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Summary. The class of limiting distributions of the normalized minimax
(or maximin) of independent identically distributed random variables is
obtained and the domains of attraction of the three limiting types are
characterized. Asymptotic independence of the minimax and maximin is also
demonstrated.

1. Introduction. Consider a sequence of independent identically distributed
random variables on some probability space with P the probability measure
thereupon. These will be double indexed in the fashion

(1-1) ^lli X12, X22, X2Ü X\3, X23, X33, X32, X31; • • •

and engender a sequence of random matrices of order n

IXn X12 • • • XIn \
:   :       :    > »-i,2,--.,

Xnl Xn2 ■ • • Xnn I

which, in turn, give rise to two sequences of random variables

Wn = min max X,y,
(1.3) •' '

Z„ = max min Xi;.
/ i

Denote by F the common cumulative distribution function (c. d. f.) of the
Xy. We seek the classes S£\ and Jz^ of limiting distributions of Wn and Z„
(suitably normalized) as well as conditions insuring that the normalized Wn
or Zn based on a stipulated F, actually converge in law to a particular
limiting distribution. In view of the relationship Zn — — min,max;( — X;|),
it suffices to deal with Wn. Clearly, i4 i = 1,2, is independent of the initial
indexing procedure.

The problem is redolent of that of the class of limiting distributions of the
normalized maximum of independent, indentically distributed variables.
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limit distributions 475

Here, it will be recalled [3] that the class of limiting distributions comprises
the three distribution types (a > 0):

Lu(x) =exp( -(-*)«}, xfO,
= 1, jc> 0,

(1.4) L^(x) =0, x f 0,
= exp j - x~"}, x > 0,

L3(x) = exp( - <rx}.

In the case of the minimum of independent, identically distributed random
variables, the three (nondegenerate) limiting types are given by L*(x)
= l-Lj(-x),j= 1,2,3.

It follows readily from (2.0) that Wn, like the maximum, converges almost
certainly to + °= or c according as F{x) < 1, all x or F(c — t) < 1 = F(c + c),
all t > 0. On the other hand, the only nondegenerate limiting types possible
in the case of Wn are L*, j = 1,2,3, namely, those corresponding to the
minimum of independent identically distributed chance variables.

2. Limiting distributions. Let ) an, bn, n = 1,2, • • •} constitute two sequences
of constants with an > 0. Evidently,

(2.0) ( ± (Wn - bn)< x } - 1 - [1 - F"(anx + &„)]».
V    (In )

As a first step in the direction adumbrated, we prove (letting ^ (W) denote
generically the c.d.f. or "law" of a random variable W)

Lemma 1. A necessary and sufficient condition that [(Wn — b„)/an] con-
verge to a nondegenerate limiting distribution is that there exist an extended
real-valued, nondecreasing, right-continuous function y(x) with 7(00) = 00,
y( — °°) = — 00 such that for x in the (nonempty) set of points at which y(x)
is continuous and finite,

(2.1) F(anx + bn) = 1-. n

Proof. Suppose that (2.0) converges to a nondegenerate c.d.f. r(x). Clearly,
Fn(anx + bn) = o(l) and for 0 < r(x) < 1

nlog[l - Fn(anx + bn)}= [ 1 + o(l)]log[ 1 - r(x)],

implying

-nFn(anx + bn) = [1+ o(l)]log[1 - r(x)].

Thus, if

(2.2) 7(*) = log(-log[l-r(x)]),
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476 HERMAN CHERNOFF AND HENRY TEICHER [April

we have

logrt + nlogF(anx + 6„) = 7(x) +o(l).

This implies n[ 1 - F(anx + 6„)]2 = o(l) and consequently also

logn - n[l - F(anx + 6J] = 7(x) +o(l)

which is tantamount to (2.1).
Retracing the argument in the reverse direction, (2.1) implies that (2.0)

converges to r(x) = 1 - exp { - ey(x> J at all continuity points in the domain
where y is finite, and thus at all continuity points.

This leads to
Theorem 1(2). The class of nondegenerate limiting distributions of the

normalized minimax Wn of independent identically distributed random variables
(as in (1.1)-(1.3)) contains only the types (a > 0)

K(x) = 0, x < 0,

= 1 - exp{ - x°}, x ^ 0,

(2.3) L£(x) = l-exp{ - (-*)-"}, x<0,
= 1, x^0,

L3*(x) - 1 - exp{ -ex}.

Proof. Suppose that (2.0) converges to a nondegenerate limiting distribu-
tion T, whence according to the lemma, (2.1) holds.

Define, for any real 5,
(2.4) m = mn(5) = j greatest integer ^ rt(l + 5/logre)).

Then, if A denotes the set of points at which t(x) is continuous and finite,
for xEA we have from (2.1),

F(omx + bm) = l-loem-yix) +o(m->)
m

log re + a(logn)-1 + o[(logre)-']-y(x)
(2'5) =1-»[l-Hdog»)-1] + ( }

_        \ogn- (y(x) +&) +o(l)
n

Let us call (x, 7) a point of increase if y(x - e) < 7 < y(x + t) for all
< > 0. Then at every point of increase (x, 7), the inverse function h(y) is

(2) Added in proof. Theorem 1 extends to rectangular matrices.
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uniquely defined and h(y) = x. Further, let G(x) denote an inverse function
of 1 — F(x) (any monotone version will do in spite of the ambiguity due to
intervals where F(x) is constant). It follows from (2.1) that for any sequence
of numbers f„—>0 and point of increase (h(y),y),

h(y).

Let m = m„(8) be as in (2.4) and note that

logm-7     logn - (7 + 8) +o(l)
m n

Consequently, if (h(y + 8), y + 8) and (h(y), y) are points of increase, from
(2.5) and (2.6)

c^log» — (y + 8) +o(l)^

= an[ h(y + 8) + o(l) ] + bn = am[ h(y) + o(l) ] + bm.

Applying the preceding to 70,71, and 7, we have for all real 8

an[h(y + 8)+o(l)} + bn = am[h(y)+o(l)}+bm,

(2.7) aa[h(y0+8) + o(l)] + bn = am[h(y0)+o(l)] + bm,

an[ h(yi + 8) + o(l) ] + bn = am[ h(7l) + o(l) ] + bm,

whence,

h(y + 8) - h{yx + 5)       h{y) - h(yx)
(2.8) h(yi + 8) -h(y0 + 8) h(yi)-h(yQ)

provided all points involved correspond to points of increase of 7 and the
denominators do not vanish.

The nondegeneracy of the limiting distribution implies that A (7) is not
constant for — °° < 7 < 00. Now suppose h is constant on some proper
subinterval / of — 00 < 7 < 00, say M7) = ß in I while ^(7) ?± ß outside /.
Then choosing 71 E 7 $ /, 70 C / and 5 such that 70 + 8 £ / but both
71 + 8 and y + 8 are in / would controvert (2.8). Since at most countably
many 7 values do not correspond to points of increase, such a choice can
be made. Therefore h is strictly monotone.

Next, suppose that 70+iö, i = 0,1, •••,** +1 correspond to points of
increase. Let 7 = 71 + 8, yt = 70+ (* - D« in (2.8) and verify inductively
that for all integers k, 1 g k f k*

h(y0+(k+l)8) -h(y0+k8) = h(yQ + 28) - h(y0 + 8) = x      ( }
h(y0 + k8) - h(y0 +(k- 1)8) h(y0 +8)- h(y0)

Thus,
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478 herman chernoff and henry teicher [April

h(y0 +(k + 1)8) - h(y0 + kö) = \k[h(y0 +5)- h(y0)], O^k^k*,

which necessitates

h(yQ + kS) = cx\k + dx,      0 g k ^ k*for\* 1,
(2.9)

= c1X + d1,     0^*^A*forX = 1.

Select an interval (xx, x2) such that — °° < xx < x2 < °° and — °° < 7(x! +)
<y(x2 —) < °°. In the range y(xx —) to y(x2+) at most a countable set
of y values do not correspond to points of increase. Hence, in arbitrary
neighborhoods of y(xx~) and y(x2+) we can find y* and y* such that
yf < 72* and all of the values 7* +;'2-*(72* - 7l*), ; = 0,1,2, •■•,2", k = 1,
2, correspond to points of increase. From (2.9) and monotonicity, for
y(xx-) <y< y(x2+),

(2.10) h(y) = cey>° + d,      « ^ 0

or

(2.10) ' A(7) = C7 + d.

Letting xx decrease and x2 increase so that y(xx —) —> — 00 and 7(jc2 +) —»°°,
it follows that (2.10) or (2.10)' holds for all y. Note that y(xx +) = - « for
finite Xi entails a > 0, and c > 0 whereas 7(x2) = + 00 for finite x2 requires
a < 0, and c < 0. Summarizing, we find three possibilities:

c>0,

— 00 < X < 00, c>0,

h(y) = cey<° + d,      a > 0, c> 0,
(2.11) (ii) _

7(x) = alog^-^,        x>d,   c>0, a>0,

A(7)
(iii)

t(x)

These correspond via (2.2) to the distribution types L3*(x), LXa(x), L*,(x)
respectively of (2.3) and the proof is therefore complete.

Definition. A c.d.f. F will be said to belong to the minimax domain of
attraction of a c.d.f.(3) L* (in symbols, FE &mM(L*)) if there exist se-
quences 6„ and an > 0 for which lim^„ (1 - [ 1 - Fn(anx + bn)]n) = L*(x).
In similar fashion, we may say that F belongs to the "maximum" domain of

(3) Of course, if FE 2>mM(L*(x)), then FE &mM(L*(ax + b)) for every a > 0 and real b
so it is the distribution "type" that is pertinent.

(i)

h(y) =Cy + d,

t \ x — dy(x) = —,

= ce^/a + d,      a > 0,   c < 0,

1    x — d
= - a log -,    x < d,   C < 0,   a > 0.
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attraction of L (written FE Q)M(L)), F belongs to the "minimum" domain
of attraction of L* (written FE 3>m(L*)) or F belongs to the maximin
domain of attraction of L (symbolically, FE 3>um(L)) according as
\sm^.F*(S*x + bn) = L(x), limB_(l - [l - F(ä~nx + bn)]n) = L*(x) or
limB^„(l - [1 - F(a'nx + b'n)]n)n = L(x).

Next, for any c.d.f. F, define

(2.12) a; = G(1^i)-G(l^),

where G is again an inverse function of 1 - F. Then a^(4) is implicitly defined
by (2.12) and (2.4) and

where e„, t'n are both o(l) and depend on 8.
As will be seen in the ensuing theorems, the domain to which F is attracted

depends on the limit of a^{i)/a* or more precisely upon that of the related
quantity r„(l,6) (see (2.13)). Define

rn(ß,o) = rn(ß,8;tn,t'n)

-M°c°,""rtf+';)-g(!g^)]
where «„, tn are sequences of real numbers approaching zero.

Theorem 2. In order that FE $mM(L$) with a„ = a*, it is necessary that

(2.14) lim rn(ß, 8) = ß for all real ß, 8 and tn = o(l) = i'n.
ft-,od

Conversely, if lim rn(ß,8) exists(4) for all ß,8 and t'H = o(l) = tn and if for all
real 8 and <„ = o(l) = i'n,

(2.14)' Bmr,(l,l)-1,

then FE 3>mM(L*) with an = a* and b„ = G(\ogn/n).

Necessity. (2.14) is a simple consequence of (2.6) and (2.10)'.
Sufficiency. Set an = a*. It follows directly from (2.14)' that

lim 1 ^ kgn-i-k+tj _ ^ log»-5 + ^ j = k

(4) It is not supposed that this limit is independent of e„ and t'„. Also, an example can be
adduced to show that (2.14)' by itself is insufficient.
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for all e„ = o(l) = t'n, all real 6 and positive integers k, hence for all negative
integers k, whence

lim 1 [g( l0g n ~ 6 + * ) - g(l0g n ~ ' + «-)]

+G(logw n'~*)-g( logn;5+fB)]=o

for all real 6 and all e„, e„ which are o(l). This shows further that
limrn(/3,6; «„,«„) is independent of t„ and t'„.

Consider next the subsequence rn>(ß,8; £„<,«„>) of r„(/3,5; tn,t'n) where
n' = m„(5'). This subsequence may be delineated as

1    rc/logn - (o + 6') - |3 + €»' \    c/logn - (« + <') + «.* \ I
o«„(4') L\ n )      \ n ) J

where t*' and e* are again o(l). In view of (2.14)' and (2.15), this subse-
quence has the same limit as rn(ß, 8 + 8'; tn,t'n). Thus, lim rn(ß, 8) is independ-
ent of 8 (as well as tn,t'n). Consequently, for any positive integer k and all
real 8

m™ 1 \g{ _a - at!—i) 1
b— a„L\ / \ra/J

, l ft I [G( hg»-*- (»+D/*) _ G( log>»-»-»7*) ]
= 1,

which readily implies for all integers j,k, real 8 and «n = o(l) = «„, that

(2.16) Ihn 1 [g( l0g" ' 8 ~ jlk + " ) - g( lqgre ;5 +    ] .;/*.

Next, let r/(rf) be a monotone sequence of rationals converging from below
(above) to the real number ß. Then, from (2.16)

H * Hm ± k ^n-ß-8 + e'n \ _ J \ogn-8 + tn\ 1 g rf
„-» a„L\ « /       \        n        / J

and consequently limn^„ rn(ß,8) = 0 for all real ß,8 and sequences £„,e„ tend-
ing to zero. In particular, setting bn = g(\ogn/n), for all real x

limlrG/iogra-x + tn\_6i = x
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Hence, for any t > 0 and re > N,

aBU-t) + 6„^C7(l0gn~X + <") zan(x + e) + bn

or equivalently,

F[an(x - t) + *j £ 1 - l0gra~X + t" ^ F[a„(x +1) + 6.].
re

Thus, for re > TV*

1 - l°g"-* + 2< + e» ̂  ^   , + b) £ ! _ log"-x-2t + e„
re re

which is tantamount to (2.1) for y(x) = x and therefore proves sufficiency.

Theorem 3. In order that FE 3>mM(L*a) with a„ = a*(ella - it is
necessary that

(2.17) lim rn(ß, 8) = es'a(eß/a - 1)(ella -
n—to.

for all real ß,5 and t'n = o(l) = e„. Conversely, if limrn(ß,8) exists(4) for all
real ß, 8 and tn = o(l) = t'n and if for some a > 0 and all real 8 and t'n = o(l) = t„,

(2.17) ' Hmr.(L «)-«"",
n—»°o

ffcere FE 9>mM{Lt) with an = a*(e1,a - l)"1, bn = g(logre/re) - an.

Theorem 4. In order that FE StmM^Lt) with an = a*(l - e~ll")~l, it is
necessary that
(2.18) limr.GJ.S) = e-i/a(e-ß/a - IHe'11" - l)"1

for all real 8,ß and tn = o(l) = t'n. Conversely, if \\mrn(ß,8) exists(4) for all
real 8, ß and t'n = o(l) = t„ and if for some a > 0 and all real 8 and tn = o(l) = t'n,

(2.18) ' limr.d.Ä) =e~s/a,

then FE 2>(LD with an = a„*(l - e"1'")"1, bn = g(log re/re) + a„.

Proofs. The necessity of (2.17) or (2.18) follows directly from (2.6) and
(2.11).

The proof of sufficiency for Theorem 4 requires only minor emmendations
from that of Theorem 3 and therefore only the latter will be given. Set
an = a*(ella — l)-1. Then, as in the proof of Theorem 2, a simple conse-
quence of (2.17)' is

(2.19) lim j- [ g(l0gn ~ >- k + *) - g( l0gn ~ 5 +   ) ] = e*y/- - 1)
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for all real 8, all integers k and all t„ = o(l) = f„. Again, the case k = 0
implies that lim rn(ß, 5; «„,<„) is independent of tn and t'n.

Exactly as in Theorem 2, lim<ra/o rn(0,5) is independent of 8. Consequent-
ly, using also (2.19)

e*/-(ei/« _ i)

irG/iog»-*-(t+i)/M_G/iogn-a-t/A\i

^      r«+i/A "I= _ exp -—
i-o        L     a J

implying for all positive integers k, real 8 and «„ = o(l) = t'n that

which, in turn, readily yields

(2.20) lim 1 [g(l0gn~8fl~r + t;;) - g(l0g"~g + f")]=^(^° - 1)

for all rational r, real 8 and e„ = o(l) = t'n. This is extended to real r exactly
as in Theorem 2. From this extended version of (2.20), for x real, all t > 0
and ra > JV„

e*. - l - t < 1 [ g( lqg " " * + e") - g( ^) ] <^-'i + «.

Setting 6„ = g(logre/n) - an, for all t > 0 and n > N„

an(exla - e) + bn < g( l0g"~x + t") < an(6^ +«) + 6„,

which is tantamount to (2.1) with y(x) = a log x, a > 0, x > 0, and completes
the proof.

In contradistinction to the case of the minimum of independent identically
distributed random variables, virtually all the standard distributions
(including the Cauchy) £ &mM(L*) if indeed there is a nondegenerate limit
distribution. Notwithstanding, 9>mM(Lt) and S0mM(Li) are not empty as
is seen from the following
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Example. Let the inverse of 1 — F be defined by

G(v) = cxeJl2 + c2,      u = - logo + ( 1 - • log( - logv)

where Cj + c2 > 0, p ^ 0 and v is small(5). If v = (logn — 7) /n, then u = logn
+ (7 + o(l))/logra, whence

G [ l0g"rt~7 ] = c,exp [p(logn)2/2 + Py + o(l) ] + c2

= a„(x + o(l))

where a„ = |ci|exp [p(logn)2/2], bn = c2, x = (sgnp) • exp(p7) and cx < 0,
c2 > 0 for p < 0 while cx > 0 if p > 0. Hence for sufficiently large n,

1    p/      1 1 \    logn - 7 + o(D1 - F(a„x + 6J =-.
n

Thus the limiting distribution of the normalized minimax is of the type Lfa
or L& depending on the sign of p.

Next, we note a link between ®M(L3) and ^mM(L3*). If FE Q>m(.U),
then as in Lemma 1, for all real x [3],

(2.23) F(a'nx + b'n) = l--e-x + o(n-x).
n

Suppose that (2.23) continues to hold for xn = x/logn — log logn, i.e.,

4<iofn--loglogn)+6")
(2-24) 1      (    / x \)= 1~neXPr (loIn--loglognJJ +0in~l
Then, setting

an = a„(log ra)_1, 6„ = b'n - a'„ log log n,

(2.25)     F(a„x + 6n) = 1 - -—? [1 - __ + 0(-J- ) 1+ oin'1),
n   L      log n     \ log n / J

.l__£ + £+o0r«,,
re ra

so that FG ^mjw(^*) according to (2.1) and (2.11).
On the other hand, (2.24) may be contravened and (2.25) fail to be the

correct normalization even though the domains of attraction are unchanged.
For example if F(x) = 1 — exp { — x/(l - x) j, 0 < x < 1, then, as noted

(5)The nature of G(v) for u bounded away from zero is unimportant from the standpoint of
which limit distribution F is attracted to. Thus (as may be necessary for monotonicity), G may
be modified for v bounded sufficiently far from zero.
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in [3], FG yu(L3) with a'n = (logn) 2, K=(l + lognr'logn. However,
FE 3U(L3) with

an = (1 + log/i - log log n) "2 (log n)~\

6„ = (1 + logn - log log n) "1 (log n - log log n).

3. Asymptotic independence of minimax Xy and maximin XtJ. The joint
distribution of Wn and Z„ is easy to obtain in principle but difficult to
analyze. Let u <v and A*' denote the event that all rows of xn in (1.2) have
an element greater than v and all columns have an element less than or equal
to u while exactly s of the n2 elements are no greater than u and exactly t
of the elements are greater than v. Then

P\Znfu,Wn>v)= Z  Z P[A'S\
s=n t=n

(3.1) „2_„ „2_s
=  Z  Z <> * *"(««) [ 1 - F(v) ]' [ F(v) - F(u) ]"2—'

s — n t=*n

where a'S* is the number of ways of arranging s white balls, t red balls and
n2 — s — t green balls in an n X n square array in which each column has at
least one white ball and each row at least one red ball.

Equation (3.1) does not seem amenable to establishing the asymptotic
independence of Wn and Zn. On the other hand it hints at the feasibility of
an "order statistics" approach. For this reason we shall first concern our-
selves with minimaxyYy and max, mini Yy where the Yy are obtained by
assigning the integers 1 to n2 at random among the n2 positions of the n X n
matrix. The study of this minimax and maximin will be facilitated by the use
of a construction which simultaneously yields the random variables XiJt Yv
and related random variables, whose distributions are linked to those oc-
curring in the classical occupancy problem [2].

The construction is rather long and will be divided into several stages.
Two of these stages will then be reexamined in more detail.

Stage 1. Let the integer 1 be assigned to one of the n2 positions
1 f i f n, 1 £ j f n, at random. Select one of the remaining n2 — 1 positions
at random to hold the integer 2. Continue in this fashion until each column
has at least one element and let S be the number of integers thus required.
The first S integers will be called "little."

Stage 2. Assign the integer n2 to one of the remaining n2 — S positions
at random. Then select one of the remaining n2 — S — 1 positions to hold
n2 — 1. Continue until each row has at least one of the elements n2,n2 — 1, • • •
or until all n2 — S remaining integers are exhausted. Let T be the number
of integers thus required. These integers will be called "big."
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Stage 3. Assign the remaining n2 — S — T positions (if any) at random
to the remaining integers. Define Yy to be the integer in position and
note that

max min Y*v = S,
i i

min max Yij = n2 - T+\   if S+T<n2.
< j

Define T* by

min max Yg = n2 - T* + 1
> J

and observe that T* = T if S + T < n2 and T* ^ T in general.
Stage 4. If U is uniformly distributed on (0,1), x = F~l(U), where F'1 is

an inverse of F, has the c.d.f. F. If F~l is not unique select it to be compati-
ble with G, i.e., F'l(y) = G(l - y). Now select n2 independent observations
on Uand let X, = F'l(Ui) where the L7, is the ith ordered observations. Thus
Gi ^ G2 g • • • g G„2 and Xx ̂  X2 g • • • g X„2. Let Xi; = Xy., Then

max min Xiy = Xs = F-'( Gs),

min maxXy = X„2_r.+1 = G(l - G„2_r.+i).

The random variables Xy so constructed are independent, indentically dis-
tributed with common c.d.f. F.

We now elaborate on Stage 1. First note that if exactly i columns are
occupied when r integers have been placed, the probability that r + 1 will
be in a new column is n(n — i)/(n2 — r) ^ (n — i)/n. Let Uu be independent
and uniformly distributed on (0,1), 1 ^ i ^ n, s ^ 1.

We shall select the positions of the "little" numbers via the random
variables Uu- Concomitantly, the will be used for two related occupancy
problems. We proceed as follows.

Divide (0,1) into n2 equal intervals corresponding to the n2 positions.
Let the interval into which Un falls determine the position of the in-
teger 1. Then, redivide (0,1) into n2 — 1 equal intervals, the first n(n — 1)
of which correspond to positions in the unoccupied columns and the remain-
der to the other vacant positions. Let the value of G2i determine the position
of the integer 2. However, if it falls in an unoccupied column, i.e., G2J ̂  p2i
= n(n — l)/(n2 — 1), use G3i to determine the position of the integer 3;
if 2 lands in an already occupied column, i.e., G2! > p2i, use G22 to locate the
position of 3. Continue inductively. If Uu has assigned the integer r to an
unoccupied column, divide (0,1) into n2 — r equal intervals, the first n(n — i)
of which correspond to the positions in the unoccupied columns while the
others correspond to the remaining vacant positions. In this case, G1+u is
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used to determine the position of the integer r -f- 1. On the other hand, if Uu
has consigned r to an already occupied column, again divide (0,1) into n2 — r
equal intervals but now let the first n(n — i -f 1) of these correspond to the
positions in the vacant columns while the others correspond to remaining
unoccupied positions. In this case, let L/;,„+1 determine the position of r + 1.

Then S = Si + S2 + • • • + SH where Sx + S2-\-h S, is the integer
whose placement first leads to the occupation of i columns. If we have ob-
served r integers occupying i columns prior to the observations of
it will lead to an (i + l)st column if Ui+hs f Pi+i,, = n(n — i)/(n2— r). Note
that the p,+i,8 are random, p,+i,s ^ (n — i)/n and that S, is the smallest
subscript s for which UufPu-

In the classical occupancy problems, successive observations fall into one
of n cells independently and with equal probability. When i cells have
been occupied, the probability that the next observation will occupy an
(i + l)st cell is p$i = (n - i)/n. In such an experiment let Sm = + SP
+ • • • + Snl) where S\l) + • • • + SP is the number of observations taken
when i cells first become occupied. The same uniformly distributed variables
Uu, 1 fi fn, s ^ 1 are used to construct as follows. Let S|u be the
smallest subscript for which Uu f P.!1) = (n — i + l)/n. We also define Sj2)
as the smallest subscript s for which Uu f p,(2) == (n — i + 1) / (n — 3 log n)
and S(2) = S}2) + Sf + •••+S<2).

The second stage may be elaborated similarly using uniformly and inde-
pendently distributed random variables Vu where T = 7\ -f- T2 + ■ • • + T„,
Ti is the smallest subscript t for which Vit f qit = mj (n2 - ru), where
mit is the number of unoccupied cells in the (n — i + 1) rows which are still
unoccupied by "big" numbers and rit is the total number of positions oc-
cupied when Vu is observed. Let q\1] = p,!1), q{2) = pP, oj3) = (n-i + 1)
(n — 9 log n)/re2, and let Tf'1 be the smallest subscript t for which V*„ f q^
and Tw = zZU Tf. Note that qf> < qln < ql2}. If S + T < 3n logn, p/» f Pu
fpl2) and qufql2)- If no row has more than 9 log re "little" elements,

In outline, the derivation of the asymptotic distribution of (S, T) consists
of showing that S + T = 2n log n + Op(n) and that with probability ap-
proaching one no row contains more than 9 log n "little" elements. Thus with
large probability S is sandwiched between S(1) and S(2> which are relatively
close together. Similarly T and T(I) are sandwiched between Ti2) and T(3).
But S(1) and T(1) are independent and their asymptotic distributions are
related to the solution of the occupancy problem.

We commence the derivation by presenting some immediate consequences
of the construction.

(i) If PP fP»f p!2), Siu ̂  St ̂  SP. If <?P fquf gP, TP ^ Ti ̂  Tl2\
Since of' < gP < ql2\ TP ^ TP S Tf2).
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(ii) The Tf1 and have geometric distributions. Each Sj^ is independent
of each TfK Furthermore E(SW) =        n/(n ~ 0 = n[logn + 0(1)] and

2 3

(iii) S|" = S/2» + A,, where A, ̂  0, P{ A, = 0) =pll,/pf2>, and

P{ A, = r} = pP'72)P'" (1 - p^r'pi»      r ^ 1.
Pi

(iv) TP = TP» + H,-, where E, = 0, P| E, = 0} = qj3)/qj2\ and

P{ S, = r) = ^—(äT^— (1 - <7,!3,r r ^ 1.
9i

Lemma 2.
n

i=l4= Op(logn)2,
>-i

E = _ E.-Opdogn)2
i-l

Proof.
177 a. i - Pl      Pl   V rn*1' f 1 - n^Y-1 - Pl Pln^i)-riä      _rP<   11    P> J     -    „(2)n(d >

Pi r-1 Pi Pi

E(A) = £ -_P^-= O(logn)2.

Since A ̂  0, it follows that A = Op(logre)2. Similarly we find

=      _(2) _(3) •
Vi Vi

_ 12nlogn-27(loen)-£_l _
n — 9 log n        TT! n — i + 1

and
S - Op(logn)2.

Lemma 3.

\        ra n /

Proof. According to known results on the classical occupancy problem [ 2],
the probability of occupying all n cells with ra[ log ra + x] observations ap-
proaches exp( — e~"). Hence
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P{Sa) fn[logn + x]\->L3(x).

Since Sa) and Ta) are independent and identically distributed, the lemma
follows.

To prepare for the next step we digress with a minor technical lemma.

Lemma 4. // X has the binomial distribution J%([am logm], m~x), a ^ 1,
m ^ 1 then P[X ^ 4a logm) = o(m_2fl) as m —> <».

Proof. Since [l% P\X% b) £ E[e*x-b)) for t > 0,

P{X^4a logm) f E{exp[X - 4a log/n]}

_ I   _£. _|_  j  J_L )     [am log mj^-4a logm

£ exp j am logm £ log ( 1 + e-^j - ^JJ = ofm"2").

Lemma 5. With probability approaching one, no row has more than 9 logn
"little" elements.

Proof. Consider the first M = 2n logn positions selected at random from
the n X n matrix. After all of these are selected, the probability that the
next will be in the first row is no greater than n/(n2 — 2n logn). Hence,
in the course of assigning the first M positions, the number of occupied cells
in the first row is less than a variable with the binomial distribution
96 (M,m~l) where m = n — 2 logn. Applying Lemma 4 with 2 < a < 9/4,
the probability that the number of occupied positions in the first row exceeds
9 logra is o(n"4). Let AM, (As) be the event that some row contains more
than 9 logn of the first M, (S) integers assigned. Then P(AS) f P(AM)
+ P(S > M). But P(AM) = o(n~3). From Lemma 3, S(1) = n logn + Op(n).
Since pP fpu,Sf Sw and hence P(S > M) = o(l). Thus P(AS) -»0 which
is the desired result.

Theorem 5. // the first n2 integers are assigned at random to the positions
of the nXn matrix yielding entries Yy, S = max j min j Yy, and n2 — T* + 1
= min, max, Yv, then S = Sm + Op(logn)2, T* = Tw + Op(logn)2 where S(1)
and Tw are independent. Furthermore

V       n n /

Proof. With probability approaching one, SU) < (3/2)re logn in which case
pP fPuf Pi2)- Applying Lemma 5, we have with probability approaching
one, qf f q,„ T f T(3) f (3/2)n logn and gP fquf gP. Thus with proba-
bility approaching one, Sw s S   S(2», T(3) T(2», and T(3» ̂ T"» ^ T(2).
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It follows from Lemma 2 that S = Sm + Op(logn)2, T= T(1) + Op(logra)2,
and T* = Tin probability (i.e., with probability approaching one). Applying
Lemma 3 completes the proof of Theorem 5.

To study the asymptotic behavior of (W„,Zn), we require a lemma which
is essentially a corollary of §2. Here we assume that FE ^mA»(L/) for some
j,bn,an> 0 and FE S0Mm(Lk) for some choice of k,b'n,a'„> 0. Let h(y) and
h(y) be the corresponding functions.

Lemma 6. If yn = 0,(1) as n^*>, and F £ &mU(Lf) n

Proof. Equation (2.6) states the first result for fixed y„ = 7. Since 6(7) is
continuous and monotone, any bounded 7 interval I can be subdivided into
a finite number of subintervals over each of which 6(7) increases by less than
t. There is an N such that for n > N

for the 7 which are end points of these intervals. Since G and h are monotone
(3.3) holds with e replaced by 2e for all 7 on I and n > N. It follows that for
every deterministic sequence y„ = 0(1), the first line of (3.2) holds with op(l)
replaced by o(l). In view of the properties of the "in probability" calculus,
[l], [4], (3.2) is thus valid when yn = 0P(1) is random. The second part of
(3.2) follows in a similar fashion from the analogue of equation (2.6).

Proof. Given S = s = n logn + zn, the Sth order statistic Us from the
sample of n2 observations on U (see Stage 4) has mean s/n2 and variance
s(n2 - s + l)/(n2 + l)2 (n2 + 2). Applying the Chebyshev inequality and the
fact that S = n log n + 0p(n) it follows that

(3.2)

A{G[_^L_-]_6.}.*(7j+0p(l)t

(3.3)

Lemma 7.

Hence, recalling the equations of Stage 4,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



490 HERMAN CHERNOFF AND HENRY TEICHER [April

The statement about Wn follows similarly.

Theorem 6. If

then

\    an a'n )

Proof. First we note that the existence of the limits L* and L implies the
existence of corresponding h(y) and h(y) and the relevance of Lemma 6.

According to Lemma 7 and the fact that T* - Ta) = Op(logre)2,

wn = c[ T*+n^n)] = G[ ^ + M">].

Define yn by setting (logn — y„)/n equal to [ T(1) + op(n) ]/n2 in the argument
of G. Then yn = Op(l) and by Lemma 6

- A(7.) + Op(D - Afnlogn- T(1» .,.1 , m[-^-+ Op(l) J + op(l).

Sincere is uniformly continuous on bounded intervals and (re logn — Tw)/n
= 0,(1),

(1).

Hence

and

(3.4) a^.t("*-n+tfl
an \        re /

Similarly
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and

But S(1) and T(l> are independent. Hence

n
L*XL,

-6. Z,
R ra logra- T(1) S(«_ n ^-)]+op(l)

n

and Theorem 6 follows.

References
1. H. Chernoff, Large sample theory: parametric case, Ann. Math. Statist. 27(1956), 1-22.
2. W. Feller, An introduction to probability theory and its applications, Wiley, New York, 1950.
3. B. V. Gnedenko, Sur la distribution limite du terme maximum d'une serie aleatoire, Ann.

of Math. (2) 44(1943), 423-453.
4. J. W. Pratt, On a general concept of "in probability", Ann. Math. Statist. 30(1959), 549-558

Stanford University,
Stanford, California

Purdue University,
Lafayette, Indiana

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


