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Abstract—We report on a new roadblock which will limit the
gate oxide thickness scaling of MOSFETs. It is found that statistical
distribution of direct tunnel leakage current through 1.2 to 2.8 nm
thick gate oxides induces significant fluctuations in the threshold
voltage and transconductance when the gate oxide tunnel resis-
tance becomes comparable to gate poly-Si resistance. By calcu-
lating the measured tunnel current based on multiple scattering
theory, it is shown that the device characteristics fluctuations will
be problematic when the gate oxide thickness is scaled down to less
than 1 nm.

Index Terms—Device scaling, MOSFET, tunnel current, ultra-
thin gate oxides.

I. INTRODUCTION

DEMONSTRATION of excellent performance for MOS-
FETs with a 1.5-nm thick gate oxide [1], [2] has stimu-

lated extensive effort to further reduce the gate oxide thickness
. Momoseet al. [1], [2] have obtained a high transconduc-

tance of 1010 mS/mm for 90-nm gate length MOSFETs. The
gate oxide was grown by rapid thermal oxidation (RTO) at 800
C for 10 s. The source/drain (S/D) extensions of 30-nm junc-

tion depth were produced by solid-phase diffusion from a PSG
film, achieving a sheet resistance of less than 10 k. Re-
cently the highest transconductance, 1120 mS/mm for 60-nm
gate length MOSFETs has been obtained with a 1.3-nm thick
gate oxide [3]. The oxide was grown by RTO at 1100C in pure
oxygen at pressures from 1 to 500 torr. The shallow S/D junction
was formed by low energy 2–4 keV As implantation with a dose
ranging from 2– cm . The scaling limit has been
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argued in terms of stand-by power consumption due to the di-
rect tunnel leakage current [4], the transconductance saturation
due to a finite inversion layer thickness [5] and gate poly-Si de-
pletion [6]. The influence of gate leakage tunnel current on the
device characteristics has not yet been well examined except for
the negative drain current offset problem [1], [2] which can be
solved by scaling the gate length.

In this work, we have fabricated 0.1 to 20m gate length
nMOSFETs with 1.2 to 2.8-nm thick gate oxides to investigate
the influence of direct tunnel leakage currenton the dc char-
acteristics of MOSFET’s. We have found that the statistical dis-
tribution of the direct tunnel leakage current through the ultra-
thin gate oxides induces significant fluctuations in the threshold
voltage and the transconductance [7]. A simple model
to quantitatively explain and fluctuations induced by

is proposed. The measured tunnel current through gate ox-
ides has been in good agreement with theory, by which the
scaling limit can be predicted.

II. DEVICE FABRICATION

Gate oxides with thicknesses of 2 to 3 nm were grown at
850 C in 2% oxygen diluted with nitrogen on Si(100) sub-
strates, whose surfaces were hydrogen-terminated by treatment
in a 0.1% HF 1% H O solution [8]. For preparing oxides
thinner than 2 nm, 2-nm thick oxides were etched-back by 0.1%
HF. A schematic cross section of a fabricated MOSFET is shown
in Fig. 1(a) together with the TEM picture [Fig. 1(b)]. The gate
poly-Si was patterned with two-step electron cyclotron reso-
nance (ECR) plasma etching. The anisotropic etching was first
performed with Cl and at a final stage of gate etch the etching
gas was switched to a Cl/O mixture to obtain a high etch selec-
tivity. After the gate formation, 10 keV Sb ions were implanted
at a dose of cm through a 5-nm screen oxide to form
S/D extensions with a junction depth of 20 nm [9]. The gate
poly-Si was doped with 50-keV As ion implantation at a dose of

cm during the deep source and drain formation. The
gate poly-Si sheet resistance was 800 . in this case. Nei-
ther polycide nor salicide technique for low resistive gate was
employed in order to enhance the influence ofon the device
characteristics. The gate width of evaluated MOSFETs was
10 m and the distance between the gate pad and the device ac-
tive region edge was also 10m. This structure is helpful to treat
the gate poly-Si as a constant resistor in the model described in
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Fig. 1. (a) Schematic and (b) TEM cross sections of a fabricated MOSFET.

Fig. 2. Oxide thickness and uniformity versus etching time. Because of
layer-by-layer etching mechanism of SiO[11], [12], excellent thickness
uniformity and thickness control are achieved.

the next section. The total thermal treatment time after exten-
sion formation was about 30 min at 850C.

The oxide thickness as a function of the wet etchback time is
shown in Fig. 2. The etch rate decreases when thebecomes
thinner than 1.2 nm because the oxide layer within about 1 nm
from the SiO/Si(100) interface is compressively strained [10],
[11]. The thickness uniformity of the etched oxides is less than
5% over the entire wafer surface. This atomic scale thickness
uniformity of the etched oxides is originated in a layer-by-layer
etching mechanism, which was confirmed not only by atomic
force microscopy (AFM) [12] but also by scanning reflection
electron microscopy (SREM) [13] at each step of oxide strip-
ping. Recently, it has been found that the oxide thinning by wet
etchback significantly reduces SiO/Si interface states above
midgap by employing photoelectron yield spectroscopy [14].
The oxide thickness was determined by ellipsometry using the
refractive index of 1.460 and calibrated by X-ray photoelectron
spectroscopy [15]. It has been demonstrated that the ellipso-
metric oxide thickness agrees well with the gate oxide thick-
ness obtained from theoretical analysis of measured tunnel cur-
rent based on multiple scattering theory (MST) [15], [16] and it
also coincides with the thickness determined byC-Vanalysis of
MOSFETs with taking into account the inversion layer quanti-
zation effects and gate poly-Si depletion [6].

III. M ODEL OF FLUCTUATION INDUCED BY GATE TUNNEL

LEAKAGE CURRENT

Here we propose a quantitative model to explain the relation-
ship between the statistical distribution ofand fluctuations of

Fig. 3. Schematic explanation ofV fluctuation induced byI distribution.
(a) Equivalent circuit of I path, and (b) V shift and fluctuation
caused byI variation. V is obtained by the constant current method
(I = (W =L ) 10 A).

.AsillustratedinFig.3(a),thegatecurrentflowsintoachannel
via the gate poly-Si and gate oxide. When the gate oxide resis-
tance is lowered by scaling, the voltage drop due to
the gate poly-Si resistance can no longer be neglected. As
a result, apparently increases by the product of and
[Fig. 3(b)]. As depicted in Fig. 3(b), fluctuates due to the sta-
tisticaldistributionof over therangedeterminedbytheproduct
of and . The slope of the dotted line and the-axis-in-
tercept correspond to and ideal , respectively. For sim-
plicity, the gate electrode is treated as a lumped resistance here.
Formoreaccuratemodelinginrealdevices,effectivelocalshift
due to the gate tunneling current on an active region is important.
This local shift problem is discussed in Section IV.

IV. RESULTS AND DISCUSSION

The direct tunnel current through 1.2 to 3.5-nm thick SiO
measured as a function of oxide voltage for MOSFETs and
MOS diodes are compared with that calculated by the multiple
scattering theory (MST) as shown in Fig. 4. Since the tunnel
current measured for 1.0-m gate length MOSFETs is quite
consistent with that for the MOS diodes and the calculated
one, no significant change in the tunnel current is induced by
MOSFET fabrication processes such as gate patterning and ion
implantation. Typical drain current-gate voltage (– ) and
gate current-gate voltage (– ) characteristics for a 1.2-nm
thick gate oxide MOSFET are shown in Fig. 5, whereis a few
orders of magnitude larger than and normal operation of the
MOSFET is confirmed. is relatively large with respect to
in the linear-mode turn-on region because electrons flow into
the gate from both source and drain. The tunnel leakage current
for 1.2–2.8 nm thick gate oxide MOSFETs at V was
measured as a function of gate length as shown in Fig. 6,
together with calculated results in which the oxide electric field
strength at V for each oxide thickness was evaluated
by using device simulation. The measuredfor
nm is slightly lower than the theoretically calculated, while
those for and 2.8 nm agree with the calculated results.
However, the experimental data for nm are in good
agreement with the calculated result in which the voltage drop
by poly-Si gate is taken into account. The result of [2],
where nm and at V was measured
as a function of , is also shown in Fig. 6. Note that for any
cases increases in proportion tobecause the gate width is kept
constant, while the relationship as was obtained in [2].
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Fig. 4. Tunnel current density against oxide voltage for MOS diodes (solid
circles) and MOSFETs (cross). The oxide thicknesses indicated in parenthesis
are obtained by fitting theoreticalI–V curves to measured ones, being in good
agreement with the ellipsometric data.

Fig. 5. I –V andI –V characteristics of 1.2-nm thick gate oxide MOSFET
with L = 0:15 �m. The solid lines correspond to a linear modeI–V atV =
0:05 V, while dashed lines refer to a saturation modeI–V atV = 1:5 V.

The statistical distributions of at V for 1.2 to
2.8-nm thick gate oxides were measured. The average ofin-
creases exponentially as is reduced as shown in Fig. 7. How-
ever, normalized fluctuation defined as the standard deviation
divided by the average of is within 10% for all cases. The di-
rect tunnel current is proportional to the exponent of [17]
as follows:

(1)

Here, is a constant value consisting of the electron effective
mass, the barrier potential and the oxide voltage. Assuming the

is the only factor which leads to deviation, the following
equation is obtained using the law of the error propagation.

(2)

Here, and are deviations of and , respectively.
Therefore, the result that the normalizedis comparable for
all means that for the 1.2-nm oxide after the wet etch-
back is also comparable to that for the thicker oxides grown by
dry oxidation only. In the case of nm, the oxide
thickness deviation estimated from the measureddeviation

Fig. 6. I at V = 1:5 V versusL for MOSFETs. TheI increases
in proportion toL (solid squares, triangles and circles). The solid lines
correspond to theoretical calculation without taking into accountR I
drop, while the dashed line forT = 1:2 refers to the calculated result
corrected byR I drop. Open circles refer to the result of Ref. [2], where
I / L with a gate width of 10�m.

Fig. 7. Average ofI atV = 1:5 V and normalizedI deviation for 1.2�
2.8 nm gate oxide MOSFETs withL = 0:5 �m.

Fig. 8. Relationship between linear mode threshold voltageV (lin)
and I distribution at V = V (lin) for (a) 1.2 nm, and (b) 2.0 nm
gate oxide MOSFET’s.V is obtained by the constant current method
(I = (W =L ) 10 A).

is less than 0.1 nm, which is smaller than 1 molecular layer of
the oxide. Such an extremely uniform, ultrathin gate oxide layer
can be grown on the Si wafer because the layer-by-layer oxida-
tion mechanism controls the oxide growth [18]. Fluctuation in
gate-poly-Si resistance is also a possible cause of the
fluctuation, while no correlation was found between theand

fluctuations by a whole wafer measurement.
Different from fluctuation, as shown in Fig. 8, for

1.2-nm thick gate oxide MOSFETs significantly increases in
proportion to [Fig. 8(a)], while remains nearly constant
regardless of the distribution for 2.0-nm thick gate oxide
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Fig. 9. Dependence ofV onT . The dashed line refers toV evaluated by
device simulation without taking into account the gate leakage current. An open
triangle forT = 1:2 nm refers toV obtained from they-axis intercept of
Fig. 8(a).

Fig. 10. Variation ofV (lin) andV (sat) againstI for V = 1:5 V. The
difference betweenV (lin) andV (sat) seems to be increased by the increase
of I , this is attributed to lowering of intrinsicV and the corresponding
reduction ofR I drop at apparentV at higher drain voltage.

MOSFETs [Fig. 8(b)]. A systematic variation of with
changes in as indicated in Fig. 8(a) is over 200 mV, which
is not acceptable for the circuit design. evaluated from
the slope of versus curve [see Fig. 3(b)] is 800 ,
which agrees with the measured poly-Si sheet resistance. The
dependence of on is shown in Fig. 9, where an average
value of for nm is larger than that for
nm. However, an intrinsic value of for nm as
defined by the -axis-intercept in Fig. 8(a) is very close to the
result evaluated by device simulation as also indicated in Fig. 9.

The influence of drop depends on the operating bias
point of MOSFETs. For example, under the saturation condition,

has a large gradient along the channel because of potential
change along the channel and totalis smaller than that for the
linear region. To confirm how the difference in the operating bias
point affects FET characteristics, thedependence of in the
linear mode region (lin) is compared to that of in the sat-
uration region (sat) as shown in Fig. 10, where is plotted
against for V and or 1.5 V. Generally, the

lowers by increasing because of the drain-induced barrier
lowering (DIBL). In this figure, the difference in (lin) and

(sat) seems to be larger asbecomes larger. In other words,
DIBL seems to be enhanced by. However, this tendency can be
attributed to the variation of caused by change. As shown
in Fig. 5, increases exponentially as increases. The small
decrease in the intrinsic due to the DIBL causes a significant

Fig. 11. Relationship between linear modeG and I distribution at
V = 1:5 V for 1.2 nm gate oxide MOSFETs withL = 0:56 �m.

Fig. 12. (a) Equivalent circuit model for a MOSFET gate structure employed
for estimating the influence of the gate tunneling current. (b) Variation inV
along the gate width direction.

reductions of and the corresponding reduction of the gate
voltage drop . Thus, the apparent increase in DIBL is
explained by the reduction of at .

As a result of fluctuation due to distribution,
also fluctuates with the distribution as shown in Fig. 11 for

of 1.2 nm. This can be explained by a decrease in effective
applied to the gate oxide because of drop. Drain

current-drain voltage ( – ) characteristics for 1.2 nm thick
gate oxide MOSFETs exhibit the negativeoffset for long ,
while the offset disappears for m in consistent with
a previous report [1]. In contrast, and fluctuations
for nm are similarly observed even for the shorter
channel length MOSFETs. This is because the value of
increases as is scaled down. The observed fluctuation in
for nm MOSFET’s makes the circuit design difficult.
Also the fluctuation of by the distribution spoils the
merit of scaling.

In the above discussion, and have been treated as
lumped constants for simplicity. In order to accurately evaluate
the potential variation along the gate electrode, the gate structure
is approximated with an equivalent circuit model as illustrated in
Fig. 12(a). The tunnel current in the segmented portion of the
gate structure was calculated from the measured(gate current
density) versus characteristics. As shown in Fig. 12(b), in the
case of the poly-Si gate with a 800- sheet resistance, the gate



KOH et al.: LIMIT OF GATE OXIDE THICKNESS SCALING IN MOSFETs 263

Fig. 13. Relationship between oxide resistanceR and oxide thickness
T . R was obtained by@V =@I , while R for [2] was evaluated
by V (= 1.5 V) divided byI .

potential falls by 65 mV at 10m from the gate pad where
V is applied. For the lower sheet resistance of 10/sq., the

voltage drop is negligible. This result shows thata relatively large
tunneling current harms the dc performance of MOSFETs with a
large . Concerning the influence on variation, as indicated
in Fig. 4, for nm MOSFET very weakly depends
on the oxide voltage .Therefore, the potential dropalong the
gate over the range of 0–65 mV shown in Fig. 12 hardly modifies
the local tunnel current. This supports that the discussion based
on the simple model in Fig. 3 is reasonable.

A proposed model of the fluctuation due to the dis-
tribution as shown in Fig. 3 indicates that the gate oxide tunnel
resistance decreases with decreasing and when
becomes comparable to the gate poly-Si resistance , the

fluctuation is significant. In Fig. 13, as defined by
at V where is the calculated tunnel

current is plotted as a function of together with experimental
data. In the calculation, the oxide electric field and gate
area were 5 MV/cm and m , respectively.
Measured values of were obtained from vs. oxide
voltage curves in Fig. 4, being consistent with the calculated
one. As references, resistances of poly-Si gate (this work)
and salicided gate are indicated in the figure. In this
calculation, we employed sheet resistances of the poly Si gate
and the salicided gate to be 1000 and 10 , respectively.
Considering that for m gate area is 1000,

becomes comparable to when is decreased
to 0.8 nm. Namely, even if the gate electrode resistance is
reduced by using salicide, and fluctuations will emerge
when the is reduced to 0.8 nm. Though many alternative
high-k materials are under investigation for such sub-1-nm
equivalent-oxide-thickness generations, the fluctuation problem
described in this paper should be taken into account. Because
any materials have possibility to meet the same problem by the
further reduction of thickness and increase of the gate current.

V. SUMMARY

MOSFETs with 1.2 to 2.8 nm thick gate oxides have been
fabricated. The gate tunnel leakage current has been evaluated
both experimentally and theoretically. It is shown that the sta-

tistical distribution of gate tunnel leakage current causes signif-
icant fluctuations in when the gate oxide tunnel resistance
becomes comparable to the gate poly-Si resistance. Since this
phenomenon is attributed to the voltage drop in the gate elec-
trode, characteristics other than , such as , are also
affected. The scaling limit of gate oxide thickness is discussed
based on both measured and calculated results. It is predicted
that when using a low-resistive salicide gate, these problems will
not emerge until the oxide thickness is scaled to 0.8 nm.
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