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ABSTRACT

Limit laws for several quantities in random binary search trees that are related to the local
shape of a tree around each node can be obtained very simply by applying central limit
theorems for rn-dependent random variables . Examples include : the number of leaves
(La ), the number of nodes with k descendants (k fixed), the number of nodes with no left
child, the number of nodes with k left descendants . Some of these results can also be
obtained via the theory of urn models, but the present method seems easier to apply .

Key Words : binary search tree, data structures, probabilistic analysis, limit law, conver-
gence, uniform random recursive trees, random trees .

INTRODUCTION

In this note, we consider a random binary search tree with n nodes obtained by
inserting, in the standard manner, the values ox, . . . , orn of a random permutation
of {1, . . . , n } into an initially empty tree . Equivalently, the search tree is
obtained by inserting n i.i.d. uniform [U, 1] random variables X1 , . . . , Xn . Most
shape-related quantities of the tree have been well-studied, including the expected
depth and the exact distribution of the depth of X,~ [17,19], the limit theory for
the depth [21, 10], the first two moments of the internal path length [27], the limit
theory for the height of the tree [25, 8,9] and various connections with the theory
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of random permutations [27], and the theory of records [10] . Surveys of known
results can be found in Vitter and Flajolet [28] and Gonnet [13] .

The shape of the binary search tree is to some extent captured in quantities
such as

L,~: the number of leaves ;
On: the number of nodes with one child ;
Tn: the number of nodes with two children ;
Rn: the number of nodes with no left child ;
Vk ,l : the number of nodes with k proper descendants .
Lkn : the number of nodes with k proper left descendants .

All of these describe the number of nodes having a certain "local" property .
Several results are known about these quantities, e .g ., in 1986, Mahmoud [20]
showed that ELn E On --- ETn --- n/3 . The purpose of this note is to give a useful
method of proving limit laws for all such "local" quantities . In this process, we
will also gain insight into why Mahmoud's interesting result is true . Aldous (1990)
gives a general methodology based upon urn models and branching processes for
obtaining the first-order behavior of the local quantities ; his methods apply to a
wide variety of trees ; for the binary search tree, he has shown, among other
things, that Vk ,l 1 n -+2 /(k + 2)(k + 3) in probability as n -> 0o . We will give a short
proof of this, and obtain the limit law for V kn as well .

THE GENERAL PROOF METHOD

It is convenient to think of the data in terms of pairs

where the Y's are time stamps, which for the time being, can be defined by
Yi = i. Thus, Xi is inserted before X1 if Yi c Y1 . The data can also be reordered
according to increasing X, values : X(1) C

	

<X .} . In this case, we write

(X(1 ), Y(1) ), . . . , (X,~ } Y ) ) .

We call a random variable N,~ defined on a random binary search tree a local
counter of order k if it can be written in the form

n

N =

	

f(Y( _k)'rn
i=1

(X1 , Y1), . . .,(Xn , Yn ),

. . , Yet+k} ) ,

DEVROYE

where k is a fixed constant, Y(1) = 0 if i ~ 0 or i > n, and f is a {0,1}-valued
function that is invariant under transformations of the Y T 's that keep the relatiVe
order of the Y's intact .

All the quantities introduced in the previous sections are local counters . For
example, note that X(1) is a leaf if and only if Y(1) is larger than Y(7 _ 1) and Y(= + l ) .
Indeed, at the time of insertion of X(i) , the tree consists of nodes with smaller



IMIT LAWS 1N RANDOM SEARCH TREES

	

305

:ime stamps than Y(1) . The father of X(1) is the endpoint with the largest Y-value
Df the interval to which X (1) belongs in the partition of [0, 1 carved out by the first
i --1 data points . Thus, we have the local counter representation

n
Ln--

	

IY .>Y(j-})' Y(i)
>Y

( ;
.
+l)1i=1

Similar representations exist for o,~ , Tn , and Vkn .
With local counters, the invariance allows us to replace the Y T's by a sequence

of i.i .d . uniform [0,1] random variables ; this in fact corresponds to introducing a
(harmless) random permutation of the XD 's when we construct the binary search
tree . Note, in particular, that Y (1) , . . . , Yin} is itself an i .i . d. uniform [0, 1]
sequence . Local counters have two key properties :

A . The ith and jth terms in the definition of Nn are independent whenever
Ii--11>2k.

B. The distribution of the ith term is the same for all i E {k + 1, . . . , n -- k } .
Thus, we have the representation Nn = A n + + 1 ZI , where 0 A n 2k,
and where the Zx 's are identically distributed and 2k-dependent (a se-
quence of random variables Z, is m-dependent if (Z 1 , . . . , Zi ) is in-
dependent of the vector (Z1 , . . .) for any j > i + m) . Observe that 0-
dependence corresponds to independence .

Let ,N'(0, cr?) denote the normal distribution with mean 0 and variance o.Z. We will
use a simple version of the central limit theorem for m-dependent stationary
sequences due to Hoeffding and Robbins (1949) :

Lemma 1 . Let Z1 , be a stationary sequence of random variables
(i.e., for any k, the distribution of (Z i , . . . , does not depend upon i), and let
it also be m-dependent with m held fixed . Then, if EIZ1 1 3 < oo, the random variable

n
(Z; - EZ,)

/V7i -+
.N'(0, cr2) in distribution,

where
m+1

o'2 = Var(Z1 )+ 2

	

(EZ1Z-EZ1EZ1) .
~ =z

The standard central limit theorem for independent (or 0-dependent) random
variables is obtained as a special case . Subsequent generalizations of Lemma 1
were obtained by Brown [6], Dvoretzky [12], McLeish [22], Ibragimov [16], Chen
[7], Hall and Heyde [14], and Bradley [5], to name just a few. As a corollary, we
see that if EZ l ~ 0, then

n

Z1/
n --~ EZ 1 in probability

i --1
as n --~ ~ . Lemma 1 and its corollary are directly applicable to local counters . We
have



306

Theorem 1 . Let N,~ be a local counter for a random binary search tree, with fixed
parameter k. Define Zi = f(U~ , . . . , where U1 , U2 , . . . is a sequence of
i . i . d. uniform [o, 1] random variables . Then

(N„ - nEZI ) /V -+ .N'(0, 0.2 ) in distribution,
where

2k+1

cr Z =Var(Z l ) + 2 : (EZ 1Z-EZ1EZ1 ) .l
i=2

If EZ 1 #0, then Nn ln--+ EZ 1 in probability and in the mean as n-~ 0.

Proof. We begin by recalling that (Y(1) , . . ., Y() ) is distributed as
(U1 , . . . , Uj . Thus, in the notation of Theorem 1, the random variable Nn - A n
is distributed as E ikZi , and satisfies the conditions of Lemma 1 . Thus,

(N„ - A„ - (n - A„)EZ l) /VFi-> ,N'(0, QZ) in distribution .

Here we used the fact that the Zl's are 2k-dependent . But

Nn -nEZI Nn - A - (n -- 2k)EZ1 4k
v'ii

	

1 '

DEVROYE

so that the first statement of Theorem 1 follows without work . The second
statement follows from the first one .

	

∎

THE NUMBER of LEAVES

From Theorem 1, we obtain :

Theorem 2. As n -~ oo, (L„ - n13)/V71 -+ .N'(0, 2145) in distribution . An identical
asymptotic result is valid for T n . Also, (On - n/3) lVi-+ .N'(0, 8145) in dis-
tribution .

Proof. Since Ln is a local counter with parameter k =1, we have the representa-
tion (in distribution) :

n-1
L, n = A n + ~ ,~- ,

i=2
where o An 2, and

Zi = I[Y >Y(e._1), Y( . )>Y{1~}

	

i~+1)]

By Theorem 1, as n ---~ ~, (L,~ - EL,~ )1V has a limiting normal distribution with
zero mean and variance

4
v2 =Var(Z2) + 2 ~ (EZ2Z; - EZ2EZ;) .

i=3
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We claim the following :

Thus,

EZ2 =113 , Var(Z2)= 219 , EZ 2Z3 =0, EZ2Z 4 =2115 .

v2 =2/9+2(2/15-2/9)=4/15-2/9=2J45 .

The only possible difficulty is in the computation of E Z2Z4 = P{ Y(2) >
Y(1), Y(2) > Y(3), Y(4) > Y(3 ) , Y(4) > Y(5) } . We have five consecutive Y-values ;
these can be ordered in 5 ! ways . Of these, the desired configuration, in which the
second and fourth values dominate their neighbors, occurs in 12+4 ways . The
12=2! x 3 ! ways happen when the second and fourth values are one-two ; the 4
ways occur when the Y-values are ordered 2-1-4-3-5, 2-1-5-3-4, 4-3-5-1-2, and
5-3-4-1-2 . Thus, the probability is 16/120=2/15 .

The quantities LM , O,r and TM are closely related, since

LM +D n +TM =n,

L= T+1 .

This implies that Can = n --1-- 2L,, TM = LM - 1. Thus, ELM n/3 implies the
same thing for E Dn and EL M . Furthermore, Var(OM ) --- 4Var(L M ) --- 4Var(TM ) .
Therefore, TM follows the same limit laws as L M , while (CA M - n/3)/s./ii tends to a
normal distribution with zero mean and variance 8145 .

	

∎

Remark. The moments of L M can be obtained with great ease . For example,
exploiting symmetry, we have n

-

	

n+1
EL„ =2P{Y(1) > Y(2) } + (n -2)P{Y~ 2) > Y~ 1 ) , Y( 2 ) > Y( 3 ) } = 1 + n3

∎

NODES WITH NO LEFT CHILD

Let RM denote the number of nodes in a random binary search tree having no left
child. Computations analogous to those of the previous sections show that we
have the following :

Theorem 3. As n --~ oo, (R M -- n 12 )1-sln --~ X(0,1112) indistribution.

Proof. Using the (X,, Y,) representation of binary search trees introduced
above, we see that X(j) has no left child if and only if either i = 1 or i > 1 and
Y(1) > Y(11) . _

	

Thus,
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We have once again a representation in terms of a sum of n -1 random variables
that form a stationary 1-dependent sequence . Simple logic shows that
P{Y(Z) > Y(l) } = 1/2 and that P{Y(3) > Y(Z) > Y(1)} _ 1/6 . Thus, by Theorem 1,
(R„ - n/2) /V7i is asymptotically normal with mean zero and variance Qz = 1 /
4+2(1/6-1/4)=1'/12 .

	

∎

LEAVES IN UNIFORM RANDOM RECURSIVE TREES

A uniform random recursive tree is an ordered tree in which node 1 is the root,
and which is grown by adding node n + 1 simply by choosing its father uniformly
and at random from among the n nodes 1, . . . , n already present in the tree . Let
In be the number of leaves in this tree . It is known that Ma I n 112 in

probability and in the mean, and that (M n -- n/2) 1-' -+ X(O, l 112) in dis-
tribution [24] . We would simply like to point out that this result is also immediate
from Theorem 2. Indeed, consider the oldestchild-nextsibling binary tree associ-
ated with the ordered tree (see Ref . 1 for definitions) . Choosing a random father
for node n + 1 is like picking a random external node in the binary tree with the
proviso that the root's right external node is never picked . Thus, if we chop off
the root of the associated binary tree, we obtain a random binary search tree on
n -1 nodes. Now, 1 n is equal to the number of nodes in the associated binary
tree with no left child . This number is covered by Theorem 3 . For other
properties on uniform random recursive trees, see Dondajewski and Szymanski
[11] and Na and Rapoport [23] .

The number of nodes with k descendants in a uniform random recursive tree is
equal to the number of nodes in the associated random binary search tree with k
left descendants . Let us denote by Lkn the number of nodes with k left
descendants in a random binary search tree on n nodes . Then the following is
true .

Theorem 4 . Define p k = 1/(k + 2)(k + 1) . Then
L
n
kn -~ Pk in probability

L'`"~npk~ .N(0, Qk) in distribution

0k - Pk(l - Pk) - 2(k + 1)pk + 2Pk

	 1	
Pk (2k + 3)(2k + 2)(k + 1)

Proof. We have the representation
n

Lkn = z,I
i=1

DEVROYE
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Where

zi

To see this, note that

Pk -~'{(-k-1)

	

iC Y(i) Cmin(Y(1_1),

o,
I[Y(I)<min(Y(1_1), . . . , Y(t_k)}]'
I[Y(=_k-1)<Y(s)Cmin(Y(t_l), • . •

A trivial argument shows that E Z 1 -= k ! /(k + 2) ! = pk for i > k + 1 . Also, for
nj>i>k+l, we have

0, j>i>j-k-1 ;
EZ•Z- - Pk' z - j -- 1 ;

_]
pk, i<j--k-1 .

.

	

, 1'(i-k)) '

Y(j) C Y(i+k+Z) < min(Y(l+k), . ` . , Y(i+I))}

There are (2k + 3) ! ways of permuting Y(i_k-1)''. . . (i+k + i } . To compute pk
is to count the number of permutations yielding ''( , . k _ 1 ) < Y(i) c (i+k +1)' while
at the

	

same

	

time

	

Y(1) c min(Y(i _. k ), . . . , Y . _

	

and

	

Y (=.(= I}

	

+k+1) <min
(Y(±1) , .~

	

. . s Y(i + k)) . The arguments of the two minima can be permuted in k !
ways each. The total number of desired permutations is

kiZ ( 2k + 11
k I

1	
Pk (2k + 3)(2k + 2)(k + 1)

.LknIn -~ pk in probability

o,z
k

-- npk
--~ X(0, o ) in distribution,

2k +3

,Var Zk+2 +2

	

(EZk+2ZJJ - EZk+2EZ].)
j=k+3

pk(1 - pk)
+ 2EZk+2Z2k+3 2(k + 1)pk

Pk(l - Pk) + 2pk - 2(k + 1)Pk
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Here we took i = k + 2 only to rid ourselves of the boundary effects . This
concludes the proof of the Theorem .

	

,

Remark. In the special case k =0, we have Pk =112, Pk = 116,
crk = 2Pk -- p

	

112 . In the case k =1, we have Pk =116, Pk =1140, and o
7190 .

	

,

NODES WITH EXACTLY k DESCENDANTS

Let k be fixed, independent of n . Simple considerations show that Vkn , the
number of nodes with precisely k descendants, is indeed a local counter . Note
that all the proper descendants of a node X(i) are found by finding the largest
0 j c i with Y(a) c Y(1) , and the smallest 1 greater than i and no more than n such
that Y(1) < Y(1) . All the nodes X(;+1), 1_i, ( 1) excluded, are proper
descendants of X (1) . "Thus, to decide whether X(, ) has exactly k descendants, it
suffices to look at Y(i -- k-1)'' • • , 1(i + k + 1) ' so that Vkn is a local counter with
parameter k + 1 . Theorem 2 above implies the following :

Theorem 5 . Let Vkn be the number of nodes with k descendants . Then

Remark .

def

	

2
n n -p '` (k + 3)(k + 2) in probability

Vkn - np k .N'(0, crk ) in distribution

~~ defpk
(l

_ pk) + 2(k + 1)Px - 2(k + 2)Pk

def

	

5k+8
(k+1)2(k+2)2(2k+5)(2k+3)

The first part of this theorem is also implicit in Aldous [2] .

Remark . When k =0, we get Po =113, p0 = 2115, o = 2145 . For k =1, We

obtain p 1 =116, p1 =1311260 and o _- 231420 .

Proof. We have the representation
n

Vkn =

	

Zi ,
i=1

where
k

def
Z

	

Zi (j,k- j),

DEVROYE

∎

∎



LIMIT LAWS IN RANDOM SEARCH TREES

and Z.( j, 1 ) is the indicator of the event that (X(1) , Y(1) ) has j left descendants and
1 right descendants . Assume throughout that 1 ~ i - k --1, i + k + 1 ~ n when we
discuss Z~ . The values Z 1 , . . . , Zk+ 1 and Zn _k , . . . , Zn are all zero or one, and
affect Vkn jointly by at most 2k + 2 (which is a constant) . We also have the
representation, for 1 s i -- k -- 1, i+ 1+ 1 n

Z1 ( f ' 0 - r[Y( 1 - r _1 ) CY(O) cmin(Y(1_1 )
(

X'[Y(1+1+1)CY(i)<min(Y(i+1)

	

. }

()

A simple argument shows that for i, j, l as restricted above,

2(j+l)!	2EZ;(j,l)= (j+1+3)! ( +1+3)(j+1+2)(j+l+

Thus, for 1<_i-k-1, i+k+l<_n,

EZ,( j, k - j) (k+3)(k+2)(k+1)
def~k

and

F'Zi - L-+ F'7'i(j,k j) ~ qk
i =o

	

i=o

	

(k+3)(k+2)

It is clear that Vkn is a local counter for a random binary search tree, so we may
apply Theorem 1 . To do so, we need to study EZ~Z i+r , where 1 ~ i - k --- 1,
i+r+k+1<_n, 1~i~n, l~r . ForO~j~k,O~l~n,weclaimthefollowing :

0,

	

if rC k- j + 1+2 ;
EZ1(j,k-j)Z1+r(l,k--1)= pk ,

	

if .r-k-- j+1+2 ;
EZ,(j, k -- j)EZ, +r(1, k -1), if r > k - j + 1+2,

where

Pkdef (
2k+5)! ~\ k+2 / +2\ k+2 )+2\ k+l l~

	 Sk+8	
(k+1)2(k+2)2(2k+5)(2k+3)

The last expression is obtained by noting that of the (2k + 5)! possible permuta-
tions of Y(l _1_ 1 ~, . . . , Y~;+.+x-r+With r = k - j + 1 + 2, only p k(2k + 5)! are
such that Z, ( j, k - I)Zi+r (1, k - l ) =1 . The three terms in the expression of pk
are obtained by considering

A. Y(i+k-j + 1) is smaller than both Y( , _J _ 1) and Y(x +r+k-r+ 1)

B. Y(1+k-;+1) is smaller than one of Y(t_J_1) and Y(i+r+k-1+1)

C. Y(1+k-;+1) is larger than both Y(1 .. 1 1) and ~''(e+r+k-1+1)

)

311
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If r >2k +2, then Zi and Z l+ r are independent . Thus, we need only consider the
case 1 ~ r 2k +2. Let L, J be independent random variables uniformly distrib-
uted on {O, . . . , k } .

k

	

k

EZiZi+r = E

	

Z(' j, k-- •] )

	

Zr.+r(l, k --l~

	

)
~=0

	

1=0

k k

	

k k

pkI

	

2[r--k-1+t+2] +

	

qkI[r>k- +1+2]j
j=0 1=0

	

j=0 1=0

=(k+l)pkP{r=k-J+L+2}+(k+l) zgkP{r>k-J+L+2}

Summing this gives
2k+2

(EZiZj+r EZ.EZ. + )--~

	

i

	

tr
r=1

2k+2

(k+1)pk ~ P{J-L=k+2-r}
r=1

2k+2

+(k+ 1) Zgk ~ P{J - L > k + 2 - r} - (2k + 2)pk
r=1

k+l

(k+1)2pk +pP{J_L>k+2_r}k ~
r=1

2k+2

+pk ~ P{J - L > k + 2 - r} - (2k + 2)Pk
.=k+2

k+l

(k+1) 2pk +pk ~ P{J-L>r}
r=1

k

+pk ~ P{J - L > -r} - (2k + 2)Pk
r=0

k+2

(k-I-1) 2pk +pk : P{J-L>_r}
r=2

k

+ Pk ~ (1 - P{J - L ? r} ) - (2k + 2 )Pk
r=0

DEVRDYE

i
_ (k+ 1)Zp,~ -p k ~ P{J - L >_ r} + pk(k + 1) - (2k + 2)pk

r=0

-(k+1)2Pk Pk+Pk(k+l) - (2k+2)Pk

_ (k + 1) Zpk - (k + 2)Pk .

By Lemma 1, Vkn In -~ pk in probability as n -+ oo and
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where

URN MODELS

where

Vkn	~	 npk

	

2X(0, o ) in distribution,

~k - Pk(1- Pk) + 2(k + 1)Pk - 2(k + 2)Pk

The limit law for L n can be obtained by several methods . The method presented
above is simple and didactical . Another method uses the properties of Pvlya--
Eggenberger urn models, which have been suggested for the analysis of search
trees by Poblete and Munro [26] . Bagchi and Pal [4] developed a limit law for
general urn models and applied it in the analysis of random 2-3 trees .

In a binary search tree with n nodes, let W,~ be the number of external nodes
with another sibling external node, and let Bn count the remaining external nodes .
Clearly, Wn + Bn = n + 1, W~ = 0 and B 0 =1 . When a random binary search tree
is grown, each external node is picked with equal probability (see, e .g ., Ref. 18) .
Thus, upon insertion of node n + 1, we have :

(0, 1)

	

with probability w,n ~+ B ;n
(Wn+i,Bn+i)=(Wn,Bn)+1	 Bn(2, --1) with probability

	

+ Bn .

This is known as a generalized Polya--Eggenberger urn model . The model is
defined by the matrix

a b\_(0

	

I
\c d1\2 -I

r For general values of a, b, c, d, the asymptotic behavior of Wn is governed by the
following [4] (for a special case, see, e .g ., Ref. 3) :

Lemma 2. Consider an urn model in which a + b = c + ddens ~ l Wo + B0 1,

0 ~ W0, 0 ~ B 0, a c, b, c >0, a -- c ~ s/2, and, if a <0, then a divides both c and
W0 , and if d<0, then d divides both b and B 0. Then

Wn

	

c
--_ + B

	

b + almost
surely,Wnn

	

e

and

W-- E Wn
,N`(o, a ) in distribution,

~I n

be

	

(s b - c)2

(b+c 2b+2c-s

313
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In our case, ~~ = 8145 . Since Ln = W,~ 12, the variance of L is one fourth that ofn
W,~ , so Theorem 1 follows immediately from Lemma 2 as well . Additionally,
Lemma 2 implies that Wn In -~ 113 almost surely .
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