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1. Introduction. Let G be a connected Lie group, Y a discrete subgroup and

G/T be the space of left cosets. Let /¿bea right Haar measure of G. p. induces a

measure ß over G/T. If ß{G/Y) is finite, Y is called a lattice. If G/Y is com-

pact, T, certainly being a lattice, is called a c-lattice. We use A{G) to denote the

group of all continuous automorphisms of G with compact open topology and

PiG) i^dG)) to denote the set of all lattices (c-lattices) of G. We give y{G) a

topology induced from limit of lattices [2]. We know that A{G) operates continuously

on <y{G). In [2], Chabauty conjectured that for a lattice Y0 of G, A{G)Y0 with

topology induced from ¿f{G) is homeomorphic to A{G)/N{Y0) where A^r,,) is the

subgroup {a : a £ A{G), a{Y0) = Y0}. The purpose of this paper is to study ¿f{G) and

Chabauty's conjecture.

1.1. Definition. A set {¿fA} of subgroups of G is called uniformly discrete if

£?A n V={e} for a certain neighborhood V of the identity e and all A.

1.2. Definition. A sequence {Hn} of subgroups of G converges to a subgroup H,

with notation lim Hn = H, if given any compact subset K and neighborhood V of e,

Hr\K<= VHn and Hn n £<= K# holds for large n.

As a consequence of the definitions, we have the following

1.3. Lemma. Let {Hn} be a sequence of subgroups of G converging to a discrete

subgroup H; then {£/„}„a„0, n0 a certain integer, is uniformly discrete.

Proof. Let Vbe a small compact neighborhood of e such that V~XVn H={e}.

Since e $ V{H—{e}) and V{H—{e}) is closed, there exists a neighborhood H7 of e

disjoint with V{H—{e}). Choose a symmetric compact neighborhood K of e and a

symmetric neighborhood L of e such that £<= V r\ W and ¿2 <= AT. As lim Hn = H,

Hn n K<^LH holds for large n. Let n be sufficiently large and x, y e Hn n K, then

x, y eL for K n L{H-{e})= 0. Hence x'iy e Hn n L2<^Hn n K and Hnr\Kis a

group. But £ is a small neighborhood of e, Af„ n K={e} for large n.

1.4. Lemma. (6) Let {Yn} ¿>e a sequence of subgroups of G converging to a c-lattice

YofG; then there exists a compact subset K with G = KYnfor large n.

2. A base for the topology of £P{G). Let £ be a compact subset of G, V be a

neighborhood of e and T0 be a lattice of G. We define W{K, V: Y0)=ÍT : Y e £f{G),

Y n £c j/r0 and T0 n £<= IT}. It is easy to see that the family of all W{K, V: Y0)
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with K running through all compact subsets of G, V through all open neighbor-

hoods of e and T0 through Sf(G) forms a base for the topology of Sf(G) induced

from limit of lattices.

2.1. Proposition. Sf(G) is a Hausdorff space.

Proof. Given any two lattices Yx ̂  r2, we may assume that there is an element

yx e Tx — T2. Let Wbea relative compact, symmetric open neighborhood of e such

that W2yx n T2= 0. Then W({yx}, W:TX) and W({Wyx, e}, W:T2) are disjoint.

2.2. Since G is separable, there exists a countable dense subset .-#=

{Xi,..., xn,...} of G. Let SF(Jt) be the set of all finite subsets of JÍ. Let K be a

compact subset, V a neighborhood of e and A e SFLM), we define V(A, K, V)

={r : T £ Sf(G), T n AT<= VA and A c VV). It is clear that V(A, K, V)<= W(K, V2;T)

for all T £ V(A, K, V). Now let {Vn} be a sequence of relative compact, symmetric

open neighborhoods of e such that Vn=>V2+x and P|"=i ^n=M, and {¿„} be a

sequence of compact subsets of G with e e Kn<= Kn + x and (J™= i K° = G(a).

Proposition. Let WA,n= W(VnKn, Vn + X; TA,n) if V(A, VnKn, Vn+2) is not empty

and rAn a fixed element in it, = empty otherwise. Then {WAfV, : AeSF(Jf),

«= 1, 2,...} is a countable base for the topology of Sf(G).

Proof. Let T0 be any lattice of G and "F be any neighborhood of T0 in Sf(G).

Then T0 £ W(VnKn, Vn+X; T0)c W(Kn, Vn; T0)<zr for certain «. Let T0 n VnKn

={Yu ■ ■ -, Ym}- Since Ji is dense, there exists A = {xtl,..., xim} such that y, e VnJr2xKj,

lújúm. Then T0eV(A, VnKn, Vn+2)^W(VnKn, Vn+X : TAJ=WA<n and one

verifies readily W^^^.

2.3. By Proposition 2.2, Sf(G) is separable and by Proposition 2.1, Sf(G) is

Hausdorff. It is easy to show that W(K, Vn+x;T)~c w(K, Vn; T) which implies

that Sf(G) is regular. Hence by Urysohn's metrization theorem, we get the following

Theorem. Sf(G) is separable metric.

Remark. It is still unknown whether Sf(G) is locally compact or not. We shall see

later that this problem can always be reduced to the case having G semisimple

without compact factor.

3. A homeomorphism. Let G be a connected Lie group, G be a covering group

of G and Gz+ G be the covering map. We define p*: Sf(G)^Sf(G) by p*(V)

=p-\Y),YeSf(G).

3.1. Proposition, p* is a homeomorphism onto a closed subset of SP(G).

Proof. It is clear that/7* is 1-1 andp*(Sf(G))={r : f £ Sf(G) and f =>ker O)} is

closed.

(a) Xo denotes the set of all interior points of X.
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Let {rn} be a sequence of lattices of G converging to a lattice Y. We want to

verify lim p ~ 1(rn) =p ' X{Y). Let £ be a compact subset of G and V a neighborhood

of e in G. Then Yn n p{K) c/>( V)Y and Y n p{K) <^p{ V)Yn holds for large n. Apply

p'1 to get the desired inclusion relations. Hence p* is continuous. Similarly one

shows that/?*-1 is continuous.

3.2. Let G, G, p have the same meaning as in 3.1, Y e £f{G) and f =/>_1(r).

Proposition. If A{G)Y^A{G)/N{Y), then A{G)Y^A{G)/N{Y).

Proof. We identify 5"(G) in SP{G) through/?* and identify A{G)<=A{G) by A{G)

= {o : a £ A{G), a(ker {p)) = ker (/>)}. In order to verify this proposition, it suffices

to verify that A{G)Y—A{G)Y is locally compact, ker {p) is finitely generated abelian,

say, generated by {zx,..., zm}. Let Wbe a relative compact, symmetric neighbor-

hood of e in A{G) such that for any weW, wz{ e Uz{, l£1£,m and U a neighbor-

hood of e in G with U n f={e}. Claim that A{G)Y n Iff is relative compact in

A{G)Y. Let {o¡„} be a sequence of elements in A{G) having an{Y) £ WY for all n.

Since WY is relative compact and A{G)Y ~ A{G)/N{Y), there exists aeW,ßne N{P)

such that {a„ß„} (more precisely a subsequence of this) converges to a. Then

consider a_1=lim^ñ1«iT\ /8¿" 1«¿" 1(zi) e f for all n. But a~1{zi)e C7zt and C/n f

= {e}, this imphes ]Sn(ker (/>))=ker {p) for large n. Hence a £ A{G), and ^i(G)r is

locally compact at Y. By action of A{G), ̂ 4(G)r is locally compact. Thus ^4(G)r

^A{G)/N{Y) follows easily.

Remark. By Proposition 3.2, in order to study Chabauty's conjecture, one can

consider only simply connected Lie groups.

4. Representations and limit of lattices. Let £be a free monoid on m generators

yx,...,ym and {wx{y),..., wt{y),...} be a set of words in £. If w{y)=yh- ■ -yh, we

define W: Gm ->■ G by w{x)=xll- ■ -xu, where x={xx, ...,xm)e Gm.

4.1. Lemma. If G = GL{n, R), then there exists a positive integer n0 such that

Wi{x)=efor l^/'^n0 implies W,{x)=e for all j{3).

Proof. Let Mn{R) be the set of all real n-n matrices. We define Wt: Mn{R)m

-+ Mn{R) by Wi{A)=Ah- ■ Ah-E where A = {AX,.. .,jim), wt{y)=yh- ■ -yu and

£ is the identity matrix. It is clear that Wt{X) = E iff Wt{X)=0 and Xe Gm. Let

pM : Mn{R) -*- REkl be the projection which assigns to any matrix its {k, I) entry,

and Wkl=pkl o Wt, 1 £k, l^n and /= 1, 2,.... Then Wkl eR[Yx,..., Yn»J, the

ring of real polynomials on n2m variables. Since R[YX,... Yn¡¡m] is Noetherian,

there exists a positive integer n0 such that the ideal generated by Wka, i^n0 con-

tains all Wit, and the Lemma follows immediately.

4.2. Let T be a discrete subgroup of G and^(r, G) be the space of all representa-

tions, i.e., homomorphisms of Y into G with compact open topology.

(3) This was pointed out to the author by H. C. Wang.
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Theorem. Let {rn} be a sequence of subgroups of G converging to a discrete sub-

group Y of G and T is a finitely generated subgroup of G contained in Y; then there are

r„ e@(T, G) such that

(i)rn(T)czYnand

(ii) lim r„ = lT where lT is the inclusion map of T into G.

Proof. Let G*-> G be the universal covering map and Gi> GL(n, R) be a

continuous homomorphism which is a local isomorphism. We set P=p~1(Y),

T=p~1(T), and Y„=p~1(Yn) for all «. By Lemma 1.3, Yn is discrete for large n, and

by same argument used in 3.1, lim f „ = f\ Since ¿and ker (p) are finitely generated,

T is finitely generated. Hence there exists a finite generating subset {yx,.. .,ym}

of f with a set of fundamental relations {wx(y),..., w¡(y),...}. By the preceding

Lemma, there exists a positive integer n0 such that Wt(x) = e, 1 ̂  iún0 and x e Gm

implies qW,(x)=e for all/ Let0t = f)fg x W¡~ \e) ; then ^ is a real analytic subset of

Gm, hence is locally connected. Let F be a connected neighborhood of y=(yi,...

ym) in i%. Since ker (9) is discrete, we must have that Wt(x) = e for all x e "F. Since

limfn = f, there are y{n)£fn, ISièm such that limnySn)=yi, lg/'g/n. From

Lemma 1.3, we know that {fn}n>fc, for certain positive integer k, is uniformly

discrete. Since Wt(yM) e f„, limn Wt(yw)= Wt(y)=e, it follows that yin)=(y{n\....,

ym^eF. Hence there are representations Fn:f-*-ö such that rn(y)=yw. It is

clear that (i) and (ii) are satisfied for {f„}, f, ¿and {rn}. But ker (p)<=T, f and fn

for all «, we must have r„|ker (/?)=lker(p). Hence rn induces rn:T-^-G which

satisfies (i) and (ii).

5. Stability of subgroups. Let M be a compactly generated, closed, normal

subgroup of G with G/M semisimple and having no compact factor, and M n Y

are c-lattices of M for all Y e Sf(G).

Proposition. If {rn} is a sequence of lattices of G converging to a lattice Y0, and

{rn} is a sequence of representations ofT0r\M such that (i) rn(ro n M) <= Ynfor all n

and (ii) lim rn= lronM, then rn(Y0 n M)<^M for large n.

Proof. Let p be an irreducible representation of G/M over a complex vector

space with ker (p) = center of G/M. Such a /> always exists. Let it: G -»■ G/M be the

projection. Since 7r(r0) is a subgroup of G/M with property (S), Cp(n(Y0)), the

vector space generated by p(ir(Y0)), contains p(tt(G)) (1). As Cp(tt(Yq)) is of finite

dimension, and T0 n Af, being a c-lattice of M, is finitely generated, there exists a

finitely generated subgroup ¿of Y0 containing Y0n M and Cp(-niT)) = Cp(G/M).

By Proposition 4.2, there are representations r'n of T such that (i) r¿(¿) c r„, (ii)

limn r'n= lr and (iii) r;|T0 n M=rn for large «, and (iv) CP(-nr'n(T)) = Cp(GIM) for

large «. Assume that « is sufficiently large. Choose a neighborhood Ux of e in G/M

with limm¿m(í/!)=e (for definition see [9, p. 210]) and Ux containing no central

element #e, U=ir~1(Ux). Y0r\M, a c-lattice, has a finite generating subset

Q={ßi, ■ ■ ■, ßs}- Hence ßf Vn(j8() £ Ufor 1 á 1 á J, lim« ¿m(7rrn(ß))cümn ¿„(Í/J = e.
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But Ttrn{M n T0) c7r(rn) is discrete. By a slight modification of [9,3.2], *rn{M n Y0)

being nilpotent and normal in Trr'n{T), is central. Since Q generates MnT, and

7rrn(ô) = e» we get rn{M n T0)<=M for large n.

6. In this section we deal with some properties of Haar measure. Let H be a

locally compact and a-compact group, Y a lattice of H, K a closed subgroup

containing Y, and H1+ H/K be the projection.

6.1. Lemma. If 6 has a local cross section, then Y is a lattice of K.

Proof. Let V be a relative compact, open neighborhood of eK in G/K and j be a

local cross section defined over V. Given a right Haar measure p. of H, we define

pv{B)=ß{s{V)B) for any Borel subset B in K. It is easy to verify that pv is a right

Haar measure of K. Let £ be a fundamental domain in K with respect to Y. Then

s{V)F is a r-packing in G, i.e. £'1i(t;)-1j(t;)£n Y={e}. Hence /*„(£)=í¿(.s(t>)£)

g/a(G/r)<co, and T is a lattice of £.

6.2. Lemma. Let G be a connected Lie group, H a closed normal subgroup and

G*+ G/Hbe the projection. If^{G)^ 0 andir{Y) is discrete for all Y e Sf{G), then

there exist Haar measures pG, p„, p,atH such that ßa{G/Y)=ßaiH{G/YH)ßH{H/Y n H)

for ail Y e £f°{G).

Proof. Since ^{G)^ 0 and 7r(r) is discrete for Y e S^{G), we must have that H

and G are unimodular. We define pG by

(1) f fix) dp.aix) = f     f f{xh) dp.H{h) dp,GIH{xH)
Ja JaiH Jh

where pH and pGIH are arbitrary. It is clear that p.G, so defined, is a Haar measure.

Given any Y e S?{G), there are Borel subsets Fx, F2 such that

(i) F2 is a fundamental domain of Y n H in H,

{ii) Fr1FxnHY = {e},

(iii) £x£2r=G.

It is clear that FXF2 is a fundamental domain of Y in G, and FXH is a fundamental

domain of Ttfin G/H. Hence by formula (1), ßG{G/Y)=ßGIH{G/YH)ßH{H/Y n H)

is immediate.

Remark. The lemma is true for any discrete subgroup T of G with n{Y) discrete.

7. Some continuous maps. Let G be a simply connected Lie group, R the radical

of G, and C be the maximal compact normal subgroup of a semisimple part of G.

7.1. Lemma [4]. Let Y e ^{G), then Y n CR is a c-lattice ofCR.

7.2. Proposition. Let q : ̂ {G) -* ^{CR) be defined by q{Y) = YnCR,Ye Sf{G).

Then q is continuous.

Proof. Immediate from Theorem 4.2.

7.3. By 6.2, we know that YCR is a lattice of G/CR for any Y e if{G). We define

^(G)£> ¿f{G/CR) by p{Y)=YCR, Y e Sf{G).
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Proposition, p is continuous.

Proof. Let {r„} be a sequence of lattices of G converging to Y e Sf(G). Since

lim (r„ n CR) = Y n CR in Sf(CR), and Y nCR is a c-lattice of CR, by Lemma

1.4, there exists a compact subset Kx of CR with Kx(Yn n CR)=CR for all «. Let

A"be any compact subset of G, Fa neighborhood of e in G. Then YnCR n ¿XT?

=(r„ATr1n¿)c¿c:(rnn¿¿1)c,¿<=Frc¿ and rcn n ¿C¿=(r¿r1 n ¿)C¿
<=(r n KKX)CR<=- FTnC¿ holds for large «. Hence/? is continuous.

7.4. Since G is simply connected, G takes the form of a semidirect product

G=GXCR, GX^G/CR. We define /: Sf(G)-* ^(GJ x ^(C¿) by /(r)=(/>(r),

9(r)),re^(G).

Lemma, ¿e/ {rA} be a set of lattices of G, if {p(Y^)} and {q(YK)} are uniformly

discrete in Gx, CR respectively, then {TA} is uniformly discrete in G.

Proof. Immediate.

Remark. Let (F, Y") e Sf(Gx) x Sf(CR). f'^Y', Y") is uniformly discrete. By

6.2, /¿(G/r) is constant for each Y ef-\Y', Y"). Hence by a theorem of Chabauty

[2],/-KIM") is compact.

7.5. Proposition. Let {Yn} be a sequence of lattices of G with {/(r„)} converging to

(Y\ Y"). Then there exists a subsequence {YHn)} converging to a lattice Y of G with

f(Y)=(Y', Y").

Proof. By Lemma 1.3 and Lemma 7.4, {rn} is uniformly discrete. Hence by a

theorem of Chabauty [2], there is a subsequence {Yiin)} converging to a discrete

subgroup T of G. Since CR is closed, and limn (ri(n> n CR)=Y", we must have

r"czr. By the same argument as used in 7.3, limB/>(r«n))=/>(r) = r'. By the

Remark at 6.2, Y is a lattice.

7.6. Corollary. Let K be any compact subset of Sf(Gx) x Sf(CR), then f~ \K) is

compact in Sf(G).

7.7. Corollary. If Sf(Gx) is locally compact, then Sf(G) is locally compact.

8. A map v from Sf(G) to the set of real numbers. Let p, be a fixed Haar

measure of G. Consider the map v defined by v(Y)=ß(G/Y) for Y e Sf(G). In

general v is not continuous, for an example see [6]. But the following always holds.

8.1. Theorem [6]. v\Sfc(G) is continuous and Sfc(G) is locally compact (4).

8.2. Corollary. Let G be a simply connected nilpotent Lie group. If G has a

lattice r0, then Sf(G)^A(G)/N(Y0).

(4) In [6], that v\Sfc(G) is continuous was proved. Since £fc(G) is open in ¡ffß), by a

theorem of Chabauty [2], Sfc(G) is locally compact.
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Proof. By a theorem of Mal'cev [1], ^C(G) = ^(G) and A{G)Yo = ^{0). Since

A{G) and ¿f{G) are locally compact and A{G) is cr-compact, we have then -F{G)

^A{G)/N{Y0).

8.3. It is known that there is a continuous representation of A{G) into the

positive real numbers such that v{a{Y))=r{a)v{Y) for all Y e S?{G) and a e A{G).

Proposition. v\A{G)Y is continuous.

Proof. Consider/: Sf{G) -> y{Gx) x S?{CR). It is clear that f{A{G)Y)czA{Gx)Y'

x^{CR), f{Y) = {Y',Y"). By 6.2, we know that v{T) = v{p{T))v{q{T)), for any

TeS?{G). Since/, v\Sf{CR), v\A{Gx)Y' are continuous(5), we have v\A{G)Y is

continuous.

Remark. By Proposition 3.1, Proposition 8.3 is true for all connected Lie

groups.

9. Let T be a finitely generated lattice of G and 0t(Y, G) be the space of all

representations of Y into G. Given any a e A{G), r e3${Y, G) we define a{r) = ar.

It is easy to see that A{G) operates continuously on âë{Y, G).

9.1. Lemma. If A{G)lr is a neighborhood of lr in 0t{Y, G), then A{G)Y is open
S?{G).

Proof. Suppose false. Then there is a sequence {r„} of lattices converging to Y

with Tn £ ^(G)r for all n. By Theorem 4.2, there are representations rn of Y such

that (i) rn(r)c:rn and (ii) limr„=lr. By assumption rneA{G){lr) for large n.

Let <xn £ A{G) such that a„(lr)=r„. Then a„(r)crn and lim an{Y)=Y. By Propo-

sition 8.3, /i(G/r)=lim ¿z(G/ctn(r))>lim sup„ ß{G/Yn). But in [2], Chabauty showed

that /z(G/r)^liminfn/z(G/rn). It follows that ß{G/an{Y))=ß{G/Y„) for large ».

Hence Yn = an(r) for large n which leads to a contradiction.

9.2. Lemma. If A{G){lr) « a neighborhood of lr in @{Y, G), then A{G)Yz

A{G)/N{Y).

Proof. A{G)Y is open in £f{G). Since ^(G) is metric, ^(G)r is locally closed in

F'iG). By Lemma 1.3, and Proposition 8.3, there is a neighborhood "f of Y in

S?{G) such that -F<=A{G)Y, ß{G/T)<n0 for aUTef and certain positive number

n„ and "f is uniformly discrete. By a theorem of Chabauty [2], "T is compact.

Hence A{G)Y is locally compact and ^(G)r^^(G)/A^(r).

9.3. Let G be the Lie algebra of G and G operates on ó by means of the adjoint

group, {yx,..., yn} a finite generating subset of Y and {wx{y),..., wt{y),...} be a

set of fundamental relations. Then^(r, G) can be identified with Hi WrKe^G*

where JP('s are defined in 4. In [9], A. Weil proved that L=f~)iLi, £,=the kernel

of the tangent mapping to Wt at {yx,..., ym), is the space Z\Y, Ô) of all cocycles

of T in G. Define g: A{G) -> Gm by g(a)=(«(yi),..., a{ym)), « £ A{G). Let M be

(6) This follows from the fact that A(GX) is semisimple and A(Gx)IA(Gi)0 is finite.
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the image of tangent mapping of g at e £ A(G). By Proposition 4, in [4], M

= «DZKG, G) where <D: ZKG, G) -*■ ZKr, G) is the restriction map.

9.4. Theorem. // H\G, G) *V H\Y, G) is surjective, then the Chabauty s

conjecture for Y is true.

Proof. By the above remark, M—L, hence by Lemma 1 in (9), A(G)(lr) is a

neighborhood of lr in OCT. G). Thus by Lemma 9.2, A(G)Y^A(G)/N(Y).
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