LIMIT POINTS OF KLEINIAN GROUPS AND FINITE SIDED FUNDAMENTAL POLYHEDRA

BY

ALAN F. BEARDON and BERNARD MASKIT

University of Cambridge
England

State University of New York Stony Brook, N.Y. 11790, USA

Let G be a discrete subgroup of $S L(2, C) /\{ \pm 1\}$. Then G operates as a discontinuous group of isometries on hyperbolic 3-space, which we regard as the open unit ball $\mathbf{B}^{\mathbf{3}}$ in Euclidean 3 -space $\mathbf{E}^{\mathbf{3}}$. G operates on \mathbf{S}^{2}, the boundary of \mathbf{B}^{3}, as a group of conformal homeomorphisms, but it need not be discontinuous there. The set of points of \mathbb{S}^{2} at which G does not act discontinuously is the limit set $\Lambda(G)$.

If we fix a point 0 in \mathbf{B}^{3}, then the orbit of 0 under G accumulates precisely at $\Lambda(G)$. The approximation is, however, not uniform. We distinguish a class of limit points, called points of aproximation, which are approximated very well by translates of 0 . The set of points of approximation includes all loxodromic (including hyperbolic) fixed points, and includes no parabolic fixed points. In § 1 we give several equivalent definitions of point of approximation, and derive some properties. We remark that these points were first discussed by Hedlund [7].

Starting with a suitable point 0 in \mathbf{B}^{3}, we can construct the Dirichlet fundamental polyhedron P_{0} for G. It was shown by Greenberg [5] that even if G is finitely generated, P_{0} need not have finitely many sides. Our next main result, given in $\S 2$, is that if P_{0} is finite-sided, then every point of $\Lambda(G)$ is either a point of approximation or a cusped parabolic fixed point (roughly speaking a parabolic fixed point is cusped if it represents the right number of punctures in $\left.\left(\mathbf{S}^{2}-\Lambda(G)\right) / G\right)$.

The above theorem has several applications: one of these is a new proof of the following theorem of Ahlfors [1].

If P_{0} has finitely many sides, then the Euclidean measure of $\Lambda(G)$ is either 0 or 4π.
Our next main result, given in § 3, is that the above necessary condition for P_{0} to have finitely many sides is also sufficient. In fact, we prove that any convex fundamental polyhedron G has finitely many sides if and only if $\Lambda(G)$ consists entirely of points of 1-742908 Acta mathematica 132. Imprimé le 18 Mars 1974
approximation and cusped parabolic fixed points. As an application of this we give a new proof of the following theorem of Marden [11].

Every Dirichlet fundamental polyhedron is finite sided or none are.

§ 1

Let $\hat{\mathbf{E}}^{3}$ be the 1-point compactification of \mathbf{E}^{3}, the added point is of course called ∞. Then G acts on $\hat{\mathbf{E}}^{3}$ as a group of orientation preserving conformal homeomorphisms. In $\hat{\mathbf{E}}^{3}$, the unit ball \mathbf{B}^{3}, and the upper half-space

$$
\mathbf{H}^{3}=\{(z, x) \mid z \in C, x \in R, x>0\}
$$

are conformally equivalent. When convenient, we will regard G as acting on \mathbf{H}^{3}, and on C, its boundary.

In \mathbf{E}^{3} we use $|x-y|$ for Euclidean distance, and in \mathbf{B}^{3} or \mathbf{H}^{3}, we use $\varrho(x, y)$ for nonEuclidean distance.

The action of G on $\widehat{\mathbf{E}}^{3}$ is most easily seen via isometric spheres. We assume that ∞ is not fixed by $g \in G$, and that $g\left(\mathbf{B}^{3}\right)=\mathbf{B}^{3}$. Then there are two 2 -spheres S_{g} and S_{g}^{\prime}, called the isometric spheres of g and g^{-1}, respectively, with the following properties: S_{g} and S_{g}^{\prime} both have the same (Euclidean) radius R_{g}, and are both orthogonal to S^{2}. The action of g is the composition of inversion in S_{g}, followed by reflection in the perpendicular bisector of the line segment joining the centers of S_{g} and S_{g}^{\prime}, followed by a Euclidean rotation centered at the center of S_{g}^{\prime}. The importance of this description is that g is the composition of inversion in S_{g} and a Euclidean isometry (which maps $g^{-1}(\infty)$ to $g(\infty)$).

We enumerate the elements of G as $\left\{g_{n}\right\}$, and let R_{n} be the radius of the isometric sphere of g_{n}. It was shown by Beardon and Nicholls [3], that for every positive ε,
while

$$
\begin{aligned}
& \sum R_{n}^{4+\varepsilon}<\infty \\
& \sum R_{n}^{4}<\infty
\end{aligned}
$$

if G is discontinuous at some point of \mathbf{S}^{2}.
It is useful to compare R_{g} with $|g(0)|$ and $|g(\infty)|$ (0 is now the origin). As S_{g} and S^{2} are orthogonal,

$$
R_{g}^{2}+1=|g(\infty)|^{2}
$$

and as $g(0)$ and $g(\infty)$ are inverse points with respect to $\mathbf{S}^{2},|g(0)| \cdot|g(\infty)|=1$. If $G=\left\{g_{n}\right\}$ is discrete then $\left|g_{n}(\infty)\right| \rightarrow 1$ and so

$$
\frac{1}{2} R_{n}^{2} \sim\left|g_{n}(\infty)\right|-1 \sim 1-\left|g_{n}(0)\right|
$$

as $n \rightarrow \infty$.

We can use the above description of g to derive the following result, the plane version of which is trivial. If g is a conformal isometry of $\mathbf{B}^{\mathbf{3}}$ and if x and y are in $\mathbf{E}^{3}-\left\{\infty, g^{-1}(\infty)\right\}$ then

$$
\begin{equation*}
|g(x)-g(y)|=\frac{R_{g}^{2}|x-y|}{\left|x-g^{-1}(\infty)\right|\left|y-g^{-1}(\infty)\right|} \tag{1}
\end{equation*}
$$

The proof is easy. If J denotes inversion in S_{g} we have that

$$
|g(x)-g(y)|=|J(x)-J(y)|
$$

and also that the triangles with (ordered) vertices $g^{-1}(\infty), x, y$ and $g^{-1}(\infty), J(y), J(x)$ are similar. These facts lead easily to (1).

Now let K be a compact subset of $\Omega(G)=\hat{\mathbf{E}}^{3}-\Lambda(G)$. It is easily seen from (1) that there are positive numbers k_{1} and k_{2} (depending on G and K) such that for all x and y in K and all but a finite number of n,

$$
\begin{equation*}
k_{1} R_{g}^{2} \leqslant\left|g_{n}(x)-g_{n}(y)\right| \leqslant k_{2} R_{g}^{2} . \tag{2}
\end{equation*}
$$

A limit point z is called a point of approximation of G if and only if there is a point x in $\Omega(G)$, a positive constant k and a sequence g_{n} of distinct elements of G with

$$
\begin{equation*}
\left|z-g_{n}(x)\right|<k R_{g}^{2} \tag{3}
\end{equation*}
$$

We remark that by (2) this holds for one x in $\Omega(G)$ if and only if it holds for all x in $\Omega(G)$. Further, the approximation (3) is uniform on compact subsets of $\Omega(G)$.

Another observation is that the rate of approximation by points in $\Omega(G)$ as expressed by (3) is the best possible. Indeed if we replace g, x and y in (1) by g_{n}^{-1}, z and 0 we find that

$$
\begin{equation*}
\left|z-g_{n}(\infty)\right| \geqslant k_{3} R_{n}^{2} \tag{4}
\end{equation*}
$$

where k_{3} is positive and depends only on G.
The identity (1) can be used to characterize points of approximation in another way. We put $y=z$ in (1) and deduce that z is a point of approximation if and only if for one (or all) x other than z, there is a positive number k and a sequence g_{n} of distinct elements of G with

$$
\begin{equation*}
\left|g_{n}(x)-g_{n}(z)\right| \geqslant k \tag{5}
\end{equation*}
$$

Again, if this holds for some $x(\neq z)$ it holds uniformly on compact subsets of $\hat{\mathbf{E}}^{3}-\{z\}$. In the other direction if (5) holds uniformly on a set A we find that z is not in the closure of A.

The conditions (3) and (5) are metrical: we now seek to describe points of approximation topologically. Observe first that if σ is a hyperbolic line in \mathbf{B}^{3} with end points
x and z, say, then (5) holds for a class of g_{n} if and only if there is a compact subset K of \mathbf{B}^{3} with

$$
\begin{equation*}
g_{n}(\sigma) \cap K \neq \varnothing \tag{6}
\end{equation*}
$$

for the same class of g_{n}. We may, of course, take K to be $\left\{x \in B^{3}: \varrho(x, 0) \leqslant \varrho_{0}\right\}$ and write

$$
T=\left\{x \in \mathbf{B}^{3}: \varrho(x, \sigma) \leqslant \varrho_{0}\right\} .
$$

We then see that (6) holds if and only if

$$
\begin{equation*}
g_{n}(x) \rightarrow z \tag{7}
\end{equation*}
$$

in T for one (or all) x in K. A Stolz region at z is a cone in \mathbf{B}^{3} of the form

$$
\left\{x \in \mathbf{B}^{3}:|z-x| \leqslant k_{4}(1-|x|)\right\}
$$

and near z, T contains and is contained in Stolz regions at z.
We collect together the above results.
Theorem 1. The following statements are equivalent.
(i) z is a point of approximation.
(ii) For some (or all) x in $\Omega(G)$ there is a positive number k and a sequence of distinct elements g_{n} in G such that $\left|z-g_{n}(x)\right|<k \cdot R_{g}^{2}$.
(iii) For some x other than z, there is a positive number k and a sequence of distinct elements g_{n} in G such that $\left|g_{n}(x)-g_{n}(z)\right| \geqslant k$.
(iv) There exists a sequence g_{n} of distinct elements of G such that $\left|g_{n}(x)-g_{n}(z)\right|$ is bounded away from zero uniformly on compact subsets of $\mathbf{E}^{3}-\{z\}$.
(v) If σ is any hyperbolic line in \mathbf{B}^{3} ending at z then there is a relatively compact subset K of \mathbf{B}^{3} and a sequence of distinct elements g_{n} in G such that $g_{n}(\sigma) \cap K \neq \varnothing$.
(vi) For some (or all) x in \mathbf{B}^{3} there is a Stolz region T at z and a sequence of distinct elements g_{n} in G such that $g_{n}(x) \rightarrow z$ in T.

If h is now a Möbius transformation which maps \mathbf{B}^{3} onto \mathbf{H}^{3}, then $h G h^{-1}$ acts on \mathbf{H}^{3} and C and so may be regarded as a group of matrices. The points of approximation of $h G h^{-1}$ are the images under h of the points of approximation of G and Theorems (1)(v) shows that this definition is conjugation invariant and so is independent of h.

In the special case when $\Lambda(G)$ is a proper subset of S^{2} we can choose h so that $\infty \oiint \Lambda\left(h G h^{-1}\right)$. In this case we let σ be the vertical line through z on C and we conclude that z is a point of approximation if and only if there is a positive constant k with
for infinitely many g in $h G h^{-1}$.

$$
|g(\infty)-g(z)| \geqslant k
$$

We now let $h G h^{-1}=\left\{g_{n}\right\}$ where

$$
g_{n}=\left(\begin{array}{cc}
a_{n} & b_{n} \\
c_{n} & d_{n}
\end{array}\right), \quad a_{n} d_{n}-b_{n} c_{n}=1
$$

and we have proved the following result.
Proposition 1. In the above situation z is a point of approximation of $h G^{-1}$ if and only if there is a positive number k such that

$$
\left|z+d_{n} / c_{n}\right| \leqslant k\left|c_{n}\right|^{-2}
$$

for infinitely many g_{n} in $h G h^{-1}$.
Proposition 2. If z is a fixed point of the loxodromic element $g \in G$, then z is a point of approximation.

Proof. We can assume without loss of generality that z is the attractive fixed point. Then for every $x \in \Omega(G), g^{-h}(x)$ converges to the other fixed point.

The parabolic case is somewhat more complicated. We normalize G so that it acts on \mathbf{H}^{3} and so that $z \rightarrow z+1 \in G$. Let J be the stability subgroup of ∞; i.e., $J=\{g \in G \mid g(\infty)=\infty\}$.

We recall that in general, if we have a discrete group G acting on, say \mathbf{H}^{3}, and a subgroup $J \subset G$, then the set $A \subset \mathbf{H}^{3}$ is precisely invariant under J if for every $g \in G$ either
(i) $g \in J$ and $g(A)=A$, or
(ii) $g \notin J$ and $g(A) \cap A=\varnothing$.

It is well known (see, for example, Leutbecher [9] or Kra [8, p. 58]) that if $z \rightarrow z+1 \in G$, then for every $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ which is in G but not in $J,|c| \geqslant 1$. As an immediate consequence of this, we obtain

Lemma 1. Let $z \rightarrow z+1$ be an element of the discrete group G acting on \mathbf{H}^{3}. Then

$$
A=\left\{(z, x) \in \mathbf{H}^{3} \mid x>1\right\}
$$

is precisely invariant under J, the stability subgroup of ∞.
We conclude that no orbit can approach ∞ in aStoltz region at ∞ and so we have proven
Proposition 3. If z is the fixed point of a parabolic element of G, then z is not a point of approximation.

§ 2

In this section we explore the relationship between points of approximation and finite-sided fundamental polyhedra.

We need a definition of fundamental polyhedron when there are not necessarily finitely many sides. In this paper, we restrict ourselves to convex polyhedra.

A (convex) polyhedron P is an open subset of \mathbf{B}^{3} (or of \mathbf{H}^{3}) defined as the intersection of countably many half-spaces Q_{i} with the following property. Each Q_{i} is bounded by a hyperplane S_{i}; the intersection of S_{i} with \bar{P}, the closure of P in \mathbf{B}^{3} is called a side of P. We require that any compact subset of \mathbf{B}^{3} meets only finitely many of the S_{i} : then the boundary of P in \mathbf{B}^{3} consists only of sides.

The polyhedron P is a (convex) fundamental polyhedron for the discrete group G if
(a) no two points of P are equivalent under G.
(b) Every point of \mathbf{B}^{3} is equivalent under G to some point of \bar{P}.
(c) The sides of P are pair-wise identified by elements of G.
(d) Every x in \mathbf{B}^{3} has a neighbourhood that meets only finitely many translates of P.

We remark that there is a Fuchsian group and a polygon P which satisfies (a) and (b), but not (c). For Fuchsian groups (d) is a consequence of (a), (b) and (c).

Proposition 4. A point of approximation z of G cannot lie on the boundary of a convex fundamental polyhedron P_{0} of G.

Proof. As P_{0} is convex we can select a hyperbolic line σ joining a point x in P_{0} to the point of approximation z. Theorem $l(v)$ is applicable and this is in direct contradiction with the defining property (d) of P_{0}.

One easily sees that the identification of sides of P induces an equivalence relation on \bar{P}, each equivalence class containing only finitely many points.

It is well known that there is at least one convex fundamental polyhedron for every discrete group. A particularly well known example is the Dirichlet fundamental polyhedron P_{0} formed as follows: We start with say $0 \in B^{3}$ where 0 is not fixed by any element of G. For each non-trivial $g \in G$, we form

$$
Q_{o}=\left\{y \in \mathbf{B}^{3} \mid \varrho(y, 0) \leqslant \varrho(y, g(0))\right\} .
$$

One easily sees that Q_{g} is a half-space, and that $P_{0}=\bigcap_{g} Q_{g}$ is a fundamental polyhedron for G.

For any polyhedron $P \subset \mathbf{B}^{3}, \bar{P}$ is the relative closure of P in \mathbf{B}^{3}; we let P^{*} be the intersection of \mathbf{S}^{2} with the closure of P in $\hat{\mathbf{E}}^{\mathbf{3}}$.

Our next definition is concerned with parabolic fixed points; they are limit points but they may have aspects similar to ordinary points. We assume that $z \in C$ is fixed point of some parabolic element of G, and let J be the stability subgroup of $z . J$ is then a Kleinian group with exactly one fixed point; all such groups are known (see Ford [4], p.139). In order to examine the possibilities, we assume that G acts on H^{3}, and that $z=\infty$.

A cusped region U is a subset of C with the following properties. U is precisely invariant under J, and U is the union of two disjoint non-empty open half-planes.

One easily sees that a cusped region U can exist only if J is a finite extension of a cyclic group, and in this case $U \cap \Lambda(G)=\varnothing$. We say that z is a cusped parabolic fixed point if either there is a non-empty cusped region U, or if J is not a finite extension of a cyclic group.

The existence of parabolic fixed points which are not cusped is given in Maskit [12].
Theorem 2. If there is a convex fundamental polyhedron P for G with finitely many sides, then every limit point of G is either a point of approximation or is a cusped parabolic fixed point.

Proof. We start with the well known fact that every point of P^{*} is either in $\Omega(G)$ or is a cusped parabolic fixed point. Unfortunately, there is no ready reference for this fact, and so we outline a proof here.

The identifications of the sides of P induce an equivalence relation on \bar{P}, and on P^{*}. For each point $z \in P^{*}$, the set of points equivalent to z is called the (unordered) cycle at z. Since P has finitely many sides, the cycle contains finitely many points.

We now consider z in P^{*} and conjugate so that $z=\infty$ and the elements of G act on \mathbf{H}^{3}. We choose g_{1}, \ldots, g_{r} in G so that the cycle of ∞ on P^{*} is $\left\{g_{0}(\infty), g_{1}^{-1}(\infty), \ldots, g_{r}^{-1}(\infty)\right\}$ where, for convenience, g_{0} is the identity.

Now let J be the stabilizer of ∞ in G and J_{0} the subgroup of parabolic elements (and g_{0}) that fix $\infty\left(J_{0}\right.$ may be trivial). If $\infty \in g\left(P^{*}\right)$ where $g \in G$ we can construct a geodesic σ from a point in $g(P)$ to ∞. This implies that for some $i, 0 \leqslant i \leqslant r, g_{i} g^{-1}(\sigma)$ is a geodesic ending at ∞ and so $g_{i} g^{-1} \in J$. We conclude that

$$
J \in J \cup J g_{1} \cup \ldots \cup J g_{r} .
$$

By Propositions 2 and $4, J$ can contain only elliptic and parabolic elements and we see from [4, p. 140-141] that in this case there are elliptic elements e_{1}, \ldots, e_{s} such that

$$
J=J_{0} \cup J_{0} e_{1} \ldots \cup J_{0} e_{s}
$$

We conclude that g lies in one of a finite number of cosets $J_{0} h_{i}, h_{i} \in G$.
If J_{0} is trivial, then a neighbourhood of ∞ in $\mathbf{H}^{3} \cup C$ meets only a finite number of images of P and so $\infty \in \Omega(G)$.

If J_{0} is not a cyclic group, then by definition, ∞ is a cusped parabolic point.
Finally if J_{0} is cyclic the images of P lie under one of the finite number of euclidean curved sides of P or the $h_{i}(P)$ or are translations under J_{0} of these images and so a cusped region exists in this case.

We now assume without loss of generality, that $0 \in P$. Let $z \in \mathbf{S}^{2}$, and let σ be the line from 0 to z. If σ intersects only finitely many translates of sides of P, then for some $g \in G, g(z) \in P^{*}$, and so by the above remark either $z \in \Omega(G)$ or z is a cusped parabolic fixed point. Observe that this situation must arise if $z \in \Omega(G)$, for the euclidean diameter of translates of P must converge to 0 .

The only possibility left is that σ passes through infinitely many translates of some side M and in this case $z \in \Lambda(G)$. Then there is a sequence $\left\{g_{n}\right\}$ of distinct elements of G, and there is a sequence of points $\left\{y_{n}\right\}$ on M, so that $g_{n}(\sigma) \cap M=\left\{y_{n}\right\}$. We can assume that $y_{n} \rightarrow y$. If $y \in \mathbf{B}^{3}$, then by Theorem $1(\mathrm{v}) z$ is a point of approximation. If, as we now assume $y \nsubseteq \mathbf{B}^{3}$, then by the remarks above, y is a cusped parabolic fixed point. We again change normalization so that $y=\infty$, and we let J be the stability subgroup of ∞.

If J is not a finite extension of a cyclic group, then there is a compact set $K \subset C$, so that for every $z^{\prime} \in C$, there is a $j \in J$ with $j\left(z^{\prime}\right) \in K$. Hence, we can choose a sequence $\left\{j_{n}\right\}$ of elements of J so that $j_{n} \circ g_{n}(z) \in K$, and $j_{n} \circ g_{n}(0) \rightarrow \infty$. Observe that this latter condition implies that infinitely many of the $\left\{j_{n} \circ g_{n}\right\}$ are distinct.

If J is a finite extension of a cyclic group, then we can assume that $z \rightarrow z+1 \in J$, the cusped region is $U=\{z| | \operatorname{Im} z \mid \geqslant t\}$, and that no translates of z lies in U. Exactly as above, we can find a sequence $\left\{j_{n}\right\}$ of elements of J so that

$$
\left|\operatorname{Im}\left(j_{n} \circ g_{n}(z)\right)\right| \leqslant t,\left|\operatorname{Re}\left(j_{n} \circ g_{n}(z)\right)\right| \leqslant \frac{1}{2}
$$

This concludes the proof of Theorem 2 as we have now verified Theorem 1 (iii).
We remark first that as a corollary to the proof, we have the following well known statement.

Corollary l. Let P be a convex finite sided polyhedron for G. Let $P^{* 0}$ be the relative interior of P^{*}. Then no two points of $P^{* 0}$ are equivalent under G, and every point of $\Omega(G) \cap S^{2}$ is equivalent under G to some point in the closure of $P^{* 0}$.

For the following applications we recall that G is elementary if $\Lambda(G)$ is a finite set.
Corollary 2. Let G be non-elementary. Then the set of points of approximation has positive Hausdorff dimension.

Proof. It was remarked by Myrberg [13] that every non-elementary discrete group G contains a Schottky subgroup G_{1}, defined by say $2 n$ circles. G_{1} is then a discrete group of the second kind, with a finite-sided fundamental polyhedron. It was shown by Beardon [2] that for every such $G_{1}, \Lambda\left(G_{1}\right)$ has positive Hausdorff dimension. Since G_{1} is purely loxodromic, $\Lambda\left(G_{1}\right)$ contains only points of approximation for G_{1}, and so for G.

Corollary 3. Let G have a finite-sided fundamental polyhedron, then the points of approximation of $\Lambda(G)$ are uniformly approximable, i.e., there is a constant $k>0$ so that, for every point of approximation z, there is a sequence $\left\{g_{n}\right\}$ of distinct elements of G with

$$
\left|z-g_{n}(\infty)\right| \leqslant k R_{n}^{2}
$$

Proof. Let p_{1}, \ldots, p_{r} be the parabolic vertices on \bar{P}. In the notation of the proof of Theorem 1 we find that if $y_{n} \rightarrow y, y=p_{j}$, then $j_{n} \circ g_{n}(0)$ remains outside some neighbourhood of the set $\left\{j_{n} \circ g_{n}(z)\right\}$. If we consider G as now acting in \mathbf{B}^{3} this means that (retaining the same notation despite conjugation),

$$
\left|j_{n} \circ g_{n}(z)-j_{n} \circ g_{n}(0)\right| \geqslant k
$$

The result now follows by (1) and (2).
A corollary of the above is the following theorem of Ahlfors [1].
Corollary 4. Let G have a finite sided fundamental polyhedron. Then the 2-dimensional measure of $\Lambda(G)$ is either zero or 4π.

Proof. The proof is essentially immediate from Corollary 3, and the fact remarked above, that if G is of the second kind, then

$$
\sum_{g \in G} R_{g}^{4}<\infty .
$$

Exactly the same considerations yield
Corollary 5. If G has a finite-sided fundamental polyhedron, and if

$$
\sum_{g \in G} R_{g}^{2 t}<\infty,
$$

then the t-dimensional measure of $\Lambda(G)$ is zero.

§ 3

In this section we prove the converse of Theorem 2. Specifically, our goal is to prove.
Theorem 3. Let P be a convex fundamental polyhedron for the discrete group G, where every point of $\Lambda(G)$ either is a point of approximation or is a cusped parabolic fixed point. Then P has finitely many sides.

Proof. Throughout we assume that P is a convex fundamental polyhedron for the discrete group G which, for the moment, is assumed to act on \mathbf{B}^{3}. If P has infinitely many sides, these accumulate at some point z on \bar{P}. We begin by showing that $z \in \Lambda(G)$.

Lemma 2. Let $M_{1}, M_{1}^{\prime}, M_{2}, M_{2}^{\prime}$ be sides of P where there are pairing transformations $g_{1}, g_{2} \in G$ with $g_{i}\left(M_{i}\right)=M_{i}^{\prime}$. Then, $g_{1}=g_{2}$ if and only if $M_{1}=M_{2}$.

Proof. Let $S_{1}, S_{1}{ }^{\prime}$ be the hyperplanes on which $M_{1}, M_{1}{ }^{\prime}$, respectively, lie, and let $Q_{1}, Q_{1}{ }^{\prime}$ be the half spaces which are bounded by $S_{1}, S_{1}{ }^{\prime}$, respectively, and which contain P. If M_{2} does not lie on S_{1}, then $M_{2} \subset Q_{1}$, and $g_{1}\left(M_{2}\right) \cap Q_{1}{ }^{\prime}=\varnothing$. We conclude that $g_{1}\left(M_{2}\right)$ can be a side of P only if $M_{2} \subset S_{1}$; i.e., $M_{2}=M_{1}$.

This lemma shows that infinitely many distinct images of P accumulate at z. As P is convex and locally finite the euclidean diameter of the images of P under G converge to zero, thus $z \in \Lambda(G)$.

Proposition 4 together with the hypotheses of the theorem now imply that z is necessarily a cusped parabolic fix-point. We complete the proof by showing that this is inconsistent with the assumption that infinitely many sides of P accumulate at z.

We shall assume that G acts on \mathbf{H}^{3} and that $z=\infty$. Now let J be the stabilizer of ∞ and J_{0} the subgroup of parabolic elements of J. We may assume that J_{0} contains $z \rightarrow z+1: J_{0}$ is either cyclic or of rank 2.

We will need the following remark about convex polyhedra.
Lemma 3. Let $\left(z_{i}, x_{i}\right), i=1, \ldots, n$, be a finite set of points of P. Let B be the Euclidean convex hull of the points z_{1}, \ldots, z_{n}. Then
(i) there is a $t>0$ so that $\left\{(z, x) \in \mathbf{H}^{3} \mid z \in B, x>t\right\} \subset \bar{P}$, and
(ii) no two distinct points of B are equivalent under J.

Proof. Since J keeps each horosphere $x=$ constant invariant, conclusion (ii) follows from conclusion (i).

Since \bar{P} is convex and $\infty \in P^{*}$, if $\left(z, x_{0}\right) \in \bar{P}$, then so does (z, x) for every $x>x_{0}$. Conclusion (i) now follows from the fact that if τ is the non-Euclidean line from (z_{1}, x_{1}) to $\left(z_{2}, x_{2}\right)$, then the projection of τ onto the z-plane is the Euclidean line from z_{1} to z_{2}.

This leads easily to
Lemma 4. Let $z_{n} \rightarrow \infty$ in \bar{P} with $z_{n}=\left(u_{n}+i v_{n}, x_{n}\right)$.
(i) If J_{0} is cyclic, then $v_{n}^{2}+x_{n}^{2}$ is unbounded.
(ii) If J_{0} is of rank 2, then $u_{n}^{2}+v_{n}^{2}$ is bounded, x_{n}^{2} is unbounded.

Proof. If the conclusion of (i) fails then, by Lemma 3, P contains a subset of the form $\left[u^{\prime},+\infty\right) \times\left[v^{\prime}, v^{\prime \prime}\right] \times\left[x^{\prime},+\infty\right)\left(v^{\prime}<v^{\prime \prime}\right)$ and this contains points equivalent under J_{0}. The proof of (ii) is similar.

We immediately deduce that if z_{n} is a sequence of distinct points in $\Lambda(G) \cap P^{*}$ then $z_{n}{ }^{+\rightarrow \infty}$. Indeed in (i) we have $x_{n}=0$ and $z_{n} \notin U$ so $\left|v_{n}\right| \leqslant V^{*}$ whereas in (ii) $x_{n}=0$. The hypothesis of the Theorem together with Proposition 4 now implies that P^{*} contains only finitely many limit points, in particular the cycle of ∞ is finite.

If infinitely many sides M_{n} of P meet ∞ we can select g_{n} in G where $g_{n}(P)$ abuts P along M_{n}. By Lemma 2, these g_{n} are distinct. It is evident that P can abut at most one other translate of $g(P)$ under J_{0} and so we conclude that the g_{n} lie in infinitely many distinct cosets $J_{0} g$. This implies that the set $\left\{g_{n}^{-1}(\infty)\right\}$ is an infinite subset of \bar{P} contrary to our previous remark. We have proved

Lemma 5. Only finitely many sides of P pass through ∞.
We have assumed there is an infinite sequence of sides M_{n} of P accumulating at ∞. The previous lemma implies that we may assume that none of these contain ∞. We select z_{n} on M_{n} with $z_{n} \rightarrow \infty$ and choose distinct g_{n} so that $g_{n}(P)$ abuts P along M_{n}.

As $\infty \notin M_{n}$ we conclude that $g_{n}(\infty) \in C$ and we can find a sequence j_{n} in J_{0} with $j_{n} \circ g_{n}(\infty)$ lying in a compact subset K of C. By Lemma 4 we observe that $j_{n}\left(z_{n}\right) \rightarrow \infty$. If τ_{n} is the geodesic in $j_{n} \circ g_{n}(P)$ joining $j_{n}\left(z_{n}\right)$ to $j_{n} \circ g_{n}(\infty)$ we find that the τ_{n} meet a compact subset of \mathbf{H}^{3} contrary to the assumption that the tesselation is locally finite. The proof is now complete.

We remark in closing that we have used the fact that we are dealing with 3-dimensional hyperbolic space in a crucial manner only in the precise definition of cusped parabolic fixed point. In dimension 2, it is well-known, and one easily proves using Lemma 1, that every parabolic fixed point is cusped. It is also well-known (see Greenberg [6] or Marden [10]) that a Fuchsian group has a finite sided fundamental polygon if and only if it is finitely generated. Combining these with the trivial fact that a Fuchsian group has a finite sided fundamental polygon if and only if as a Kleinian group it has a finite sided fundamental polyhedron, we obtain

Corollary 6. A Fuchsian group G is finitely-generated if and only if $\Lambda(G)$ consists entirely of points of approximation and parabolic fixed points.

References

[1]. Ahlfors, L. V., Fundamental polyhedrons and limit point sets of Kleinian groups. Proc. Nat. Acad. Sci. USA, 55 (1966), 251-254.
[2]. Beardon, A. F., The Hausdorff dimension of singular sets of properly discontinuous groups. Amer. J. of Math., 88 (1966), 721-736.
[3]. Beardon, A. F. \& Nicholls, P. J., On classical series associated with Kleinian groups. Jour. London Math. Soc., 5 (1972), 645-655.
[4]. Ford, L. R., Automorphic functions, 2nd ed. Chelsea Publishing Co., New York, 1951.
[5]. Greenberg, L., Fundamental polyhedra for Kleinian groups. Annals of Math., 84 (1966), 433-441.
[6]. -- Fundamental polygons for Fuchsian groups. J. Analyse Math., 18 (1967), 99-105.
[7]. Hedlund, G. A., Fuchsian groups and transitive horocycles. Duke Math. J., 2 (1936), 530-542.
[8]. Kra, I., Automorphic forms and Kleinian groups. W. A. Benjamin Inc., Mass., 1972.
[9]. Leutbecher, A., Über Spitzen diskontinuierlicher Gruppen von lineargebrochenen Transformationen. Math. Zeitschr., 100 (1967), 183-200.
[10]. Marden, A., On finitely generated Fuchsian groups. Comment Math. Helv., 42 (1967), 81-85.
[11]. - The geometry of finitely generated Kleinian groups (to appear).
[12]. Maskit, B., On boundaries of Teichmüller spaces and on Kleinian groups: II. Annals of Math. 91 (1070), 607-639.
[13]. Myrberg, P. J., Die Kapazität der singulären Menge der linearen Gruppe. Ann. Acad. Sci. Fenn., Ser. A, 10 (1941), 19.

Received June 6, 1973

