)
k−2 + o

(
(x − x0)

k−2)
, x ∈ [x0 − h,x0 + h].

Since ϕ′′
0 (x) ≤ 0 for all x ∈ [x0 − h,x0 + h], it follows that k − 2 is even [i.e., k is

even and ϕ
(k)
0 (x0) < 0].

2.2. Notation. Let W denote two-sided Brownian motion, starting at 0. For
t ∈ R, define:

Yk(t) =

⎧⎪⎪⎨⎪⎪⎩
∫ t

0
W(s)ds − tk+2, if t ≥ 0,∫ 0

t
W(s) ds − tk+2, if t < 0.

(2.1)

For the uniform norm of a bounded function f , we write ‖f ‖∞ = supx∈R |f (x)|.
The derivative of ϕ̂n at x ∈ R is as usual denoted by ϕ̂′

n(x). However, if x ∈ Ŝn(ϕ̂n),
then we define ϕ̂′

n(x) as the left-derivative.

THEOREM 2.1. Suppose that (A1)–(A4) hold. Then,(
nk/(2k+1)

(
f̂n(x0) − f0(x0)

)
n(k−1)/(2k+1)

(
f̂ ′

n(x0) − f ′
0(x0)

))
d→

(
ck(x0, ϕ0)H

(2)
k (0)

dk(x0, ϕ0)H
(3)
k (0)

)
and (

nk/(2k+1)
(
ϕ̂n(x0) − ϕ0(x0)

)
n(k−1)/(2k+1)

(
ϕ̂′

n(x0) − ϕ′
0(x0)

))
d→

(
Ck(x0, ϕ0)H

(2)
k (0)

Dk(x0, ϕ0)H
(3)
k (0)

)
,

where Hk is the “lower invelope” of the process Yk ; that is,

Hk(t) ≤ Yk(t) for all t ∈ R;
H

(2)
k is concave;

Hk(t) = Yk(t), if the slope of H
(2)
k decreases strictly at t .

The constants ck , dk , Ck and Dk are given by

ck(x0, ϕ0) =
(

f0(x0)
k+1|ϕ(k)

0 (x0)|
(k + 2)!

)1/(2k+1)

,(2.2)

dk(x0, ϕ0) =
(

f0(x0)
k+2|ϕ(k)

0 (x0)|3
[(k + 2)!]3

)1/(2k+1)

,(2.3)

Ck(x0, ϕ0) =
( |ϕ(k)

0 (x0)|
f0(x0)k(k + 2)!

)1/(2k+1)

,(2.4)

Dk(x0, ϕ0) =
( |ϕ(k)

0 (x0)|3
f0(x0)k−1[(k + 2)!]3

)1/(2k+1)

.(2.5)
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COROLLARY 2.2. Suppose that (A1)–(A4) hold with k = 2. Then,(
n2/5(

f̂n(x0) − f0(x0)
)

n1/5(
f̂ ′

n(x0) − f ′
0(x0)

))
d→

(
c2(x0, ϕ0)H

(2)
2 (0)

d2(x0, ϕ0)H
(3)
2 (0)

)
and (

n2/5(
ϕ̂n(x0) − ϕ0(x0)

)
n1/5(

ϕ̂′
n(x0) − ϕ′

0(x0)
))

d→
(

C2(x0, ϕ0)H
(2)
2 (0)

D2(x0, ϕ0)H
(3)
2 (0)

)
,

where H2 is the (concave) invelope of the process Y2; that is,

H2(t) ≤ Y2(t) for all t ∈ R;
H

(2)
2 is concave;

H2(t) = Y2(t) if the slope of H
(2)
2 decreases strictly at t .

The constants c2, d2, C2 and D2 are given by (2.2)–(2.5), with k = 2.

Note that the constants C2(x0, ϕ0) and D2(x0, ϕ0), up to inversion of f0(x0),
exhibit a structure very similar to that of the constants given by Groeneboom,
Jongbloed and Wellner (2001b) in the problem of estimating a convex density g0

on [0,∞). We recall here that, in the latter problem, those constants are found to
be equal to (we use our notation to make the comparison easy)

c2(x0, g0) =
(

g0(x0)
2g

(2)
0 (x0)

4!
)1/5

, d2(x0, g0) =
(

g0(x0)(g
(2)
0 (x0))

3

(4!)3

)1/5

.

It is clear that ϕ0 in the log-concave problem plays exactly the same role as f0 in
the problem of estimating a convex density. However, in the first case estimation
is based on observations which are distributed according to expϕ0, whereas in the
latter the data come from f0 itself. A good insight into the difference between the
expressions of the asymptotic constants can be gained from the proof of Theo-
rem 4.6 in Section 4. There, we show that the leading coefficient of the drift of
the limiting process Yk depends on ϕ

(k)
0 (x0)f0(x0) = f

(k)
0 (x0) − (ϕ′

0(x0))
kf0(x0),

where the second term is “filtered out” in the Taylor expansion of the estima-
tion error in the neighborhood of x0. Hence, |ϕ(k)

0 (x0)| · f0(x0) can be viewed

as the dominating term replacing |g(k)
0 (x0)| in the convex estimation problem.

For k = 2, the constants c2(x0, ϕ0) and d2(x0, ϕ0) given in (2.2) and (2.3), with
k = 2, match closely with c2(x0, g0) and d2(x0, g0) obtained by Groeneboom,
Jongbloed and Wellner (2001b) in the convex estimation problem, with f0(x0)

in the numerator, whereas f0(x0) shows up in the denominator in the asymptotic
constants C2(x0, ϕ0) and D2(x0, ϕ0). This results from applying the delta-method
to f̂n(x0) = exp(ϕ̂n(x0)) and f̂ ′

n(x0) = ϕ̂′
n(x0)f̂n(x0), which yields C2(x0, ϕ0) and

D2(x0, ϕ0).
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Here is an explicit example showing how vanishing second (and higher) deriv-
atives can occur. Consider the density function

f0(x) = √
2
�(3/4)

π
exp(−x4), x ∈ R.

In this case ϕ
(j)
0 (x0) = 0, j = 1,2,3 for x0 = 0, and ϕ

(4)
0 (x0) 	= 0. The following

“tilted” version of f0 shows that vanishing second derivatives of ϕ0 can also occur
at points other than the mode of f :

f̃0(x) = exp(a + bx)f0(x) = ã exp(bx − x4),

where ã = ã(b) := 1/
∫
R

exp(bx − x4) dx; in this case, ϕ̃0 := log f̃0 satisfies
ϕ̃′′

0 (0) = 0, but the mode m̃0 := M(f̃0) = (b/4)1/3 > 0 when b > 0, and ϕ̃′′
0 (m̃0) =

−12(b/4)2/3 < 0.
Finally, and in order to compare also the random parts of the limits in the convex

and log-concave estimation problems, we would like to note that for our lower in-
velope process Hk , −Hk has the same distribution as the “upper invelope” of −Yk ,
which was called just the “invelope” in the case k = 2 by Groeneboom, Jongbloed
and Wellner (2001b): The process −Yk has a drift equal to plus tk+2, which spe-
cializes to t4 in the convex density problem with k = 2. This “upper invelope”
stays above −Yk and admits a convex second derivative. Since −W has the same
distribution as W , it follows that the upper and lower invelopes Hk and Hk (asso-

ciated with estimation of convex and concave functions, resp.) satisfy Hk
d= −Hk .

Since the derivatives at zero H
(2)
k (0) and H

(3)
k (0) of Hk are distributed symmetri-

cally about zero, the same is true of the derivatives at zero H
(2)
k (0) and H

(3)
k (0)

of Hk .
As shown by Barlow and Proschan (1975), Lemma 5.8, page 77 [see also

Marshall and Olkin (1979), page 493; Marshall and Olkin (2007), page 102;
An (1998) and Bagnoli and Bergstrom (2005)], if f0 is log-concave, then the haz-
ard function

λ0(x) = f0(x)

1 − F0(x)
1{x<F−1

0 (1)}

is monotone nondecreasing. Defining the estimator of λ0 based on f̂n as

λ̂n(x) = f̂n(x)

1 − F̂n(x)
1{x<X(n)},

application of the delta-method yields the following corollary.

COROLLARY 2.3. Suppose that (A1)–(A4) hold. Then,(
nk/(2k+1)

(̂
λn(x0) − λ0(x0)

)
n(k−1)/(2k+1)

(̂
λ′

n(x0) − λ′
0(x0)

))
d→

(
gk(x0, ϕ0)H

(2)
k (0)

hk(x0, ϕ0)H
(3)
k (0)

)
,
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where the constants gk and hk are given by

gk(x0, ϕ0) = ck(x0, ϕ0)/
(
1 − F0(x0)

)
hk(x0, ϕ0) = dk(x0, ϕ0)/

(
1 − F0(x0)

)
.

3. Inference about the mode of f0. Estimation of the mode of a uni-
modal density has been considered by many authors [see, e.g., Parzen (1962),
Chernoff (1964), Grenander (1965), Dalenius (1965), Venter (1967), Wegman
(1970a, 1970b, 1971), Eddy (1980, 1982), Hall (1982), Müller (1989), Ro-
mano (1988), Vieu (1996) and, more recently, Meyer (2001) and Herrmann and
Ziegler (2004)].

Empirical studies of the performance of various estimators are given by
Dalenius (1965), Ekblom (1972), Meyer (2001) and Meyer and Woodroofe (2004).
Many of the methods considered for estimating the mode of a unimodal smooth
density use kernel estimation, but others are based on the principle of substitu-
tion with another choice of estimator of the population density. For example, the
estimators of Venter (1967) are related to nearest-neighbor estimators of the den-
sity f0. All the estimators of the mode in the class of unimodal densities known
to us involve some more or less ad hoc choice, essentially because the maxi-
mum likelihood estimator of a unimodal density is not well defined, as explained
by Birgé (1997). [Note that Wegman (1970b, 1971) discussed the nonparametric
MLE of a unimodal density subject to a constraint on the height of the mode;
without some constraint of this type, the MLE does not exist.]

For virtually all of the estimators of which we are aware, some choice of
a smoothing parameter, bandwidth or constraint is required. Empirical choice
of smoothing parameters has been studied by Müller (1989), who studied lo-
cal methods of choosing the smoothing parameter, Grund and Hall (1995), who
studied bootstrap methods, and Ziegler (2004), who studied plug-in methods.
Klemelä (2005) gave a construction of adaptive estimators based on Lepski’s
method [Lepskiı̆ (1991, 1992)]. For nonparametric Bayes estimators of unimodal
densities and, hence, of the mode [see Brunner and Lo (1989) and Ho (2006a,
2006b)]; for these estimators, choice of a prior is equivalent to a choice of smooth-
ing parameters.

In contrast, estimation in the (large) subclass of log-concave (or strongly uni-
modal) densities is much simpler, avoiding bandwidth or smoothing parameter
choices completely. Since the maximum likelihood estimator exists, we can sim-
ply estimate the mode by the mode (or smallest point in a modal interval) of
the MLE f̂n. Using the notation introduced by Eddy (1982) [and also used by
Romano (1988)], we let M̂n := M(f̂n) where M denotes the mode functional (or
“smallest argmax” functional) given by

M(g) := min
{
t :g(t) = max

u∈R

g(u)

}
.
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Because of the adaptive properties of the MLE’s f̂n of f0 and ϕ̂n of ϕ0, dis-
cussed in Section 1, we expect M̂n to adapt to different local smoothness (or
peakedness) hypotheses on f0 [much as the Grenander estimator is locally adap-
tive in the case of estimating a monotone density, see, for example, Birgé (1989),
page 1535]. Here, we study M̂n as an estimator of the mode M(f0) := m0 under
just the condition that f0 has a continuous second derivative f ′′

0 in a neighborhood
of m0, with f ′′

0 (m0) < 0. We begin in the next subsection with a new asymptotic
minimax lower bound for estimation of m0 under this hypothesis. The follow-
ing subsection gives our new limiting distribution result for the MLE M̂n of the
mode m0.

3.1. New lower bounds for estimating the mode. Has’minskiı̆ (1979) estab-
lished a lower bound for estimation of the mode m0 of a unimodal density f ∈ U,
assuming that f satisfies f ′′(m0) < 0. He showed that the best local asymptotic
minimax rate of convergence for any estimator of m0 is n−1/5. Has’minskiı̆ based
his proof on a sequence of parametric submodels of the form

fn(x, θ) = f (x) + θn−2/5g
(
n1/5(x − m0)

)
,

where, for a := −f ′′(m0),

g(x) := ga(x) =
{

x, if |x| ≤ 1/a,
0, if |x| ≥ K > 1/a

and g := ga satisfies g(−x) = −g(x) and |g′′(x)| < a/2 for all x ∈ R. However,
Has’minskiı̆ (1979) did not study the dependence of the local minimax bound on
a = −f ′′(m0) and f (m0), leaving his bound in terms of c2

0 := f (m0)/
∫

g2
a(x) dx

involving the still unspecified function g = ga .
Here, we consider different parametric submodels and derive the dependence

of the constant in local asymptotic minimax lower bound for estimation of the
mode m0 in the family LC of log-concave (or strongly unimodal) densities.

We want to derive asymptotic lower bounds for the local minimax risks for
estimating the mode M(f ). The L1-minimax risk for estimating a functional ν of
f0, based on a sample X1, . . . ,Xn of size n from f0, which is known to be in a
subset LCn,τ of LC is defined by

MMR1(n,Tn,LCn,τ ) := inf
Tn

sup
f ∈LCn,τ

Ef |Tn − ν(f )|,(3.1)

where the infimum ranges over all possible measurable functions Tn = tn(X1, . . . ,

Xn) mapping R
n to R. The shrinking classes LCn,τ used here are Hellinger balls

centered at f0:

LCn,τ =
{
f ∈ LC :H 2(f, f0) = 1

2

∫ ∞
−∞

(√
f (z) −

√
f0(z)

)2
dz ≤ τ/n

}
.
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Consider estimation of

ν(f ) := M(f ) = inf
{
t ∈ R : t = sup

u∈R

f (u)

}
.(3.2)

Let f0 ∈ LC and m0 = M(f0) be fixed, such that f0 is twice continuously differ-
entiable at m0 and f ′′

0 (m0) < 0. Consider the family {ϕε}ε>0 and resulting family
{fε}ε>0, defined as follows much as:

ϕε(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ϕ0(x), x < m0 − εcε,
ϕ0(x), x > m0 + ε,
ϕ0(m0 + ε),

+ ϕ′
0(m0 + ε)(x − m0 − ε), x ∈ [m0 − ε,m0 + ε],

ϕ0(m0 − εcε),

+ ϕ′
0(m0 − εcε)(x − m0 + εcε), x ∈ [m0 − εcε,m0 − ε),

where cε is chosen so that ϕε is continuous at m0 − ε. Note that if ϕ0(x) = γ −
γ0(x − m0)

2, then cε = 3, for all ε, and cε → 3, as ε ↓ 0, since f ′′
0 (m0) < 0. Now

define

hε(x) := exp(ϕε(x)) and fε(x) := hε(x)∫
hε(y) dy

.

Then, fε is log-concave for each ε > 0 with mode m0 − ε by construction, so with
ν(fε) := M(fε) := the mode of fε , we have

ν(fε) − ν(f0) = M(fε) − M(f0) = m0 − ε − m0 = −ε.

Furthermore, the following lemma holds.

LEMMA 3.1. Under the above assumptions,

H 2(fε, f0) = 2f ′′
0 (m0)

2

5f0(m0)
ε5 + o(ε5) := ρε5 + o(ε5).

PROOF. Proceeding as in Jongbloed (1995),

H 2(fε, f0) = 1

2

∫ ∞
−∞

[√
fε(x) −

√
f0(x)

]2
dx

= 1

2

∫ m0+ε

m0−εcε

[√
fε(x) −

√
f0(x)

]2
dx

= 2

5
f0(m0)ϕ

′′
0 (m0)

2ε5 + o(ε5) = 2

5

f ′′
0 (m0)

2

f0(m0)
ε5 + o(ε5)

as ε ↓ 0. Calculations similar to those of Jongbloed (1995) [see also Jongbloed
(2000) and Groeneboom, Jongbloed and Wellner (2001b)] complete the proof of
the lemma. �
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Taking ε = cn−1/5 and defining fn := fcn−1/5 yields

ν(fn) − ν(f0) = M(fn) − M(f0) = −cn−1/5

and

nH 2(fn, f0) = 2

5

f ′′
0 (m0)

2

f0(m0)
c5 + o(1) := ρc5 + o(1).

Plugging these into the lower bound Lemma 4.1 of Groeneboom (1996), with
�(x) := |x|, yields

lim inf
n

inf
Tn

n1/5 max{En,Pn |Tn − M(fn)|,En,P |Tn − M(f0)|}

≥ 1

4
c exp(−2ρc5) = e−1/5

4 · 101/5 ρ−1/5 = (0.15512)

(
f0(m0)

f ′′
0 (m0)2

)1/5

by choosing c = (10ρ)−1/5. This yields the following proposition.

PROPOSITION 3.2 (Minimax risk lower bound). Suppose that ν(f ) = M(f ),
as defined in (3.2), and that LCn,τ is as defined above where f ′′

0 is continuous in
a neighborhood of m0 = M(f0) with f ′′

0 (m0) < 0. Then,

sup
τ>0

lim sup
n→∞

n1/5 inf
Tn

sup
f ∈LCn,τ

Ef |Tn − M(f )|

≥
(

5/2

45 · e · 10

)1/5(
f0(m0)

f ′′
0 (m0)2

)1/5

=̇ (0.15512)

(
f0(m0)

f ′′
0 (m0)2

)1/5

.

REMARK 3.3. Note that the constant b(f0,m0) := (f0(m0)/f
′′
0 (m0)

2)1/5 ap-
pearing on the right-hand side of this lower bound is scale equivariant in exactly
the right way: if fc(x) := f0(m0 + (x − m0)/c)/c for c > 0, then b(fc,m0) =
cb(f0,m0) for all c > 0. The constant b(f0,m0) will appear in the limit distribu-
tion appearing in the next subsection.

REMARK 3.4. If LC is replaced by the class U of unimodal densities on R

and LCn,τ is replaced by Un,τ defined analogously where f0 satisfies f ′′
0 (m0) < 0

and f ′′
0 continuous in a neighborhood of m0, then a minimax lower bound of

the same form as Proposition 3.2 holds with exactly the same dependence on
b(f0,m0) = (f0(m0)/f

′′
0 (m0)

2)1/5, but with the absolute constant 0.15512 . . . re-
placed by 0.19784 . . . . This can be seen by taking the perturbations {fε}ε>0 de-
fined by

fε(x) =
⎧⎨⎩

f0(x), x ≤ x0 − ε,
f0(x), x > x0 + ε,
f0(x0) + bε(x − x0 + ε), x0 − ε ≤ x ≤ x0 + ε,

where bε is chosen so that fε(x0 + ε) > f0(x0 + ε) and
∫ x0+ε
x0−ε fε(x) dx =∫ x0+ε

x0−ε f0(x) dx.
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REMARK 3.5. If ϕ0 is continuously k-times differentiable in a neighborhood
of the mode m0, ϕ

(j)
0 (m0) = 0 for j = 2, . . . , k − 1 and ϕ

(k)
0 (m0) 	= 0 [assump-

tion (A4)], then it can be shown that the minimax rate of convergence is n1/(2k+1)

and that the minimax lower bound is proportional to(
1

f0(m0)ϕ
(k)
0 (m0)2

)1/(2k+1)

=
(

f0(m0)

f
(k)
0 (m0)2

)1/(2k+1)

,

where the proportionality constant depends on the largest root of the polynomial
xk − (k/(k − 1))xk−1 − (2k − 1)/(k − 1) (which equals 3 when k = 2).

3.2. Limiting distribution for the MLE M̂n in LC. Now, let f̂n be the MLE
of f in the class LC of log-concave densities, and let M̂n = M(f̂n), m0 = M(f0).
Here is our result concerning the limiting distribution of M̂n under the same as-
sumptions on f0 as in the previous section on lower bounds.

THEOREM 3.6. Suppose that f ′′
0 is continuous in a neighborhood of m0 =

M(f0) and that f ′′
0 (m0) < 0. Then,

n1/5(M̂n − m0)
d→

(
(4!)2f0(m0)

f ′′
0 (m0)2

)1/5

M
(
H

(2)
2

)
.

Note that the limiting distribution depends on a multiple of the same constant
b(f0,m0), which appears in the asymptotic minimax lower bound of Proposi-
tion 3.2, times a universal term M(H

(2)
2 ), the mode of the “estimator” H

(2)
2 (t)

of the canonical concave function −12t2 in the limit Gaussian problem: estimate
the mode of f0(t) = −12t2, based on observation of Y(t) = ∫ t

0 X(s) ds, when

dX(t) = f0(t) dt + dW(t).

We expect that this distribution, namely the distribution of

M
(
H

(2)
2

) = arg max
t∈R

H
(2)
2 (t),

will occur in several other problems involving nonparametric estimation of the
mode or antimode of convex or concave functions under similar second derivative
hypotheses. For example, it seems clear that it will occur as the limiting distrib-
ution of the nonparametric estimator of the antimode of a convex bathtub-shaped
hazard [in the setting of Jankowski and Wellner (2007)]; as the limiting distribution
of the nonparametric estimator of the antimode of a convex regression function in
the setting of Groeneboom, Jongbloed and Wellner (2001b); and as the limiting
distribution of the nonparametric estimator of the mode of a concave regression
function.
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When ϕ
(j)
0 (m0) = 0, for j = 2, . . . , k − 1, ϕ

(k)
0 (m0) 	= 0, and ϕ

(k)
0 is continu-

ous in a neighborhood of m0, then an analogous result (with a completely similar
proof) holds:

n1/(2k+1)(M̂n − m0)
d→

(
(k + 2)!2

f0(m0)|ϕ(k)
0 (m0)|2

)1/(2k+1)

M
(
H

(2)
k

)
.

In particular, when k = 4, the rate of convergence is n1/9, and the limit distribution
becomes that of (

6!2f0(m0)

f
(4)
0 (m0)2

)1/9

M
(
H

(2)
4

)
.

Apparently, estimation of m0 becomes considerably more difficult when the sec-
ond and possibly higher order derivatives of ϕ0 vanish at m0.

On the other hand, if ϕ0 (or equivalently, f0) is cusp-shaped at m0, then the rate
of convergence of M̂n is n1/3, and the local asymptotic minimax rate of conver-
gence is also n1/3; we will pursue these issues elsewhere.

4. Proofs for Sections 2 and 3. Throughout this section, we fix k and let

rn := n(k+2)/(2k+1), sn := n−1/(2k+1),

xn(t) := xn,k(t) := x0 + snt := x0 + n−1/(2k+1)t,

I := I(x0, n, k, t) :=
{ [x0, xn(t)], t ≥ 0,

[xn(t), x0], t < 0.

4.1. Preparation: technical lemmas and tightness results. First, some nota-
tion.

Local processes: The local processes Y
loc
n and Ĥ loc

n are defined for t ∈ R by

Y
loc
n (t) := rn

∫ xn(t)

x0

(
Fn(v) − Fn(x0) −

∫ v

x0

(
k−1∑
j=0

f
(j)
0 (x0)

j ! (u − x0)
j

)
du

)
dv

and

Ĥ loc
n (t) := rn

∫ xn(t)

x0

∫ v

x0

(
f̂n(u) −

k−1∑
j=0

f
(j)
0 (x0)

j ! (u − x0)
j

)
dudv

+ Ânt + B̂n,

where in the limit Gaussian problem: estimate the mode

Ân = rnsn
(
F̂n(x0) − Fn(x0)

)
and(4.1)

B̂n = rn
(
Ĥn(x0) − Hn(x0)

)
.(4.2)
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We also define the “modified” local processes

Y
locmod
n (t) := rn

f0(x0)

∫ xn(t)

x0

(
Fn(v) − Fn(x0)

−
∫ v

x0

(
k−1∑
j=0

f
(j)
0 (x0)

j ! (u − x0)
j

)
du

)
dv(4.3)

− rn

∫ xn(t)

x0

∫ v

x0

̂k,n,2(u) dudv

and

H
locmod
n (t) := rn

∫ xn(t)

x0

∫ v

x0

(
ϕ̂n(u) − ϕ0(x0) − (u − x0)ϕ

′
0(x0)

)
dudv

(4.4)

+ Ânt + B̂n

f0(x0)
,

where ̂k,n,2 is defined below in (4.26).
The following lemma uses the notion of uniform covering numbers [see van der

Vaart and Wellner (1996), Sections 2.1 and 2.7] for complete definitions and fur-
ther information.

LEMMA 4.1. Let F be a collection of functions defined on [x0 − δ, x0 + δ],
with δ > 0 small and let s > 0. Suppose that for a fixed x ∈ [x0 − δ, x0 + δ] and
R > 0, such that [x, x + R] ⊆ [x0 − δ, x0 + δ], the collection

Fx,R = {
fx,y := f 1[x,y], f ∈ F , x ≤ y ≤ x + R

}
admits an envelope Fx,R , such that

EF 2
x,R(X1) ≤ KR2d−1, R ≤ R0

for some d ≥ 1/2 and K > 0, depending only on x0 and δ. Moreover, suppose that

sup
Q

∫ 1

0

√
logN(η‖Fx,R‖Q,2,Fx,R,L2(Q))dη < ∞.(4.5)

Then, for each ε > 0, there exist random variables Mn of order Op(1) (not de-
pending on x or y) and R0 > 0, such that∣∣∣∣∫ fx,y d(Fn − F0)

∣∣∣∣ ≤ ε|y − x|s+d + n−(s+d)/(2s+1)Mn for |y − x| ≤ R0.

PROOF. See Kim and Pollard (1990) and Balabdaoui and Wellner (2007),
Lemmas 4.4 and 6.1. The special case s = 1 = d is Lemma 4.1 of Kim and Pol-
lard (1990). �
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LEMMA 4.2. If (A3) and (A4) hold, then

f
(j)
0 (x0) = [ϕ′

0(x0)]j f0(x0) for j = 1, . . . , k − 1(4.6)

and, for j = k

f
(k)
0 (x0) = (

ϕ
(k)
0 (x0) + [ϕ′

0(x0)]k)f0(x0).

PROOF. The expressions for f
(j)
0 (x0) follow immediately from a recursive

argument using the identity f0 = expϕ0 and the assumption ϕ
(j)
0 (x0) = 0, for j =

2, . . . , k − 1, if k > 2. �

Now, let τ+
n := inf{t ∈ Ŝ(ϕ̂n) : t > x0} and τ−

n := sup{t ∈ Ŝ(ϕ̂n) : t < x0}.

THEOREM 4.3. If (A1)–(A4) hold, then

τ+
n − τ−

n = Op

(
n−1/(2k+1)).(4.7)

Theorem 4.3 should be compared to Theorem 3.3 of Dümbgen and Ru-
fibach (2009). When their Theorem 3.3 is specialized to the case β = 2, so that
ϕ′′

0 (x) ≤ C < 0, for all x ∈ T := [A,B], then it yields the following: If mn denotes
the number of elements in Sn(ϕ̂n) ∩ T , then for any successive knot points ti−1
and ti in Sn(ϕ̂n) ∩ T ,

sup
i=2,...,mn

(ti − ti−1) = Op(ρ1/5
n ),(4.8)

where ρn = log(n)/n.

PROOF OF THEOREM 4.3. From the first characterization of the estimator f̂n

in Dümbgen and Rufibach (2009), for every function � such that ϕ̂n + t� is con-
cave for a t > 0 small enough, we know that∫

R

�(x)dFn(x) ≤
∫

R

�(x)dF̂n(x).(4.9)

This is equivalent to∫
R

�(x)d
(
Fn(x) − F0(x)

) ≤
∫

R

�(x)
(
f̂n(x) − f0(x)

)
dx.(4.10)

Using specific indicator functions for �, one can furthermore show that

F̂n(τ ) ∈ [Fn(τ ) − 1/n,Fn(τ )](4.11)

for every τ ∈ Ŝn(ϕ̂n) [see Rufibach (2006) and Corollary 2.5 of Dümbgen and
Rufibach (2009)].

Now, the idea is to choose a particular permissible perturbation function � that
satisfies the following two conditions:
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1. � is “local,” that is, compactly supported on [τ−
n , τ+

n ].
2. � should “filter” out the unknown error f̂n − f0.

The second requirement means that � should be chosen so that∫ τ+
n

τ−
n

�(x) dx = 0,

∫ τ+
n

τ−
n

�(x)(x − τ) dx = 0,(4.12)

where τ := (τ−
n + τ+

n )/2 is the mid-point of [τ−
n , τ+

n ]. If this is guaranteed, then
the right-hand side of (4.10) in the end will only depend on the distance τ+

n − τ−
n

and f0(x0).
Define �0 by

�0(x) = (x − τ−
n )1[τ−

n ,τ ](x) + (τ+
n − x)1[τ ,τ+

n ](x).

Since ϕ̂n + t�0 is concave for small t > 0, �0 is permissible. It is also compactly
supported. However, since �0 is nonnegative, there is no hope that it fulfills the
second of the requirements above. We therefore introduce a modified perturbation
function

�1(x) = �0(x) − 1
4(τ+

n − τ−
n )1[τ−

n ,τ+
n ](x), x ∈ R.

Clearly, existence of a t > 0, such that ϕ̂n + t�1 is concave, is no longer guaran-
teed. However, using (4.11),∫

�1(x) d(Fn − F0)(x)

=
∫

�1(x) d(Fn − F̂n)(x) +
∫

�1(x) d(F̂n − F0)(x)

≤ τ+
n − τ−

n

4

∣∣∣∣∫ τ+
n

τ−
n

d(Fn − F̂n)(x)

∣∣∣∣ + ∫
�1(x) d(F̂n − F0)(x)(4.13)

≤ τ+
n − τ−

n

2n
+

∫
�1(x)(f̂n − f0)(x) dx.(4.14)

To get the inequality in (4.13), we used (4.9) with � = �0 and (4.11). The next
step is to get bounds for the integrals in the crucial inequality (4.14). Define

R1n :=
∫

�1(x)(f̂n − f0)(x) dx

and

R2n :=
∫

�1(x) d(Fn − F0)(x).

Rearranging the inequality in (4.14) and using these definitions yields

−R1n ≤ τ+
n − τ−

n

2n
− R2n.
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Consistency of ϕ̂n, together with ϕ
(k)
0 (x0) < 0, implies τ+

n − τ−
n = op(1). Thus, it

follows from Lemma 4.4 that

Mk

(−ϕ
(k)
0 (x0)

)
(τ+

n − τ−
n )k+2(

1 + op(1)
) ≤ op(1)n−1 + Op(r−1

n ) = Op(r−1
n ).

This yields the claimed rate, Op(n−1/(2k+1)), for the distance between τ+
n

and τ−
n . �

LEMMA 4.4. Suppose (A1)–(A4) hold. Then,

R2n = Op(r−1
n )

and

R1n = Mkf0(x0)ϕ
(k)
0 (x0)(τ

+
n − τ−

n )k+2 + op

(
(τ+

n − τ−
n )k+2)

,

where Mk > 0 depends only on k and ϕ
(k)
0 (x0) < 0.

PROOF. Define the function pn(t) = ϕ̂n(t)−ϕ0(t) for any t ∈ [τ−
n , τ+

n ]. Then,
using Taylor expansion of h �→ exp(h) up to order k, we can find θt,n ∈ [τ−

n , τ+
n ],

such that

R1n =
∫ τ+

n

τ−
n

�1(t)f0(t)

(
k−1∑
j=1

pn(t)
j

j ! + 1

k! exp(θt,n)pn(t)
k

)
dt :=

k∑
j=1

Snj

j ! ,

where

Snj :=
∫ τ+

n

τ−
n

�1(t)f0(t)pn(t)
j dt for 1 ≤ j ≤ k − 1

and

Snk :=
∫ τ+

n

τ−
n

�1(t)f0(t) exp(θt,n)pn(t)
k dt.

If we expand f0(t) around the mid-point τ of [τ−
n , τ+

n ], we get, for 1 ≤ j ≤ k − 1
and a ηn,t,j ∈ [τ−

n , τ+
n ],

Snj =
k−1∑
l=0

f
(l)
0 (τ )

l!
∫ τ+

n

τ−
n

�1(t)(t − τ̄ )lpn(t)
j dt

+
∫ τ+

n

τ−
n

f
(k)
0 (ηn,t,j )

k! �1(t)(t − τ)kpn(t)
j dt

and, for j = k

Snk =
k−1∑
l=0

f
(l)
0 (τ )

l!
∫ τ+

n

τ−
n

�1(t) exp(θt,n)(t − τ)lpn(t)
k dt

+
∫ τ+

n

τ−
n

f
(k)
0 (ηn,t,k)

k! �1(t) exp(θt,n)(t − τ)kpn(t)
k dt.
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It turns out that the dominating term in R1n is the first term in the Taylor expansion
of Sn1. All the other terms are of smaller order since both pn and (t − τ̄ )l, l > 0, are
op(1) uniformly in t ∈ [τ−

n , τ+
n ]. We denote this dominating term by Qn1. Since ϕ̂n

is linear on [τ−
n , τ+

n ], we write ϕ̂n(t) = ϕ̂n(τ̄ )+ (t − τ̄ )ϕ̂′
n(τ̄ ). By Taylor expansion

of pn around τ̄ , we get

Q1n

f0(τ̄ )
=

∫ τ+
n

τ−
n

�1(t)pn(t) dt

= pn(τ̄ )

∫ τ+
n

τ−
n

�1(t) dt + p′
n(τ̄ )

∫ τ+
n

τ−
n

�1(t)(t − τ̄ ) dt

−
k∑

j=2

ϕ
(j)
0 (τ̄ )

j !
∫ τ+

n

τ−
n

�1(t)(t − τ̄ )j dt −
∫ τ+

n

τ−
n

εn(t)�1(t)(t − τ̄ )k dt,

where the first two terms are zero, since (4.12) holds when � = �1 and ‖εn‖∞ →p

0 as τ+
n − τ−

n →p 0. Using the fact that∫ τ+
n

τ−
n

�1(t)(t − τ̄ )j dt

(4.15)

=

⎧⎪⎪⎨⎪⎪⎩
0, for j = 0 and j odd,

(τ+
n − τ−

n )j+2
( −j

2(j+2)(j + 1)(j + 2)

)
,

for j even,

we conclude that

Q1n = k

2(k+2)k!(k + 1)(k + 2)
f0(τ̄ )ϕ

(k)
0 (τ̄ )

(
(τ+

n − τ−
n )k+2 + op(1)

)
and the claimed form of R1n in the lemma follows.

For R2n, we proceed along the lines of the proof of Lemma 4.1 in Groeneboom,
Jongbloed and Wellner (2001b). This means we have to line up with the assump-
tion of Theorem 2.14.1 in van der Vaart and Wellner (1996). Therefore, define a
generalized version of R2n:

R
x,y
2n =

∫ y

x
�1(z) d(Fn − F0)(z)

for −∞ < x ≤ y. With this function, we have, for some R > 0,

sup
y : 0≤y−x≤R

|Rx,y
2n |

= 2 sup
y : 0≤y−x≤R

∣∣∣∣∫ (x+y)/2

x

(
z − x − 1

4(y − x)
)
d(Fn − F0)(z)

∣∣∣∣
= 2 sup

y : 0≤y−x≤R

∣∣∣∣∫ hx,y(z) d(Fn − F0)(z)

∣∣∣∣,
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where

hx,y(z) = (
z − x − 1

4(y − x)
)
1[x,(x+y)/2](z) = h(z)1[x,(x+y)/2](z).

Then, the collection of functions

Fx,R = {
h1[x,(x+y)/2] :x ≤ y ≤ x + R

}
is a Vapnik–Chervonenkis subgraph class with envelope function

Fx,R(z) = (
(z − x) + R/4

)
1[x,x+R](z).

Finally, Theorem 2.6.7 in van der Vaart and Wellner (1996) yields the entropy
condition (4.5).

A log-concave density is always unimodal and the value at the mode is finite,
and hence, K := ‖f0‖∞ is finite. Therefore,

EF 2
x,R(X1)

=
∫ x+R

x
(z − x)2f0(z) dz + R

2

∫ x+R

x
(z − x)f0(z) dz + R2

16

∫ x+R

x
f0(z) dz

≤
(

K

3
(z − x)3 + RK

4
(z − x)2 + R2K

16
z

)∣∣∣∣x+R

z=x

= 31

48
KR3.

It follows from Lemma 4.1, with d = 2 and s = k, that R2n = Op(r−1
n ). �

4.2. Proofs for Section 2.

LEMMA 4.5. For any M > 0, we have

sup
|t |≤M

|ϕ̂′
n(x0 + snt) − ϕ′

0(x0)| = Op(sk−1
n ),(4.16)

sup
|t |≤M

|ϕ̂n(x0 + snt) − ϕ0(x0) − sntϕ
′
0(x0)| = Op(sk

n).(4.17)

Furthermore, if we define, for any u ∈ R,

ên(u) = f̂n(u) −
k−1∑
j=0

f
(j)
0 (x0)

j ! (u − x0)
j − f0(x0)

[ϕ′
0(x0)]k
k! (u − x0)

k,

then

sup
|t |≤M

∣∣ên(x0 + snt) − f0(x0)
(
ϕ̂n(x0 + snt) − ϕ0(x0) − sntϕ

′
0(x0)

)∣∣
(4.18)

= op(sk
n).
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PROOF. The proof of (4.16) and (4.17) is identical to that of Lemma 4.4 in
Groeneboom, Jongbloed and Wellner (2001b) since the characterization of f̂n

given in (1.1) is (up to the direction of the inequality) equivalent to that of the
least-squares estimator of a convex density.

Now, we prove (4.18). Using Taylor expansion of h �→ exp(h) up to order k

around zero, we can write

f̂n(u) − f0(x0) = f0(x0)
[
exp

(
ϕ̂n(u) − ϕ0(x0)

) − 1
]

(4.19)

= f0(x0)

k∑
j=1

1

j !
(
ϕ̂n(u) − ϕ0(x0)

)j + f0(x0)̂k,n,1(u),

where

̂k,n,1(u) =
∞∑

j=k+1

1

j !
(
ϕ̂n(u) − ϕ0(x0)

)j
.

But, for any j ≥ 1,(
ϕ̂n(u) − ϕ0(x0)

)j
= [ϕ̂n(u) − ϕ0(x0) − (u − x0)ϕ

′
0(x0) + (u − x0)ϕ

′
0(x0)]j

=
j∑

r=1

(
j

r

)
[ϕ̂n(u) − ϕ0(x0) − (u − x0)ϕ

′(x0)]r(4.20)

× [ϕ′
0(x0)]j−r (u − x0)

j−r

+ [ϕ′
0(x0)]j (u − x0)

j .

Hence, using (4.17) and (A3), we get on the set {u : |u − x0| ≤ Mn−1/(2k+1)}(
ϕ̂n(u) − ϕ0(x0)

)j = op

(
n−k/(2k+1))

for all j ≥ k + 1.
In particular, this implies that

̂k,n,1(u) = op

(
n−k/(2k+1)),(4.21)

uniformly in u ∈ [x0 − tn−1/(2k+1), x0 + tn−1/(2k+1)], where |t | ≤ M , and

f̂n(u) − f0(x0) − f0(x0)
(
ϕ̂n(u) − ϕ0(x0) − (u − x0)ϕ

′
0(x0)

)
− f0(x0)

k∑
j=1

ϕ
(j)
0 (x0)

j ! (u − x0)
j = op

(
n−k/(2k+1)).
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Using Lemma 4.2, the latter can be rewritten as

f̂n(u) − f0(x0) − f0(x0)
(
ϕ̂n(u) − ϕ0(x0) − (u − x0)ϕ

′
0(x0)

)
−

k−1∑
j=1

f
(j)
0 (x0)

j ! (u − x0)
j − f0(x0)

ϕ
(k)
0 (x0)

k! (u − x0)
k = op

(
n−k/(2k+1))

or, equivalently,∣∣ên

(
x0 + tn−1/(2k+1)) − f0(x0)

(
ϕ̂n

(
x0 + tn−1/(2k+1))

− ϕ0(x0) − n−1/(2k+1)tϕ′
0(x0)

)∣∣ = op

(
n−k/(2k+1))

uniformly in |t | ≤ M . �

THEOREM 4.6. Let K > 0.

(i) If {Yk(t), t ∈ R} is the canonical process defined in (2.1), then the localized
process γ1Y

locmod
n (γ2·) converges weakly in C[−K,K] to Yk , where

γ1 =
(

f0(x0)
k−1|ϕ(k)

0 (x0)|3
[(k + 2)!]3

)1/(2k+1)

,(4.22)

γ2 =
(

f0(x0)|ϕ(k)
0 (x0)|2

[(k + 2)!]2

)1/(2k+1)

.(4.23)

Equivalently, Y
locmod
n converges weakly in C[−K,K] to the “driving process”

Ya,k,σ , where

Yk,a,σ (t) := a

∫ t

0
W(s)ds − σ tk+2(4.24)

and where a = 1/
√

f0(x0), σ = |ϕ(k)
0 (x0)|/(k + 2)!.

(ii) The localized processes satisfy Y
locmod
n (t) − Ĥ locmod

n (t) ≥ 0, for all t ∈ R,
with equality for all t such that xn(t) = x0 + tn−1/(2k+1) ∈ Ŝn(ϕ̂n).

(iii) Both Ân and B̂n defined above in (4.1) and (4.2) are tight.
(iv) The vector of processes(

Ĥ locmod
n , (Ĥ locmod

n )(1), (Ĥ locmod
n )(2),Y

locmod
n , (Ĥ locmod

n )(3), (Ylocmod
n )(1))

converges weakly in (C[−K,K])4 × (D[−K,K])2, endowed with the product
topology induced by the uniform topology on the spaces C[−K,K] and the Sko-
rohod topology on the spaces D[−K,K] to the process(

Hk,a,σ ,H
(1)
k,a,σ ,H

(2)
k,a,σ , Yk,a,σ ,H

(3)
k,a,σ , Y

(1)
k,a,σ

)
,

where Hk,a,σ is the unique process on R satisfying⎧⎪⎪⎨⎪⎪⎩
Hk,a,σ (t) ≤ Yk,a,σ (t), for all t ∈ R,∫ (

Hk,a,σ (t) − Yk,a,σ (t)
)
dH

(3)
k,a,σ (t) = 0,

H
(2)
k,a,σ , is concave.

(4.25)
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PROOF. (i) The first step will be to modify the local processes, that is, going
from the “density” to the “log-density” level, in order to be able to exploit concav-
ity of ϕ0 and ϕ̂n and connect the local process to the limiting distribution obtained
by Groeneboom, Jongbloed and Wellner (2001b) for estimating a convex density.

First, by Lemma 4.2, (4.19) and (A3), we can write

f0(x0)
−1

(
f̂n(u) −

k−1∑
j=0

f
(j)
0 (x0)

j ! (u − x0)
j

)

= f0(x0)
−1

(
f̂n(u) − f0(x0) − f0(x0)

k−1∑
j=1

[ϕ′
0(x0)]j
j ! (u − x0)

j

)

= ̂k,n,1(u) +
k∑

j=1

1

j ! [ϕ̂n(u) − ϕ0(x0)]j −
k−1∑
j=1

[ϕ′
0(x0)]j
j ! (u − x0)

j

= ̂k,n,1(u) + (
ϕ̂n(u) − ϕ0(x0) − ϕ′

0(x0)(u − x0)
)

+
k∑

j=2

1

j ! [ϕ̂n(u) − ϕ0(x0)]j −
k−1∑
j=2

[ϕ′
0(x0)]j
j ! (u − x0)

j

=: (
ϕ̂n(u) − ϕ0(x0) − ϕ′

0(x0)(u − x0)
) + ̂k,n,2(u),

introducing the new remainder term

̂k,n,2(u) = ̂k,n,1(u) +
k∑

j=2

1

j ! [ϕ̂n(u) − ϕ0(x0)]j

(4.26)

−
k−1∑
j=2

[ϕ′
0(x0)]j
j ! (u − x0)

j .

Using (4.20) and (4.21) yields∫
I

∫ v

x0

̂k,n,2(u) dudv

= t2n−2/(2k+1) sup
u∈[x0,v],v∈I

|̂k,n,1(u)|

+
k∑

j=2

1

j !
∫
I

∫ v

x0

[ϕ̂n(u) − ϕ0(x0)]j dudv

−
k−1∑
j=2

1

j !
∫
I

∫ v

x0

[ϕ′
0(x0)]j (u − x0)

j dudv

= op(r−1
n )
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+
k∑

j=2

1

j !
j∑

l=1

(
j

l

)∫
I

∫ v

x0

[ϕ̂n(u) − ϕ0(x0)

− (u − x0)ϕ
′
0(x0)]l

× (u − x0)
j−l[ϕ′

0(x0)]j−l dudv

+
k∑

j=2

1

j !
∫
I

∫ v

x0

[ϕ′
0(x0)]j (u − x0)

j dudv

−
k−1∑
j=2

1

j !
∫
I

∫ v

x0

[ϕ′
0(x0)]j (u − x0)

j dudv

= op(r−1
n )

+
k∑

j=2

1

j !
j∑

l=1

(
j

l

)∫
I

∫ v

x0

[ϕ̂n(u) − ϕ0(x0)

− (u − x0)ϕ
′
0(x0)]l

× (u − x0)
j−l[ϕ′

0(x0)]j−l dudv

+ 1

k!
∫
I

∫ v

x0

(u − x0)
k[ϕ′

0(x0)]k dudv.

But by Lemma 4.5, one can easily show that, for j = 2, . . . , k and l = 1, . . . , j ,

rn

∫
I

∫ v

x0

[ϕ̂n(u) − ϕ0(x0) − (u − x0)ϕ
′
0(x0)]l(u − x0)

j−l[ϕ′
0(x0)]j−l dudv

= Op

(
n−[k(l−1)+(j−l)]/(2k+1)) = op(1),

uniformly in |t | ≤ M . Similarly,

rn

∫
I

∫ v

x0

(u − x0)
k[ϕ′

0(x0)]k dudv = [ϕ′
0(x0)]k

(k + 1)(k + 2)
tk+2.

Hence, it follows that

rn

∫
I

∫ v

x0

̂k,n,2(u) dudv = [ϕ′
0(x0)]k

(k + 2)! tk+2 + op(1)

as n → ∞, uniformly in |t | ≤ M .
We turn now to the modified local processes, Y

locmod
n and Ĥ locmod

n , defined
in (4.3) and (4.4). It is not difficult to show that

Y
locmod
n (t) = Y

loc
n (t)

f0(x0)
− rn

∫
I

∫ v

x0

̂k,n,2(u) dudv(4.27)
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and

Ĥ locmod
n (t) = Ĥ loc

n (t)

f0(x0)
− rn

∫
I

∫ v

x0

̂k,n,2(u) dudv.(4.28)

Note that the process Ĥ locmod
n is in fact similar to Ĥ loc

n , except that it is defined
in terms of the log-density ϕ0 instead of the density f0. This can be more easily
seen from its original expression given in (4.4). The second expression of Ĥ locmod

n

given above is only useful for showing that it stays below Y
locmod
n , while touching

it at points t , such that xn(t) = x0 + tn−1/(2k+1) ∈ Ŝn(ϕ̂n). The biggest advantage
of considering this modified version is to be able to use concavity of ϕ0 the same
way [Groeneboom, Jongbloed and Wellner (2001b)] used convexity of the true
estimated density g0. Their process H̃ loc

n resembles Ĥ locmod
n to a large extent (see

page 1688), and by combining arguments similar to theirs with Lemma 4.2 and the
results obtained above, it follows that

Y
locmod
n (t)

⇒ [f0(x0)]−1/2
∫ t

0
W(s)ds + f

(k)
0 (x0)

(k + 2)!f0(x0)
tk+2 − [ϕ′

0(x0)]k
(k + 2)! tk+2

= [f0(x0)]−1/2
∫ t

0
W(s)ds + ϕ

(k)
0 (x0)

(k + 2)! t
k+2

= Yk,a,σ (t) in C[−K,K],
where a := [f0(x0)]−1/2, σ := |ϕ(k)

0 (x0)|/(k + 2)!, as in (4.24).
Now, let γ1 and γ2 be chosen, so that

γ1Yk,a,σ (γ2t)
d= Yk(t)

as processes where Yk is the integrated Gaussian process defined in (2.1). Using the

scaling property of Brownian motion [i.e., α−1/2W(αt)
d= W(t), for any α > 0],

we get

γ1γ
3/2
2 = a−1 and γ1γ

k+2
2 = σ−1.

This yields γ1 and γ2 as given in (4.22) and (4.23), and hence,(
nk/(2k+1)

(
ϕ̂n(x0) − ϕ0(x0)

)
n(k−1)/(2k+1)

(
ϕ̂′

n(x0) − ϕ′
0(x0)

))
d→ f0(x0)

−1
(

ck(x0, ϕ0)H
(2)
k (0)

dk(x0, ϕ0)H
(3)
k (0)

)
.

We get the explicit expression of the asymptotic constants ck(x0, ϕ0) and dk(x0, ϕ0)

using the following relations:

f0(x0)
−1ck(x0, ϕ0) = (γ1γ

2
2 )−1 and(4.29)

f0(x0)
−1dk(x0, ϕ0) = (γ1γ

3
2 )−1.(4.30)
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This is completely analogous to the derivations on page 1689 in Groeneboom,
Jongbloed and Wellner (2001b), precisely

(γ1Ĥ
locmod
n (γ2t))

(2)(0) = γ1γ
2
2 (Ĥ locmod

n )(2)(0)
(4.31)

= nk/(2k+1)f0(x0)ck(x0, ϕ0)
−1(

ϕ̂n(x0) − ϕ0(x0)
)

and

(γ1Ĥ
locmod
n (γ2t))

(3)(0) = γ1γ
3
2 (Ĥ locmod

n )(3)(0)
(4.32)

= n(k−1)/(2k+1)f0(x0)dk(x0, ϕ0)
−1(

ϕ̂′
n(x0) − ϕ′

0(x0)
)
.

From (4.29) and (4.30), we get ck(x0, ϕ0) and dk(x0, ϕ0) as given in (2.2) and (2.3),
and Ck(x0, ϕ0) and Dk(x0, ϕ0) as in (2.4) and (2.5).

(ii) Note that we can write

Y
loc
n (t) − Ĥ loc

n (t) = rn
(
Hn(xn(t)) − Ĥn(xn(t))

) ≥ 0

by making use of (1.1) and the specific choice of Ân and B̂n. But, since we connect
Ĥ locmod

n and Y
locmod
n to the “invelope,” the latter property needs primarily to hold

for the modified processes. This can easily be established by considering (4.27)
and (4.28), and hence it follows that

Y
locmod
n (t) − Ĥ locmod

n (t) ≥ 0

for all t ∈ R, with equality if xn(t) = x0 + tn−1/(2k+1) ∈ Ŝn(ϕ̂n).
(iii) To show that Ân and B̂n are tight. By Theorem 4.3, we know that there

exists M > 0 and τ ∈ Ŝ(ϕ̂n) such that 0 ≤ x0 − τ ≤ Mn−1/(2k+1) with large prob-
ability. Now, using (4.11), we can write

|Ân| ≤ rnsn
∣∣(F̂n(x0) − F̂n(τ )

) − (
Fn(x0) − Fn(τ )

)∣∣ + rn/n

≤ rnsn

∣∣∣∣∣
∫ x0

τ

(
f̂n(u) −

k−1∑
j=0

f
(j)
0 (x0)

j ! (u − x0)
j

)
du

∣∣∣∣∣
+ rnsn

∣∣∣∣∣
∫ x0

τ

(
k−1∑
j=0

f
(j)
0 (x0)

j ! (u − x0)
j − f0(u)

)
du

∣∣∣∣∣
+ rnsn

∣∣∣∣∫ x0

τ
d(Fn − F0)

∣∣∣∣ + n−k/(2k+1)

:= Ân1 + Ân2 + Ân3 + n−k/(2k+1).

Now,

|Ân1| ≤ rnsn

∣∣∣∣∫ x0

τ
ên(u) du − f0(x0)

(
ϕ̂n(u) − ϕ0(x0) − (u − x0)ϕ

′
0(x0)

)
du

∣∣∣∣
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+ rnsnf0(x0)

∣∣∣∣∫ x0

τ

( [ϕ′
0(x0)]k
k! (u − x0)

k

)
du

∣∣∣∣
+ rnsnf0(x0)

∣∣∣∣∫ x0

τ

(
ϕ̂n(u) − ϕ0(x0) − (u − x0)ϕ

′
0(x0)

)
du

∣∣∣∣
≤ op(1) + Op

(
rnsn(τ − x0)

k+1) + Op

(
rnsn(τ − x0)n

−k/(2k+1))
= Op(1),

where we used (4.18) and (4.17) to bound the first and last terms. To bound Ân2,
we use Taylor approximation of f0(u) around x0 to get

Ân2 ≤ rn

∣∣∣∣∫ x0

τ

f
(k)
0 (x0)

k! (u − x0)
k du

∣∣∣∣ + rn

∣∣∣∣∫ x0

τ
(u − x0)

kεn(u) du

∣∣∣∣
= Op(1),

where εn is a function such that ‖εn‖ →p 0 as x0 −τ →p 0. To bound Ân3, similar
derivations as the ones used for bounding R2n (see the proof of Lemma 4.4) can
be employed where the perturbation function �1 needs to be replaced by �2(x) =
1[τ,x0](x).

At “one higher integration level,” similar computations can be used to show
tightness of B̂n.

(iv) The proof of this last part of the theorem is basically identical to that of
Theorem 6.2 for the LSE in Groeneboom, Jongbloed and Wellner (2001b) and
arguments similar to those of Groeneboom, Jongbloed and Wellner (2001a) or,
alternatively, tightness plus uniqueness arguments along the lines of Groeneboom,
Maathuis, and Wellner (2008). �

PROOF OF THEOREM 2.1. The claimed joint convergence involving ϕ̂n and ϕ̂′
n

follows from part (iv) of Theorem 4.6 and the relations (4.31) and (4.32). The joint
limiting distribution of f̂n(x0) − f0(x0) and f̂ ′

n(x0) − f ′
0(x0) follows immediately

by applying the delta-method. �

4.3. Proofs for Section 3.

PROOF OF THEOREM 3.6. We first use the simple fact that M̂n is the only
point x ∈ R which satisfies

ϕ̂′
n(t)

{
> 0, if t < x,
≤ 0, if t ≥ x.

(4.33)

This follows immediately from concavity of ϕ̂n and the definition of M̂n. Note
that ϕ̂n may have a flat region or “modal interval”; in this case, there exists an entire
interval of points where the maximum is attained, and M̂n is the left endpoint of
this interval.
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A tightness property of the process H
(3)
2 , which follows from Lemma 2.7 of

Groeneboom, Jongbloed and Wellner (2001b), is also needed to establish the lim-
iting distribution of M̂n: for any ε > 0 and t ∈ R, there exists C = C(ε) such that

P
(∣∣H(3)

2 (t) + 24t
∣∣ > C

) ≤ ε.

In other words, one can view H
(3)
2 (t) as an “estimator” of the odd function −24t .

Since C is independent of t , it follows that, for a fixed ε, H
(3)
2 (t) < 0 [resp.

H
(3)
2 (t) > 0] for t > 0 (resp. −t < 0) big enough, with probability greater than

1 − ε.
The sign of H

(3)
2 and uniqueness of M̂n turn out to be crucial in determining

the limiting distribution of the latter. From Theorem 4.6 and the two derivative
relations, (4.31) and (4.32), it follows that(

nk/(2k+1)
(
ϕ̂n

(
x0 + tn−1/(2k+1)

) − ϕ0(x0) − tn−1/(2k+1)ϕ′
0(x0)

)
n(k−1)/(2k+1)

(
ϕ̂′

n

(
x0 + tn−1/(2k+1)

) − ϕ′
0(x0)

) )
(4.34)

⇒
(

H
(2)
k,a,σ (t)

H
(3)
k,a,σ (t)

)
in C[−K,K] × D[−K,K]

for each K > 0, with the product topology induced by the uniform topology on
C[−K,K] and the Skorohod topology on D[−K,K]. Here, Hk,a,σ is the unique
process on R satisfying (4.25). A similar result holds for the MLE of the log-
concave density f0. When x0 is replaced by the population mode m0 = M(f0) and
k = 2 the second weak convergence implies that

n1/5(
ϕ̂′

n(m0 − T n−1/5) − ϕ′
0(m0)

) d→ H
(3)
2,a,σ (−T )

and

n1/5(
ϕ̂′

n(m0 + T n−1/5) − ϕ′
0(m0)

) d→ H
(3)
2,a,σ (T ).

For T > 0 large enough, this in turn implies that, for ε > 0, we can find N ∈ N\{0}
such that, for all n > N , we have

P
(
ϕ̂′

n(m0 − T n−1/5) > 0 and ϕ̂′
n(m0 + T n−1/5) < 0

)
> 1 − ε.

Using the property of M̂n in (4.33), it follows that

P(M̂n ∈ [m0 − T n−1/5,m0 + T n−1/5]) > 1 − ε

for all n > N .
We first conclude that M̂n − m0 = Op(n−1/5). Then, we note that

n1/5(M̂n − m0) = M(Zn),

where

Zn(t) = n2/5(
ϕ̂n(m0 + tn−1/5) − ϕ0(m0)

)
⇒ Z(t) := H

(2)
2,a,σ (t) in C([−K,K])
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for each K > 0, by (4.34) with k = 2. Thus, by the argmax continuous mapping
theorem [see, e.g., van der Vaart and Wellner (1996), page 286] it follows that

M(Zn)
d→ M(Z) = M

(
H

(2)
2,a,σ

)
,

where Z = H
(2)
2,a,σ , a = 1/

√
f0(m0), and σ = |ϕ(2)

0 (m0)|/4!.
Note that H2,a,σ is related to the “driving process” Y2,a,σ with a = 1/

√
f0(m0),

σ = |ϕ(2)
0 (m0)|/4! as in (4.24) with k = 2. Now, γ1Y2,a,σ (γ2t)

d= Y2(t) as processes
where Y2 := Y2,1,1. Thus, it also holds that

γ1H2,a,σ (γ2t)
d= H2(t) and γ1γ

2
2 H

(2)
2,a,σ (γ2t)

d= H
(2)
2 (t),

or, equivalently, H
(2)
2,a,σ (v)

d= H
(2)
2 (v/γ2)/(γ1γ

2
2 ). Since M(dg(c·)) = c−1M(g)

for c, d > 0, it follows that

M
(
H

(2)
2,a,σ

) d= M

(
1

γ1γ
2
2

H
(2)
2 (·/γ2)

)
d= γ2M

(
H

(2)
2

)
,

where

γ2 =
(
f0(m0)

|ϕ(2)
0 (m0)|2
(4!)2

)−1/5

=
(

(4!)2f0(m0)

f ′′
0 (m0)2

)1/5

by direct computation using f ′
0(m0) = 0 = ϕ′

0(m0) and Lemma 4.2. �
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LEPSKIĬ, O. V. (1991). Asymptotically minimax adaptive estimation. I. Upper bounds. Optimally

adaptive estimates. Teor. Veroyatnost. i Primenen. 36 645–659. MR1147167
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