
Teor�� �Imov�r. ta Matem. Statist. Theor. Probability and Math. Statist.
Vip. 71, 2004 No. 71, 2005, Pages 129–138

S 0094-9000(05)00653-8
Article electronically published on December 28, 2005

LIMIT DISTRIBUTIONS OF EXTREME VALUES OF BOUNDED
INDEPENDENT RANDOM FUNCTIONS

UDC 519.21

I. K. MATSAK

Abstract. We study the limit probabilities that extreme values of a sequence of
independent normal random functions belong to extending intervals.

1. Introduction

Consider a sequence (ξi) of independent identically distributed random variables with
the distribution function F (x) = P(ξi < x) and put zn = max1≤i≤n ξi. Assume that for
some constants bn > 0 and an

(1) bn(zn − an) D−→ ζ

as n → ∞ and let the distribution function G(x) = P(ζ < x) of the random variable ζ
be nondegenerate.

If relation (1) holds, then we say that the distribution function F belongs to the
domain of attraction of the law G and we write F ∈ D(G). According to the well-known
extreme types theorem [1]–[3], a distribution function F may belong to the domain of
attraction of one of the following three types of distributions:

(2)

Type I: G1(x) = exp(−e−x), −∞ < x < ∞,

Type II: G2(x) =

{
0, x ≤ 0,

exp(−x−α), α > 0, x > 0,

Type III: G3(x) =

{
exp(−(−x)α), α > 0, x ≤ 0,

1, x > 0.

In an earlier series of papers (see, for example, [4, 5]) we studied the weak convergence
of extreme values of a sequence of independent random elements in some Banach lattices;
that is, we generalized relation (1) to the infinite-dimensional case.

In Banach spaces with an unconditional basis, one can develop a theory analogous to
the classical theory of the weak convergence of extreme values [4] (perhaps this is the only
case where such a generalization is available). For example, the limit laws are degenerate
[5] for spaces of Lp[0, 1] type if some natural conditions are posed. We assumed in [5]
that components of extreme values are asymptotically independent. From a certain point
of view, this case seems to be the most important one.

When studying the weak convergence of extreme values of independent random ele-
ments in the space C[0, 1], we face a number of problems. One of the possible approaches
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to solving these problems is described in the paper [6] for independent Wiener processes.
Another approach is considered in [7].

In this paper, we generalize the approach of [7] to the case of bounded elements in
Banach lattices. We also obtain some results for abstract Banach lattices of C(Q) type,
but our primary attention is paid to the asymptotic behavior of probabilities that extreme
values of independent random functions belong to extending intervals. This case is the
most interesting one for possible applications.

2. Main results for Banach lattices of C(Q) type

In what follows we use the following notation: B is a Banach lattice equipped with a
norm ‖ · ‖, B+ is the set of positive elements of the lattice B,

B(u) = {x ∈ B : there exists λ > 0 such that |x| ≤ λu}
is the ideal generated by the element u ∈ B+, and ‖x‖u = inf{λ > 0: |x| ≤ λu} is the
norm in B(u).

Let X be a random element assuming values in a Banach lattice B, let (Xn) be a
sequence of independent copies of the random element X, and let

Zn = max
1≤i≤n

Xi, Wn = min
1≤i≤n

Xi, n ≥ 1,

be the corresponding extreme values. Assume that

(3) X ∈ B(u) almost surely.

The fundamental extreme types theorem for the real axis [1] can be generalized to
the case of random elements assuming values in a Banach lattice. Namely, the following
result holds.

Proposition 1. Let X be a random element assuming values in a separable Banach
lattice B and let condition (3) hold. Assume that for some constants bn > 0 and an,

P

(
Zn ≤

(
an +

x

bn

)
u

)
−→ G(x)

as n → ∞, where G(x) is a nondegenerate distribution function. Then, up to location
shift and scale changes, the law G(x) has one of the three extreme value distributions
listed in (2).

In order that G(x) = Gk(x), it is necessary and sufficient that the distribution function
Fu(x) = P(X ≤ xu) belong to the domain of attraction of the law Gk(x), k ∈ {1, 2, 3}.

Indeed, it is obvious that

P

(
Zn ≤

(
an +

x

bn

)
u

)
=

(
Fu

(
an +

x

bn

))n

and therefore Proposition 1 is reduced to the one-dimensional case.

Remark 1. Events of type A = (X ≤ λu), u ∈ B+, λ ∈ R, are measurable, since
max(X, Y ) is measurable for random elements X and Y . Indeed

A = (X − λu ≤ 0) = (max(X − λu, 0) = 0) =
⋂
n≥1

(
‖max(X − λu, 0)‖ ≤ 1

n

)
.

It is a rather complicate problem to check whether or not Fu ∈ D(Gk) and to determine
the corresponding constants an and bn. The problem becomes simpler for the normal
distribution. We treat this case in what follows.

Below, X denotes a normal random element assuming values in a Banach lattice B,
and SX is the mean quadratic deviation of the random element X (the mean quadratic
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deviation can be defined by SX =
√

π/2E|X| for a normal random element in a Banach
lattice). Since any Banach lattice � is convex, condition (3) implies that SX ∈ B(u).

Put

Ψu(x) = Φ−1(Fu(x)), du = lim
x→∞

(‖SX‖uΨu(x) − x),

θu(x) = exp
(
x2/2

)
(1 − Fu(‖SX‖ux − du)),(4)

where Φ−1(x) is the inverse function of the standard normal distribution function Φ(x),
and the distribution function Fu(x) is defined in Proposition 1.

The following asymptotic equality is a generalization of relation (1) for the case of
Banach lattices B(u): for all x ∈ R1

(5) lim
n→∞

P(Zn ≤ τn(x)u) = G1(x),

where τn(x) = −du + ‖SX‖u(x/bn + an), G1(x) is a type I distribution function defined
in (2), and an, bn ∈ R1.

Theorem 1. Let X be a normal random element assuming values in a separable Ba-
nach lattice. Assume that X satisfies condition (3) and moreover ‖SX‖u > 0. Then
equality (5) holds for

(6) bn =

{
(2 ln(n))1/2, n > 1,

1, n = 1,
an = bn +

ln(θu(bn))
bn

,

where θu(x) and du are defined by equalities (4).

Remark 2. Under the assumptions of Theorem 1, equality (5) holds for |Zn| instead of Zn

with the same constants an and bn.

It is known (see [3, pp. 28–29]) that extreme values Zn and Wn are asymptotically
independent if random variables Xi are independent. It turns out that a similar result
holds for ideals of bounded random elements.

Theorem 2. Let B be a separable function Banach lattice, and let

X = (X(t), t ∈ T )

be a normal random element in B satisfying condition (3). Suppose that EX = 0, SX =
(σ(t), t ∈ T ), ‖SX‖ > 0, and there exists a number ε > 0 such that σ(t) �= 0, σ(s) �= 0,
and, for all t, s ∈ T ,

(7)
EX(t)X(s)
σ(t)σ(s)

> −1 + ε.

Then

(8) lim
n→∞

P
(
−τn(x)u ≤ Wn ≤ Zn ≤ τn(y)u

)
= G1(x)G1(y),

where τn(x) is defined by equality (5).

The simple example given below shows that Theorem 2 may fail in general if a con-
dition of type (7) is not imposed on X. Nevertheless the asymptotic behavior can be
obtained in abstract Banach lattices for the probability that random elements Wn and Zn

belong to symmetric extending intervals.

Theorem 3. If the assumptions of Theorem 1 are satisfied, then

lim
n→∞

P
(
−τ̂n(x)u ≤ Wn ≤ Zn ≤ τ̂n(x)u

)
= G1(x),
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where

τ̂n(x) = −d̂u + ‖SX‖u

(
ân +

x

bn

)
,

ân = bn +
ln θ̂(bn)

bn
,

and the functions θ̂(x) and d̂u are defined by (4) with

F̂u(x) = P(‖X‖u < x)

instead of Fu(x).

Remark 3. A Banach lattice B(u) is order isometric to the space C(Q) for some compact
Hausdorff space Q ([8, 9]). This implies that the general case of Theorems 1–3 follows
from the particular case of bounded random functions defined on some parameter set T
and u = {u(t) = 1, t ∈ T}.

3. Extreme values of normal random functions

Let X = {X(t), t ∈ T} be a normal random function defined on a parameter set T ,
let Xn = {Xn(t), t ∈ T}, n ≥ 1, be independent copies of the random variable X, and
let

Zn =
{

Zn(t) = max
1≤k≤n

Xk(t), t ∈ T

}
, Wn =

{
Wn(t) = min

1≤k≤n
Xk(t), t ∈ T

}
.

By R = {R(t, s), t, s ∈ T} and SX = {σ(t), t ∈ T} we denote the correlation function
and mean square deviation of the random function X, respectively, where

R(t, s) = E(X(t) − EX(t))
(
X(s) − E(X(s))

)
, σ(t) = (R(t, t))1/2.

For u ≡ 1, notation (4) is equivalent to

Fsup(x) = P

(
sup
t∈T

X(t) < x

)
, Ψ(x) = Φ−1 (Fsup(x)) ,

d = lim
x→∞

(‖SX‖Ψ(x) − x),

θ(x) = exp
(
x2/2

)
(1 − Fsup(‖SX‖x − d))(9)

(it is known that the limit
lim

x→∞
(‖SX‖Ψ(x) − x)

exists and is finite for a bounded normal random function; see [10, p. 139]).
In what follows we assume that X is a bounded random function; that is, ‖X‖ < ∞

almost surely and ‖SX‖ > 0 where ‖x‖ = supt∈T |x(t)| and bn is defined by (6).

Proposition 2. Let X = {X(t), t ∈ T} be a bounded normal random function such that
‖SX‖ > 0. Then

(10) lim
n→∞

P

(
bn

(
‖Zn‖ + d

‖SX‖ − an

)
≤ x

)
= G1(x)

for all x ∈ R where

(11) an = bn +
ln(θ(bn))

bn

and θ(x) and d are defined by equalities (9).
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Lemma 1. Let X = {X(t), t ∈ T} be a bounded normal random function, let d = 0, and
let ‖SX‖ = 1. Then

(12) lim
n→∞

P

(
bn

(
sup
t∈T

Zn(t) − an

)
≤ x

)
= G1(x),

where the constants an are defined by (11).

The proof of Lemma 1 can be found in [7].

Proof of Proposition 2. The asymptotic relation

(13) lim
x→∞

x−1
(
ln(1 − Fsup(x)) + (x + d)2/2‖SX‖2

)
= 0

is proved in [10, p. 139]. If X(t) is a random function satisfying the assumptions of the
proposition, then X̄(t) = (X(t)+ d)‖SX‖−1 is a bounded normal random function such
that d(X̄) = 0 and ‖SX̄‖ = 1 (see (13)). The definition of the function θ(x) implies that
the random functions X(t) and X̄(t) have the same distribution function θ(x). Applying
Lemma 1 to the random function X̄(t), we get

(14) lim
n→∞

P

(
bn

(
supt∈T (Zn + d)

‖SX‖ − an

)
≤ x

)
= G1(x).

Furthermore, we apply the following simple bounds:

P

(
sup
t∈T

Zn(t) > un(x)
)

≤ P(‖Zn(t)‖ > un(x))

≤ P

(
sup
t∈T

Zn(t) > un(x)
)

+ P

(
inf
t∈T

Zn(t) < −un(x)
)(15)

and

P

(
inf
t∈T

Zn(t) < un(x)
)

≤ P

(
n⋂

k=1

(
inf
t∈T

Xk(t) < un(x)
))

= P

(
inf
t∈T

X(t) < un(x)
)n

−→
n→∞

0

(16)

as un(x) → ∞. Relations (14)–(16) lead to equality (10). �

According to Remark 3, Theorem 1 follows from the proof of Proposition 2 given above,
while Theorems 2 and 3 follow from the following Propositions 3 and 4, respectively.

Proposition 3. Let X = {X(t), t ∈ T} be a bounded normal random function, let
EX = 0, ‖SX‖ > 0, and let there exist a number ε > 0 such that condition (7) holds for
all t, s ∈ T for which σ(t) �= 0 and σ(s) �= 0. Then for all x, y ∈ R

(17) lim
n→∞

P

(
−τn(x) ≤ inf

t∈T
Wn(t) ≤ sup

t∈T
Zn(t) ≤ τn(y)

)
= G1 (x)G2 (y) ,

where τn(x) = −d + ‖SX‖(an + x/bn) and constants an are defined by equality (11).

Proof of Proposition 3. Since the random function X is symmetric, equality (12) implies
that

lim
n→∞

P

(
min

1≤i≤n
inf
t∈T

Xi(t) > −τn(x)
)

= G1(x),

lim
n→∞

P

(
max

1≤i≤n
sup
t∈T

Xi(t) < τn(x)
)

= G1(x).
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These equalities are equivalent to the following asymptotic relations:

P

(
inf
t∈T

X(t) ≤ −τn(x)
)

∼ e−x

n
,

P

(
sup
t∈T

X(t) ≥ τn(y)
)

∼ e−y

n
(18)

as n → ∞. Furthermore,

Pn(x, y) = P

(
−τn(x) ≤ inf

t∈T
Wn(t) ≤ sup

t∈T
Zn(t) ≤ τn(y)

)

= P

(
−τn(x) ≤ inf

t∈T
X(t) ≤ sup

t∈T
X(t) ≤ τn(y)

)n

(19)

=
(

1 − P

((
inf
t∈T

X(t) < −τn(x)
)
∪

(
sup
t∈T

X(t) > τn(y)
)))n

=
(

1 − P

(
inf
t∈T

X(t) < −τn(x)
)
− P

(
sup
t∈T

X(t) > τn(y)
)

+ P

((
inf
t∈T

X(t) < −τn(x)
)
∩

(
sup
t∈T

X(t) > τn(y)
)))n

.

It is easy to see that condition (7) implies that

sup
t,s∈T

E |X(t) − X(s)|2 ≤ sup
t,s∈T

(
σ2(t) + σ2(s) + 2(1 − ε)σ(t)σ(s)

)
≤ (4 − 2ε) ‖SX‖2

.
(20)

To estimate the latter term in (19), we apply estimates (13) and (20):

P

((
inf
t∈T

X(t) < −τn(x)
)
∩

(
sup
t∈T

X(t) > τn(y)
))

≤ P

(
sup

t,s∈T
(X(t) − X(s)) > τn(x) + τn(y)

)

≤ exp

(
− (τn(x) + τn(y))2 + O(τn(x) + τn(y))

2(4 − 2ε) ‖SX‖2

)

≤ exp

(
−8 ln n ‖SX‖2 + O(lnn)1/2

(8 − 4ε) ‖SX‖2

)
= O

(
1

n1+δ

)
, δ > 0.

(21)

Now it follows from bounds (18), (19), and (21) that

Pn(x, y) =
(

1 − e−x + e−y

n
+ o

(
1
n

))n

→ exp
(
−

(
e−x + e−y

))
= G1(x)G1(y)

as n → ∞, whence relation (17) follows (cf. similar reasoning in [3, p. 28]). �

The following example shows that one cannot omit condition (7) in Proposition 3 and
in Theorem 3.

Example. Let X(t) = ξ(1 − 2t), t ∈ [0, 1], and let ξ be a standard normal random
variable. Then

σ2(t) = (1 − 2t)2, ‖SX‖ = 1, d = 0,

since the process X(t) is continuous. Now we show that equality (17) does not hold for
x = y. Indeed, τn(x) = an + x/bn where the constants an and bn are defined by (11).
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Since
sup

t∈[0,1]

X(t) = |ξ|,

we have

θ(x) ∼
√

2
π

x−1.

Then

lim
n→∞

P

(
sup

t∈[0,1]

Zn(t) ≤ τn(x)

)
= lim

n→∞

(
P(|ξ| ≤ τn(x))

)n = G1(x),

whence

P

(
−τn(x) ≤ inf

t∈[0,1]
Wn(t) ≤ sup

t∈[0,1]

Zn(t) ≤ τn(x)

)

=

(
P

(
−τn(x) ≤ inf

t∈[0,1]
X(t) ≤ sup

t∈[0,1]

X(t) ≤ τn(x)

))n

=
(
P(−τn(x) ≤ −|ξ| ≤ |ξ| ≤ τn(x))

)n =
(
P(|ξ| ≤ τn(x))

)n → G1(x)

as n → ∞ and, as a result, equality (17) does not hold. It is clear that condition (7) also is
not valid for the process X(t) in Theorem 2, since EX(0)X(1) = −1 and σ(0) = σ(1) = 1.

Proposition 4. If X = {X(t), t ∈ T} is a bounded normal random function such that
‖SX‖ > 0, then

(22) lim
n←∞

P
(
−τ̂n(x) ≤ Wn ≤ Zn ≤ τ̂n(x)

)
= G1(x),

where

τ̂n(x) = −d̂ + ‖SX‖
(

ân +
x

bn

)
, ân = bn +

ln θ̂(bn)
bn

,

and the functions θ̂(x) and d̂ are defined by equalities (9) with

F̂sup(x) = P

(
sup
t∈T

|X(t)| < x

)

instead of Fsup(x).

Proof of Proposition 4. It is clear that equality (22) is equivalent to

(23) lim
n←∞

P

(
bn

(∥∥sup1≤k≤n |Xk(t)|
∥∥ + d̂

‖SX‖ − ân

)
≤ x

)
= G1(x).

Consider another normal random function X̂ =
(
X(s), s ∈ T̂

)
where T̂ = T ∪T ∗ and T ∗

is a copy of T for which we introduce a one-to-one correspondence t ↔ t∗ between T
and T ∗. The function X̂ is defined as follows:

X̂(s) =

{
X(t), for s = t ∈ T,

−X(t), for s = t∗ ∈ T ∗, t∗ ↔ t.

Then

sup
s∈T̂

X̂(s) = sup
t∈T

|X(t)|,
∥∥∥∥ sup

1≤k≤n
|Xk(t)|

∥∥∥∥ = sup
s∈T̂

Ẑn(s)

almost surely; that is, equality (23) coincides with equality (12) involved in the proof of
Proposition 2. �
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4. Examples

Below we consider some corollaries of Theorems 1 and 2. First we consider a continuous
normal stochastic process X = {X(t), t ∈ T = [0, h]}. Put

r(t, s) =
R(t, s)

σ(t)σ(s)
, γ2(t) = R11(t, t) =

[
∂2R(t, s)

∂t∂s

]
t=s

,

µ(t) =
R01(t, t)
γ(t)σ(t)

, R01(t, s) =
[
∂R(t, s)

∂s

]
,

Λ(t) =
∫ t

0

γ(s)
σ(s)

(1 − [µ(s)]2)1/2 ds, r11(t, s) =
[
∂2r(t, s)

∂t∂s

]
.

This notation corresponds to that introduced in Chapter 13 of [11]. Recall that the
function Λ(t) is such that π−1 exp

(
−u2/2

)
Λ(h) = ENu(h), where Nu(h) is the number

of crossings of a fixed level u by a trajectory of a normalized process X(t)/σ(t) on the
interval [0, h] (see [11]).

We say that a process X(t) satisfies condition (Ξ) if the function R(t, s) has the
continuous second order partial derivative R11(t, s), the joint normal distribution of X(t)
and its mean square derivative X ′(t) is nondegenerate for every t ≥ 0, and

a) EX(t) = 0, σ(t) > 0, |µ(t)| < 1,

b) sup
t∈[0,h−s]

|r(t, t + s)| < 1, s > 0,(Ξ)

c) sup
|t−s|≤δ

∣∣∣∣1 − r11(t, s)
[r11(t, t)r11(s, s)]1/2

∣∣∣∣ −→ 0
δ→0

.

Note that if X(t) is a stationary normal process with the spectral function F (λ) such
that λ2 =

∫
λ2 dF (λ) < ∞, then condition (Ξ) holds and Λ(t) = λ

1/2
2 t.

Corollary 1. Let T = [0, h] and let X = {X(t), t ∈ T} be a normal stochastic process
satisfying condition (Ξ). Then

lim
n→∞

P(Zn ≤ τn(x)SX) = G1(x),(24)

lim
n→∞

P
(
−τn(x)SX ≤ Wn ≤ Zn ≤ τn(y)SX

)
= G1(x)G1(y),(25)

where τn(x) = bn+(ln(Λ(h)/2π)+x)/bn and the constants bn are defined in equalities (6).

Proof of Corollary 1. Let X = {X(t), t ∈ T} be a normal stochastic process satisfying
condition (Ξ). Then

lim
x→∞

exp
(
x2/2

)
P

(
sup

t∈[0,h]

X(t)/σ(t) > x

)
= Λ(h)/2π

(see [7]). Since the process X(t)/σ(t) is continuous, du = 0 for u = SX ([10, p. 147]). It
remains to apply Theorems 1 and 2 to the process X(t) with

u = SX, du = 0, ‖SX‖u = 1, θ(x) ∼ Λ(h)/2π, x → ∞. �

We study the case of a normal sequence X(t), t = 1, 2, . . . , in the following result.
Put rij = R(i, j)/σ(i)σ(j) and assume that

σ0 = σ(1) = σ(2) = · · · = σ(m) > max
t>m

σ(t),(26)

max
1≤i<j≤m

|rij | < 1.(27)
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Corollary 2. Let X = {X(t), t ∈ T = N} be a centered bounded normal sequence
satisfying conditions (26) and (27). Then equalities (5) and (8) hold for

τn(x) = bn +
ln(m) − (ln(4π) + ln ln(n))/2 + x

bn
,

where the constants bn are defined by equalities (6).

Proof of Corollary 2. Without loss of generality we suppose that ‖SX‖ = 1. Then
condition (26) and equality (13) imply that

(28) P

(
sup
t∈N

X(t) > x

)
∼ P

(
sup

1≤t≤m
X(t) > x

)

as x → ∞. Using the same reasoning as that in [7], we derive from asymptotic rela-
tion (28) that

P

(
sup
t∈N

X(t) > x

)
∼ m(2π)−1/2x−1 exp

(
−x2/2

)
as x → ∞. This relation and equality (13) imply that d = 0. It remains to apply
Theorems 1 and 2 for u ≡ 1, d = 0, and θ(x) ∼ m(2π)−1/2x−1. �

Denote by | · |m the Euclidean norm in Rm. Let µ be the Lebesgue measure in Rm

and let T be a measurable bounded closed set in Rm.

Corollary 3. Let X = {X(t), t ∈ T} be a stationary centered normal field whose corre-
lation function R(t, s) = R(t − s) is continuous and such that

(29) R(t) = 1 − |t|αm + o(|t|αm)

for some α, 0 < α ≤ 2. We also assume for t �= 0 that

(30) |R(t)| < 1.

Then equalities (24) and (25) hold with

SX ≡ 1, τn(x) = bn +
(m/α − 1/2)(ln 2 + ln ln(n)) + ln(µ(T )Hα2π)1/2 + x

bn
,

where Hα is some constant and the bn, n ≥ 1, are defined by (6) (note that H2 = π−m/2;
see [12], [13], and [10, pp. 203–207]).

Proof of Corollary 3. If bounds (29) and (30) hold for a random field X(t), then

P

(
sup
t∈T

X(t) > x

)
∼ (2π)−1/2µ(T )Hαx(2m/α)−1 exp

(
−x2/2

)
as x → ∞ (see [12], [13]). Since the field X(t) is continuous, we put u ≡ SX ≡ 1, d = 0,
and

θ(x) ∼ (2π)−1/2µ(T )Hαx(2m/α)−1

in Theorems 1 and 2 and obtain equalities (24) and (25) with the corresponding con-
stants an and bn. �
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