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Abstract. Limit points for the positive eigenvalues of the normalized Laplacian matrix of a
graph are considered. Specifically, it is shown that the set of limit points for the j-th smallest such
eigenvalues is equal to [0, 1], while the set of limit points for the j-th largest such eigenvalues is
equal to [1, 2]. Limit points for certain functions of the eigenvalues, motivated by considerations for
random walks, distances between vertex sets, and isoperimetric numbers, are also considered.
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1. Introduction. Suppose that we have a connected graph G on n vertices.
There are a number of matrices associated with G, including the adjacency matrix,
the Laplacian matrix (sometimes known as the combinatorial Laplacian matrix, see
[1]) and the normalized Laplacian matrix. Each of these matrices furnishes one or
more eigenvalues of interest, and there is a great deal of work that investigates the
interplay between the graph-theoretic properties of G and eigenvalues of the matrices
associated with G; see, for example, [1], [2] and [7].

One line of investigation regarding the eigenvalues of matrices associated with
graphs arises from the work of Hoffman. In [4], Hoffman considers the spectral radius
of the adjacency matrix of a graph G, ρ(G), say, and defines a real number x to
be a limit point for the spectral radius if there is a sequence of graphs Gk such that
ρ(Gk) �= ρ(Gj) whenever k �= j and ρ(Gk) → x as k → ∞. Evidently this is equivalent
to x being a point of accumulation of the set {ρ(G)|G is a graph}. In a similar vein,
it is shown in [5] that any nonnegative real number is a limit point for algebraic
connectivity (that notion of limit point being defined analogously with the definition
of Hoffman), while [3] investigates limit points for the Laplacian spectral radius.

In this paper, we again consider limit points for eigenvalues of matrices as-
sociated with graphs, focusing our attention on the normalized Laplacian matrix.
For a graph G on vertices 1, . . . , n, let di denote the degree of vertex i, and let
D = diag(d1, . . . , dn); the normalized Laplacian for G is given by L = I−D−1

2 AD
−1
2 ,

where A is the adjacency matrix of G. It is straightforward to see that all the eigen-
values of L lie in the interval [0, 2], and that for any graph, 0 is an eigenvalue of the
corresponding normalized Laplacian matrix. We note in passing that 0 is a simple
eigenvalue of L if and only if G is connected. The eigenvalues of L have attracted
some attention over the last decade or so, in part because of their connections with
isoperimetric numbers and diameters for graphs, and with convergence rates for cer-
tain random walks. A comprehensive introduction to the normalized Laplacian matrix
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can be found in [1].
Let G be a connected graph on n vertices, with normalized Laplacian matrix L.

Order the eigenvalues of L as 0 = λ0(G) < λ1(G) ≤ λ2(G) ≤ . . . ≤ λn−1(G) ≤ 2. Fix
an index j ∈ IN. By analogy with the definition of Hoffman in [4], we say that a real
number x is a limit point for λj if there is a sequence of connected graphs Gk, k ∈ IN
such that:
i) λj(Gk1 ) �= λj(Gk2 ) whenever k1 �= k2, and
ii) limk→∞ λj(Gk) = x.
We denote the set of all limit points for λj by Λj .

It will also be convenient to think of the normalized Laplacian eigenvalues in
nonincreasing order. So for a connected graph G on n vertices with normalized
Laplacian matrix L, we denote the nonincreasingly ordered eigenvalues of L by 2 ≥
γ1(G) ≥ γ2(G) ≥ . . . ≥ γn−1(G) > γn(G) = 0; evidently γj(G) = λn−j(G) for each
j = 1, . . . , n. Fix an index j ∈ IN . We say that a real number y is a limit point for γj

if there is a sequence of connected graphs Gk, k ∈ IN such that:
i) γj(Gk1) �= γj(Gk2 ) whenever k1 �= k2, and
ii) limk→∞ γj(Gk) = y.
We denote the set of all limit points for γj by Γj .

Evidently Λj is the set of accumulation points of the set

{λj(G)|G is a connected graph},

while Γj is the set of accumulation points of the set

{γj(G)|G is a connected graph}.

In this paper, we show that for each j ∈ IN , Λj = [0, 1] and Γj = [1, 2]. Our technique
is straightforward, relying on a few simple observations and some suitably chosen
classes of examples.

We also consider the set of limit points for three functions of λ1(G) and γ1(G); one
function arises from an upper bound on the distance between subsets of vertices of G,
another function is associated with the rate of convergence of a certain random walk
associated with G while the last function arises from a bound on the isoperimetric
number for G.

2. Limit points for eigenvalues.

Lemma 2.1. For each j ∈ IN,Λj ⊆ [0, 1].
Proof. Suppose that G is a connected graph on n vertices with normalized Lapla-

cian matrix L. Since trace(L) = n =
∑n−1

i=1 λi(G), we have n ≥ (n − j)λj(G),
so that 0 ≤ λj(G) ≤ 1 + j

n−j . Suppose that x ∈ Λj, and let Gk be a sequence
of connected graphs such that λj(Gk) → x as k → ∞. Letting nk denote the
number of vertices in Gk, we find that necessarily nk → ∞ as k → ∞. Since
x = limk→∞ λj(Gk) ≤ limk→∞ 1 + j

nk−j = 1, the conclusion follows.
The following class of examples will allow us to complete our characterization of

Λj . We use the notation G1 ∨G2 to denote the join of the graphs G1 and G2.
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Example 2.2. Suppose that we have indices p, q, j ∈ IN . Consider the graph
G(p, q, j) on p+ (j + 1)q vertices defined by G(p, q, j) = Op ∨ (Kq ∪ . . . ∪Kq), where
there are j + 1 copies of Kq in the union and where Op denotes the empty graph on
p vertices. Note that G(p, q, j) has p vertices of degree (j + 1)q and (j + 1)q vertices
of degree p+ q− 1. Let J denote an all ones matrix (whose order is to be taken from
context). The corresponding normalized Laplacian matrix for G(p, q, j) is L =




I −1√
(j+1)q(p+q−1)

J −1√
(j+1)q(p+q−1)

J . . . −1√
(j+1)q(p+q−1)

J

−1√
(j+1)q(p+q−1)

J p+q
p+q−1

I − 1
p+q−1

J 0 . . . 0

...
. . .

...

−1√
(j+1)q(p+q−1)

J 0 . . . 0 p+q
p+q−1

I − 1
p+q−1

J



.

Using the notation a(b) to denote the fact that the number a appears with mul-

tiplicity b, we find that the eigenvalues of L are 1(p−1) and
(

p+q
p+q−1

)(j+1)(q−1)

, along
with the eigenvalues of the (j + 2)× (j + 2) matrix

 1 −
√

q
(j+1)(p+q−1)1

T

− p√
(j+1)(p+q−1)

1 p
p+q−1I


 ,

where 1 denotes an all ones vector. These last eigenvalues are 0,
(

p
p+q−1

)(j)

, and
2p+q−1
p+q−1 . In particular, it follows that λj(p, q, j) = p

p+q−1 .

Theorem 2.3. For each j ∈ IN,Λj = [0, 1].
Proof. Fix x ∈ [0, 1], and let ak, bk be sequences of natural numbers such that

the sequence of rationals ak

bk
converges (strictly) monotonically to x as k → ∞. From

Example 2.2, we find that λj(G(ak, bk − ak + 1)) = ak

bk
→ x as k → ∞, and that the

convergence is strictly monotonic. It follows that [0, 1] ⊆ Λj , and that fact, together
with Lemma 2.1, yields the conclusion.

Next, we turn our attention to Γj.
Lemma 2.4. For each j ∈ IN,Γj ⊆ [1, 2].
Proof. LetG be a connected graph on n vertices with normalized Laplacian matrix

L. Fix an index j ∈ IN . We have trace(L) = n =
∑n−1

i=1 γi(G) ≤ 2(j−1)+(n−j)γj(G).
Hence we have 2 ≥ γj(G) ≥ n+2−2j

n−j = 1− j−2
n−j . Suppose that y ∈ Γj , and let Gk be a

sequence of graphs such that γj(Gk) → y as k → ∞. Denoting the number of vertices
of Gk by nk, we have γj(Gk) ≥ 1− j−2

nk−j , from which it follows that y ≥ 1.
Theorem 2.5. Γ1 = [1, 2].
Proof. Referring to Example 2.2 we see that for any p, q ∈ IN, γ1(G(p, q, 1)) =

2p+q−1
p+q−1 = 2− q−1

p+q−1 . Suppose that y ∈ [1, 2], and set r = 2−y. Let ak, bk be sequences
of natural numbers so that ak

bk
converges monotonically to r. Then γ1(G(bk −ak, ak +

1, 1)) = 2 − ak

bk
, which converges monotonically to 2 − r = y. The conclusion now

follows from Lemma 2.4.
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The following two classes of examples will enable us to complete our discussion
of Γj when j ≥ 2.

Example 2.6. Suppose that we have p, q ∈ IN, and let H(p, q) = Op ∨Kq. The
normalized Laplacian for H(p, q) is given by


 I −1√

q(p+q−1)
J

−1√
q(p+q−1)

J p+q
p+q−1I − 1

p+q−1J


 .

The eigenvalues are readily seen to be 0, 1(p−1),
(

p+q
p+q−1

)(q−1)

and 1 + p
p+q−1 .

Example 2.7. Fix p, q ∈ IN, and suppose that j ∈ IN with j ≥ 2. For each
i = 1, . . . , j, let Hi be a copy of H(p, q), and distinguish a vertex ui and a vertex vi
of Hi having degrees q and p + q − 1, respectively. Now construct a new connected
graph M(p, q, j) (on j(p + q) vertices) from ∪j

i=1Hi by adding an edge between vi
and ui+1 for each i = 1, . . . , j − 1. Observe that the normalized Laplacian matrix for
M(p, q, j), L1 say, differs from that of ∪j

i=1Hi, L2 say, only in the rows and columns
corresponding to v1, uj and ui, vi, i = 2, . . . , j − 1. Note also that the eigenvalues of

L2 are given by 0(j), 1(j(p−1)),
(

p+q
p+q−1

)(j(q−1))

, and
(
1 + p

p+q−1

)(j)

.
Let N = L1 −L2. It is straightforward to determine that the maximum absolute

row sum for N is given by
max{ p+q−1√

q

(
1√

p+q−1
− 1√

p+q

)
+ 1√

(q+1)(p+q)
, q−1√

p+q−1

(
1√
q − 1√

q+1

)
+ 1√

q(p+q−1)
}.

A couple of routine computations show that

p+ q − 1√
q

(
1√

p+ q − 1
− 1√

p+ q

)
+

1√
(q + 1)(p+ q)

≤ 3
2
√
q
, and that

q − 1√
p+ q − 1

(
1√
q
− 1√

q + 1

)
+

1√
q(p+ q − 1)

≤ 3
2
√
q
,

so that the spectral radius of N is bounded above by 3
2
√

q . In particular, it follows
that

1 +
p

p+ q − 1
− 3

2
√
q
= γj(∪j

i=1Hi)− 3
2
√
q
≤ γj(M(p, q, j)) ≤

γj(∪j
i=1Hi) +

3
2
√
q
= 1 +

p

p+ q − 1
+

3
2
√
q
.

Theorem 2.8. For each j ∈ IN,Γj = [1, 2].
Proof. From Lemma 2.4, we see that for each j ∈ IN,Γj ⊆ [1, 2].
To see the converse inclusion, fix y ∈ (1, 2) and let x = y − 1. For each k ∈ IN,

select sequence of natural numbers pk and qk such that
i) qk → ∞ as k → ∞, and
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ii) x− 1
k ≤ pk

pk+qk−1 − 3
2
√

q <
pk

pk+qk−1 + 3
2
√

q < x.

From Example 2.7, we find that for k ∈ IN ,

1 + x− 1
k
≤ γj(M(pk, qk, j)) < 1 + x.

In particular, it follows that as k → ∞, the sequence γj(M(pk, qk, j)) converges to
1+x. As no term in that sequence is equal to 1+x, it follows that y = 1+x is a limit
point for γj . We conclude that (1, 2) ⊆ Γj , and since Γj is closed, we have Γj = [1, 2].

3. Limit points for functions of eigenvalues. Let G be a connected graph
on n vertices, and define φ(G) as φ(G) = γ1+λ1

γ1−λ1
. The function φ(G) is of interest in

part because of the role that it plays in the following bound on the distance between
subsets of the vertex set for G (see Chapter 3 of [1] for more details.) Here, for a
subset of vertices X of a graph G, we denote its complement by X. The volume of
X , denoted vol(X) is the sum of the degrees of the vertices in X. For vertices x and
y of G, we let d(x, y) denote the length of a shortest path from x to y. The following
result, which is inspired by Theorem 3.1 of [1], appears in [6].

Proposition 3.1. Let G be a connected graph, and suppose that X and Y are
nonempty subsets of its vertex set with X �= Y, Y . Then

min{d(x, y)|x ∈ X, y ∈ Y } ≤max{
⌈log

√
vol(X)vol(Y )
vol(X)vol(Y )

log γ1+λ1
γ1−λ1

⌉
, 2}.

We say that a number x ∈ R is a limit point for φ if there is a sequence of graphs
Gk such that φ(Gk) �= φ(Gj) whenever k �= j and φ(Gk) → x as k → ∞. We denote
the set of all limit points for φ by Φ.

Theorem 3.2. Φ = [1,∞).
Proof. Evidently φ(G) ≥ 1 for any graph G, so we need only show that each

x ≥ 1 is a limit point for φ. For any p, q, j ∈ IN, we have from Example 2.2 that
λ1(G(p, q, j)) = p

p+q−1 , while γ1(G(p, q, j)) =
2p+q−1
p+q−1 . Hence φ(G(p, q, j)) =

3p+q−1
p+q−1 =

1+ 2p
p+q−1 . For each y ∈ (0, 2], let pk and qk be sequences in IN such that qk−1

pk
converges

monotonically to 2−y
y . We find that then φ(G(pk, qk, 1)) converges monotonically to

1 + y, from which we deduce that each x ∈ [1, 3] is a limit point for φ.
Next, note that if p, q ∈ IN , we see from Example 2.6 that λ1(H(p, q + 1)) = 1

while γ1(H(p, q + 1)) = 1 + p
p+q . Hence, φ(H(p, q + 1)) = 3 + 2q

p , and it now follows
readily that each x ≥ 3 is a limit point for φ.

For a connected graph G on n vertices, let λ′(G) = min{λ1(G), 2 − γ1(G)}. We
note that the quantity λ′(G) arises in a bound on the rate of convergence of a certain
random walk associated with G; see Section 1.5 of [1].

We say that a number x ∈ R is a limit point for λ′ if there is a sequence of graphs
Gk such that λ′(Gk) �= λ′(Gj) whenever k �= j and λ′(Gk) → x as k → ∞. Since
λ′(G) ≤ λ1(G)+2−γ1(G)

2 ≤ 1, we find that any limit point for λ′ is an element of [0, 1].
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The following class of examples will be useful in our discussion of limit points for
λ′.

Example 3.3. Suppose that p, q ∈ IN, with p, q ≥ 2, and let M(p, q) = Kp ∨
(Kq ∪Kq). The corresponding normalized Laplacian matrix is given by

L =




p+2q
p+2q−1I − 1

p+2q−1J
−1√

(p+q−1)(p+2q−1)
J −1√

(p+q−1)(p+2q−1)
J

−1√
(p+q−1)(p+2q−1)

J p+q
p+q−1I − 1

p+q−1J 0
−1√

(p+q−1)(p+2q−1)
J 0 p+q

p+q−1I − 1
p+q−1J


 .

We find that the eigenvalues for L are
(

p+2q
p+2q−1

)(p−1)

and
(

p+q
p+q−1

)(2q−2)

, along with
the eigenvalues of the matrix




2q
p+2q−1

−q√
(p+q−1)(p+2q−1)

−q√
(p+q−1)(p+2q−1)

−p√
(p+q−1)(p+2q−1)

p
p+q−1 0

−p√
(p+q−1)(p+2q−1)

0 p
p+q−1


 ,

which are 0, p
p+q−1 , and

2q
p+2q−1 + p

p+q−1 . In particular, we have λ1 = p
p+q−1 , while

the largest eigenvalue is 2q
p+2q−1 + p

p+q−1 . It now follows that if p ≤ (q − 1)2, then
λ1(M(p, q)) = λ′(M(p, q)) = p

p+q−1 .

Theorem 3.4. Suppose that x ∈ [0, 1]. Then x is a limit point for λ′. In fact:
a) there is a sequence of graphs Gk such that λ′(Gk) = λ1(Gk) and λ′(Gk) converges
monotonically to x; and
b) there is a sequence of graphs Gk such that λ′(Gk) = 2 − γ1(Gk) and λ′(Gk) con-
verges monotonically to x.

Proof. a) Fix x ∈ [0, 1]. From Example 2.6, it follows that if p, q ∈ IN, then
λ′(H(p, q)) = min{1, q

p+q} = 2 − γ1(H(p, q)). Selecting sequences pk, qk ∈ IN such
that qk

pk+qk
converges monotonically to x, the conclusion follows.

b) Fix x ∈ (0, 1), and select sequences pk, qk ∈ IN, both diverging to ∞ such that the
sequence pk

qk−1 converges monotonically to x
1−x . Observe that asymptotically, we have

pk ≈ x
1−x(qk − 1) < (qk − 1)2. So for all sufficiently large k, we have λ′(M(pk, qk)) =

λ1(M(pk, qk)) = pk

pk+qk−1 , which converges monotonically to x. The conclusion now
follows.

Suppose that we have a connected graph G; partition its vertex as S ∪ S, where
neither S nor S is empty. Let E(S, S) denote the number of edges in G having one
end point in S and the other in S. The isoperimetric number of G is given by

h(G) = min{ E(S, S)
min{vol(s), vol(S)} |S ∪ S is a partitioning of the vertex set of G}.

A standard inequality (see Lemma 2.1 in [1]) asserts that for any graph G,

2h(G) ≥ λ1(G).(3.1)
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In particular, for any connected graph G, we have h(G)
λ1(G) ≥ 1

2 . In this last collection

of results, we consider small limit points for the function h(G)
λ1(G) , or equivalently, small

points of accumulation for the set { h(G)
λ1(G) |G is a graph}.

The following example discusses h(H(p, q)).
Example 3.5. Suppose that we have p, q ∈ IN . In this example, we consider

h(H(p, q)) in the case that p and q are both even. Let S(p1, q1) denote the subset
of vertices consisting of p1 vertices of degree q and q1 vertices of degree p + q − 1;
here we take 1 ≤ p1 + q1 ≤ p + q − 1. We have vol(S(p1, q1)) = p1q + q1(p + q − 1)
and vol(S(p1, q1)) = (p − p1)q + (q − q1)(p + q − 1), while E(S(p1, q1), S(p1, q1)) =
p1(q−2q1)+q1(p+q−q1).Without loss of generality, we assume that vol(S(p1, q1)) ≤
vol(S(p1, q1)), or equivalently, that p1 ≤ p

2 + q−2q1
2q (p+ q − 1).

From the above considerations, it follows that

h(H(p, q)) = min f(p1, q1),(3.2)

where

f(p1, q1) =
p1(q − 2q1) + q1(p+ q − q1)

p1q + q1(p+ q − 1)
,(3.3)

and where the minimum in (3.2) is taken over the set of integers p1, q1 such that
0 ≤ q1 ≤ q, 0 ≤ p1 ≤ min{p, p

2 + q−2q1
2q (p+ q − 1)}, and 1 ≤ p1 + q1 ≤ p+ q − 1.

Considered as a function of p1, it is straightforward to see that f(p1, q1) is de-
creasing in p1, so that for fixed q1, the minimum for f(p1, q1) is taken at p1 =
min{p, p

2 + q−2q1
2q (p + q − 1)}. Observe that p ≤ p

2 + q−2q1
2q (p + q − 1) if and only

if q1 ≤ q(q−1)
2(p+q−1) , and so we consider f for the cases q1 ≤ q(q−1)

2(p+q−1) and q1 ≥ q(q−1)
2(p+q−1)

separately.
If q1 ≤ q(q−1)

2(p+q−1) , then f(p1, q1) is minimized for p1 = p. We have f(p, q1) =
(p+q1)(q−q1)
pq+q1(p+q−1) ; note that considered as a function of q1, the derivative of f(p, q1) is

negative for all admissible q1. It follows that when q1 ∈ [0, q(q+1)
2(p+q−1) ], the minimum

value for f(p, q1) in this case is taken at q1 = q(q−1)
2(p+q−1) (observe that this may not

be an integer value for q1). We find readily that f(p, q(q−1)
2(p+q−1) ) =

p
p+q−1 + q(q−1)

2(p+q−1)2 .

Thus we conclude that if q1 is an integer and 0 ≤ q1 ≤ q(q−1)
2(p+q−1) , then f(p1, q1) ≥

p
p+q−1 + q(q−1)

2(p+q−1)2 .

If q ≥ q1 ≥ q(q−1)
2(p+q−1) , then the minimum for f(p1, q1) in this case is taken at

p1 = p
2 + q−2q1

2q (p + q − 1) (observe that this value may not be an integer). We find
that

f(
p

2
+
q − 2q1

2q
(p+ q − 1), q1) =

p(q − 2q1) + p+q−1
q (q − 2q1)2 + 2q1(p+ q − q1)
q(2p+ q − 1)

,

which is a quadratic in q1 that is uniquely minimized when q1 = q
2 . It now follows

that if q1 is an integer and q ≥ q1 ≥ q(q−1)
2(p+q−1) , then f(p1, q1) ≥ f(p

2 ,
q
2 ) =

2p+q
2(2p+q−1) .
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Observe that since p and q are even, f(p1, q1) attains the value 2p+q
2(2p+q−1) at the

integers p1 = p
2 , q1 = q

2 .

In particular, note that if q
p ≤ 2p

p+q−1 , then
2p+q

2(2p+q−1) ≤ p
p+q−1 ≤ p

p+q−1 +
q(q−1)

2(p+q−1)2 . Thus we see that if q
p ≤ 2p

p+q−1 , h(H(p, q)) = f(p
2 ,

q
2 ) =

2p+q
2(2p+q−1) .

Theorem 3.6. If x ∈ [12 , 1] then x is a limit point for h
λ1

.
Proof. Suppose that we have p, q ∈ IN with both p and q even, and such that

q
p ≤ 2p

p+q−1 . From Example 3.5, we see that h(G(p, q)) = 2p+q
2(2p+q−1) , while from

Example 2.6, we have λ1(G(p, q)) = p
p+q−1 . Hence h(G(p,q))

λ1(G(p,q)) = (2p+q)(p+q−1)
2p(2p+q−1) =

1
2 (1 +

1
2p+q−1 )(1 +

q−1
p ).

Suppose now that x ∈ (1
2 , 1), and let z = 2x − 1, so that 0 < z < 1. Select

sequences of even natural numbers pk, qk such that qk−1
pk

decreases monotonically to
z, and such that 2pk + qk −1 is an increasing sequence. Observe that since 0 < z < 1,
we have z < 2

1+z ; it now follows that for all sufficiently large k, qk

pk
≤ 2pk

pk+qk−1 .

Hence we see that for all sufficiently large k, we have h(G(pk,qk))
λ1(G(pk,qk)) = 1

2 (1 +
1

2pk+qk−1 )(1 + qk−1
pk

), which decreases to its limit of 1+z
2 = x as k → ∞. Thus each

element of (1
2 , 1) is a limit point for h

λ1
, and the conclusion follows.

Remark 3.7. In Example 2.6 of [1], it is observed that for the n−cube Qn,
h(Qn) = 2

n = λ1(Qn), so that the inequality (3.1) is sharp to within a constant
factor. Theorem 3.6 provides further insight into the sharpness of (3.1) by showing
that in fact the function h(G)

λ1(G) is dense in the interval [ 12 , 1].
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