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Limit loads for a shallow anchor/trapdoor embedded in a non-associative
Coulomb soil

C. C. SMITH�

A theoretical methodology for determining the range of
possible plane-strain limit loads acting on an anchor or
trapdoor buried within a non-associative Coulomb soil is
presented. Solutions are given for shallow anchors and
trapdoors underlying both weightless soil with surface
load and soil possessing self-weight with no surface load.
A method for determining limit loads for combined
scenarios is additionally outlined. Solutions are shown to
correlate favourably with experimental and finite-element
data in the literature.
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Cette communication présente une méthodologie théori-
que pour la détermination de la plage de charges limites
de déformation plane agissant sur un dispositif d’ancrage
ou une trappe enterrés dans un sol de Coulomb non
associatif. Des solutions sont proposées pour des disposi-
tifs d’ancrage ou des trappes à faible profondeur placés
sous un sol dépourvu de poids avec charge surfacique, et
un sol possédant son propre poids sans charge surfaci-
que. En outre, on présente également une méthode de
détermination des charges limites pour des scénarios
mixtes. Les solutions présentent une bonne corrélation
avec des données expérimentales et aux éléments finis
contenues dans des documents techniques sur ce sujet.

INTRODUCTION
An associative geotechnical limit analysis requires that the
angle of dilation ł of a soil be taken equal to the angle of
shearing resistance �. This assumption underpins the power-
ful upper- and lower-bound theorems of plasticity, and the
existence of a unique limit load. However, it is known that
real soils are non-associative with dilation angle ł , �. If a
soil is modelled as a non-associative plastic material, then it
is found that: (a) the limit load is not unique, and may be
dependent on initial conditions and stress path to failure;
(b) the limit load will always be less than or equal to the
associative limit load (Chen, 1975).

Non-associativity can potentially reduce the limit load
through two main processes: (a) a direct change to the
collapse kinematics; (b) softening in shear bands (due purely
to non-associativity), as discussed for example by Vermeer
(1990).

These observations apply to materials that are rigid and
perfectly plastic, with a non-associated flow rule, and which
do not require the additional consideration of (true) strain-
softening (e.g. transition from peak to critical state strength),
which is beyond the scope of this paper.

Static determinacy
Although there exist a large number of associative solu-

tions in the literature to a wide range of geotechnical
problems, very few closed-form solutions exist for non-
associative limit loads. Drescher & Detournay (1993), for
example, considered the kinematic analysis of statically
determinate non-associative problems on the assumption that
full (non-associative) strain-softening was able to manifest
itself along slip planes. Without strain-softening, the collapse
load for a statically determinate mechanism may otherwise
be unaffected by non-associativity.

This paper, in contrast, examines the class of statically

indeterminate problems, and specifically the anchor/trapdoor
problem. In these cases, static indeterminacy provides one
vehicle by which the non-associative and associative solu-
tions can differ. This indeterminacy manifests itself in the
anchor/trapdoor problem, in that the horizontal stresses are
not constrained to a single value at collapse. Such problems
are attractive for the derivation of a closed-form solution, in
that they retain a useful degree of simplicity.

The primary aim of this paper is to illustrate how the
range of possible non-associative limit loads might be
bracketed in the context of closed-form solutions to the
anchor/trapdoor problem.

DERIVATION OF A NON-ASSOCIATIVE SOLUTION
The procedure outlined by Davis (1968) is adopted. An

admissible plastic stress distribution is first generated, to
which a corresponding pattern of velocity characteristics is
mapped according to the appropriate flow rule. A distribu-
tion of velocities corresponding to this pattern of velocity
characteristics and satisfying the deformation boundary con-
ditions is then derived. For the solution to be considered
admissible (although not necessarily unique), the stress
distribution must extend over the whole soil mass in a
statically admissible manner without exceeding the strength.
Additionally, as pointed out by Drescher & Detournay
(1993), it is necessary to confirm that the combined stress
and velocity fields are thermodynamically admissible.

In a previous paper, Smith (1998) presented a rigorous,
almost identical set of upper- and lower-bound solutions
applicable to the anchor/trapdoor problem in an associative
Coulomb material. These solutions will be used as the basis
of the derivation of non-associative limit loads. Simple
solutions involving only one velocity discontinuity at each
edge of the trapdoor will be adopted.

The condition of co-axiality is adopted in this paper. In
this case, the principal axes of strain increment and stress
are assumed to be coincident. Solutions are derived for both
weightless soil with surface load and soil possessing self-
weight with no surface load. The former case lends itself
more readily to straightforward analysis, and will be used to
explore the solution space in detail, whereas the latter case,
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which is of more general practical relevance, will be exam-
ined in a single context.

A comparison is then made with finite-element and ex-
perimental data in the literature to contextualise the derived
solutions. Finally, examination of translational failure me-
chanism analysis for the trapdoor problem is undertaken,
which leads to a method for determining limit loads for
combined surface load and self-weight scenarios.

PROBLEM DEFINITION
It is required to find compatible equilibrium stress and

velocity fields consistent with the stress and displacement
boundary conditions relevant to a rigid anchor/trapdoor of
width B underlying a uniform body of cohesionless soil of
angle of shearing resistance �, unit weight ª and depth D,
as depicted in Fig. 1. The surface of the soil above the
anchor/trapdoor carries a uniform vertical surcharge load
q > 0.

The solutions presented in this paper will be restricted to
the plane-strain case of a horizontal anchor/trapdoor. Follow-
ing the conventions applied in a previous paper (Smith,
1998), the term ‘trapdoor’ will be used to indicate both an
anchor (passive) and a trapdoor (active). Strictly, the solu-
tions are directly applicable only to a trapdoor in a basement
layer. The behaviour of an anchor plate will differ, in that a
rising anchor plate leaves a void beneath itself, allowing
localised flow around the anchor. This may affect the limit
load, and will usually affect large-displacement loading, but
is beyond the scope of this paper.

Solutions will be derived in terms of stress state described
by mean stress � and major principal stress direction �
measured anticlockwise from the negative x-axis. In this
framework the magnitude of the major principal stress is
given by � (1þ sin�):

WEIGHTLESS SOIL WITH A SURFACE LOAD
Solution characteristics

Where the soil is assumed to have zero self-weight
(ª ¼ 0) and uniformly distributed properties of angle of
shearing resistance (�) and angle of dilation (ł), then the
limit load F per unit length for the anchor or trapdoor may
be expressed in a dimensionless form as

F

qB
¼ 1� 2

D

B
� �, łð Þ (1)

where the sign depends on whether displacement is active
(�) or passive (+).

The same general arguments as given by Smith (1998) for
a soil possessing self-weight may be applied to this scenario,
and are briefly summarised here. The attributes of a stress
field compatible with an underlying displacing trapdoor
within a rigid basement layer are as follows.

(a) The orientation of the principal stresses within the soil
just beneath the soil surface can only be vertical or
horizontal, and will generally differ for soil lying directly
above the trapdoor (e.g. in the region of R in Fig. 1) and
for soil lying some distance to the side (e.g. in the region
of P). A transition zone (in the region of O) must
therefore exist between the two.

(b) The direction of shear stresses along, for example, a line
joining O and E in Fig. 1 must act as to oppose the soil
motion (this ensures thermodynamic admissibility).

(c) Any velocity characteristics in the problem must pass
through a zone in which the stress field is limiting.

For the purposes of the initial analysis, a shallow trapdoor
will be considered, and is defined as one buried at a
sufficiently small embedment ratio (D/B) such that the soil
stress fields generated at each edge (E and E9) of the
trapdoor do not interact. A complete analysis therefore
requires the investigation of the stress field at one edge only,
as shown in Fig. 2, and will be applicable to both active and
passive trapdoors, depending on whether point E is taken as
the left- or right-hand edge of the trapdoor.

The simplest plausible stress and velocity field for this
problem compatible with the required attributes above is one
that is scale independent or geometrically self-similar with
vertical or horizontal major principal stresses at the surface
and varying only with angle about O, and with a single
velocity discontinuity OE separating two rigid blocks, where
E is the edge of the trapdoor. This stress field also requires
the assumption of a partially rough basement layer with
interface friction � typically less than �.

Although an infinite number of continuous stress fields
exist that satisfy such conditions, a much simpler, but still
broadly representative, subset of solutions can be examined
through the use of a small number of stress discontinuities.

As depicted in Fig. 2, an arrangement of three disconti-
nuities OA1, OA2 and OA3 can be shown to give the
required form of equilibrium stress field. (E may lie either
side of A2.) This produces a considerably simpler solution
than for the self-weight problem, as there are only four
distinct stress states in zones 0, 1, 2 and 3, where zone i
represents the area AiOAiþ1: Let discontinuity Ai be orien-
tated at angle Łi anticlockwise from OA0, and the mean
stress and major principal stress direction (measured antic-
lockwise from OA0) in each zone i be denoted �i and �i

respectively. From the problem definition, �0 is thus equal to
908 and �3 ¼ 08. Limiting conditions are required only in the
zone ( j) in which the velocity characteristic (OE in Fig. 2)
is manifested: thus each zone i may be assigned a mobilised
angle of shearing resistance �m

i < �, with the condition that
�m

j ¼ �: Derivation of the equations that may be used to
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Fig. 1. The trapdoor problem: active and passive modes
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Fig. 2. General form of the stress fields at one edge of the
trapdoor. Double-headed arrows indicate major principal stress
directions
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relate the stress states in adjacent zones is given in Appen-
dix 1.

Normally it would be expected that the velocity disconti-
nuities would emerge at an angle 45 � ł/2 to the surface.
However, for the proposed solution, this does not occur,
owing to the velocity discontinuity emerging at a singularity.

Solutions with limiting stresses in all zones
In the first instance the case where �m

1,2,3,4 ¼ � will be
considered. In general, solutions may be derived using the
iterative approach described in Appendix 1. However, it is
insightful to consider the range of distinct equilibrium stress
fields that may be determined for all values of Ł1 from 0 to
45 + �/2. Values of Ł1, Ł2, Ł3, �1, �2 are plotted against Ł1

in Fig. 3 for the case � ¼ 308.
The above stress field solution may be used to determine

the corresponding velocity characteristics that are orientated
at � �v to the principal stress directions, where �v ¼
�=4� ł=2 for the coaxial flow rule.

For kinematic compatibility the line OE must be orien-
tated at ł to the vertical away from the upward-displacing
basement layer (or towards the downward-displacing base-
ment layer), where ł is the angle of dilation. For this to
occur the following relationship must exist between ł and �
in the yielding zone, as shown in Fig. 6.

�þ �v ¼ ŁE (2)

where ŁE (angle A0OE) is given by

ŁE ¼ �=2� ł (3)

Hence

ł ¼ �=2� 2� (4)

and

ŁE ¼ 2� (5)

However, there is only a narrow range of stress fields for
which equation (4) is satisfied with 0 , ł , �. If OE lies in
zone A1OA2, then ŁE must be less than Ł2, and if OE lies in
zone A2OA3, then ŁE must be greater than Ł2: Values of ŁE,
determined from equation (5), for each zone are also plotted
in Fig. 3, where ŁE1 represents ŁE derived for zone 1
(A1OA2), and ŁE2 represents ŁE derived for zone 2 (A2OA3).
For zone 1, valid points are below point A in Fig. 3
(ŁE1 , Ł2). These are impossible, as they imply ł . �.
However, in zone 2, valid values of ŁE2 exist between points
B and C in Fig. 3, giving a range of 0 , ł , 14.488.

For simple velocity fields of this nature, there exists a

value łmax for each angle � such that viable solutions occur
only for 0 , ł , łmax: For ł . łmax the simple velocity
field solution is not possible. However, from a practical point
of view, this is not a problem, as łmax typically exceeds that
expected for real soils.

Velocity and stress characteristics are shown in Fig. 4 for
an example problem with � ¼ 308, ł ¼ 48 and Ł1 ¼ 418.
The corresponding Mohr’s circles are given in Fig. 5.

If the stress state (mean stress �, major principal stress
direction �) along OE is known, then the load on a finite-
width trapdoor or anchor may be determined from equation
(1), where

� ¼ cot ŁE þ
�

sin ŁE

sin� cos 2�� ŁEð Þ � cos ŁE½ � (6)

Values of � against � are plotted for viable values of ł in
58 increments in Fig. 7. Also plotted in this graph are the
associative case upper and lower bounds �U and �L:
The upper bound is given by tan �, as demonstrated later.
The lower bound is found by the same method as described
by Smith (1998) for soil possessing self-weight; all possible
sets of Ł1, Ł2, Ł3 are searched, and the value of ŁE that
gives the largest value of � determined. It is found that
ŁE ¼ Ł2 always. It is seen that the lower and upper bounds
are almost identical, thus defining the true associative load
to within 4%.
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Fig. 3. Variation of discontinuity angles and major principal
stress directions with Ł1 for � 308 for a trapdoor underlying a
weightless soil with surface load
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Fig. 4. Velocity characteristics (thin lines) for weightless soil with
surface load (� 308, ł 48, Ł1 418). Bold lines indicate the
pattern of stress characteristics

3·00 0·5 1·0 1·5 2·0 2·5
σ

�1·5

�1·0

�0·5

0

0·5

1·0

1·5

τ

OA3
OA1

Zone 3

Zone 2

Zone 1

Zone 0

OA2

Fig. 5. Mohr’s circles for the stress states in each zone for a
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Solutions with yield only in deforming zone
So far, only solutions with yield in all zones have been

considered. As stated earlier, yield is required only in the
zone(s) where deformation takes place. Thus �m may be
lower than � in all other zones. In these cases, it is found
that the largest (smallest) anchor (trapdoor) capacity occurs
with the assumption of �m ¼ � in all zones, and the lowest
values occur for low values of �m

3 : In all analyses carried
out, it was found that � was unaffected by the value of �m

0

or �m
1 (except where an invalid solution was produced), and

that the velocity discontinuity always lay in zone 2. Selected
results are presented in Table 1.

It is seen that values of � ranging from 0.333 to 0.451
are possible for � ¼ 308 and ł ¼ 0 (compare with 0.577 for
the associative case). The lowest value occurs for �m

3 ¼ 0:

This indicates that it may be possible to find a solution
where the sense of the Mohr’s circle in zone 3 is reversed,
that is, where �3 ¼ 908. Solutions may in fact be found, and
are listed in the second part of Table 1. In these cases it is
possible to reach lower values of �, down to 0.291 for
� ¼ 308 and ł ¼ 0, which is almost half that of the associa-
tive value.

Higher values are also possible if values of �m
3 . � are

considered, as shown in the second part of Table 1. This
may be a possibility where � is considered a critical state
value while �m

3 is considered a peak value.
Solutions for non-zero values of ł and for � ¼ 408 are

given in the third and fourth parts of Table 1.
A wider range may exist if other solution types other than

that considered in this paper exist.

Scope of validity of solutions
The solutions so derived may be considered to be valid

for all depths (although not necessarily critical). For exam-
ple, for an active trapdoor, A3 intersects the line of symme-
try, as depicted in Fig. 8. However, a further discontinuity
line may be employed downwards from A3 to the intersec-
tion with OE such that the major principal stress direction in
the zone between it and the symmetry line remains horizon-
tal. It is possible to show that this sequence of intersecting
discontinuity zones can be continued downwards, but this is
beyond the scope of this paper. Similar arguments may be
made for the passive trapdoor case.

O A4�
A0

E

ψψ

εv

θE

Fig. 6: Relationship between �, �v, and ł and ŁE on right-hand
edge of sliding-wedge boundary
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Table 1. Example sets of equilibrium discontinuities for weightless soil showing range of possible �� values for non-associative shearing

� ł jm
3 �0 �0 �1 �1 �2 �2 �3 �3 Ł1 Ł2 Ł3 �

308 08 08 0.67 908 1.03 67.58 0.67 45.08 1.0 08 47.58 87.58 135.08 0.333
308 08 108 0.67 908 1.11 63.58 0.77 45.08 1.21 08 45.08 85.18 149.38 0.386
308 08 208 0.67 908 1.16 60.88 0.85 45.08 1.52 08 43.48 83.58 160.48 0.424
308 08 308 0.67 908 1.20 59.18 0.90 45.08 2.0 08 42.38 82.68 167.98 0.451
308 08 78 0.67 908 0.96 71.38 0.58 45.08 0.89 908 49.88 89.88 124.88 0.291
308 08 408 0.67 908 1.22 58.08 0.94 45.08 2.8 08 41.68 81.98 172.78 0.470
308 78 308 0.67 908 1.26 55.98 0.95 41.58 2.0 08 40.28 79.28 166.78 0.484
308 78 6.98 0.67 908 1.13 62.48 0.75 41.58 1.14 08 44.38 83.08 141.98 0.410
308 148 308 0.67 908 1.32 52.58 1.00 38.08 2.0 08 37.98 75.88 165.68 0.514
408 08 408 0.61 908 1.39 59.78 0.91 45.08 2.8 08 46.78 78.18 171.08 0.583
408 08 08 0.61 908 1.14 67.58 0.61 45.08 1.0 08 52.08 83.08 135.08 0.391
408 128 408 0.61 908 1.57 54.18 1.02 39.08 2.80 08 42.88 72.48 169.58 0.665
408 128 3.88 0.61 908 1.28 63.08 0.66 39.08 1.07 08 48.98 78.08 133.88 0.504
408 238 408 0.61 908 1.76 48.58 1.14 33.58 2.80 08 38.68 66.88 168.08 0.737

A2A1
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O

E

A0

D

B /2

Fig. 8. Pattern of stress discontinuities required for determining
the limit of validity of the active trapdoor problem. Trapdoor edge
located at E
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SOIL POSSESSING SELF-WEIGHT WITH NO SURFACE
LOAD

The method of generating limiting stress fields for such
problems has been described in detail by Smith (1998), who
used the approach to generate lower-bound solutions to the
associative flow case. Where the soil is assumed to have
uniformly distributed properties of angle of friction (�),
angle of dilation (ł) and self-weight ª, then the limit load F
per unit length for the anchor or trapdoor may be expressed
in a dimensionless form as

F

ªDB
¼ 1� D

B
� �, łð Þ (7)

where the sign depends on whether displacement is active
(�) or passive (+).

While a similar pattern of three stress discontinuities is
required to generate valid solutions, the stress characteristics
in zones A1OA2 and A2OA3 are curved, owing to the soil
self-weight. However, velocity characteristics may still be
generated from the stress fields, as outlined for the weight-
less soil, and simple velocity fields with a single velocity
discontinuity can be found, as depicted in Fig. 9. From these

solutions, values of � and łmax may be found for each
value of �. In this paper solutions are presented only for the
assumption of limiting conditions in all zones. Values of �
are given in Fig. 10, together with values of the associative
upper and lower bounds �U and �L: The methodology for
determining solution validity limits on the embedment ratio
D/B for the case of soil possessing self-weight has been
outlined by Smith (1998).

INTERPRETATION OF THE LIMIT LOAD
Unlike associative solutions, non-associative solutions are

not necessarily unique, and a number of solutions may exist,
depending on initial conditions and the stress path to failure.
The work here attempts to bracket the range of possible
solutions. For example, for the solution type depicted in Fig.
4 it is not necessary that the soil in zones 1, 2, 3 and 4 be
in a state of limiting equilibrium, as the only plastic
deformation is taking place in zone 2. If non-limiting states
are considered in these zones, then values of � and � lower
than for the full limiting case are obtained (as would be
expected), and łmax also reduces.

It is suggested that higher non-associative limit loads are
unlikely to be found. The solutions presented are likely to
be an upper bound to the set of non-associative solutions.

Comparison with finite-element and experimental data
Rowe & Davis (1982) undertook elasto-plastic FE analysis

of the anchor uplift problem, and presented data for both
ł ¼ 0 and ł ¼ � cases. These are plotted in Fig. 10
(averaged from data for D/B ¼1, 2 and 3) and show
excellent agreement, providing support for the current the-
ory. Examination of the velocity fields presented by Rowe &
Davis (1982) for shallow anchors also shows similar behav-
iour to that predicted by the current theory.

White et al. (2008) provided an extensive survey of the
experimental data available in the literature for model anchor
and pipe tests, together with a proposed limit equilibrium

OA0

A1 A2

A3

A4

E

Fig. 9. Velocity characteristics for soil possessing self-weight with
no surface load (� 308, ł 108). Trapdoor edge located at E
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model for predicting anchor and pipe uplift capacity that
requires values of �crit, �peak and ł (see Appendix 2). They
demonstrated that their model underpredicts the anchor data
on average by 14%, as shown in Fig. 11, in which their
anchor data are reproduced (where Nª ¼ F/ªDB). This un-
derprediction is averaged over all burial depth/width ratios,
and unfortunately (a) does not directly include dilation data,
and (b) is also in terms of Nª ¼ 1 + �(D/B) rather than �,
which is where the uncertainty lies. However, an approx-
imate comparison can be made. Examination of Fig. 11,
where Nª is plotted against burial depth ratio, indicates
broad increase of error with burial depth ratio to the order
of 28% (approximately double the average, as expected) at
D/B ¼ 8, that is, at a gradient of 0.28/8 ¼ 0.035. Thus

Nª,measured �
Nª,predicted

1� 0:035D=B
¼ 1þ D=Bð Þ�W

1� 0:035 D=Bð Þ (8)

where �W is the predicted value of � from White et al.
(2008); see Appendix 2. Hence

Nª,measured � 1þ D

B
�W

� �
1þ 0:035

D

B

� �

� 1þ �W 1þ 0:035
D

B

� �
þ 0:035

� �
D

B

(9)

To avoid the (D/B)2 term, the middle term on the right-hand
side will be approximately taken at D/B ¼ 4. Hence

�measured � 1:14�W þ 0:035 (10)

The values of �measured assuming �crit ¼ 328, � ¼ �peak

and ł ¼ (�peak � �crit)=0:8, as proposed in White et al.
(2008), are plotted in Fig. 10 for values of � ¼ 35–558,
together with values predicted by the current theory for the
same parameters. It is seen that the modified White et al.
(2008) values are reasonable fits to the current data at the
higher values of �. The lower values are still within the
expected range of the current theory, based on the trends
observed for the weightless soil problem. Of course, the
current model pertains to shallow anchors only, and the
comparison is seen through the filter of the White et al.
(2008) limit equilibrium solution. Also, other effects such as

geometrical change prior to failure have not been accounted
for.

Broadly, the FE and experimental data seem to support
the assumption that yield is occurring in all zones. On this
basis, based on Fig. 10, non-associativity leads to an approx-
imate 12% reduction in the value of �, compared with the
associative value for practical cases.

COMBINED ANALYSIS FOR SOIL POSSESSING SELF-
WEIGHT AND SUBJECTED TO SURFACE LOAD
Translational failure mechanism analysis of combined problem

A simple translational mechanism appropriate to the trap-
door/anchor problem has been outlined by Murray & Geddes
(1987). This employs two velocity discontinuities emerging
upwards from each trapdoor edge, as illustrated for the
passive case in Fig. 12.

The analysis presented here extends previous analyses by
considering both self-weight and surface loading. From the
corresponding force polygon relating U, V and W it can be
shown that

V ¼ W cos Æ� �ð Þ
sin Æþ �ð Þ (11)
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showing interface force resultants U and V and block EFG self-
weight W
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where W is given by the self-weight and surface loading on
triangle EFG

W ¼ qDþ 1

2
ªD2

� �
tanÆþ tan �ð Þ (12)

The actual force per unit length, Fp, on the (passive) half
trapdoor ES is given by

F p

B
¼ q 1� 2D

B
tan�

� �
þªD 1� D

B
tan�

� �
þ 2V

B
sin �þ�ð Þ

(13)

Fp

B
¼ q 1þ 2D

B
Yp

� �
ªD 1þ D

B
Yp

� �
(14)

where

Yp ¼ � tan �þ sin �þ �ð Þ cos Æ� �ð Þ tanÆþ tan �ð Þ
sin Æþ �ð Þ

(15)

the subscript p denoting the passive case. In general, for
both active (a) and passive (p) cases, it can be shown that

1

B

Fp

Fa

� �
¼ q 1� 2D

B
Y

� �
þ ªD 1� D

B
Y

� �
(16)

and

Yp

Ya

�
¼ � tan ��ð Þ þ sin �� �ð Þ cos Æ� �ð Þ tanÆþ tan �ð Þ

sin Æþ �ð Þ
(17)

For an upper bound associative analysis, Y must be
minimised, subject to the kinematic constraints Æ > � for
the passive case or � > � for the active case. This occurs
when either of the velocity discontinuities is orientated at
angle � to the vertical away from the part of the basement
layer that is undergoing upward relative movement. In either
case equation (17) reduces to

�U ¼ �U ¼ Ymin ¼ tan� (18)

At this stage, kinematically, the other discontinuity vanishes
for the associative case. The solution is valid for all depth
ratios D/B for the passive case, and for D=B , 1=(2 tan�)
for the active case. For the active case for D=B . 1=(2 tan�)
a kinematically admissible solution is one involving a single
displacing isosceles triangle of soil whose base is defined by
the trapdoor and whose apex angle equals 2 �. No deforma-
tion reaches the surface, and yield parameters �Ua ¼ 0 and
�Ua ¼ B[1� B=(4D tan�)]=D:

For the non-associative case, values of Y may be larger or
smaller than as given in equation (18), as the kinematic
constraints are less restrictive on Æ and �, and no obvious
distinct solution presents itself.

General limit loads for soil possessing self-weight and
subjected to surface load

In common with the classic Terzaghi bearing capacity
equation for footings, it is proposed that the load for an
anchor/trapdoor underlying a soil possessing self-weight with
surface self-weight may be approximated by equation (19) as

p ¼ qNq þ ªDNª (19)

where

Nq ¼ 1� 2D

B
� (20)

Nª ¼ 1� D

B
� (21)

where the + sign corresponds to the passive case and the �
sign to the active case.

For an associative soil, the upper bounds combine exactly
as indicated in equation (19) (as derived in equation (16)).
Applying the principles of superposition to the lower-bound
case, as detailed by Bolton & Lau (1993) for the bearing
capacity problem, it is easily shown that superposition of the
lower-bound limiting stress fields will always lead to a
equilibrium stress field that nowhere violates yield (but is
not necessarily everywhere in yield). Thus the combined
lower-bound solutions will also be a lower bound. As the
individual lower bounds are almost identical to their respec-
tive upper bounds, then the combined lower bound will be
almost identical to the combined upper bound. Thus equa-
tion (19) is closely applicable to the associative case.

For the non-associative case, the above arguments are not
applicable, but it is not unreasonable to propose that the
above equation will give a good approximation to the com-
bined load, particularly for large values of dilatancy.

CONCLUSIONS
(a) A class of complete equilibrium limiting stress fields and

compatible velocity fields for the statically indeterminate
shallow anchor/trapdoor problem in non-associative
cohesionless soils has been presented. The analysis
utilises the coaxial flow rule, and can be used to predict
the range of limit loads on both active and passive
trapdoors (anchors). For � ¼ 308, ł ¼ 0, for example,
possible limit loads down to approximately 50% of the
associative limit load could be found for the problem
scenario with surface surcharge and weightless soil.

(b) Very good agreement is demonstrated with FE data in the
literature, and generally good agreement with experi-
mental data, which is indicative that an analysis assuming
general yield in the vicinity of an anchor edge is
appropriate. For anchors overlain by typical real soils
this would imply that the component of normalised non-
associative limit load (F/ªDB) that varies with depth/
width ratio (D/B) is approximately 12% lower than the
corresponding associative limit load.

(c) The solutions presented in this paper illustrate the general
principle that statically indeterminate problems can have
non-associative limit loads that differ from the associative
limit loads, owing to the indeterminacy.

(d ) The analysis covers both cases of weightless soil with
surface loading and cases of soil possessing self-weight
with no surface loading and presents an equation that
may be used to predict the combined case. This combined
equation is shown to provide solutions for the associative
case to within a few per cent of the true values.

NOTATION
B breadth of anchor or trapdoor
D depth of anchor or trapdoor
F force per unit length on anchor or trapdoor

Nq, Nª dimensionless load factors
p average limit vertical stress on anchor or trapdoor
q soil surface surcharge stress

r, Ł polar coordinates
Y dimensionless load function for translational mechanism

analysis
ª unit weight of soil
� roughness of anchor or trapdoor
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� angle of stress characteristics to major principal stress
direction

�v angle of velocity characteristics to major principal stress
direction

� orientation of principal stress direction to horizontal
� mean stress

�n, 	 normal and shear stresses
� dimensionless load function for weightless soil problem
� angle of shearing resistance

�m mobilised angle of shearing resistance
�crit critical state angle of shearing resistance
�peak peak angle of shearing resistance

� dimensionless load function for soil possessing self-weight
problem

ł dilatancy angle

APPENDIX 1: ANALYSIS OF TRAPDOOR UNDERLYING
WEIGHTLESS SOIL WITH A SURFACE LOAD AND
VARIABLE MOBILISED STRENGTHS

Consider the change in stress state passing from zone i to zone
i + 1.

Let discontinuity between zone i and zone i + 1 be orientated at
angle Łiþ1. Let Si denote the centre of the Mohr’s circle (with stress
magnitude �i) representing the state of stress in zone i and Iiþ1

represent the intersection of the two Mohr’s circles representing the
state of stress in zones i and i + 1. As indicated in Fig. 13, it can be
shown that

Siþ1ŜSi I iþ1 ¼ �þ 2 Łiþ1 � �ið Þ (22)

SiŜSiþ1 I iþ1 ¼ 2 �iþ1 � Łiþ1ð Þ (23)

Siþ1 ÎI iþ1Si ¼ �� �þ 2 Łiþ1 � �ið Þ½ � � 2 �iþ1 � Łiþ1ð Þ

¼ 2 �i � �iþ1ð Þ
(24)

Applying the cosine rule to triangle SiIiþ1 Siþ1 gives

� i � � iþ1ð Þ2 ¼ � 2
i sin2 �m

i þ � 2
iþ1 sin2 �m

iþ1

� 2� i sin�m
i � iþ1 sin�m

iþ1 cos 2 �i � �iþ1ð Þ
(25)

or

� 2
i þ � 2

iþ1 � 2� i� iþ1 ¼ � 2
i sin2 �m

i þ � 2
iþ1 sin2 �m

iþ1

� 2� i sin�m
i � iþ1 sin�m

iþ1 cos 2 �i � �iþ1ð Þ
(26)

If �i is known, then �iþ1 can be found from the solution of the
quadratic equation

� 2
iþ1 1� sin2 �m

iþ1

� 	
� � iþ1 2� if 1� 2 sin�m

i sin�m
iþ1




3 cos 2 �i � �iþ1ð Þ�
�

þ � 2
i 1� sin2 �m

i

� 

¼ 0

(27)

There are two roots to this quadratic equation, leading to two valid
solutions. Solutions may be derived as follows.

�0 ¼
q

1þ sin�m
0

(28)

�0 ¼ �=2 (29)

�3 ¼ 0 (30)

Assuming the velocity discontinuity is in zone 2,

�2 þ �v þ ł ¼ �=2 (31)

�v ¼ �=4� ł=2 (32)

�2 ¼ �=4� ł=2 (33)

and

�m
2 ¼ � (34)

If �1 is known, then the values of �1, �2 and �3 can be computed
using equation (27). A solution is thus found by finding the value of
�1 that gives

�3 ¼
q

1� sin�m
3

(35)

The value of �1 must typically found by iteration. Typically it is
found that it is necessary to take the roots of equation (27) with the
positive square root terms for discontinuities 1 and 3 and the
negative for discontinuity 2.

Si�1Si

2( )� �i i� �1
π

�
/2 �
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1

1

�

Zone 1i �
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�i�1

�i�1

θi�1

θi�1
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Fig. 13. Stress states at intersection of Mohr’s circles
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APPENDIX 2: WHITE ET AL. (2008) LIMIT
EQUILIBRIUM ANALYSIS

The core limit equilibrium equations presented by White et al.
(2008) are reproduced below (in current notation).

F

ªDB
¼ 1þ D

B
� �peak, �crit, ł
� 


(36)

� ¼ tanłþ tan�peak � tanł
� 
 1þ K0

2
� 1� K0ð Þ cos 2ł

2

� �

(37)

K0 ¼ 1� sin�crit (38)
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