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Abstract. Whistler mode noise leads to electron pitch angle diffusion. Similarly, ion cyclo- 
tron noise couples to ions. This diffusion results in particle precipitation into the ionosphere 
and creates a pitch angle distributon of trapped particles that is unstable to further wave 
growth. S'nce excessive wave growth leads to rapid diffusion and particle loss, the requirement 
that the growth rate be limited to the rate at which wave energy is depleted by wave propaga- 
tion permits an estimate of an upper limit to the trapped equatorial particle flux. Electron 
fluxes )40 kev and proton fluxes )120 kev observed on Explorers 14 and 12, respectively, 
obey this limit with occasional exceptions. Beyond L ---- 4, the fluxes are just below their 
limit, indicating that an unspecified acceleration source, sufficient to keep the trapped par- 
ticles near their precipitation limit, exists. Limiting proton and electron fluxes are roughly 
equal, suggesting a partial explanation for the existence of larger densities of high-energy 
protons than of electrons. Observed electron pitch angle profiles correspond to a diffusion 
coefficient in agreement with observed lifetimes. The required equatorial whistler mode 
wide band noise intensity, 10-•% is not obviously inconsistent with observations and is con- 
sistent with the lifetime and with limiting trapped particle intensity. 

1. INTRODUCTION 

Recent observations of energetic electron pre- 

cipitation from the magnetosphere to the at- 

mosphere suggest that first adiabatic invariant 

violation must be responsible for the observed 

untrapping. Bursts of precipitation have been 

observed by balloon X-ray bremsstrahlung meas- 

urements [Winckler et al., 1963; Anderson and 
Milton, 1964] and direct •,40-kev electron flux 

measurements with Injun 3 [O'Brien, 1964] 
which exhibit durations of 0.1 to I second. This 

is roughly the time for these electrons to move 

from the equator to the ionosphere along a field 
line. Much shorter bursts than this would be 

unlikely, even if these electrons were thrown 

instantaneously into the loss cone. This suggests 
that first invariant violation, which can occur 

on a 10 • second time scale, is a likely explana- 

tion, since violation of the second invariant 
would probably require several bounce periods 
and therefore could not produce such short 
bursts. 

McDiarmid and Budzinski [1964] argue that 
the similarity of electron energy spectrums at 

1000-km heights and in the equatorial plane to- 
gether with the short observed lifetimes (10 • 
second [O'Brien, 1962]) suggest that changes 
in pitch angle without a change in energy (first 
invariant violation) are necessary. Conservation 

of this invariant during the time the particle 

lowers its mirror points (10 • second) would 
imply a total energy increase in this time of a 

factor of 10 *. The observed spectral similarities 
would then be difficult to explain. 

The conditions for first adiabatic invariant 

violation are quite restrictive. A given particle 

must see fluctuations near its own gyrofrequency. 

This immediately suggests high-frequency fluc- 
tuations in the whistler and ion cyclotron modes, 

for electrons and ions, respectively, since they 
have the appropriate frequency range. In this 

way, Dun{?ey [1963] and Cornwall [1964] have 
suggested that external sources of whistler radia- 

tion, such as atmospherics, may account for 
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energetic electron lifetimes in the vicinity of 
L -- 2. Similarly, Dragt [1961], Wentzel [1961], 
Chang and Pearlstein [1964], and others have 
suggested that hydromagnetic waves will scatter 
protons out of the Van Allen belts. 

The difficulty at present does not lie in identi- 

fying a pitch angle scattering mechanism, but 
'm evaluating its effects quantitatively, and in 
finding restrictive and conclusive comparisons 
with observation. Estimation of the fluctuation 

amplitude requires knowledge of external wave 
sources, such as atmospherics, or of the non- 
linear process that limits the amplitude, if wave 
energy is to be internally generated by an in- 
stability. /n this regard, Cornwall [1965] and 
Brice (private communication, 1965) have ob- 
served that the whistler mode will be •mstable 

if the pitch angle distribution is sufficiently 
anisotropic. Thus wave energy can be generated 
within the magnetosphere, provided that an ani- 
sotropic pitch angle distribution can be main- 

tained. In this paper we attempt a quantitative 
investigation of effects, related to the presence 
of waves, that are essentially independent of the 
specific wave source. 

The ]imitation of wave growth as well as the 
pitch angle diffusion due to waves requires a 
nonlinear treatment. A basic simplification of 
plasma turbulence is that it is often low level 

and can be treated accurately to second order 
in wave amplitude. Therefore, many fundamental 
properties are defined in terms of the familiar 

linear (first-order) theory for wave propagation 
and growth. In section 2, we review the linear 

theory of the whistler, ion cyclotron, and mag- 
netosonic modes, concentrating on resonant ef- 

fects leading to wave growth. The stability prop- 
erties depend primarily on particles in cycIotron 
resonance, whose velocity parallel to the mag- 
netic field Doppler-shifts the wave frequency 
to their cyclotron frequency. Pitch angles of 
these particles are thereby altered. Wave growth 
will occur when the pitch angle distribution of 

resonant particles is sufficiently anisotropic. The 
magnitude of the growth rate is determined both 

by the pitch angle anisotropy and by the frac- 
tion of particles that are resonant. 

Simple physical arguments indicate that reso- 

nant wave growth is nonlinearly limited. For 
instance, resonant particle energy and wave en- 

ergy are conserved together. If one gains energy, 
the other loses. Only the pitch angle anisotropy 
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energy of resonant particles is available for 
whistler and ion cyclotron wave growth. Since 
this is a small fraction of the total kinetic energy, 
these waves may grow only to a low level before 
they exhaust the energy available to them. The 
fact that waves take energy from particles ap- 
pears in linear theory as the resonant instability; 
the effect of the waves back on the particle 
distribution is necessarily nonlinear. In section 3 
we show that the particle distribution for an 

infinite plasma evolves by diffusion primarily 
in pitch angie toward the marginal stability 
configuration--pitch angle isotropy--at a rate 
proportional to the square of the resonant wave 

amplitude. Since there is little diffusion in energy, 
these waves cannot be an acceleration mecha- 

nism. 

Pitch angie diffusion in spatially finite plasmas 
differs significantly from the infinite plasma case. 
In section 4 we discuss the steady-state pitch 
angie distribution appropriate to the finite mag- 
netosphere. Since particles reaching the loss cone 
are lost to the atmosphere, the steady pitch 
angie distribution will necessarily be anisotropic. 
Since predominantly parallel energy is lost to 
the atmosphere, this anisotropy has the appro- 
priate sign to be unstable and thus can generate 
its own wave amplitude. For pitch angle diffu- 
sion to be self-sustaining, both the particles and 
the waves that escape must be replaced. There 
must be acceleration mechanisms for the parti- 
cles, and the wave growth rate must adjust, not 
to zero, as for the infinite plasma, but to a small 
positive value, in order to replace lost wave 
energy. 

Although the rate at which particles diffuse 
toward the loss cone depends on the magnitude 
of the diffusion coefficient, and therefore on wave 

energy, the shape of the steady-state pitch angle 
distribution outside the loss cone is essentially 
independent of the diffusion coefficient, so Iong 
as it is nonzero. (In steady heat conduction the 
heat flux depends on the magnitude of the ther- 

mal conductivity; the temperature distribution, 
however, is independent of conductivity when 
the temperature is specified at the boundaries. 

Similarly, the pitch angle anisotropy is fixed in 
steady turbulent diffusion.) The wave growth 
rate can then depend only on the number of 

resonant particles. This number must adjust by 
balancing acceleration with precipitation so that 
the growth rate exactly replaces escaping wave 
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energy. If the growth rate is too large, wave 
energy will accumulate, rapidly enhancing par- 

ticle precipitation, and thereby reducing the 
growth rate to that necessary to maintain a 

steady wave distribution. Therefore, there is an 

upper limit to stably trapped particle fluxes. We 
estimate this upper limit in section 5 by equat- 

ing the wave growth rate to the wave escape 
rate. Instabilities are important when trapped 
fluxes are near this limit. Since observed fluxes 

of >40-kev electrons satisfy the calculated up- 

per limit, whistler mode pitch angle diffusion 
probably limits the electron intensities. Since 

their intensities are always near but below their 

upper limit beyond L -- 5, acceleration must 

occur all the time there, and so, therefore, does 

precipitation. Higher-energy electrons are less 

often near instability, because their fluxes are 
usually well below the flux needed for self- 
excitation. 

The corresponding limit for protons is dis- 
cussed in section 6. It is again found that ex- 

periments confirm this upper limit. Observed 

fluxes of > 120-kev protons are close to but do 

not exceed the limit, thus implying that a suf- 

ficient acceleration source also exists for pro- 
tons. It is significant, too, that the calculated 

limiting fluxes are comparable for electrons and 

ions. The observation of larger proton than 
electron densities can then be explained by the 
fact that both species are apparently accele- 

rated to their limiting density; the limiting 

proton number density, however, is significantly 
larger than the limiting electron number den- 
sity. 

We emphasize that this estimate of the maxi- 

mum stably trapped flux involves only a com- 

parison of the wave growth rate with the wave 

escape rate, which in turn depends primarily 

on the wave group velocity and the length of 
a line of force. It is clear that the maximum 

trapped flux cannot depend on the acceleration 
mechanisms that create it. If acceleration is 

continual, the trapped-particle distribution will 
eventually reach and be limited to a maximum 
intensity, and the observed trapped particle 
intensity should then be insensitive to further 
changes in the acceleration mechanism. On the 
other hand, the precipitation rate will be 

strongly correlated with acceleration, when the 

trapped fluxes are near self-limitation. In this 
paper we will not discuss the particle accelera- 

tion mechanisms since they are not clearly 

understood at present. 

Besides trapped equatorial omnidirectional 

intensities, the other information available for 

study is pitch angle distributions obtained in 
and near the loss cone by polar orbit satellites. 
In section 7 we show that the observed >40- 

kev electron pitch angle profiles are consistent 

with independent estimates of the lifetimes. 

Although the pitch angle distribution outside 
the loss cone is practically independent of the 

magnitude of the dieusion coefficient, the dis- 

tribution inside depends on the ratio of the 
diffusion time to the time of loss •o the at- 

mosphere. Therefore, the measured loss cone 

profiles [O'Brien, 1964] estimate a diffusion 
coefficient and a particle lifetime. The wave in- 

tensity required to produce these lifetimes is at 
least an order of magnitude larger than that 

observed near the earth, if waves propagate 
completely trapped on a tube of force without 
attenuation. However, pitch angle scattering 

occurs predominantly near the equator, and 

much of the wave energy so generated may be 
lost before it reaches the ionosphere. In section 

8 we show that these theoretically derived wave 
intensities combined with the observed rate of 

particle energy loss from the magnetosphere 

permit an estimate of the growth rate con- 

sistent with the known wave escape rate. Thus 

the observed pitch angle distributions, lifetimes, 
trapped-particle fluxes, and the inferred wave 

intensity appear to be mutually consistent. 

2. L•• PROPAGAT•O• X•D ST•sr•rr• or T•r 

W•m?•R A•D Io• C••RO• Moors 

2.1 Introduction. In section 3 we shall 

show that the nonlinear behavior of weak tur- 

bulence in the whistler and ion cyclotron modes 

involves the linear theory growth rate. In this 

section, we review the linear theory. Several 
similar analyses have been performed [Sa•deev 

and Shafranov, 1961; Stix, 1962; Chang, 1963]. 
It is repeated here principally to define nota- 
tion and to review the physical picture of the 

instability. We shah indicate that the whistler 
mode is unstable when the electron pitch angle 

distribution is sufficiently anisotropic, with 

more energy perpendicular than parallel to the 

magnetic field, and that the ion cyclotron mode 
grows when there is similar ion pitch angle 
anisotropy. In each case, the growth rates are 



nonnegligible only when an appreciable frac- 
tion of the particle distribution is near cyclo- 
tron resonance. 

Since we are interested in the high-frequency 

properties of a collision-free plasma, the Viasoy- 
Maxwell equations for a plasma of ions and 

electrons (denoted, respectively, by su 'ap•,r plus and minus signs) must be the st g 
point for this analysis. 

af • 
+ v-Vff 

at 

e I v x B] a]* + - •:+• .•,=o M • c 

V-E = 4z'e f day(] + -- f--) 
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direction. Transforming to a cylindrical velocity 
space coordinate system centered about the 
equilibrium magnetic field, •. - v• cos •b, v. - •- 

sin •b, •. - • (•- is the component • perpendicu- 
lax to the magnetic field, v• the paxMlel compon- 
ent), equation 2.6 reduces simply to aFj:[a•b = o. 
The equilibrium distribution function is there- 
fore independent of the Larmor phase angle. If 
we now allow small perturbations of the form 

•(x, v, t) = •r•(v) + •(v)• "•'-"" (2.7) 

B(x, t) = Boe, + •B e "•'-•") (2.8) 

(2.0 r.(•, 0 = o + at. •'"'-•" (2.9) 
and substitute these into (2.1) through (2.5), 

dropping nonlinear terms in the perturbation, 
(2.2) (2.1) through (2.5) can be reduced to the follow- 

ing single matrix equation for the electric field 
components (in index notation): 

(2.3) 

[n 2/•,• -- n.na -- •,,s]/1Es = 0; 

a, iS = 1, 2, 3 (2.10) 

where n, = ck,/co, the index of refraction, and 

(2.4) •(co, k) is the dielectric tensor 
•(•, •) = 

(2.5) 

- v. dr. dv• d• 
q-,-- CO 

v,,L-•[ aF" (1- -?) + v•k (2.11) I, or. ova J 

where 

•+,_ denotes a sum over species. 
co, J:= x/4z'Ne•/M J: = the p]asma frequency 
of each species. 

Notice that the equilibrium velocity distribution 
FJ: is normalized to 1. L -• is the inverse of the 

linearized Viasoy operator 

---- -- e 

ß f +i(•,, - •)•' 
where •: = q-eB/Mq-c, the cyclotron frequency 
for each species. 

The dispersion relation is simply 

der (n • • ---- n,,n,, -- •,,•) ---- 0 
(2.½) 

For parallel propagation, this determinant factors 
into two parts. One part is for longitudinal 

1 OB 
V xE= 

c at 

V x B = 4z'e. f d3vv(]+ _ ½ 

1 OE 
+ 

cat 

V-B=O 

where F(z, v, t) axe the one-particle distribution 

function of each species, e is the electronic charge, 
and M • is the mass of each species. Gaussian 
units axe used throughout. 

Since the wavelengths relevant to pitch angle 

scattering are necessarily much shorter than 
typical macroscopic scale lengths in the mag- 
netosphere, it is a good approximation to treat 

waves propagating locally in an infinite uniform 
plasma immersed in a strong magnetic field 
pointing in, say, the z direction. As will be 
indicated below, the waves of primary interest 
for pitch angle scattering propagate parallel to 
the magnetic field. Since this is also the simplest 

case algebraically, we discuss it first and later 

comment briefly on the nonparallel case. 
Assuming that there axe no electric field, 

spatial gradients, or time variations, and only 
a z component of the magnetic field in the 
equilibrium, the equilibrium distribution function 

F ß must obey 

Bo(v X e,).aF*/Ov = 0 

where e, is a unit vector in the magnetic field 
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oscillations involving only z components of the 
electric field; this leads to plasma oscillations 
and the ion acoustic mode and is of no further 

interest here. The other part is for transverse 
electromagnetic oscillations, involving Ez and 
E,. If we now assume that these modes are 

circularly polarized about the magnetic field, so 
that E• -4- iE, are convenient independent 
variables, the dispersion relation once again 
factors into two modes, one for each polarization: 

n 2-- R n 2- L 

= -- v. :• dye. dvll 

ß 'Lav. - av,/ 
1 

ß kv,, -- •o -- (2.13) 
1 

LE _ • •_ •' 

quency, this is called the ion cyclotron wave. 

We discuss first the whistler mode and then by 
analogy the ion cyclotron mode. 

2.2 Whistler mode. When the plasma pres- 
sure is much smaller than the magnetic pressure, 
a good approximation to the real part of the 
index of refraction assumes the plasma to be 
cold. In other words, we substitute in (2.13) 

F • -- (1/2w) $(Vx) $(v,,) (2.14) 

where the cylindrical velocity space normaliza- 
tion requires 

d4, Vx dvx $(vx) $(vu) dr, = 1 

(2.15) 

After substitution, the first term in the numer- 

ator of (2.13), involving Vx' OF+/OVx, can be 
integrated by parts once to give --1/•. The 

other two terms vanish for the zero-temperature 
case. Thus n' -- R reduces to 

(cø•+)2 (cø•-) 2 (2 16) -- I -- w(w -•- •+) -- w(w -•- •-) ' 
The sign of the particles' species is incorpo- 

rated into •(-- :k:eB/M•:c). •en the wave 
frequency is well above the ion •ofrequency, 
but below the electron g•offequency, so that 

•+ << w < •-[, the ion contribution to (2.16) is 
a factor m-/M + smaller than the electron 
bution and may be neglected. Fu•he•ore, if 
the electron pl•ma frequency is l•ge, so that 
[w•-/•-[ >> 1, the ph•e velocity • much smaller 
than the velocity of 5ghi, and n' = R is 
approximately 

• (w•-)• (2.17) Re (n •) • •(]•_[ -- •) 
Si•larly, we can show that the mode n • • L is 

evanescent above the ion g•offequency. 
Neglecting all thermal velocities h• led to a 

simple expression for the real pa• of the index 
of refraction, w•ch depends o•y on the strength 
of the external magnetic field and the total 

particle de•ity. However, the •o•h or damp- 
ing of these waves is necessarily a fi•te velocity 
•spersion effect since it depends only on electrons 
in cyclotron resonance. The cyclotron resonance 
phenomenon arises from the resonant deno•na- 

tots in (2.13), 1/(kv• -- • -- •). Where these 
deno•nators are zero, the velocity space inte- 
gration picks up an ima•nary part. For electron 

g•oresonance, the resonant velocity V• is 

defined by 

= - I-I (2.18) 

The velocity of these particles parallel to the 
externM ma•etic field Doppler-s•ts the wave 
frequency to the• g•ofrequency. These elec- 
trons may therefore have their magnetic moment 

efficiently altered. For some purposes it is helpful 
to rewrite (2.18) in ter• of the ener• •sociated 

•th the parallel motion of the resonant p•icle. 
Us•g the •persion relation (2.14), the resonance 

con•tion for electro•, (2.18), may be •tten 
= 

( = E• [•-[ 1 -- (2.19) 

2 -- n 
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Ec = B•/8•'N, the magnetic energy per particle, 
is a characteristic energy for cyclotron inter- 
actions. A similar analysis shows that the ion 
energy necessary for resonance with the whistler 
mode is much larger than the electron energy. 

Since there will ordinarily be few such highly 
energetic ions, their contribution to wave growth 
or damping is neglected. 

Depending on their phase with respect to the 
wave, resonant electrons will see a wave force of 
one sign that either secularly accelerates or 
decelerates them. Net wave growth or damping 
thus depends on appropriate velocity gradients 
that determine whether more gain than lose, or 
vice versa. We will treat only waves resonant 

with electrons on the high-energy tail, where the 
number of resonant particles, and therefore the 
growth rate, is small. Then, by writing o• = 
o• • i7, where o• and 7 are real, assuming that 

ß 

7/o• (( 1, we can estimate the singular velocity 
integrals in (2.13) using the Dirac relation' 

I P 
lira = 

vn k vn -- k 

• i•(sign k) $ Vu k ' 

where P denotes the principal part. Equating 
real and imaginary parts of (2.13), dropping 
terms small in the temperature correction, and 
assuming n • )) 1, we find that o• is again given 
by (2.17), and the growth rate • is 

7 = •' If2-[ 1 -- I-• •-(V•) 

I } (2.20) . - - I 
where we have defined 

= I-I - ,,, 
k 

and 

v.• dv.• u 

v.• dv.•F-(v.•, vn = V•) 

2 v.• dv.• F- 

! 

v.• dv.• tan 

2 v.• dv.• F- 

where a: tan -• (--vffv•) is the pitch angle. 
Since an electron must have a specific p•aHel 
velocity to be resonant •th a wave of kequency 
w, but may have any perpen•cular velocity, 
the stability criterion involves the properties of 
the distribution function integrated over all 

perpen•cul• velocities. T•s integration path 
is sketched in Figure 1. •en a •de band wave 
spectrum is excited, a large region of velocity 

space can interact •th waves. 
v-(V•) may be roughly interpreted as the 

fraction of the total electron •stfibution in a 

range Av u = ([•-[--w/k = IVy[ about cyclotron 
resonance. A-(V•) is a measure of pitch angle 
a•sotropy. We have deliberately chosen a •ed 
notation in the deflation of A- to emphasize 
that a•sotropy depends only on the gra•ent of 
the •stfibution function •th respect to pitch 
angle at constant energy, 3F/3•. Since V• • 0, 
3F-/Oa • 0 impSes that the •stfibution at 
constant energy incre,es toward fiat pitches. 
That is, there is more perpen•cular than p•allel 
energy. For the special c•e of a velocity distribu- 

tion that is a product of Gaussia• •th •erent 
temperatures for perpendicular and parallel 
velocities, A is independent of V• and reduces to 

T = -- T n)/T n. 
Since •-is always positive, waves are neces- 

sarily unstable when 

1 

A- > - 1 (2.21) 
A surelent condition for instabihty for waves 

resonant •th electrons whose Ea > B2/8•N is 
simply that OF-/Oa be positive eve•here. 
Therefore, any mecha•sm that flattens the 

pitch angle of every particle, such • magnetic 

field compression, makes the tail of the electron 
dist•bution (where Ea > B2/8•N) unstable to 
noise e•ssion in the whistler mode. Si•larly, 

decompression must result in absorption. For 
t•s tail, the isotropic state •th 
marginally stable. 

In conclusion, whether or not a w•stler mode 
e•ssion is unstable depends only on the electron 
pitch angle a•otropy, A-. Its rate of •o•h or 
damply, however, depends on both the a•so- 
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Fig. 1. Intersection of velocity space surfaces for instability and pitch angle diffusion with 
the plane determined by the vx and'vii axes. The stability of waves is determined by the properties 
of distribution function (equations 2.20 and 2.23) integrated over all particles with a particular 
parallel velocity (equations 2.18 and 2.24). The solid vertical line indicates the surface in velocity 
space of importance for stability of a particular w•ve. Waves of other frequencies interact with a 
parallel surface at another velocity. The surfaces along which electrons diffuse owing to interaction 
with the whistler mode are also shown. Note that the particle energy on a diffusion surface always 
decreases toward the vii axis; however, as the energy becomes large compared with Eo -- B•/8•'N, 
the diffusion surfaces approach constant energy or [vl surfaces. 

tropy A- and the fraction of electrons that are 

resonant, 7-. 

2.3 The ion cyclotron wave. There is an 

entirely analogous instability for the ion cyclo- 
tron wave for the case of waves propagating 

parallel to the magnetic field (Brice, private 
communication, 1965) [Jacobs and Watanabe, 

1964; Obayashi, 1965; Cornwall, 1965]. The ion 
cyclotron wave is the anisotropic Alfv•n mode 

with left-hand circular polarization and fre- 

quencies near the ion gyrofrequency. In the 
frequency range, • • •2 +, cyclotron interactions 
with resonant ions become important. For the 

parallel propagation case, the cold-plasma dis- 
persion relation is 

= _ 
Ions in cyclotron resonance, •th kV• = • -- 

•+, deter•ne stability. The gro•h rate is found 
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by an analysis similar to that for electrons. 

= -/2n +) 

I 11(2'23) ß A+(V•) -- (•2+/co) _ 1 
A + and 7 + are defined as in the electron case. 

Once again, a su•ciently fiat pitch angle distil- 
bu½ion is unstableß 

From (2.9) and the resonance con•ion, we 
can express the parallel ion energy necessary for 
resonance in ter• of the wave frequency. 

ER = 1/2M + VR 2 

Because the factor (•2+/co), appears, the fre- 
quency range about the cyclotron frequency for 
which resonant protons are sufficiently numerous 

(i.e., have low enough energies) to make signifi- 
cant growth rates will be somewhat narrower 
than the corresponding electron case. Resonant 
electrons have mudh higher energies and may 

ordinarily be neglected. 
2.4 Magnetosonic mode near ion gyroresonance. 

Near the ion gyrofrequency, the real part of the 
dispersion relation n: = R reduces to 

• - 12+ 12 + ,,, ( 
(2.25) 

The condition for Doppler-shifted ion gyro- 
resonance is kv II = co + 9 +, so that the expression 
for the resonant ion energy is 

E,, - 1 --[-- -•-c+) a (2 26) 
The growth rate is found by the methods 

outlined above 

+ 
• = 2 (1 + co12• +)" (VR) 

ß A+(VR) + (•2+lco) +1' 
where A + is defined as before and •+ is 

(2.27) 

n+ + k 

v•. dv•.F +(v•., v• = V•) (2.28) 

In contrast with the ion cyclotron wave, the 

magnetosonic mode is unstable when the pitch 

angle anisotropy is negative 

1 

A+ < --(12+/co) -]- 1 (2.29) 
For the high-energy tail of the proton distribu- 
tion, there is only a small range of anisotropies of 

order co/12 + for which protons are stable to both 
the ion cyclotron and magnetosonic waves. The 

trapped proton distribution in the magnetosphere 
is more likely, however, to be unstable to the ion 

cyclotron wave since diffusion into the loss cones 

tends to maintain a positive anisotropy. 
2.5 Discussion. For the above gyroreson- 

ance interactions, the ratio of the parallel energy 

to the magnetic energy per particle determines 
the resonant frequency. The velocities corre- 

sponding to the critical energy are the electron 
Alfv•n velocity V-• = B/w/4•-Nm-and the 

Alfv•n velocity V• + = B/x/•rNM +, for the 
whistler and ion cyclotron modes, respectively. 

If we normalize the wave frequency to the 
appropriate gyrofrequencies, velocities to the 

appropriate Alfv•n velocity, and energies to 
the critical energy, the expressions for phase 
velocity, group velocity, and resonant energies 
take the simple form outlined in Table 1. 

For the tens of kilovolt particle energies ob- 
served in the magnetosphere, cyclotron reso- 

nance interactions will be most important near 

the equator on a given line of force. Eo increases 

rapidly away from the equator, and larger 
anisotropies are needed for local instability of 

these particles. Moreover, a wave of a given 

frequency receives its greatest amplitude incre- 
ment as it crosses the equator on a given line 

of force. The energy of partic]es resonant with 

the wave at each point increases rapidly away 

from the equator. Since the observed fluxes of 

energetic particles decrease monotonically with 
energy, and since the total number density in- 

creases away from the equator, the fraction ,• 
will decrease and the corresponding local growth 

rates will be smaller. For instance, even though 
the critical energy at the feet of the lines of 

force in the ionosphere is again tens of kilovolts 

and the anisotropy there is large, the total den- 

sity has increased by perhaps a factor of 10', 

the fraction ,• has been decreased, and the con- 
tribution to the growth will be roughly a thou- 

sandth of that at the equator. Henceforth, our 
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TABLE 1. Normalized Wave Properties 

Whistler Mode Ion Cyclotron Mode Magnetosonic Mode 

Phase velocity VA- -- [•-(1 -- •-)]•' ---- [1 -- •+]•' ¾•+ 

¾o ¾o [1 -- •+] '•' 

Group velocity ¾A_ - 2[•-(1 - •-)s]•, _ V• + 1 - w+/2 

Resonant velocity ¾•_ - [•_]•, 

Resonant energy 

¾o [1 -'!'- •+] '•' 

VA + i + w+/2 

VA •+ 

E• [1 + 

•, (•+)' 

discussion will be limited to equatorial cyclo- 
tron resonance interactions. 

In Figure 2, we plot the magnetic energy per 
particle at the equator as a function of the 

equatorial distance L for three local times: mid- 

night, dawn or evening, and noon. We have 

used total number density measurements sum- 

marized by Carpenter and Smith [1964] which 

are accurate to L -- 5; the density has been 

extrapolated beyond L -- 5 using the relation 

N/B = constant. For the noon magnetic field, 

we have estimated the distortion of the dipole 
by the formula 

B(noon) • (1/3L a) -]- 5.10-4(L/10) (2.30) 

The dawn (or dusk) field has been assumed 
undistorted 

B(dawn) • 1/3L a (2.31) 

whereas, at midnight, the field strength is 
diminished because of distortion. There is also 

a small component due to the field of the tail 

[Ax•ord et al., 1965]. 

1 

B(midnight) •'• 3L* 

2.5.10-4(1•) + 10-• (2.32) 
Knowing the critical energy and the parallel 

energy of a given particle, we can calculate the 
phase, group, and resonant velocities of the 
wave resonant with it by means of Table 1. 

These curves are undoubtedly a consider- 
able idealization. Information about the total 

density beyond L = 5 is sparse, and the as- 

sumption that N/B is constant is arbitrary. We 
have not included the sharp 'ledge' or de- 

crease in density, which is often observed near 
L • 3.5. B'/8•rN would have a local maximum 

near this ledge. Specific numerical estimates 

based on these values of B'/8rcN may be in 

error, but we hope that proper qualitative be- 
havior is contained in this description. In any 

case, the sensitivity of our results to the value 

of B'/8•rN decreases when the particle energy 
is well above E,. 

2.6 Propagation at an angle to the field. 
For waves propagating at an angie to the mag- 

netic field, stability is determined by the sum 
of the contributions from resonances corre- 

sponding to parallel velocities defined by (see 

Stix [1962] ) 

kuV•(m) = w -- m•*; 

m = --,x, .... 1, O,--[-1, +2, +3,-.- 

(2.33) 

where k u = parallel wave number. 
Since the wave polarization is elliptical for 

propagation at an angle to the field, particles can 
return in phase with the wave after any integral 
number of Larmor periods, and so the higher 
cyclotron harmonics produce resonances. In 

addition, for off-angle propagation, there is a 

component of wave electric field parallel to the 

external magnetic field that leads to ordinary 
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Fig. 2. Magnetic energy per particle at the geomagnetic equator. This plot is based on the 
idealized magnetic field variation of equations 2.25, 2.26, and 2.27, and densities given by 
Carpenter and Smith [1964]. Particles of geophysical interest have an energy by and large well 
above B'/8•rN. 

Landau damping at the so-called Cerenkov 
resonance (m = 0). For the cyclotron harmonics 
(m • 0), the sign of the contribution of each 

resonance to the growth rate is again given by 
the anisotropy. Thus compressions will again 
lead to unstable contributions from these reson- 

ances. At the Cerenkov resonance, m = O, 
k •v n = co, the energy exchange between particles 
and waves is analogous to Landau damping; for 
a distribution that decreases monotonically with 
energy, this term will give a damping contri- 
bution. 

The magnitude, and, thus, the relative 
portance of each resonance, is given by a co- 
efficient which now depends on the angle be- 

tween the wave vector and the field as well as 

the anisotropy and number of resonant parti- 
cles at each resonance. For an electron distri- 

bution function that decreases monotonically 

with increasing energy, the largest number of 
resonant particles will be found at the Cerenkov 

resonance, since it corresponds to the lowest 

energy. On the other hand, for small angles to 
the field, the angular dependence favors the 
cyclotron m -- --1 resonance contribution to 

the growth rate. For strictly parallel propaga- 
tion, we recall that there is only the m -- --1 
cyclotron resonance and no Cerenkov contri- 

bution. As the angle of the wave to the field 

increases, the relative importance of the usually 
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damping Cerenkov resonance increases. There- 

fore, parallel propagating waves are the most 
unstable; the growth rates diminish with in- 
creasing angle to the field until at some critical 

angle O• cyclotron growth and Cerenkov damp- 

ing just balance; beyond O•, Cerenkov damping 
predominates. The harder the energy spectrum 

(i.e., the more particles at the more energetic 

cyclotron resonance), the larger O•, and hence 
the more important cyclotron resonance inter- 

actions, become. For the 1/E •-• electron spec- 
trum typically found in the magnetosphere 

[McDiarmid et al., 1963], 0• • 1 radian for 
A ---- 1. Softer spectrums correspond to smaller 

0c. Thus, if the particle spectrum is hard 

enough, cyclotron interactions will be important 

over a significant cone of angles. 

Since the parallel waves become unstable 

most easily, they will be of most interest for 
pitch angle diffusion. For the remainder of this 

paper we will argue in terms of parallel propa- 

gating waves, remembering that the actual 
wave spectrum includes a cone of propagation 

directions around the parallel whose physical 
instability mechanism is the same but whose 

intensity is smaller. 

3. WHISTLER AND IoN CYCLOTRON 

TURBULENCE 

3.1 Introduction. The possibiiity that mi- 
croscopic turbulence may dominate diffusion 
and dissipation in plasmas has received con- 
siderable attention recently. In this section we 
discuss and review the results of a second-order 

turbulence theory, where only effects the order 
of the square of the wave amplitude are in- 
cluded. After an, introductory discussion in 3.1 
of the motivation behind this approach to tur- 
bulence, we illustrate in 3.2 that second-order 

nonlinear wave particle interactions force the 

particle distribution toward a linear theory 
marginal stability state. In 3.3 we show that the 

ad.iustm•nt to marginal stability is described by 
diffusion in velocity space at a rate proportional 
to .the square of the wave amplitude. For the 
whistler and ion cyclotron modes, this amounts 

to pure pitch angle diffusion. An equation of 

wave energy transport is discussed in 3.5. •VIany 
of these specific formulas have been more for- 

mally derived by Chang and Pearlstein [1964] 
and Andronov and Trakhtengerts [1964]. 

Fishman et al. [1960] observed in connection 

with the theory of collision-free shock waves 
that plasma turbulence could be more tractable 

theoretically than aerodynamic turbulence. In 
contrast with aerodynamic turbulence, which 
consists of eddies stationary with respect to 

the fluid, the waves comprising plasma tur- 
bulence do propagate and, as a result, high- 
order correlations do not have time to form. 

Therefore, the waves have random phases. In 

addition, plasma waves in many cases can de- 
rive energy only from a limited reservoir and 

cannot grow to large amplitudes. For both these 
reasons, it is fruitful to view a weakly turbu- 
lent plasma as an ensemble of particles and 

small-amplitude collective modes (waves) whose 
properties are determined in linear theory. ]Dis- 
sipation must then arise from combinations of 
interactions between particles and waves. Par- 

ticle-particle interactions or ordinary Coulomb 
collisions are usually negligible. Turbulent dis- 
sipation is created by two distinct nonlinear in- 
teractions' wave-wave scattering [Sturrock, 

1957, Fishman et al., 1960; Camac et al., 1962; 
Kadomtsev and Petviashvili, 1963], and wave- 

particle interactions [Drummond and Pines, 

1962; Vedenov et al., 1962]. Wave-wave scatter- 
ing is the loss of coherence of a wave propagating 
in a medium made nonuniform by other waves. 

Where the waves are almost linear, this amounts 

to creating sum and difference modes in a bi- 
nary wave collision. For the present problem 
wave-wave scattering is unimportant, and we 
shall not discuss it further except for an a 

posterJori justification of its neglect (section 8). 
The wave-particle interaction appears even 

in linear theory, since wave growth or damping 
depends on gradients in the velocity distribu- 
tion at resonance. The nonlinear effect is that 

the wave in turn changes the resonant particle 
distribution at a rate dependent on wave en- 

ergy. 

3.2 The approach to marginal stability. To 
show that nonlinear wave-particle interactions 
modify wave growth to reduce the instability 
and to force the velocity distribution toward a 

marginal linear stability state, we will first discuss 
the change in kinetic energy of a single electron 
interacting with a whistler. For each wave 
quantum emitted or absorbed the change in 
wave energy is •/•. Similarly the change in 
momentum is •k. The change in parallel energy, 

dE i, of the interacting particle is then 
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and the ratio of the total change in particle 
energy, dE ---- --•, to the change in parallel 
energy is then 

dE/dE• = w/k V• (3.1) 

Using (2.18) this may be rewritten as 

dE 1 dEl 
'-- •• or 

* dE• dE,, 191_ i 
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(a.2) 

In agreement with the correspondence principle, 
Planck's constant does not appear in the final 
result. A more classical derivation of (3.2) can 

be found, for example, in Brice [1964]. 
If the particle distribution is unstable, so that 

wave energy increases with time, a majority of 
resonant particles must lose energy, dE < O. 
This, however, necessarily implies that dE u > 0 
for this majority. The anisotropy causing the 
wave growth is therefore diminished and subse- 
quent wave growth slowed. This must lead to a 

final state where unstable anisotropies are 
reduced, linear growth rates are zero, and there 
is therefore a constant finite wave intensity. The 
time to reach the marginal stability condition 

from an initially anisotropic distribution is 
determined essentially by the initial growth rate. 
Since the wave energy at first grows exponentially 
with time, it will be sufficiently intense to reduce 
the anisotropy after a few e-folding times corre- 
sponding to the initial growth rate. 

Conversely, if the particle distribution cor- 
responds to a negative growth rate, the waves 

that drive the distribution back to marginal 

stability cannot be generated internally by 

particles. However, should there be an external 

source of waves, the particles will absorb wave 
energy from it and their distribution will ap- 

proach marginal stability. Thus, nonlinear ef- 

fects increase the transparency of the plasma. 

Since both initially unstable distributions, 

which produce their own wave energy, and 
initially stable distributions in the presence of 
externally maintained waves approach margi- 

nal stability, it is tempting to suggest that 
weakly turbulent plasmas will always be near 

marginal stability. If disturbances that distort 
the velocity distribution act slowly compared 

with the readjustment back to marginal sta- 

bility, the distribution never greatly departs 

from marginal stability. In complicated physi- 
cal obje•cts, such as the magnetosphere, it can- 
not be strictly guaranteed that the growth 
rate for every wave will decrease monotonically 
and smoothly. However, it seems clear that 
large growth rates cannot be long tolerated. 
3.3 Weakly turbulent pitch angle dieusion. 
The approach to marginal stability and wave-, 
growth self-limitation is properly described by 
diffusion of particles in velocity space at a rate 

proportional to the wave energy. A given par- 
ticle may either gain or lose energy to a par- 

ticular wave depending on its initial phase rela- 
tive to the wave. Thus waves take particles 

initially at the same velocity and spread them 
over a region in velocity space--in other 
words, diffuse them. When the pitch angle dis- 

tribution is unstable, diffusion creates a flux 
from large to small pitch angles, which de- 

creases the net particle energy, increases the 

wave energy, and reduces the anisotropy. Dif- 
fusion and wave growth stops when isotropy is 
attained. 

The ratio of the change in parallel and perpen- 

dicular energy for a particle interacting with a 
wave of a given frequency was given in (3.2). 
This ratio defines the direction in phase space 
along which particles will diffuse. Making use of 
the relation 2.19 between wave frequency and 

parallel energy of the resonant electrons, (3.2) 
may be integrated to give the surfaces along 
which electrons diffuse. These surfaces are also 

shown in Figure 1. Except where the parallel 

energy is less than the critical energy, these 
diffusion surfaces dosely approximate circles, or 

pure pitch angle diffusion. This is explainable in 
terms of (2.19) and (3.2). When ER 

w[[•-! << 1 and dE • w[19-1 dE n. In this range, 
the pitch angle is altered without a significant 
change in energy. Here the wave magnetic 
forces dominate the wave electric forces. At the 

opposite extreme, when E• <• Ec and •[l•-I • 1, 
electric forces dominate, and the relative change 

in particle energy is greater than the pitch angle 
change. Figure 1 indicates that the energy 
diffusion regime does not become important 

until E•/Ec • 1. Henceforth, we shall consider 
turbulent diffusion only on surfaces of constant 

energy, corresponding to the approximation 

,o/la-I << 1. 
Now we demonstrate in semirigorous fashion 

that resonant interactions with randomly phased 
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whistler mode weak turbulence are described by 
a pitch angle diffusion equation of the standard 
form. The wave-particle interaction is a stochas- 

tic process in which particles in resonance scatter 
from a random background of wave fluctuations. 

If the mean velocity change in a given encounter 
is small, the distribution function obeys a Fokker- 
Planck equation [Chandrasekhar, 1960] which we 

write immediate in spherical coordinates, since 

we know that, to lowest order in •0/If2-1 or 
E,/ER, there is only a change in pitch angle 
(Aa), and no change in speed (Av) or Larmor 
phase 

OF- 1 

Ot sin a Oct 

ß -- sin a -•- F- -{- sin a •aa (DF-) (3.3) 
v-- 

Angular brackets denote an average over the 
fluctuations spectrum; At is the mean time step 
per wave collision. 

The first term, the so-called dynamic fric- 
tion, appears to dominate in the smallness 

parameter Aa. However, to lowest order in 
this term is zero because it is equally probable 

that electrons decrease as increase their pitch 
angles, since they are randomly distributed in 
phase with respect to the waves. However, 
when B'(a) and At are functions of a, electrons 

scattered in one direction experience a subse- 

quently greater random force than those scat- 

tered in the other, and this amounts to nonzero 

dynamic friction in next order. 

Here we have used the definition of D given in 
(3.3). Combining the two terms which are 

second order in (Aa), the stochastic (3.3) re- 
duces to a diffusion equation 

OF- 

Ot 
1 0 Dsina 

sina Oa 
(3.5) 

We note in passing, for the idealized case of 

an infinite plasma with no loss of particles or 
wave energy, that we would expect diffusion 

eventually to reach a steady state with zero flux. 

Equation 3.5 has only two zero-flux, time- 

stationary solutions. The first, when D = 0, is 

the trivial case corresponding to no wave energy 
present to drive pitch angle diffusion. On the 

other hand, when there is wave energy so that 
D • O, OF/Oa = 0 is time stationary, regardless 
of any dependence of D upon a. Pitch angle iso- 
tropy is just the mgrginal stability state corre- 

spond to the •0/]f2- I << 1 approximation. The 
form of (3.5) therefore demonstrates that when 

D • 0 the pitch angle distribution must evolve 

irreversibly toward a final state of m•rginal 
stability to all waves. Since the growth rate is 
then zero, the wave distribution is also stationary. 

3.4 Pitch angle diffusion coeffwient as a ]un•- 
tion o! wave energy. Since the amplitude of 
waves resonant with particles of different veloci- 

ties parallel to the magnetic field may differ, the 
scattering rate, and therefore the diffusion 

coefficient, is in general pitch-angle dependent. 
We estimate the change in pitch angle for a 
given resonant velocity due to interactions with 
waves in a narrow wave-number band Of width 

Ak about resonance. The relationship tan a ---- 
--vi/v • implies that Aa • --Av •/vi. Av • is 
given by the net acceleration due to those waves 

near resonance multiplied by the time a typical 
particle remains in resonance. 

so that 

Av, ev.B • At B ! 

D •,o 2At •'• 2 At (3.7) 

where B is the ambient ma•etic field stren•h, 
and B' • the wave amp•tude near resonance. 

The change •th time of the relative ph• of 
pa•icle and wave, •, is •ven by 

d4/dt = •,, -- lwl (3.8) 

At is rougMy the time a p•icle at &stance 

•/2 out of resonance changes its ph•e by 1 
ra&an, or, from (3.8), At • 2/•v•. Thus, 
•fing v• = v cos a, D •comes 

I-t 
vlwl ' 

In the •t of small •, (B')a/• is just the 
ener• per u•t wave numar at resonance, B• •. 

Since [•-I/v is a typical wave numar for the 



14 KENNEL AND PETSCHEK 

whistler mode spectrum, 

= Icos -I 

good appro•imstion, whistler and ion cyclotron 
mode radiation drive diffusion purely in pitch 
angle. The diffusion tends to force the particle 
distribution toward marginal stability. 

When the wave spectrum is reasonably smooth, 

B•k* is a good estimate of the total wide band 

wave intensity in the whistler mode. The factor 

1/Icos a I has bee n explicitly retained to illustrate 
that particles with large parallel velocities on a 
give n velocity shell cross parallel-aligned inhomo- 
geneities more rapidly than those with mostly 
perpendicular velocity. Provided that there is an 

equal intensity of waves propagating parallel 
and antiparallel to the external magnetic field, 
the diffusion rate in the hemispheres 0 _• a _• •r/2 
and •r/2 _• a _• •r will be the same. 

Entirely similar arguments lead to a diffusion 
equation of the same form for ions. Here the 

diffusion coefficient D is roughly 9+•*(B•/B) •, 
where B•k* is the energy density in ion cyclotron 
waves. Because the range of frequencies in ion 
cyclotron resonance with particles is narrow, the 
assumption •o/9 + << 1 corresponding to pure 
pitch angle diffusion is more restrictive.' 

3.5 Wave dynamics. So far, there has been 
no attempt to account for the wave energy which 
is created and absorbed in cyclotron interactions 
and which determines the rate of pitch angle 

diffusion. Wave energy density can change by 
growth or damping in resonant interactions, and 

by spatial transport at the group velocity. The 
fact that waves can propagate out of finite 
systems can be of critical importance. We make 

a closed set of equations by writing the appro- 

priate equation for wave energy transport, 
noting that resonant interactions are adequately 
described by the linear growth rate y•. 

(o/o + ß = , 

IrG(k) is the group velocity, and • is the 
growth rate appropriate to a mode with wave 
number k computed at any instant. 

3.6 •ummary. Second-order nonlinear 
wave-particle interactions tend on the average 

to reduce the absolute magnitude of the linear 

growth rates computed from the velocity dis- 

tribution. Since gradients in velocity space de- 
termine the growth rate, the reduction in 

growth rate is a velocity space diffusion process 
whose rate is fixed by the wave energy. To a 

4. STEADY-STATE DrrFUS•ON •NTO A 

LOSS CONE: 'DRIZZLE' 

4.1 Introduction. Weak whistler and ion 

cyclotron turbulence clearly are promising can- 

didates for the explanation of the observed par- 
ticle precipitation. In sections 2 and 3 we 

developed the conceptual framework and 

mathematical apparatus necessary to under- 
stand pitch angle scattering. To apply this 

understanding to the real physical problem, we 
develop in this section specialized solutions of 

the diffusion equation relevant to the magneto- 
spheric plasma. In sections 5, 6, 7, and 8 we 
shall finally test these ideas by comparison 
with observations. 

When the plasma is finite, so that both waves 

and particles can escape from the system, the 
concept of the approach to marginal stability 
must be replaced by that of steady-state dif- 
fusion equilibrium. The underlying mechanism 
is the same in both cases. Unacceptably large 
growth rates are reduced by the ensuing en- 
hanced pitch angle diffusion. However, with- 
out replenishment of particles and waves in a 
finte plasma, the whole process would die out. 
With replenishment, a steady state is conceiv- 
able. 

It is clear that escaping wave energy can be 
replaced by generation from an unstable par- 
ticle distribution if the growth rate is positive 
and sufficiently large, in other words, ff the 
-medium has gain. Suppose that whistler and 
ion cyclotron mode radiation bounces back and 

forth along a tube of force between points that 
may reflect imperfectly. Then the condition 

that the wave intensity remain constant is 

err,. 1 1 1 
--• or y--•-•ln•----v (4.1) 

where R is the reflection coefficient; 7 is a 
mean growth rate, typically the equatorial 
value for reasons cited in section 2; and T• is 

the group delay time, or one wave packet 
bounce period. Since R enters only logarith- 
mically, 7 must be only a few times the basic 
frequency 1/T• to maintain wave equilibrium. 

This only deflects the question back to the 
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particle distribution. What keeps the growth 

rate positive when, left to its own devices, it 
would revert to zero? For it to be positive at 
all, a fiat pitch angie distribution must be main- 

tained. There must be sources of pitch angie 
anisotropy--macroscopic mechanisms that 

steadily fiatten ,the pitch angie distribution or 
add particles preferentially with fiat pitches. 

Not only must the growth rate be positive, but 

also it must have the proper magnitude to 
satisfy (4.1). Since steady diffusion sends par- 

ticles toward the loss cone, where they are lost, 
particles must clearly be replaced. Therefore 
there must be local acceleration mechanisms. 

To our knowledge, no entirely satisfactory ac- 
celeration mechanism has been proposed. How- 
ever, ass,,ming that anisotropy and acceleration 

mechanisms exist, we can discuss the diffusion 
equilibrium that must ensue. 

4.2 Di•]usion solution including! a loss cone. 

Three basic physical time scales, the wave 

escape time T., the particle escape time TB, 
and the particle hfetime T•, parametrize the 
magnetospheric diffusion equilibrium. We shah 

approximate T., which has already been de- 
fined, by 

We first find {he solution inside the loss cone, 
and then match this at the loss cone boundary 
to the appropriate solution outside. Particles in 
the loss cone will be lost from the tube of force 

in a time comparable with TB. We estimate tlxis 

sink by a term of the form FITs. The diffusion 
equation within the loss cone a < ao is there- 
fore 

- = o 
assuming that ao C• 1. 

If B2k • is assumed constant, corresponding 
to a wave spectrum independent of frequency, 
the solution to (4A) which is finite at a -- 0 

r = (4.5) 

where X(v) is an arbitrary function and Io is 
the modified Bessel function. X will be fixed 

by matching at a -- ao with the solution out- 
side the loss cone. 

We must assume an undetermined particle 
source outside the loss cone which maintains a 

steady state. The diffusion equation for this 
region is therefore 

(4.2) 

where R• = 6.4 X 10 • cm, L is the equatorial 

distance in earth radii, and Vo is the equatorial 
group velocity. 

Once a particle has been scattered into the 
loss cone at the equator, it remains in the dif- 

fusion region a time T• before it is lost to the 

atmosphere. The escape time T• is roughly the 
quarter-bounce time. 

T•, • LR•[ VR (4.3) 

A fiat pitch angle particle diffuses to the loss 

cone in roughly 1 lifetime T•. A more precise 
definition of T• is the total number of trapped 

particles on a tube of force divided by the rate 
they diffuse into the loss cone. In this section 

we solve formally for the pitch angle distribu- 
tion in diffusion equilibrium to find both the 

number of trapped particles and the loss rate-- 
and therefore the lifetime-in terms of the 

equatorial wave intensity and the escape time 

T•. The equilibrium pitch angle anisotropy is 
thereby fixed. In consequence, we shah be able 
to show in section 5 that T. sets an upper limit 
to stably trapped intensities. 

1 0 Dsina = s(a •) sina c•a ' 

• • (4.0) • • • • •i 2 

where • (•) represen• the ad•tion •o t 
energy shell of new panic]es t• fi•t pitch• 
ma•a• the ]•ss flux. If We tssume for 

pScity t• aH pa•icies •re •jec•ed • 
pitch• (so that •(•) : 0 except •t • -- •/2), 
the d•ion fi• • const•t at any angle 
•/2 and eq•l to S. 

D* tan a • -o 

ß - = s(o) (4.7) 
S • a•o the rate that pa•icles enter the lo• 

cone •d is therefore the precipi•tion fi•. 

•suming that B•k • • co•t, we •tegrate 
(4.7) once more to •d F 

r = s(0/v* + z(0 (4.s) 

where Z • • arbitra• co•t•t, and D•/cos 
a = D. Matc•g the solutio• •ide •d out- 
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side the loss cones (4.5) and (4.7), by requiring 
that F and the diffusion flux be continuous, 

gives two conditions that eliminate X and Z; 

after matching, (4.8) becomes 

s0) 
•(•' •) = •'(•' •) - v* 

{h(ao) -f- ln sin a } ß -o < - < •/• (4.•) 
sin ao 

where h(a•) is the loss cone solution (see 

(4.10)) evaluated at the boundary a = Co. 

•(., •) = •- •(-) 

sO) {•/o*• •o(./v'•*•)} -- O* a o I,•ao/%/'•) (4.10) 
Thus, knowing the loss rate, T•, ao, and D*, we 
can calculate the corresponding equilibrium 

pitch angle distribution. (The above solutions 

are, of course, symmetric about a = w/2.) 

For pure pitch angle diffusion, the lifetime 
is the total number of trapped particles on a 

given energy shell divided by the loss rate. 

•" - o* •. si•. a(-o) + • .s.•. - ao sm ao 

• •, •(•o) - m • •n (4.•) 

The diffusion strength is parameterized by 

•o = ao/X/D*T• 

The pitch angle profiles observed in the loss 

cone by O'Brien [1964] vary from quite steep 
to nearly isotropic. These correspond to 'weak' 

and 'strong' diffusion, in two limits of the 
parameter Zo. In weak diffusion, there are many 

more particles at the edge of the loss cone 

(• •- o•) than at the center, • = 0, and many 
more still at flat pitches • = •r/2 thaa near •he 
loss cone. In this limit, Zo • 1, and the loss cone 
distribution increases exponentially from • = 0 

to • = • according to the asymptotic repre- 
sentation of the Bessel functions. Here 
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At the opposite extreme, the wave intensity 
may sometimes be sufficiently intense to keep 
the pitch angie distribution nearly isotropic 

even in the loss cone. The rate of particle pre- 

cipitation can then depend only on the size of 
the loss cone. Therefore, even when diffusion is 

very strong, there is a minimum allowable hfe- 

time in steady state, TL*, which is independent 

of the details of wave intensity. Taking zo << 1 

in'the Bessel functions gives 

Tr.* • 2TB/ao •' • 4TBL s (4.13) 

4.3 Special moments of the diffusion equi- 
libtitan distribution. For weak diffusion [h(ao) 
(< 1] the above distribution in pitch angle 
is independent of the particle source strength, 
the diffusion coefficient, and the number of par- 

ticles. S/D* appears only as a multiplying con- 
stant, and does not determine the functional de- 

pendence on a. As a result, the anisotropy, A, 
is independent of the above parameters. We 

have made a rather arbitrary choice in assum- 
ing that the source of particles, $, is concen- 

trated at a -- •r/2. We would, however, not 
expect order of magnitude changes from other 
choices of source distributions. 

If we specify the particle energy distribution, 
we can calculate A and •/ for diffusion equi- 
librium. In addition, we can relate •/ to the 
omnidirectional flux, J, which is an observed 
quantity. Assuming that the total distribution 
has the form NF(a)$(v)/D*, where N is the 
number density and 

$(v) Q 

o* - (..' + 

Q = normalizing constant (4.14) 

and using (4.9) and (4.10) for F(a), we may 
calculate the moments •/ and A for the weak 
diffusion case. We also drop terms higher order 
in o•. 

•1 • v. dv. 2•r• V• •- In in ao 

•(=•_=) •, m +0(0 
(4.12) T •. • 1/O* In (2/eao) 

when ao << 1. In this regime, the lifetime de- 

pends primarily on wave intensity and only 
logarithmically on the size of the loss cone. 

1 

2 ln{(1/ao) -[- 0(1)} 

Thus, for auroral field lines, A • 1/6. 

(4.15) 

(4.16) 
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The accurate value of A is not crucial in 

further discussions. However, the idea that in 
diffusion equilibrium A will be a constant some- 

what less than unity is most important. This 

suggests that unacceptably large growth rates 
cannot be reduced by isotropization in pitch 
angle alone, but that resonant particles must 

be lost as well. In effect it is impossible to have 

a very small A and a very large ,• and be in 
equilibrium to all wave modes. This conclusion 
will be used in sections 5 and 6 to determine the 

upper limit on stably trapped particle in- 
tensities. 

Since the fraction of particles near resonance, 

,•, can play a crucial role, it is important to 
relate ,• to the quantity J/V•V (which has the 
same dimensions as •), since J the omnidirec- 
tional flux, N the total number density, and the 
resonant velocity VR are observables. Using the 
distribution (4.14), we compute the moment 

J/VRN in the weak diffusion limit and com- 

pare with ,• (VR). 

V•,N• "'• V• 

f r/2 ß .) (4.17) 

2 
Thus, the two moments ,• and J are simply re- 
lated by the appropriate dimensional con- 

stants and a numerical factor of order unity. 

This numerical factor is essentially independent 
of both the energy spectrum and the size of 
the loss cone. 

5. WHISTLER MODE UPPER LIMIT TO 

STABLY TRAPPED ELEc'rao• FLUX 

5.1 Introduction. It was shown in section 

4 that the pitch angle anisotropy A in steady- 
state weak diffusion is virtually a constant. This 

led to the suggestion that the whistler mode 

growth rate must approach its steady-state 
value by precipitating resonant, electrons. To 
maintain a steady state, there must be an elec- 

tron acceleration source continually creating 
new resonant particles. The rate at which the 
creation occurs determines the lifetime and the 

magnitude of the precipitation flux. However, 
the actual maximum omnidirectional flux that 

can be stably trapped is independent of the 
acceleration rate. Resonant electrons accumu- 

late, owing to acceleration, until their intensity 

is sufficient to cause self-excited pitch angle 

diffusion. Further acceleration then only re- 

suits in precipitation, and the trapped flux can- 
not increase. This limiting electron flux is cal- 

culated and compared with observations in this 
section. The observed electrons •40 key are 

found to be close to their whistler self-excitation 

limit, with correspondingly heavy precipitation, 

for the range L • 4. 

5.2 Calculation of limitino electron flux. 

The maximum stably trapped flux, J*, will be 
implicitly given by equating the wave growth 
rate to the wave escape rate 

•f • (ln G)/T. (5.1) 

since ¾ involves the moment • which can be 
related to an omnidirectional flux J. G is the 

gain on one wave traversal of the active region 

of a tube of force necessary to balance wave 

absorption and/or losses. G must be essentially 

equal to l/R, the reflection coefficient.discussed 

in section 4.1. A factor of 10 in In G corresponds 

to 2 X 10' in wave amplitude, 4 X 10 • in wave 

energy. Although the detailed physical prop- 
erties that determine G are not well known, it 

is clear that ¾ cannot be more than a few times 
the wave-escape frequency 1/T,. 

Using the expression (2.20) for the growth 
rate, (4.2) for T,• Table 1 for the group veloc- 

ity, and (4.17) for the omnidirectional flux, we 
solve (5.1) for J* ( • E•). 

J*(• E•) • 1 
A- -- 

1 

.B In G/c m, see (5.2) 
l 

where œ is the effective length of the line of 

force in earth radii (roughly the equatorial dis- 
rance of the line of force); B is the equatorial 
magnetic field strength in gauss; R• = 6.4 X 
10 • cm, an earth radius; c ---- 3 X 10 TM cm/sec, 
the speed of light; and e -- 5 X-10 -•ø esu, the 
electronic charge. A- is the anisotropy in dif- 

fusion equilibrium, typically 1/6. When the 

•/ [•-] • 1 approximation is valid, so that 
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o•/ ]f•-i • E,/E•, (5.2) reduces to 

= _ 

ß 10•oB In G./cm•. sec (5.3) 
l 

We first examine the energy dependence of 

J* implied by 5.3. At the low-energy end of 
the spectrum, when EdE• • A- • 1/6, J* is 
singular and becomes negative at lower energies. 
However, this singularity occurs when the 

•/ .]f•-] << 1 appro•rnation begins to break 
down, and may not be real. A more accurate 
calculation is needed to clear up this point. 

In addition, J• (>E•) is independent of 
energy at high energies. In other words, the 
limiting spectrum is flat. Since the actual spec- 
trum cannot be fiat to arbitrarily large energies, 
there must be a transition energy above which 

the trapped electron intensity has not reached 
its self-excitation limit. Above the transition 

energy, electrons do not have sufficient gain to 
precipitate, and below it, they can precipitate 
when there are acceleration sources. Such a 

transition with increasing electron energy from 
a diffusion-dominated to a stably trapped regime 

is necessary to explain the fact that very high 

energy electron precipitation (E > 1.6 Mev), if 
it occurs, is unrelated to that at lower energies 

[O'Brien, 1964]. Above the transition energy, 
the observed electron integral energy spectrums 

will be fixed by the acceleration mechanism; 
below it, they should be reasonably fiat. It is 
important to note that the limiting flux criterion 
allows hard energy spectrums for the trapped 

electron population and is not inconsistent with 
the observations of 1/E •-• spectrums [Mc- 

Diarmid eta/., 1963]. 

If electrons are continuously accelerated, their 

trapped flux will eventually be limited by 
whistler mode pitch angle diffusion. The flux at 

which they are limited does not depend on the 
rate of particle acceleration. Therefore, in 

regions where acceleration is continuous, the 
observed fluxes should be consistently near 

critical, with intensity variations dependent 
only on changes in the microscopic properties 
of the plasma, B, 2, E,, and so on. Whenever 
observed fluxes are well below their limit, there 

can of course be intensity variations that de- 

pend on the acceleration mechanism. Thus, the 

trapped electron population will most clearly 
respond to the acceleration mechanism at low 
L shells, where critical fluxes are high, and at 
high particle energies, because high-energy 
particles are less often near flux-limiting insta- 
bility. 

When acceleration is continuous, more and 
more of the electron distribution reaches the 

limiting flux and the transition energy there- 
fore increases with time. Thus, observed trapped 

particle energy spectrums should become pro- 
gressively harder with time. For instance, when 
acceleration is enhanced, high-energy electrons 
should have their peak after the low-energy 
electron fluxes. This is somewhat reminiscent of 

behavior described by Freeman [1964] for mag- 
'netic storms and for variations with K•. 

In the comparison of J* (>40 kev) with the 
corresponding observed electron fluxes, we may 
neglect EdEn. This assumption makes an error 
of a factor 2 at L • 3 and a progressively 

smaller error at larger L shells. From the analysis 
of section 4 we take A- • 1/6. For the magnetic 
field strength B we substitute (2.25), (2.26), 
and (2.27). We assume that the effective length 
of the line of force has no diurnal variation, and 

we estimate In G/œ by 3/L, where L is the 

equatorial distance of the tube of force in earth 
radii. The results estimated for J* are probably 
accurate to a factor 3. 

Y*(noon, > 40 key) 

7 X 10 •ø 
m 2 ec) - -}- 10 ø (/c s 

•'• L ß 

Y*(dawn, evening, > 40 kev) 

7 X 10 •ø 
- (/cm 2 see) (5.4) 

L ß 

J*(midnight, > 40 key) 

7 X 10 •ø 2 X 10 * 
•'• L 4 '-}- L 

-- 5 X 10 ø (/cm •'sec) 

In Figure 3 we plot J* (>40 key) calculated 
in the above way as a function of radial dis- 
rance and for three local times: midnight, dawn 

or evening, and noon. Superposed is the range, 
minimum to maximum, of >40 key electron 
fluxes observed near the equatorial plane by 

Explorer 14 over a period of months [Frank, 
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Fig. 3. Limitation on trapped •>40 key electron fluxes. The theoretical limiting flux J* 
is compared with Explorer 14 equatorial trapped fluxes as a function of the equatorial radial 
distance. The largest observed trapped fluxes are indeed close to the theoretical upper limit. 
We also show the distribution with L shell of Injun 3 precipitated electrons. As expected, 
strong precipitation occurs only where trapped fluxes can be comparable with the calculated 
limiting flux. 

Van Allen, and Hills, 1964; Frank, 1965] and 
also the average distribution with L shell of 

•40 key precipitated elect.rons observed on 

Injun 3 [O'Brien, 1964]. The highest equatorial 

fluxes observed lie quite near the calculated up- 
per limits at each radial distance. Moreover, 

the observed equatorial fluxes were always well 
below critical for L • 4, and there was little 

precipitation. On the other hand, for L •, 4, the 

equatorial fluxes were often critical, and there 
is considerable precipitation. Thus, we con- 

clude that the latitude distributions of pre- 

cipitation and equatorial trapped intensities are 
mutually consistent. 

In Figure 4, we compare the theoretical flux 
limit for L -- 5, 6, 8, and 10 with the actual 
distribution of fluxes measured near the equa- 

torial plane on Explorer 14. Although occasional 
points violate the limit, the large majority lie 

in the region below the limit. At L -- 5, when 

the observed electron fluxes are ordinarily less 
than J• (•,40 kev), there is a reasonable scatter 

of points corresponding presumably to a de- 
pendence on the acceleration mechanism. At 
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Fig. 4. Limitation on trapped electrons •40 kev. This diagram permits an estimate of the 
degree to which observed particle fluxes approach their limiting value. We have superposed 
the calculated J* on Explorer 14 data published by Franlc [1965]. The majority of points are 
clearly below the predicted limit. The small scatter of points near but below the limit at 
L = 6 suggests that a continuous acceleration mechanism is operative here. 

L: 6, the observed fluxes cluster quite closely 
about J* with a smaller scatter than at L: 5. 

At L = 8 and 10 the scatter again increases, but 
here it may well be due to time changes in the 
magnetic field strength, length of the line of 

force, and so on, which would be far more pro- 
nounced than at L: 5 and 6. We would par- 
ticularly expect the night side to be strongly 
affected by variation in the solar wind and the 
magnetospheric tail flow. The behavior at L = 



LIMIT ON STABLY TRAPPED PARTICLE FLUXES 21 

6 in particular, and less clearly at L -- 8 and 10, 
suggests that a continuous acceleration mecha- 
nism exists for L > 6 which maintains the 

trapped electron intensity near its self-excitation 
limit. 

Since the Explorer 14 observations extended 

over some months, many local times were 

sampled. The data show some diurnal intensity 

variation which appears to be consistent with 

the predicted variation given by (5.4). There 

is also some evidence from Figure 4 that ob- 
served 40-kev electron fluxes are closer to the 

critical level on the morning side of the earth 
than at other local times. This would be con- 

sistent with a morning precipitation maximum. 
Such a maximum has been observed with satel- 

lites [McDiarmid and Budzinski, 1964] and by 

riometer absorption techniques [Hartz et al., 
1963]. 

6. LIMITATION ON TRAPPED PROTON 

INTENSITIES 

The limiting proton flux based on the ion 

cyclotron instability is found in precisely the 
same way as for electrons. Thus 

c 
1 •r eR• 1 

A*-- -- i 
When E•/E• << 1, then •0/• + • x/E•/E•, so that 
(6.1) reduces to 

z*(> - X/EJE) 

ß 101o BIn G 1 ec) (6.2) 

When x/'E•/E• << 1, the limiting electron and 
proton fluxes are identical. Therefore the number 
density of trapped energetic protons can be as 
much as 40 times larger than the density of 

electrons at the same energy. 

The limiting intensity >120 key protons 

corresponding to self-excitation of ion cyclotron 

waves is plotted in Figure 5. Since n/E•/E• for 
these protons becomes roughly 1/10 at L • 4, 
this calculation becomes sensitive to the denomi- 

nator in (6.2) (A + •, 1/6), and significant errors 

may"•'oeeur at low L shells. Superposed are a 

number of radial distributions referred to the 

equatorial plane of protons with energies between 
120 key and 4.5 Mev observed with Explorer 12 

[Davis and Williamson, 1963]. We have multiplied 

the directional intensities given by Dads and 
Williamson [1963] by a factor 4•r to translate to 

the omnidirectional intensities shown in Figure 5. 
This procedure is probably as accurate as the 
calculation of the limiting flux. The data shown 
cover a period of only a month, but the closeness 

of the observed fluxes to the limiting flux could 
imply an acceleration mechanism that is balanced 
by precipitation beyond L -- 4. Since Davis and 
Williamson [1963] found relatively soft proton 
energy spectrums, most of the protons observed 
must have been near the detector threshold of 

120 kev. More recently, Davis et al. [1964] have 
indicated that the intensities of observed 100- 

key protons are relatively stable with time, 
whereas 1-Mev protons exhibit larger time 
variations. This is consistent with the idea that 

1-Mev protons usually lie above the transition 

energy (i.e., are well below the limiting flux), do 

not have sufficient intensity to be unstable, and 
therefore reflect the changes in the acceleration 
mechanism. Moreover, the constancy with t_ime 
of > 120-key protons further strengthens the idea 

that these protons are maintained at their 
limiting flux. 

7. CONSISTENCY OF L•FET•ME AND OBSERVED 

PITCH ANGLE PROFILES 

The satellite Injun 3 has obtained the dis- 
tribution with pitch angle of the fluxes of elec- 
trons >40 kev near the earth. We use these data 

to infer an empirical diffusion coefficient that 

corresponds to a lifetime in agreement with 
other, independent estimates. It is not possible 

to predict this lifetime without knowledge of 
the acceleration sources, but we can state that 

the lifetimes and observed pitch angle profiles 
are mutually consistent, thereby strengthening 

the diffusion hypothesis. 

To form a correspondence between Injun 3 

pitch angle data and diffusion theory, we as- 

sume that cyclotron resonance interactions oc- 

cur only in a narrow structureless interaction 

region in the geomagnetic equatorial plane. To 

translate data collected by Injun 3 at 1000-km 

altitudes to the appropriate equatorial values, 

we assume the electrons to travel adiabatically 

outside the interaction region. Second, we as- 
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Fig. 5. Limitation on trapped protons. Here 
we have superposed Explorer 12 radial distribu- 
tions of trapped protons with energies between 120 
key and 4.5 Mev and the theoretical limiting pro- 
ton flux J* (> 120 key). For L > 4 it appears that 
protons are also accelerated to their limiting fluxes. 

sume that the functional dependence on pitch 

angle of the flux >40 key at 1000 km, which 
is what O'Brien [1964] observes, is similar 
to that of the equatorial distribution func- 

tion itself in the following sense. The equatorial 

pitch angle distribution should be given by 
(4.9) and (4.10). If the observed particles have 
energies well above B'/8•rN, each energy shell 
will have the same pitch angle distribution so 
that the directional flux j inside the loss cone 
will have the form 

; $(v) v 

. 
- 

$* is the rate at which flux is created by the ac- 

celeration source. Then, assuming that the de- 

tectors scan a s•;fiqciently narrow solid angle, the 
observed flux distribution at 1000 km can be 

related to (7.1) by translating to the ap- 

propriate pitch angle using the adiabatic rela- 
tionship sin' a/B -- constant. A similar state- 
ment holds for the flux pitch angle distribution 
outside the loss cone. Knowing j at two points 

inside the loss cone defines D*, since 

j(a2--• • exp D••J (7.2) 
assuming O•o/w/D*Tr • 1 or 'weak' diffusion. 
Note that the diffusion coefficient and lifetime 

depend primarily logarithmically on the ratio of 
directional fluxes. 

The Injaa 3 precipitation data [O'Brien, 
1964] contain short 'splashes' where the di- 
rectional flux approaches pitch angle isotropy. 
These splashes seem to be superposed on a 
steady, weak precipitation background, or 
'drizzle.' During drizzle, the observed fluxes 

typically decrease by a factor 10 between de- 
tectors spaced 1 ø apart in equatorial pitch angie. 
This corresponds to a drizzle diffusion coefficient 
of 

i/D* •, 3 X 104Tr sec (7.3) 

and, assuming L -- 6, a lifetime (from (4.12)) 

T•. • 3 X 104 sec (7.4) 

This lifetime is in rough agreement with the 

estimate 10 • see made by O'Brien [1962] on 

the basis of Injun I data. There he used the 

observed precipitation fluxes and independent 
information on equatorial fluxes (which permits 

an estimate of the total number of trapped 
particles on a tube of force) to generate an 

approximate lifetime. We use the assumption of 

diffusion equilibrium and the observed pitch 

angle profiles and find a consistent lifetime. 
Both these estimates yield the 'instantaneous' 

lifetime' in other words, the lifetime a particle 

would have if precipitation continued at pre- 
cisely the same rate. The actual residence time 

of any given parfide could be quite different. 

For instance, 'splashes' and other nonsteady 

enhanced precipitation could reduce the resi- 
dence time below its steady-state 'drizzle' value. 

On the other hand, the equatorial intensity of 
trapped particles may not always be sufficiently 

great to allow precipitation to occur, thus 

lengthening the residence time. 
Some idea of the long-term behavior of the 

pitch angle distribution may be obtained from 
the median flux distribution'in B and L (which 

is equivalent to a pitch angle distribution) both 
inside and outside the loss cone recently pub- 

lished by Armstrong [1965]. The detector on 
Injun 3 oriented along the magnetic field saw 
electrons primarily in the loss cone. Since this 
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TABLE 2 
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L 4 5 6 7 

Lifetime based on median distribution, sec. 
Required whistler intensity, v 

10 • 3 X 10 • 5 X 10 • 7 X 10 • 

2 X 10-' 10 -• 8 X 10 -• 6 X 10 -• 

detector had an opening angle of 43 ø, all the 
electrons detected were in the loss cone for 

B • 0.27 gauss, roughly. From these loss cone 
distributions we can compute the diffusion 
coefficient and lifetime as before. These esti- 

mates are •,mmarized in Table 2. Knowing the 

diffusion coefficient D* and the equatorial gyro- 
frequency, we can compute the equatorial wide 
band whistler mode intensity using 3.10. These 
are also listed in Table 2 but are not discussed 

until section 8. We conclude that the median 

pitch angle profiles in the loss cone are also 

consistent with the lifetime estimates, and that 

I05 ---- -..**... I I I 
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Fig. 6. •40 key electron pitch angle •s•ri- 
bution outside loss coneß Shown here is a com- 

parison in B-L coordinates of the pitch angle dis- 
tribution outside the loss cone obtained with In- 

jun 3 and that predicted by whistler mode dif- 
fusion theory, assuming an equatorial trapped flux 
at its limiting intensity. The heavy points are 
Injun 3 medians for each range of AB _-- 0.02 
gauss, and the dashed line is the theoretical dis- 
tribution. 

therefore 40-key electrons are often diffusion 

limited for L •, 4. 

Armstrong's [1965] median 40-key electron 
pitch angle distributions outside the loss cone 

are also consistent with a diffusion equilibrium 

profile. This distribution should have the form 

+ 
The omnidirectional flux is 

In sin a } (7.5) ß 

sin t• o 

- o* 

ß + . (7.6) 
• ao sm • 

For weak •usion, S•/D • is related to J• • 
follows: 

S* J* 

o, 
The arguments of section 5 permit an esti- 

mate of J*, and therefore S*/D*, without pre- 
cise knowledge of the acceleration source. Us- 

ing these values of J• we can then predict the 
equatorial trapped electron pitch angle distribu- 
tion in diffusion equilibrium. The adiabatic 

pitch angle transformation then permits com- 
])arison with Armstrong's [1965] data. In Figure 

6 we show this computed 40-key electron pitch 
angle distribution for L -- 5, 6, and 7. Super- 
posed are the median • 40:key electron fluxes 

observed on Injun 3 over each range. The dis- 

tribution with pitch angle of observed median 

fluxes near but outside the loss cone appears to 
have a slope consistent with the log (sin a) 
distribution calculated for weak diffusion equi- 
librium. However, the median 'intensity is much 
closer to the limiting steady-state intensity than 
would be the case in Figure 4 for the median of 

the equatorial omnidirectional fluxes. The gen- 
eral trend is similar in that L -- 5 is farther 

away from self-limiting instability for both 
equatorial omnidirectional fluxes and those near 
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the loss cone than L = 6 and 7. Moreover, 
there are many individual observations near 
the loss cone at L = 6 and 7 which are above 

the median and thus violate the intensity limit. 
This violation may be related to the unsteady 
splash events. Since splashes never go beyond 
isotropizing the p•tch angle distribution in and 
near the loss cone, they may correspond to an 
impulsive increase in the diffusion coefficient. 

Isotropy in and near the loss cone corresponds 
to the strong rather than weak diffusion case, 
which in turn allows the limiting flux outside 
the loss cone to increase, since the anisotropy A 
decreases. 

In general, we expect the flux in and near the 
loss cone to fluctuate more with time than the 

equatorial flux, for two reasons. First, the 
effects of splashes should be most pronounced 
near the loss cone. Second, the distribution in 
and near the loss cone is sensitive to the amount 

of precipitation. Particle dumping occurs only 
when the equatorial flux is near self-limitation. 

If the fluxes are always near self-limitation, ob- 
served equatorial intensities should not fluctuate 

much; however, small relative changes in the 
equatorial flux then lead to large fractional 
changes in the precipitation rate. In a similar 

vein, O'Brien [1964] has observed that equa- 
torial trapped intensities increase with increas- 

ing K, far less than precipitated intensities do. 
We have also compared Injun 3 observations 

of >230-kev electrons with the theoretical pitch 
angle distribution outside the loss cone. For 

L -- 4, 5, 6, and 7 nearly all fluxes observed lie 

below the limiting intensity. Although the dis- 
tribution of median fluxes lies below the limit- 

ing intensity and the median slope does not 
agree as well with theory as the >40-key case, 
the distribution of maximum fluxes in an inter- 

val of B has the same rough slope and magni- 
tude as the limiting flux. Thus, even weak dif- 
fusion probably occurs only for intense fluxes. 
Since the pitch angle distribution of maximum 

fluxes is not isotropic, we infer that splashes are 
probably less common for >230-kev electrons 
than for >40-kev electrons. Electrons >1.6 

Mev are not intense enough to approach their 
self-excitation limit. Their pitch angle profries 
differ considerably from those at lower energies, 
implying that they are fixed by other mecha- 
nisms. This decreasing correspondence with dif- 
fusion theory as the particle energy increases is 

probably explainable by the statement that 
highly energetic particles are less often near 
their flux limit. 

8. DISCUSSION OF F_•UATORIAL VLF WAVE 
INTENSITY 

The wide band VLF fluctuating magnetic 
field intensities necessary to drive the observed 
pitch angle diffusion are summ•.rized in Table 2. 

We now can estimate the importance of wave- 
wave scattering mentioned in section 3.1 as an 

alternative nonlinear effect whose neglect would 
be justified in this section. Camac et al. [1962] 
have estimated the rate of change of wave 
energy in binary wave collision as 

/dO w wave--wave zcattering • •0 

lg,. = (B'/B) •' (8.1) 

Wave-wave scattering must be included when 
waves are intense enough so that the wave- 

scattering time becomes comparable to the 
wave-growth time. 

= a) (8.2) 

Using • • 10' rad/sec, and the calculated fl, 
of 3 X 10 •, we find that 1/•o fl, is 3 X 10' sec, 
a time long compared with T,/(ln G) • i sec. 

At present, the only published whistler data 
available involve measurements taken at rela- 

tively low altitudes. Comparison with our 
theory, therefore, depends on an extrapolation 
of the wave intensity predicted for the geo- 
magnetic equator to a corresponding intensity 
near the earth. 

An upper limit to the wave intensity expected 
near the earth assumes that all waves generated 
near the equator propagate completely trapped 
without attenuation on a tube of force. Then 

the energy flux across a cross-sectional area A * 
of the tube of force will be constant 

(B')" VoA*/8•r = constant (8.3) 

Since w/l•- [ << 1, the group velocity Vo is 
roughly 2 w/w/l•-I VA-. Since w is constant, the 
group velocity following a wave packet is pro- 
portional to w/B/N, since A* •, l/B; then 
V•A* • 1/x/BN. Then, at an altitude of 1000 
kin, the wave intensity will be 

B'(1000) 
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ß ,f B(lOOO)N(1000) •/'• 
• B'(equa•or] •B(e-•a•-•or) •-•q• or) J 

,-., La/4 N(1000) x/4 

A rough estimate of the density ratio leads 

to B'(1000) • 10B'(equator), and a wave in- 

tensity at 1000 km of roughly 1/10 y. Gurnett 
and O'B•en [1964] report average chorus 
amplitudes between 0.5 and 7 kc/s of 8 • 10 -• 

7 at 1• km and L = 5. There is therefore a 
factor 100 discrepancy between our pre&ctions 

of wave ener• based on ideal propagation and 
observations. 

The di•c•ty probably lies with the ideal 
.propagation assumption, which consists of two 
parts. First, the assumed perfect guiding of She 
tube of force increases the wave intensity by 

the area ratio of the flux tube (•200). Th• 

produces an overestimate, shce guidance is im- 
perfect when the tube of force is not also a 

propagation duct. Second, although we expect 
wave growth at the equator, there •y we• be 

significant damphg e•ewhere on the propaga- 

tion path. For example, the m = 0 Cerenkov 
resonance always damps the wave and probably 
becomes important as waves move away from 
the equator and no longer propagate para•el 

to the e•emal ma•etic field. 

Even though the predicted equatorial wave 

htens•ty has not been directly verified, we can 
show that the predicted amplitude and the ob- 

se•ed loss of pa•icle energy lead to an esti- 
mate of the equatorial growth rate consistent 

•th the requirements of diff•ion theory. If the 
drizzle observations corresponds to a steady 

state, the growth rate h the equatorial region 
must balance the loss of waves up the •e of 

force. Since resonant particles and waves con- 

sere energy, 

+ = 0 

where E• and E• are the equatorial ener• 
density • waves and resonant pa•icles, re- 

spectively. SMce dE•/dt = 2•(B')'/8•, we 
can estimate y •ow•g B' and dE•/dt. From 
the obse•ed lifetime and the limiting Mtensity 

of resonant particles at the equator, we find 

dE•/dt. Then we compute y and compare it 

with the characteristic frequency, 1/T•. 
Electrons random-wa• about a ra&an • 

their lifetime. Their parallel or perpendic•ar 

energy changes by its own order of magnitude 
during this •ime. In resonant interactions, the 

change in total energy is roughly •/ ]•-] times 
the change in any component, or AE 
E•. Since there is a net diffusion flux toward the 

loss cone, particles deliver energy to waves, at 

a rate proportional to the energy loss per 

particle AE, the number of resonant particles 

present J/V•,, and is inversely proportional to 

the particle lifetime T•,. 

dE__• •.• • ERJ* (8.6) 

If E, • 40 kev, V, • 10 'ø cm/sec and •/]•-] 
• 0.1. At L = 6, J(>40 kev) is limited to a 

value • 3 X 107/cm • sec. Choosing T• • 3 X 

104 sec, the loss of particle energy density is 

dE• N erg 
dt --5 X 10 -• (8.7) • 3 

cm 8ec 

Using the value of B' derived from the dif- 

fusion solution, B' • 10 -• •, we infer a growth 
rate from the rate of change of wave energy 

2• (B')• • 5 X !0 -• erg (8.8) 8w •'• ½m a see 

When •/[12-] •-• 0.1, the equatorial group 
velocity is roughly 2 X 10 • cm/sec, so that 

0.5 

Therefore, using these rough arguments, we 
predict TT. • 1, whereas we used 7T. = 3 to 
predict J* in section 5. It is clear that all these 

arguments are mutually consistent within their 

rough accuracy. 

We conclude that the required wave in- 

tensities at the equator are self-consistent. No 

Unambiguous comparison of predicted and ob- 
served wave intensities can be made at present. 
However, equatorial VLF measurements should 

be helpful in this regard. 

9. SUMMARY AND DISCUSSION 

For particle energies greater than B'/8•rN 
the interaction of whistler noise with electrons 

and ion cyclotron noise with ions leads to dif- 

fusion in pitch angle. We have observed that 

the steady-state pitch angle distribution, subject 
to the boundary condition that particles are lost 

•rom the loss cone, has an almost constant anisot- 
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ropy which is of the appropriate sign to be 
unstable. The resultant growth rate of the waves 

is then directly proportional to the number of 
resonant particles. Since a large wave energy 

density leads to rapid diffusion and loss of 
particles, the number of trapped particles is 

self-limiting. Too large a particle density results 

in a rapid wave growth and a resultant loss of 

particles. As a rough criterion we have sug- 

gested that the limiting particle flux cor- 
responds to a wave growth of a few c-foldings 

during traversal of the equatorial region. 

Although the estimate of the limiting flux is 

an absolute calculation without empirically ad- 

justed constants, it does contain a number of 
factors each of which may be uncertain to a 

factor 2. In particular, the anisotropy was based 
on a particular distribution of the source of 

particles, the effective length along the field 

line over which growth occurred was somewhat 

arbitrarily taken as œR•, and finally the loga- 

rithm of the required gain may be somewhat 
uncertain. 

The upper limit on stably trapped particle 

fluxes was calculated assuming a steady-state 

'weak' diffusion model for precipitation. This 

model is probably adequate for a description of 
the long-term behavior of the so-called 'stably' 
trapped regime, i.e., the L shells below the 
auroral zone on the night side; and nearly all 
L shells out to the boundary of the magneto- 
sphere on the day side. Observations of trapped 

or precipitated fluxes strongly exceeding this 

calculated upper limit may correspond either to 

a nonsteady state or to an exceptionally strong 

source. If trapped-particle intensities far exceed 

their limit, waves could build up rapidly to 
create a strong diffusion regime. Because there 

is a minimum allowable lifetime, a sufficiently 

strong particle energization source can main- 
tain strong diffusion. Then the fluxes observed 

may violate the weak diffusion upper limit. At 
these times, however, the particle pitch angle dis- 
tributions will be nearly isotropic (A • 0), pre- 

cipitated fluxes will then be comparable to 
trapped fluxes, and the particles will have their 
minimum lifetime TL •. For weaker energization 

sources, the weak diffusion upper limit will be 
obeyed. 

Comparison of the weak diffusion limit with 
observations of electrons •40 key and protons 

• 120 key indicates that, with some exceptions, 

this upper limit is obeyed. Furthermore, in the 

range L ;> 4 the fluxes are close to the limit. 

We have not attempted to discuss a particle 
acceleration mechanism. The observation that 

the fluxes are close to the limit indicates that 

such a mechanism exists. However, the actual 
trapped flux is not determined by acceleration 
but by the above limit. 

As a more specific illustration, the observed 

proton and electron fluxes are comparable, im- 
plying much larger energetic proton than elec- 

tron number densities. This, however, does not 
imply a more effective acceleration mechanism 

for protons than for electrons. Both species are 

near their limiting fluxes, which are the same. 
Therefore, the lower energetic electron number 
densities result from the fact that the electrons 

reach their number density limit earlier. It 
follows that the contribution of energetic ions 
to the ring current during magnetic storms can 

be as much as 40 times greater than the contri- 
bution of electrons. 

Similarly, the observations of hard energy 

spectrums are probably related to the fact that 
the limiting flux is essentially independent of 

energy. If trapped particles are built up to 

their limiting flux over a range of energies the 

observed spectrum Will be very h•rd. There 

must, of course, be some transition energy be- 
yond which the flux is no longer near its limit 

and a softer spectrum exists. A rough examina- 

tion of the data suggests that at L -- 6 elec- 

trons at 40 kev are frequently near the limit 

whereas at 240 kev they are only occasionally 
at the limit. 

The probable existence of a transition energy 
for precipitation suggests_ that precipitated 

fluxes should have a softer energy spectrum 
than trapped fluxes. If the spectral determina- 

tion is made using observations at two energies, 

one above and one below the transition energy, 
the trapped particles will appear in both chan- 

nels whereas precipitated particles will appear 
only in the lower-energy channel and will thus 

show a softer spectrum. Of course, since pre- 
cipitation occurs primarily when trapped fluxes 

are near their upper limit, precipitation should 

correlate with high over-all trapped intensity. 
Measurements made with Injun 3 [Fritz, 1965] 
appear to support both correlations. 

Several other observations support the sug- 
gestion that wave-particle intersctions are in- 
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deed important. The observed distribution of 

particles within and near the loss cone is con- 
sistent with diffusion based one wave interac- 

tions. This suggests a typical amplitude of the 

magnetic field noise of 10 -2 7 at the equator in 
the neighborhood of L ---- 6. As an internal con- 

sistency check, the particle precipitation rate is 

sufficient to account for an energy transfer to 

the waves at rate consistent with the gain re- 
quired in estimating the limiting flux. The above 

fluctuating field amplitude may be somewhat 
larger than observations at 1000-km altitudes 

might suggest. However, propagation from the 
equatorial interaction region to the satellite has 
several uncertainties. The results from satellite 

measurements at the equator will greatly help to 

clarify this point. 

Resonant cyclotron interactions between 

whistler and ion cyclotron waves and energetic 
electrons and protons predict a reasonable up- 

per limit to trapped particle intensities in rough 
agreement with observations, but numerous 

phenomena have been overlooked in this gross 
analysis. A number of more subtle interactions 

will probably need consideration in order to ex- 

plain the full variety of observed phenomena. 

As an illustration, we mention two specific phe- 
nomena. The trapped electron flux has been ob- 
served to decrease even when i.ts intensity is 

well below the self-excitation limit [Frank, Van 
Allen, and Hills, 1964]. At first sight this ap- 
pears outside the scope of electron whistler 

mode interactions, since wave energy cannot in- 

crease rapidly enough to overcome wave prop- 

agation losses. There are, however, at least two 

other possible sources of wave energy that 

conceivably could play a role in such a case. 

First, wave energy could be generated on a dif- 

ferent field line and propagate to the field line 

in question. Evaluation of this point requires 
understanding of conditions on other field lines 

as well as of the propagation of waves across 

field lines. Second, waves might be generated on 
the s•me field line but at a different resonance. 

We have only investigated here the predomi- 
nant resonance for wave growth. However, as 

waves move away from the equator, they will 

no longer propagate strictly parallel to the 
magnetic field, and driven velocity space dif- 
fusion at other resonances may result. Thus, 

wave growth due to particles at one energy 

could cause precipitation of particles at another 

energy by means of interactions occurring away 

from the geomagnetic equator. 

We have also not discussed any effects due to 

structure in the frequency distribution of waves 
or any time-dependent phenomena. For ex- 

ample, the limiting flux could be violated for 

short times since, even in the strong diffusion 

limit, the minimum time for diffusive depopula- 
tion of the field line is of the order of 10 • 

seconds. The strong fluctuations in precipita- 

tion fluxes as well as the fascinating variety of 
structured wave emissions that have been re- 

corded indicate that more detailed time-depen- 

dent mechanisms relating specific waves and 

particles are required. 
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