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We prove the existence of a limit shape and give its explicit descrip-
tion for certain probability distribution on signatures (or highest weights for
unitary groups). The distributions have representation theoretic origin—they
encode decomposition on irreducible characters of the restrictions of certain
extreme characters of the infinite-dimensional unitary group U(∞) to grow-
ing finite-dimensional unitary subgroups U(N). The characters of U(∞) are
allowed to depend on N . In a special case, this describes the hydrodynamic
behavior for a family of random growth models in (2 + 1)-dimensions with
varied initial conditions.

1. Introduction. Decomposing the restriction of an irreducible representation
of a group to its subgroup onto irreducible components is one of the basic problems
of the representation theory. Under special circumstances, as the group and the
subgroup become large, such decomposition may be subject to a Law of Large
Numbers type concentration phenomenon—the bulk of the decomposition consists
of representations that are in some sense close to each other. This paper is devoted
to studying one of such situations.

Historically, the first example of this concentration phenomenon was discovered
by Vershik–Kerov [26] and Logan–Shepp [16]. One way to phrase their result is
to consider the infinite bisymmetric group G = S(∞)× S(∞), where S(∞) is the
group of finite permutations of N := {1,2, . . .}, and the growing subgroups being
finite bisymmetric groups G(n) = S(n) × S(n), where S(n) consists of permuta-
tions of a subset of N with n ≥ 1 elements. Take the biregular representation of
G in �2(S(∞)) with G acting by left and right shifts. It is well-known that it is
irreducible (as for any countable group with infinite nontrivial conjugacy classes).
Its restriction to G(n) decomposes on isotypical components corresponding to irre-
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FIG. 1. Signature λ = (5,3,2,−1,−3) and Young diagrams λ+ = (5,3,2) and λ− = (3,1).

ducible representations of S(n), or to partitions of n (equivalently, Young diagrams
with n boxes). The corresponding spectral measure is the celebrated Plancherel
distribution on Young diagrams with n boxes that assigns to λ the weight equal to
the square of the number of standard Young tableaux of shape λ divided by n!.

The theorem of Vershik–Kerov–Logan–Shepp (see Kerov [13] and Ivanov–
Olshanski [12] for a different proof that is closer to the present work) says that
if we shrink the random Young diagram λ by the factor of

√
n in both directions

(so that its area is now 1), then as n → ∞, the boundary of λ converges, in proba-
bility and in a suitable topology, to an explicit smooth curve usually referred to as
the limit shape.

Vershik–Kerov in [27] also considered the case of other (unitary spherical) irre-
ducible representations of G and their restrictions to G(n), showing that while the
law of large numbers is still there, it takes a drastically different form—one needs
to normalize the row and column lengths of the random Young diagram λ by n to
see the almost sure convergence to a point configuration (not a smooth curve) that
essentially encodes the original representation of G.

In the present paper, we are dealing not with the symmetric groups S(n) but
with the compact unitary groups U(N). The irreducible characters of U(N) are
parameterized by N -tuples λ = (λ1 ≥ λ2 ≥ · · · ≥ λN) ∈ ZN , which are called sig-
natures of length N . Note that every such λ can be viewed as a couple (λ+, λ−)

of Young diagrams (their row-lengths are, resp., the positive and the minus neg-
ative coordinates in λ; see an example in Figure 1). These two Young diagrams
represent the shape of the signature.

Let us take G(N) = U(N) × U(N) and define G as the union of the grow-
ing groups G(N). In other words, G = U(∞) × U(∞), where U(∞) is the
group of unitary matrices of format N × N with finitely many entries Uij distinct
from δij . The restriction of a (unitary spherical) irreducible representation of G

to G(N) decomposes on isotypical components parameterized by the signatures
of length N . It is easiest to encode this decomposition via characters—central
normalized positive-definite functions on U(∞) that are in one-to-one correspon-
dence with the spherical unitary representations; see Olshanski [22, 23].

If χ :U(∞) →C is a character of U(∞), then

χ
(
diag(z1, . . . , zN,1,1, . . .)

) = ∑
λ=(λ1≥···≥λN)∈ZN

M
χ
N(λ)

sλ(z1, . . . , zN)

sλ(1, . . . ,1)
,
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where sλ’s are the rational Schur functions [conventional irreducible characters for
U(N)], and M

χ
N is the spectral measure of the decomposition, which is a proba-

bility distribution on the set of all signatures of length N .
Irreducible (spherical unitary) representations of G correspond to the extreme

points of the convex set of characters of U(∞), often referred to as its ex-
treme characters. The classification of the extreme characters is known as the
Edrei–Voiculescu theorem (see Voiculescu [29], Edrei [11], Vershik–Kerov [28],
Okounkov–Olshanski [20], Borodin–Olshanski [7]). They can be parameterized
by the set

� = (
α+, α−, β+, β−, δ+, δ−) ∈ (

R∞+
)4 × (R+)2,

where

α± = α±
1 ≥ α±

2 ≥ · · · ≥ 0, β± = β±
1 ≥ β±

2 ≥ · · · ≥ 0,

δ± ≥ 0,

∞∑
i=1

(
α±

i + β±
i

) ≤ δ±, β+
1 + β−

1 ≤ 1.

Instead of δ±, we will use parameters γ ± ≥ 0 defined by γ ± := δ± − ∑∞
i=1(α

±
i +

β±
i ). Each ω ∈ � defines a function �ω : {u ∈ C : |u| = 1} → C by

�ω(u) = exp
(
γ +(u − 1) + γ −(

u−1 − 1
))

(1.1)

×
∞∏
i=1

(1 + β+
i (u − 1))

(1 − α+
i (u − 1))

(1 + β−
i (u−1 − 1))

(1 − α−
i (u−1 − 1))

,

which we call the Voiculescu function with parameter ω. The corresponding ex-
treme character has the form

χω(U) := ∏
u∈Spectrum(U)

�ω(u), U ∈ U(∞),(1.2)

where the product is over the eigenvalues of U [this product is essentially finite,
because �ω(1) = 1 and only finitely many of u’s are distinct from 1].

We are thus interested in the limit shape phenomenon for the probability mea-
sures of the form M

χω

N as N → ∞.

Let λ = λ(N) be the random signature with distribution M
χω

N , and let λ± be the
corresponding Young diagrams. The row and column lengths of λ± (see Figure 1)
divided by N almost surely converge, as N → ∞, to the values of the α± and β±
coordinates (somewhat similarly to the case of S(∞), cf. Vershik–Kerov [27]). If
all those coordinates are zero but γ ± are not, then scaling by

√
N leads to con-

centration of M
χω

N around two copies of the Vershik–Kerov–Logan–Shepp limit
shape; see Borodin–Kuan [6].4 The latter work also noted a hypothetical limit

4There is no proof of the measure concentration there, but there is substantial evidence that it holds.
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shape formation as γ ± grow linearly in N as N → ∞ (as opposed to being in-
dependent of N ), and suggested a formula for the limit shape. In the case when
only γ + is nonzero, the concentration around the limit shape was proved earlier
by Biane [3].

In the present work, we prove that the limit shape phenomenon takes place in a
much more general setting.

Let us state our main result.
Consider a sequence of points ω(N) ∈ �, N ≥ 1, and assume that there exists

an analytic function P(z) defined in a neighborhood of the origin such that

lim
N→∞

1

N

(
log�ω(N)(z + 1)

) = P(z)(1.3)

uniformly in a (possibly smaller) neighborhood of z = 0 (see the beginning of Sec-
tion 3 below for simple sufficient conditions for the above convergence to hold).

THEOREM 1.1. Let us fix an arbitrary sequence {ω(N)}N≥1 of elements in
� satisfying the limit relation (1.3). For every N , let λ(N) denote the random

signature distributed according to M
χω(N)

N and let λ±(N) be the corresponding
Young diagrams.

Let us shrink the diagrams λ±(N) by the factor of N in both directions. Then
the resulting random shapes converge, as N → ∞, to certain nonrandom shapes,
which in principle can be obtained from the function P(z).

Here is another (and more precise) formulation of the result.
Denote by δ(x) the Dirac measure at a point x ∈ R. To every signature λ =

(λ1 ≥ · · · ≥ λN), we assign an atomic probability measure on R:

μλ := 1

N

N∑
i=1

δ

(
λi − i + 1/2

N

)
.(1.4)

This measure encodes the (scaled) shape of λ (see Section 2.5 for more detail).

THEOREM 1.2. Let {ω(N)}N≥1and λ(N) be as above, and let μλ(N) be the
random atomic measure on R corresponding to λ(N).

There exists a probability measure σ with compact support on R such that

lim
N→∞μλ(N) = σ (weak convergence in probability).

The measure σ is uniquely determined by its moments (1,m1,m2, . . .), which in
turn are found from the fact that the two formal series in z,

exp
(
z + m1z + m2z

3 + · · ·) − 1 and
z

1 + z(1 + z)P ′(z)
are mutually inverse with respect to composition.
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See Theorem 3.2 below. The fact that Theorem 1.2 implies Theorem 1.1 is ex-
plained in Proposition 2.2. That proposition also shows that the limit measure σ

always has a density with respect to Lebesgue measure.
Concrete example of sequences {ω(N)}N≥1 and corresponding limit shapes can

be found in the Appendix below.
The density of σ can be guessed using the determinantal structure of suitably

defined correlation functions of measures Mω
N found by Borodin–Kuan [6], and a

steepest descent analysis of the double contour integral representation of the corre-
lation kernel. We outline this route in Section 3.2 below. Note, however, that prov-
ing the concentration of measure phenomenon is a different task, and correlation
functions are not well suited for it. In this work, we employ a different approach.

Our result also has a probabilistic interpretation. Measures of the form Mω
N

with ω having finitely many nonzero α± and β± parameters can be obtained via a
Markov growth process in (2 + 1)-dimensions; see Borodin–Ferrari [4]. Our main
result then establishes the law of large numbers for a growing two-dimensional
random interface. The growth process is local, and one can expect that the limit
shape should be evolving in time according to a first-order PDE. Our result con-
firms that for a broad class of initial conditions; see Section 3.3 for details.5

If we have two sequences of extreme characters that lead to limit shapes, we
can also consider the sequence whose members are products of those of the two
original sequences (the set of extreme characters is closed under multiplication).
The new sequence will also have a limit shape, and we thus obtain an operation
on limiting measures σ . We call it “quantized free convolution”; it is a relative of
the free convolution in free probability, and it degenerates to it; see Section 3.4
below. Bufetov–Gorin [9] show how this operation naturally arises through tensor-
ing large irreducible representations of growing (but finite-dimensional) unitary
groups and further decomposing them on irreducibles.

The particular examples of characters of U(∞) are the one-sided Plancherel
character (the only nonzero parameter is γ +) and the two-sided Plancherel charar-
cter (γ + and γ − are nonzero). The probability measures arising from these char-
acters were considered, for example, by Biane [3], Borodin–Bufetov [8], Borodin–
Kuan [6]. However, we want to emphasize that the conditions of Theorem 1.2 are
much more general because they allow to manipulate not only γ +, γ −, but all
4 · ∞ + 2 parameters of extremal characters. Theorem 1.2 gives the same answer
that was proved earlier by Biane [3] in the case of the one-sided Plancherel char-
acter and conjectured by Borodin–Kuan [6] in the case of the two-sided Plancherel
character.

Having proved a law of large numbers, it is natural to ask about the central limit
theorem. In the case of linearly growing parameter γ + and all other parameters
being zero, it was shown in Borodin–Ferrari [4] and Borodin–Bufetov [8] that the

5In the case when the only nonzero paramater is γ +, the corresponding PDE was found in [4].
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fluctuations around the limit shape are described by the two-dimensional Gaussian
Free Field. It is plausible that a similar description of fluctuations should exist
under the (substantially more general) assumption of our theorem above.

Our proof is based on the method of moments. It bears a certain similarity
with the work of Ivanov–Olshanski [12] for the Plancherel measures on symmetric
groups and the work of Borodin–Bufetov [8] for the nonzero γ + case, but it is of
course more involved because of the many parameters present. The key ingredients
are provided by certain graph enumeration arguments, as we explain in Section 4.

2. Preliminaries.

2.1. The infinite-dimensional unitary group and its characters. Let U(N) =
{[uij ]Ni,j=1} be the group of N ×N unitary matrices. Consider the tower of embed-
ded unitary groups

U(1) ⊂ U(2) ⊂ · · · ⊂ U(N) ⊂ U(N + 1) ⊂ · · · ,
where the embedding U(N) ⊂ U(N + 1) is defined by ui,N+1 = uN+1,i = 0, 1 ≤
i ≤ k, uN+1,N+1 = 1. The infinite-dimensional unitary group is the union of these
groups:

U(∞) =
∞⋃

N=1

U(N).

Define a character of the group U(∞) as a function χ :U(∞) →C that satisfies
the following conditions:

(1) χ(e) = 1, where e is the identity element of U(∞) (normalization);
(2) χ(ghg−1) = χ(h), where g,h are any elements of U(∞) (centrality);
(3) [χ(gig

−1
j )]ni,j=1 is an Hermitian and positive-definite matrix for any n ≥ 1

and g1, . . . , gn ∈ U(∞) (positive-definiteness);
(4) the restriction of χ to U(N) is a continuous function for any N ≥ 1 (conti-

nuity).

The set of characters of U(∞) is obviously convex. The extreme points of this
set are called the extreme characters; they replace irreducible characters in this set-
ting. The classification of the extreme characters was described in the Introduction;
see formulas (1.1) and (1.2) above.

2.2. The Gelfand–Tsetlin graph and coherent systems of measures. A signa-
ture (also called highest weight) of length N is a sequence of N weakly decreasing
integers

λ = (λ1 ≥ λ2 ≥ · · · ≥ λN), λi ∈ Z,1 ≤ i ≤ N.
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It is well known that the irreducible (complex) representations of U(N) can be
parameterized by signatures of length N (see, e.g., [30, 31]). Let DimN(λ) be the
dimension of the representation corresponding to λ. By χλ, we denote the normal-
ized character of this representation, that is, the conventional character divided by
DimN(λ).

Let GTN denote the set of all signatures of length N . (Here, letters GT stand
for “Gelfand–Tsetlin.”) We say that λ ∈ GTN and μ ∈ GTN−1 interlace, notation
μ ≺ λ, if λi ≥ μi ≥ λi+1 for any 1 ≤ i ≤ N −1. We also define GT0 as a singleton
consisting of an element that we denote as ∅. We assume that ∅ ≺ λ for any
λ ∈ GT1.

The Gelfand–Tsetlin graph GT is defined by specifying its set of vertices as⋃∞
N=0 GTN and putting an edge between any two signatures λ and μ such that

either λ ≺ μ or μ ≺ λ. A path between signatures κ ∈ GTK and ν ∈ GTN , K < N ,
is a sequence

κ = λ(K) ≺ λ(K+1) ≺ · · · ≺ λ(N) = ν, λ(i) ∈GTi ,K ≤ i ≤ N.

It is well known that DimN(ν) is equal to the number of paths between ∅ and
ν ∈ GTN . An infinite path is a sequence

∅ ≺ λ(1) ≺ λ(2) ≺ · · · ≺ λ(k) ≺ λ(k+1) ≺ · · · .
We denote by P the set of all infinite paths. It is a topological space with the

topology induced from the product topology on the ambient product of discrete
sets

∏
N≥0 GTN . Let us equip P with the Borel σ -algebra.

For N = 0,1,2, . . . , let MN be a probability measure on GTN . We say that
{MN }∞N=0 is a coherent system of measures if for any N ≥ 0 and λ ∈ GTN ,

MN(λ) = ∑
ν : λ≺ν

MN+1(ν)
DimN(λ)

DimN+1(ν)
.

Given a coherent system of measures {MN }∞N=1, define the weight of a cylindric
set of P consisting of all paths with prescribed members up to GTN by

P
(
λ(1), λ(2), . . . , λ(N)) = MN(λ(N))

DimN(λ(N))
.(2.1)

Note that this weight depends on λ(N) only (and does not depend on λ(1), λ(2), . . . ,

λ(N−1)). The coherency property implies that these weights are consistent, and
they correctly define a Borel probability measure on P .

Now let χ be an arbitrary character of U(∞) and χN denote its restriction to
the subgroup U(N). The function χN can be expanded into a series in χλ’s,

χN = ∑
λ∈GTN

MN(λ)χλ.(2.2)
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It is readily seen that the coefficients MN(λ) form a coherent system of measures
on GT. Conversely, for any coherent system of measures on GT one can construct
a character of U(∞) using the above formula.

Note also that if χN is smooth, then the coefficients of the expansion (2.2)
rapidly decay as λ goes to infinity, so that any polynomial function in variables
λ1, . . . , λN is summable on GTN with respect to measure MN .

2.3. The algebra of shifted symmetric functions. In this subsection, we review
some facts about the algebra of shifted symmetric functions; see [12, 14, 21].

Let Sym∗(N) be the algebra of polynomials in N variables x1, . . . , xN , that are
symmetric in shifted variables

yi := xi − i + 1
2 , i = 1,2, . . . ,N.

The standard filtration of Sym∗(N) is defined by the degree of a polynomial.
Define a map Sym∗(N) → Sym∗(N − 1) as specializing xN = 0. The algebra of
shifted symmetric functions Sym∗ is the projective limit of the algebras Sym∗(N)

with respect to these maps. Here, the limit is taken in the category of filtered alge-
bras meaning that the degree does not grow.

The algebra Sym∗ can be identified with the subalgebra in R[[x1, x2, . . .]] gen-
erated by the algebraically independent system {pk}∞k=1, where

pk(x1, x2, . . .) :=
∞∑
i=1

((
xi − i + 1

2

)k

−
(
−i + 1

2

)k)
, k = 1,2, . . . .

Let Yn denote the set of partitions (or Young diagrams) ν = (ν1 ≥ ν2 ≥ · · · ≥ 0)

with |ν| := ∑
i≥1 νi = n. Let ρ, ν ∈ Y := Y0 ∪ Y1 ∪ Y2 ∪ · · · , and let r = |ρ|,

n = |ν|. For r = n, denote by ψν
ρ the value of the irreducible character of the

symmetric group S(n) corresponding to ν on the conjugacy class indexed by ρ

(see, e.g., [17, 24] for details on symmetric groups). For r < n, denote by ψν
ρ

the value of the same character on the conjugacy class indexed by ρ ∪ 1n−r =
(ρ,1,1, . . . ,1) ∈ Yn. Define p#

ρ :Y →R by

p#
ρ(ν) =

⎧⎨
⎩n(n − 1) · · · (n − r + 1)

ψν
ρ

dim ν
, n ≥ r;

0, n < r .

Note that elements of Sym∗ are well-defined functions on the set of all infinite
sequences with finitely many nonzero terms. It turns out that there is a unique el-
ement p#

ρ ∈ Sym∗ such that p#
ρ(ν) = p#

ρ(ν) for all ν ∈ Y. It is known that the set
{p#

ρ}ρ∈Y is a linear basis in Sym∗. When ρ consists of a single row, ρ = (k), we de-
note the element p#

ρ by p#
k . It is also known that the set {p#

k}∞k=1 is an algebraically
independent system of generators of Sym∗. See [12] for details.

The weight of p#
ρ is defined by

wt
(
p#

ρ

) = |ρ| + l(ρ),
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where l(ρ) denotes the number of nonzero coordinates in ρ. We extend this def-
inition to arbitrary elements f ∈ Sym∗ in a natural way, namely, we expand f in
the basis {p#

ρ} and define the weight wt(f ) as the maximal weight of those ba-
sis elements that enter the expansion of f with nonzero coefficients. It turns out
(see [12]) that wt(·) is a filtration on Sym∗. It is called the weight filtration.

We will need the following formula (see [12], Proposition 3.7):

pk = 1

k + 1

[
uk+1]{(1 + p#

1u
2 + p#

2u
3 + · · ·)k+1} + lower weight terms,(2.3)

where “lower weight terms” denotes terms with weight ≤ k, and [uk]{A(u)} stands
for the coefficient of uk in a formal power series A(u).

2.4. An algebra of functions on (random) signatures. In this section, we de-
fine an algebra of functions on the probability space (GTN,MN) and state some
properties of these functions.

For any N ≥ 1, define functions p
(N)
k :GTN →R by

p
(N)
k (λ) =

N∑
i=1

((
λi − i + 1

2

)k

−
(
−i + 1

2

)k)
,

(2.4)
λ ∈ GTN,1 ≤ k ≤ N.

Let A(N) be the algebra generated by {p(N)
k }Nk=1. It is easy to see that for a fixed

N ≥ 1, the functions {p(N)
k }Nk=1 are algebraically independent; therefore, they form

a system of algebraically independent generators of A(N). Clearly, the algebras
A(N) and Sym∗(N) are naturally isomorphic.

Consider the map prN : Sym∗ → A(N) such that prN(pk) = p
(N)
k . Denote by

p
#(N)
ρ the function prN(p#

ρ).
Let χ be a character of U(∞), χN its restriction to U(N), and MN the corre-

sponding probability measure on GTN , where N = 1,2, . . . . We consider the pair
(GTN,MN) as a probability space. Then the functions from A(N) turn into ran-
dom variables. Let EN be the expectation on this probability space. Note that for
any f ∈ Sym∗ we can consider the random variable prN(f ).

With some ambiguity that should not lead to any confusion, we omit the index
N in the notation of p

(N)
k and p

#(N)
ρ .

The complexification of U(N) is the group GL(N,C), which is an open sub-
set of Mat(N,C), the space of N × N complex matrices. Let xij be the natural
coordinates in Mat(N,C) (where 1 ≤ i, j ≤ N ) and ∂ij be the abbreviation for
the (holomorphic) partial derivative operator ∂/∂xij . Note that any analytic func-
tion on the real manifold U(N) can be extended to a holomorphic function in a
neighborhood of the identity matrix in Mat(N,C).
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PROPOSITION 2.1. Assume that χ is such that for every N = 1,2, . . . , the
function χN is analytic and so admits a holomorphic extension to a neighborhood
of 1 in Mat(N,C). Then the following formula holds:

EN

(
p#

ρ

) = ∑
1≤i1,...,i|ρ|≤N

∂i1s(i1) ∂i2s(i2) · · · ∂i|ρ|is(|ρ|)χN(1 + X)
∣∣∣
X=0

,(2.5)

where s ∈ S(|ρ|) is an arbitrary permutation with cycle structure ρ, and X = [xij ]
is a matrix from Mat(N,C) close to 0.

Before proceeding to the proof, let us note that we will apply this result only
to the extreme characters, and all such characters satisfy the hypothesis of the
proposition, because every Voiculescu function is analytic. However, there exist
nonextreme characters χ for which the functions χN are not analytic and even not
smooth.

PROOF OF PROPOSITION 2.1. Because χN is analytic, all functions from
A(N) are summable with respect to MN , so that the corresponding random vari-
ables have finite expectation. Thus, the left-hand side of (2.5) is well defined.

The key fact we need is Theorem 2 in Kerov–Olshanski [14] (see also
Okounkov–Olshanski [21], Section 15). Here is its statement. Consider the dif-
ferential operator

Dρ =
N∑

α1,...,αk,i1,...,ik=1

xα1i1, . . . , xαkik ∂α1is(1)
· · · ∂αkis(k)

on Mat(N,C). Its restriction to the group GL(N,C) is invariant with respect to
left and right shifts, and one has

Dρχλ = p#
ρ(λ)χλ

for any λ ∈ GTN . Let us recall that χλ denotes the normalized irreducible charac-
ter of U(N) indexed by λ, so that χλ(1) = 1. Therefore, evaluating the both sides
at 1 we get

p#
ρ(λ) = (

Dρχλ)
(1).

Next, taking the expectation of the both sides with respect to MN , we get

EN

(
p#

ρ

) = (DρχN)(1).

Finally, under the specialization of the coefficients of the operator Dρ at the
point 1 ∈ Mat(N,C) this operator simplifies and turns into the operator in (2.5).

�
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FIG. 2. A piecewise linear function corresponding to the signature λ = (6,4,2,0,−1,−3).

2.5. Geometric interpretation of signatures. Let us depict signatures λ ∈GTN

in the way shown in Figure 2. This figure explains how to assign to λ a continuous
piecewise linear function wλ(x) (bold line in the figure).

Formally, wλ(x) is uniquely determined by the following properties:

• w′
λ(x) may have jump discontinuities only at points n ∈ Z of the x-axis;

• w′
λ(x) = ±1 for x /∈ Z;

• wλ(x) = x for x ≥ λ1 and wλ(x) = x + 2N for x ≤ λN − N , so that w′
λ(x) = 1

outside [λN − N,λ1];
• inside (λN −N,λ1), there are exactly N unit intervals (n,n+1) where w′

λ(x) =
−1, and these are those with the midpoints λi − i + 1

2 , i = 1, . . . ,N .

In particular, the function w0(x) corresponding to the signature (0, . . . ,0) ∈
GTN has exactly two derivative jumps, at the points x = −N and x = 0.

We regard wλ as the shape of λ. Note that the part of the graph of wλ above
(resp., below) the broken line w0 visualizes the diagram λ+ (resp., λ−); see the
Introduction for the definition of λ±.

We also need the function 1
N

wλ(Nx), which describes the scaled shape of λ.
Next, recall definition (1.4) of the probability measure on R associated with λ:

μλ := 1

N

N∑
i=1

δ

(
λi − i + 1/2

N

)
,

where δ(x) denotes the Dirac measure at x. Clearly, λ is uniquely determined
by μλ.

We are going to show that the concentration of random measures μλ implies the
concentration of the scaled shapes.

PROPOSITION 2.2. Assume that for every N = 1,2, . . . we are given an en-
semble of random signatures λ = λ(N) distributed according to a probability mea-
sure on GTN . Next, let us assume that, as N → ∞, the corresponding random
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measures μλ weakly converge, in probability, to a nonrandom probability measure
σ with support in a bounded interval [a, b] ⊂R.

(i) The limit measure σ is absolutely continuous with respect to Lebesgue mea-
sure on R and so has a density p(x) vanishing outside [a, b].

(ii) The random functions 1
N

wλ(Nx) uniformly converge in probability to a
nonrandom function w(x), uniquely determined by the following three properties:
w(x) = x for x > b, w(x) = x + 2 for x < a and w′(x) = 1 − 2p(x) almost
everywhere on [a, b].

PROOF. (i) The assumption of the proposition means that for any bounded
continuous function f (x) on R,

lim
N→∞〈f,μλ〉 = 〈f,σ 〉 in probability,(2.6)

where the angular brackets denote the pairing between functions and measures.
Let us assume that f is compactly supported and nonnegative. By the very

definition of μλ,

〈f,μλ〉 = 1

N

N∑
i=1

f

(
λi − i + 1

2

)
≤ 1

N

∑
n∈Z

f

(
n + 1

2

)
.

Since the last expression is the Riemann sum for the integral of f against Lebesgue
measure, passing to a limit as N → ∞, we see that 〈f,σ 〉 is bounded from above
by that integral. If follows that σ has a density p(x) with respect to Lebesgue
measure and, moreover, p(x) ≤ 1 almost everywhere.

(ii) Let us define an auxiliary piecewise linear function w̃λ(x) by

w̃λ(x) := x + 2
(
1 − μλ

(
(−∞;x])) = x + 2μλ

(
(x;+∞)

)
.

It readily follows that for x such that w′
λ(Nx) = 1 we have 1

N
wλ(Nx) = w̃λ(x),

and for all x, ∣∣∣∣w̃λ(x) − 1

N
wλ(Nx)

∣∣∣∣ ≤ 1

N
.(2.7)

Let us define w(x) as the primitive function of 1−2p(x) such that w(x) = x for
x � 0. By virtue of (2.6) and claim (i), μλ(R\ [a, b]) converges in probability to 0
as N → ∞. The uniform convergence of w̃λ(x) to w(x) outside of [a, b] directly
follows from this fact. Equation (2.7) implies that the functions 1

N
wλ(Nx) also

uniformly converge to w(x) outside of [a, b].
The definition of w̃λ(x) and the convergence of μλ(R \ [a, b]) to 0 implies that

for any bounded continuous function f we have

lim
N→∞

∫ b

a
f (x)w̃λ(x) dx =

∫ b

a
f (x)w(x)dx in probability.
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Using (2.7), we obtain

lim
N→∞

∫ b

a
f (x)

1

N
wλ(Nx)dx =

∫ b

a
f (x)w(x)dx in probability.(2.8)

Note that the functions 1
N

wλ(Nx) and w(x) are Lipschitz functions with Lipschitz
constant 1, and for such functions, the convergence of the integrals (2.8) with an
arbitrary continuous test function f on [a, b] is equivalent to the uniform conver-
gence on [a, b] (see, e.g., [12], Lemma 5.7). This completes the proof. �

2.6. Convergence of random measures. In this subsection, we prove a techni-
cal lemma about convergence of random measures.

Let {Xi,j }i=1,2,...;j=1,2,...,i be a set of random variables. Let

νN := 1

N

N∑
i=1

δ(Xi,N)

be a (random) measure on R. Assume that the following conditions hold:

lim
N→∞ E

∫
xkνN(dx) = ak, k = 1,2,3, . . . ,(2.9)

lim
N→∞ E

(∫
xkνN(dx)

)2

= a2
k, k = 1,2,3, . . . .(2.10)

Also assume that there exists a constant C > 0 such that

ak < Ck, k = 1,2,3, . . . .(2.11)

LEMMA 2.3. Let {Xi,j }i=1,2,...;j=1,2,...,i be a set of random variables such
that conditions (2.9)–(2.11) hold. Then there exists a measure ν such that∫

xkν(dx) = ak, k = 1,2,3, . . . ,

and we have

lim
N→∞νN = ν weakly; in probability.

In greater detail, for any bounded continuous f we have

lim
N→∞

∫
f dνN =

∫
f dν, in probability.

PROOF. We follow [1], Section 2.1.2.
Define a (deterministic) measure ν̄N on R by its values on test functions via∫

f dν̄N := E
∫

f dνN for any bounded continuous f .
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It follows from the Chebyshev inequality that for any B > 1 we have

P
(∫

xk1|x|>BνN(dx) > ε

)
≤ 1

ε
E

∫
xk1|x|>BνN(dx) ≤ E

∫
x2kνN(dx)

εBk
.

Conditions (2.9) and (2.11) imply

lim sup
N→∞

P
(∫

xk1|x|>BνN(dx) > ε

)
≤ a2k

εBk
≤ (C2)k

εBk
.

Note that for any K > k we have

lim sup
N→∞

P
(∫

xk1|x|>BνN(dx) > ε

)
≤ lim sup

N→∞
P

(∫
x2K1|x|>BνN(dx) > ε

)

≤ C4K

εB2K
.

Choosing B = C2 + 1 and letting K to infinity, we have

lim sup
N→∞

P
(∫

xk1|x|>BνN(dx) > ε

)
= 0.(2.12)

Therefore, we obtain

lim
N→∞ E

∫
xk1[−B;B]νN(dx) = ak, k = 1,2,3, . . . .

Since the unit ball in (C[−B;B])∗ is weakly compact, the sequence ν̄N con-
verges (weakly) to a probability measure ν with support in [−B;B], and we have∫

xkν(dx) = ak.

Note that (2.9) and (2.10) imply that the sequence
∫

xk dνN converges to ak in
probability.

Let f (x) be a continuous bounded function. The Weierstrass theorem implies
that for any δ > 0 there exists a polynomial Qδ(x) such that

sup
x∈[−B;B]

∣∣Qδ(x) − f (x)
∣∣ < δ/10.

Then

P
(∣∣∣∣

∫
f (x)νN(dx) −

∫
f (x)ν(dx)

∣∣∣∣ > δ

)

≤ P
(∣∣∣∣

∫
Qδ(x)νN(dx) −

∫
Qδ(x)ν(dx)

∣∣∣∣ > δ/4
)

+ P
(∣∣∣∣

∫
Qδ(x)1|x|>BνN(dx)

∣∣∣∣ > δ/4
)
.

The first term converges to zero due to the convergence in probability of∫
xkνN(dx) to ak , and the second term converges to zero due to (2.12). This com-

pletes the proof of the lemma. �
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3. Main result and discussion.

3.1. The main result. In this section, we state the main result of this paper.
Recall that elements ω ∈ � parameterize extreme characters of the group

U(∞). We consider a sequence ω(N) ∈ � depending on (growing) integer N .
Let χω(N) be the extreme character of U(∞) corresponding to ω(N), and let MN

be the probability measure on GTN determined by this character (see Section 2.2).
Let λ(N) ∈ GTN be a random signature distributed according to MN , and let

μ(N) := μλ(N) = 1

N

N∑
i=1

δ

(
λ

(N)
i − i + 1/2

N

)

be the random measure on R associated with λ(N) (see Section 2.5). We are inter-
ested in the limit behavior of this random measure.

Let �ω(N)(z) be the Voiculescu function depending on parameters γ ±(N),
{α±

i (N)}, {β±
j (N)}, see (1.1). Consider the following condition on these sequences

of parameters.
Main condition. Assume that for some ε > 0 the analytic function log�ω(N)(z+

1) uniformly converges to an analytic function P(z) on {z ∈ C||z| ≤ ε}:
lim

N→∞
1

N

(
log�ω(N)(z + 1)

) = P(z).(3.1)

By ti , i ∈ N, we denote the coefficients of the Taylor series for P ′(z):
P ′(z) =: t1 + t2z + t3z

2 + · · · .(3.2)

It is convenient for us to also formulate a stronger condition that describes more
explicitly how the parameters γ ±(N), {α±

i (N)}, {β±
j (N)} can change.

Sufficient condition. Let

A±
N := 1

N

∞∑
i=1

δ
(
α±

i (N)
)
, B±

N := 1

N

∞∑
i=1

δ
(
β±

i (N)
)
,

be measures on R.
We say that a sequence ω(N) satisfies the sufficient condition if there exist

limits

lim
N→∞

γ ±(N)

N
(3.3)

and

lim
N→∞A±

N = A±, lim
N→∞B±

N = B± weak convergence,(3.4)

for some finite measures A±, B± on R with compact support. Moreover, we re-
quire that there exist positive constants C1, C2 such that∣∣α±

i (N)
∣∣ < C1,

∣∣β±
i (N)

∣∣ < C1 for all i ≥ 1,(3.5)
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and the number of nonzero parameters α±
i (N) and β±

i (N) is less than C2N .
For example, let α1 = · · · = αN = α, where α > 0 is a fixed constant, and all

other Voiculescu’s parameters are equal to 0. It is clear that this sequence of pa-
rameters satisfies the sufficient condition (3.3)–(3.5). Another example is given by
γ + = γN , where γ > 0 is a fixed constant, and all other Voiculescu’s parameters
are equal to 0. More examples can be found in the Appendix.

PROPOSITION 3.1. Let {ω(N)}N≥1 be a sequence of points in �. Assume it
satisfies the sufficient condition (3.3)–(3.5). Then it also satisfies the main condi-
tion (3.1).

PROOF. We have (omitting the dependence on N in notation)

1

N
log�ω(N)(z + 1)

= γ +

N
+ γ −

N

(
1

z + 1
− 1

)
(3.6)

+ 1

N

(∑
i≥1

log
(
1 + β+

i z
) − ∑

i≥1

log
(
1 − α+

i z
)

+ ∑
i≥1

log
(

1 − β−
i z

1 + z

)
− ∑

i≥1

log
(

1 + α−
i z

1 + z

))
.

Conditions (3.4) and (3.5) imply that there exist limits

1

N

∑
i

sk
i for all k ≥ 0,

where si is equal to α±
i or β±

i .
This fact and condition (3.3) imply that the Taylor coefficients of (3.6) converge

to some limiting coefficients ti , and the power series determined by these ti con-
verges in a neighborhood of 0 (because the supports of A± and B± are compact).
Condition (3.5) implies that this convergence is uniform. �

From now on we assume that ω = ω(N) satisfies the main condition (3.1).
Let

Q(z) = 1 + z(1 + z)
(
t1 + t2z + t3z

2 + · · ·)
be a formal power series depending on coefficients t1, t2, . . . . Define a formal
power series v0(z) via

v0(z) :=
(

z

Q(z)

)(−1)

,
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where in the right-hand side the formal inversion of power series is used.6

Let

S(z) := log
(
1 + v0(z)

) = z + m1z
2 + m2z

3 + · · · .(3.7)

Later on (see Section 4.1) we will prove that there exists a unique probability
measure on R with moments {1,m1,m2, . . .}. Denote this measure by σ .

The main result of this paper is the following.

THEOREM 3.2. Let {ω(N)}N≥1 be a sequence of points in � satisfying con-
dition (3.1). Then

lim
N→∞μ(N) = σ weak convergence in probability.

Equivalently, for any bounded continuous function f we have

lim
N→∞

∫
f dμ(N) =

∫
f dσ in probability.

The proof of this theorem is given in Section 4.
The density of σ (which is well defined by virtue of Proposition 2.2) can be

obtained from the known Stieltjes transform S(1/z) [see (3.7)] with the use of
standard methods of complex analysis; see also the end of the next subsection.

3.2. A heuristic derivation of the limit shape. In this section, we sketch an
argument which shows how one can compute the measure σ (see Theorem 3.2) via
determinantal point processes. This yields the correct formula but not a complete
proof, because the very existence of the concentration remains unclear. Our proof
of Theorem 3.2 is obtained in a very different way (see Section 4).

In [6], it was shown that the correlation functions of the random point configu-
ration (λ1 −1, λ2 −2, . . .) corresponding to the restriction of the extreme character
of U(∞) with Voiculescu function �ω(z) to U(N) have determinantal structure
(necessary definitions can be found, e.g., in [6]). The correlation kernel of this
process has the following form:

K(x,y) = −1

4π2

∮ ∮
�ω(u−1)

�ω(w−1)

ux(1 − u)N

w1+y(1 − w)N

dudw

u − w
,

where the u-contour is a counterclockwise oriented circle with center 0 and radius
ε � 1, and the w-contour is a counterclockwise oriented circle with center 1 and
radius δ � 1.

6Here and below we consider formal power series of the form

z + a2z2 + a3z3 + · · · , ai ∈ R.

It is well known that such a series has a unique inverse (with respect to composition) of this form.
For example, if A(z) = ∑∞

i=1 zi then A(−1)(z) = ∑∞
i=1(−1)i−1zi .
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If one already knows that the random point process (λ1 −1, λ2 −2, . . .) satisfies
the law of large numbers type theorem, then it is natural to assume that the den-
sity of the limit measure is equal to the limit of the diagonal values of the kernel
N−1K(xN,xN) (this is the so-called density function) as N → ∞.

Let us find (informally) the limit of N−1K(xN,xN) as N → ∞. A useful
general approach to asymptotic analysis of such integrals is the steepest decent
method. In order to apply this method, we write the integrand in the form

exp(N(S(z) − S(w)))

z − w
,

where

S(u) := logf (u−1) + x logu + N log(1 − u)

N
.

Following the logic of [19] (see also [5]), we need to deform the contours of
integration in such a way that they pass through the critical points of S(z) which
are the roots of

1

N

((
log�ω(

z−1))′ + x

z
− N

1 − z

)
= 0.(3.8)

We are interested in the root z+ = z+(x) which has the positive imaginary part.
Then the steepest decent method gives the following asymptotics for the one-

dimensional correlation function (cf. [5, 19]):

1

N
K(xN,xN) ≈ 1

π
arg(z+), N → ∞.(3.9)

Let us apply a change of variable z = 1/w; with the use of (3.1), equation (3.8)
can be written in the form

P ′(w − 1) − x + 1

w
+ 1

w − 1
= 0.(3.10)

Let w0 = w0(x) be the complex root of (3.10) in the complex upper half-plane.
Recall that the Stieltjes transform of a probability measure μ̂ with compact

support is given by

Stilμ̂(z) :=
∫
R

μ̂(dt)

z − t
, z ∈ C \ supp(μ̂).

Observe that if one denotes the moments of μ̂ by 1,m1,m2, . . . , then Stilμ̂(z) is
obtained from the right-hand side of (3.7) by the change of variable z �→ z−1.

The Stieltjes transform can be inverted. For a measure μ̂ with density p̂(x) with
respect to the Lebesgue measure, we have

p̂(x) = lim
ε→0

1

π
�(

Stilμ̂(x + iε)
)
.
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Assume that w0 = w0(x) is a real-analytic function. Using the analytic continua-
tion, one can view w0 = w0(x) as a complex analytic function. It is natural to think
that for the principal branch of the function log(x) we have

lim
ε→0

� log
(
w0(x + iε)

) = argw0(x), x ∈ R.

Note also that arg(z+(x)) = arg(w0(x)). Therefore, it is natural to assume that the
Stieltjes transform of the limit measure is equal to log(w0(x)).

Let v0(z) be the formal power series defined in Section 3.1. Note that the series
y0 = v0(1/z) solves the following equation:

z = 1

y
+ (1 + y)P ′(y).(3.11)

Equations (3.10) and (3.11) imply that the formal power series v0(1/z) satisfies
the same equation as w0 − 1. Thus, the result stated in Theorem 3.2 coincides with
the heuristic answer coming from the determinantal processes.

3.3. Markov dynamics on two-dimensional arrays. This subsection details the
relation of the present work to random growth of surfaces in (2 + 1)-dimensions.
This connection served as our original motivation, but it is not necessary for un-
derstanding the rest of the paper, and thus the reader should feel free to omit it.

Consider a two-dimensional triangular array of particles

W = {{
xm
k

}
m=1,...,∞;k=1,...,m ⊂ Zn(n+1)/2|xm+1

k ≥ xm
k > xm+1

k+1

};
we interpret the number xm

k as the position of the particle with label (k,m).
For any N , the extreme character ω(N) is determined by a set of Voiculescu’s

parameters α±(N), β±(N), and γ ±(N) (below we omit the dependence on N in
notation). Suppose that the number of parameters of types α±, β± is finite and
equals T = T (N). Let us enumerate these parameters by the numbers 1, . . . , T in
an arbitrary way. We interpret this enumeration dynamically as follows: At time 1,
we take only the first parameter; at time 2, the second parameter is added, etc. Let
χa be the extreme character of U(∞) determined by the first a parameters in our
ordering, 1 ≤ a ≤ T . This character gives rise to a probability measure on GTN ;
denote it by μ

(N)
a .

It turns out that the measure μ
(N)
a can be obtained in the following way. One

can define (see [4], Section 2.6) a discrete time Markov dynamics on the triangular
arrays as above with the following property: For any N ≥ 1, at each time a the
distribution of the vector {xN

k −N}k=1,...,N coincides with the distribution of {λi −
i}i≥1, where {λi} are the coordinates of the random signature distributed according
to the measure μ

(N)
a . In particular, for a = T the distribution of the N th level of the

array coincides with the measure μ(N). Parameters γ ± can also be realized under
a similar Markov dynamics with continuous time (see [4], Section 1).
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An important feature of these Markov processes is the locality of interactions
between the particles—the behavior of each individual particle is only influenced
by particles whose coordinates differ at most by 1 from those of the chosen one.

The evolution of the whole array of particles can be fully encoded by the height
function h :R×R≥1 × {1,2, . . . , T } → Z≥0 defined by

h(x,y, a) = #
{
k|x[y]

k (a) > x
}
,

where xm
k (a) stands for the position of the particle xm

k at the time a.
Suppose now that a sequence of characters ω(N) satisfies the general condi-

tion (3.1) with a function P0(z). Let us fix a large N ; at this stage, we have a
certain set of parameters {α±, β±}. We want to add to these parameters another
set of parameters satisfying condition (3.1). For simplicity, we consider six special
cases: adding tN parameters of one of the possible types α±, β±, or increasing
γ ± by tN . Then the function P(z) describing such a model can be written in the
form

P(z) = P0(z) + tF (z),

where F(z) is determined by the choice of one of the special cases mentioned
above. Let

h(x, y, T + t) = lim
N→∞

Eh([xN], [yN], (T + t)N)

N

be the limiting height function.
The plot of the height function with a fixed 3rd coordinate can be viewed as

a random two-dimensional surface in R3. As was mentioned above, the growth
of the height function can be realized as a result of Markov dynamics with local
interactions. The theory of hydrodynamic limits of random growth models allows
one to predict the type of the modification of the limit shape when we add parame-
ters with the use of local Markov dynamics. Namely, one can expect that the limit
height function obeys an evolution equation of the form

∂h(x, y, T + t)

∂t
= F

(
∂h(x, y, T + t)

∂x
,
∂h(x, y, T + t)

∂y

)
,

where F is a function of two variables uniquely determined by the function F (or,
equivalently, by the type of parameters that we add).

Let us verify that the limit measure coming from Theorem 3.2 satisfies such an
equation. We use the answer in the form given in Section 3.2, namely, let

S(z) = P

(
1

z
− 1

)
+ x log z + y log(1 − z)

= P0

(
1

z
− 1

)
+ tF

(
1

z
− 1

)
+ x log z + y log(1 − z).
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FIG. 3. Angles which determine the growth of the limit shape.

Then the density of the limit measure is equal to 1
π

arg(z+(x, y, t)), where z+ is
the root of the equation S′(z) = 0 lying in the upper half-plane. Hence,

h(x, y, T + t) = − 1

π
�(

S
(
z+(x, y, t)

))
.

Differentiating this equality and taking into account that S′(z+) = 0, we obtain

∂h(x, y, T + t)

∂x
= − 1

π
�(

log(z+)
) = − 1

π
arg(z+),

∂h(x, y, T + t)

∂y
= − 1

π
�(

log(1 − z+)
) = − 1

π
arg(1 − z+),

∂h(x, y, T + t)

∂t
= − 1

π
�

(
F

(
1

z+
− 1

))
.

Note that the arguments of z+ and 1− z+ uniquely determine the complex number
z+ with a positive imaginary part. Therefore, the function F and the derivatives
of h(x, y, T + t) with respect to x and y uniquely determine the derivative of
h(x, y, T + t) with respect to t .

When we add equal α+ parameters we have F(z) = − log(1 − α+z). After
computations, we obtain

∂h(x, y, T + t)

∂t
= 1

π

(
arg

(
z+ − α+

1 + α+
)

− arg(z+)

)
= θ4 − θ3

π
,

where the angles θi are shown in Figure 3.
Analogous computations for five other cases (equal β+’s, α−’s, β−’s and the

growth of γ + or γ −) show that (similar computations were performed in [10]),
respectively,

∂h(x, y, T + t)

∂t
= 1

π

(
− arg

(
z+ + β+

1 − β+
)

− arg(z+)

)
= −θ1 − θ3

π
,

∂h(x, y, T + t)

∂t
= 1

π

(
arg

(
z+ − 1 + α−

α−
)

− π

)
= θ5 − π

π
,
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∂h(x, y, T + t)

∂t
= − 1

π

(
arg

(
z+ + 1 − β−

β−
))

= θ2

π
,

∂h(x, y, T + t)

∂t
= −γ +

π
�

(
1

z+

)
,

∂h(x, y, T + t)

∂t
= −γ −

π
�(z+).

3.4. A convolution of measures. Let M be the space of probability measures
that can be obtained as limit measures σ from Theorem 3.2. For ν ∈ M, let P ′

ν

be the function defined in (3.1), and let Sν be the generating function of moments
defined in (3.7). These two functions uniquely determine each other by

Sν(z) = log
(

1 +
(

z

1 + z(1 + z)P ′
ν(z)

)(−1))
(3.12)

and

P ′
ν(z) = 1

(1 + z)(exp(Sν(z)) − 1)(−1)
− 1

z(1 + z)
.(3.13)

Let χ1 and χ2 be two extreme characters of U(∞). Consider the product of
these characters, which is also an extreme character of U(∞):

χ1,2(U) := χ1(U)χ2(U), U ∈ U(∞).

It is natural to think that this operation corresponds to a tensor product of repre-
sentations of U(∞) determined by the characters χ1 and χ2 (although these are
infinite-dimensional objects and one needs to explain what that means).

Assume that χ1
N and χ2

N are sequences of extreme characters of U(∞) satis-
fying condition (3.1). By Theorem 3.2, there are limit measures σ1 and σ2 corre-
sponding to these sequences. Then the sequence χ1

Nχ2
N also satisfies (3.1); let σ1,2

be the limit measure for this sequence. Note that

P ′
σ1,2

(z) = P ′
σ1

(z) + P ′
σ2

(z).(3.14)

Thus, these formulas allow to define a natural operation of “quantized free con-
volution” for measures σ1, σ2 ∈ M; the result of convolution is σ1,2 ∈ M. The
measure σ1,2 is completely determined by equations (3.13), (3.14) and (3.12).

Special cases considered in the Appendix can serve as examples of this convo-
lution. In particular, the limit measures for one-sided Plancherel characters with
parameter γN or the characters corresponding to aN parameters α+

j ≡ 1, form
one-parameter subgroups with respect to this convolution.

This operation of convolution can be defined by the same formulas for a more
general class of measures; the setting for such a generalization is as follows. Let
Tλ1 and Tλ2 , λ1, λ2 ∈ GTN , be two irreducible representations of U(N). Let us



LIMIT SHAPES FOR GROWING EXTREME CHARACTERS OF U(∞) 2361

consider the Kronecker tensor product Tλ1 ⊗Tλ2 and decompose it onto irreducible
representations. As N → ∞, under appropriate scaling regime one can prove a law
of large numbers type theorem for this decomposition; see [9].

For the first time a similar problem was considered by Biane [2]; the resulting
operation on measures was the free convolution. However, we consider a different
scaling, and in our situation the resulting operation is not the free convolution
(see [9], Section 1, for more details). In fact, for a certain degeneration turning
the branching of signatures in the Gelfand–Tsetlin graph into the branching of
eigenvalues (describing the eigenvalues of corners of Hermitian matrices), which
corresponds to the degeneration of the Gelfand–Tsetlin graph to the “graph” of
spectra of Hermitian matrices, our convolution turns into the free convolution. Let
us show how this happens.

Let Rν(x) be Voiculescu’s R-function of the measure ν (see, e.g., [18]). Then it
is easy to see that

P ′
ν(z) = 1

1 + z
Rν

(
log(1 + z)

) + 1

(1 + z) log(1 + z)
− 1

z(1 + z)
.

For the degeneration to the “graph” of spectra, we need to consider measures
with homothetically growing supports and for values of variables that are close
to 1. Let L be a large parameter, and let us change the variable z = y/L. The new
R-function satisfies

Rν

(
log(1 + z)

) = LRν̃

(
L log

(
1 + y

L

))
,

where ν̃ is the measure arising after the degeneration.
Thus, we have

P ′
ν(z)

L
= Rν̃(y) + O

(
L−1) →

L→∞Rν̃(y).

Therefore, in this limit the linearizing function P ′
ν becomes the R-function of a

measure, and the tensor product of representations gives rise to the free convolu-
tion.

4. Proof of Theorem 3.2. In this section, we prove our main result, Theo-
rem 3.2. Because the proof is rather long, let us describe first its main ideas.

To establish the existence of a limit shape, we use the method of moments.
Recall that we interpret signatures λ ∈ GTN as certain measures on Z, so random
signatures become random measures. The moments of the random measures, as
well as products of moments, are thus random functions. We have to examine the
limit of their expectations as N → ∞.

Our key technical tool is the algebra Sym∗ of shifted symmetric functions. As
explained in Section 2, elements of Sym∗ can be converted, via the maps prN ,
into functions on signatures. We are dealing with two bases in Sym∗, {pρ} and
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{p#
ρ}. The products of moments that we need to control are given by the elements

of the first basis, whereas the expectations are initially expressed in terms of the
second basis. This is the source of the problem, because the transition coefficients
between both basis have a very complicated structure and hardly can be written
down explicitly.

Fortunately, we do not need to know the transition coefficients exactly, because
for our purpose it suffices to compute their large-N asymptotics, so that we may
drop many asymptotically negligible terms. This allows us to solve the problem
by reducing it to combinatorial analysis of certain special graphs (Sections 4.2
and 4.3). In the process we recover the noncrossing partitions which make the
connection with free probability (see Section 3.4) less surprising.

Note that a similar difficulty of transition between two bases in Sym∗ arose in
Kerov’s proof of his central limit theorem for the Plancherel measure (see Ivanov–
Olshanski [12]). However, in our case the limit regime is different, the emerging
technical problems are more serious, and the required combinatorial machinery is
substantially more sophisticated.

4.1. Plan of the proof. Let us modify the measure μ(N) by adding atoms of
weight − 1

N
at locations − i

N
, i = 1,2, . . . ,N . Let μ̃(N) denote the resulting signed

measure. Note that its total weight equals 0. As N → ∞, the negative part of μ̃(N)

converges to the measure with density −1 on the interval [−1;0].
Recall that the functions from A(N) (see Sections 2.3 and 2.4) are defined on

GTN . By (2.4) the functions pk are the moments of the measure μ̃(N). We know
the limit of the negative part of μ̃(N); therefore, the information about the limit of
{pk}k≥1 is sufficient for describing the limit measure σ (see Section 3.1).

Let σ̃ be the sum of the measure σ and the negative Lebesgue measure on
[−1;0]. Let m̃k be the moments of σ̃ . Define a formal power series S̃(z) by

S̃(z) = m̃1z
2 + m̃2z

3 + · · · .
It is easy to see that

S(z) = S̃(z) + log(1 + z).(4.1)

We recall that by [uk]A(u), where A(u) is a formal power series of the form
a1u + a2u

2 + · · · , we denote the coefficient of uk in A(u).
Recall that the functions p#

k are defined on GTN ; see Section 2.4.
Let EN denote the expectation with respect to MN .

PROPOSITION 4.1. For any k ≥ 1, we have

lim
N→∞

EN(p#
k)

Nk+1 = 1

k + 1

[
uk](1 + t1u + t2u

2 + · · ·)k+1 =: ck.

Note that the weight of p#
k equals k + 1.

The proof of this proposition is given in Section 4.2.
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PROPOSITION 4.2. For any partition ρ = (k1, k2, . . . , kl(ρ)), we have

lim
N→∞

EN(p#
ρ)

Nk1+k2+···+kl(ρ)+l(ρ)
= ck1ck2 · · · ckl(ρ)

.

The proof of this proposition is given in Section 4.3.
Let us recall that {p#

ρ}ρ∈Y is a linear basis in Sym∗; therefore, these two propo-
sitions give us complete information about expectations of functions from A(N).
In particular, these propositions imply

lim
N→∞ EN(f ) = O

(
Nwt(f )),

where wt(f ) is the weight filtration.

PROPOSITION 4.3. For any k ≥ 1, we have

lim
N→∞

EN(pk)

Nk+1 = m̃k, lim
N→∞

EN(p2
k)

N2(k+1)
= m̃2

k.

The proof of this proposition is given in Section 4.4.

LEMMA 4.4. There exists a constant C1 > 0 such that mk < Ck
1 for all k ≥ 1.

PROOF. The general condition (3.1) implies that there exists a constant C > 0
such that

tk < Ck for any k ≥ 1.

It is easy to see that if the coefficients of a formal power series are majorated by
a geometric progression, then the coefficients of the inverse power series are also
majorated by some geometric progression. Therefore, the coefficients of the series

v0(z) =
(

z

1 + z(1 + z)(t1 + t2z + · · ·)
)(−1)

are majorated by a geometric progression. By definition, mk is the coefficient of
zk+1 in log(1 + v0(z)); this implies the statement of the lemma. �

PROOF OF THEOREM 3.2. Let λ
(N)
i , i = 1,2, . . . ,N , be the coordinates of a

random signature distributed according to MN . Note that Proposition 4.3 implies

lim
N→∞ EN

[
1

N

N∑
i=1

(
λ

(N)
i − i + 1/2

)k] = mk,(4.2)

lim
N→∞ EN

[
1

N

(
N∑

i=1

(
λ

(N)
i − i + 1/2

)k)]2

= m2
k.(4.3)

It remains to apply Lemma 2.3 (note that the existence of the limit measure
with moments {mk} follows from this lemma); the conditions of the lemma hold
due to (4.2) and Lemma 4.4. �
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FIG. 4. All Eulerian graphs with k = 1,2,3.

4.2. Proof of Proposition 4.1. Equations (2.5) and (3.1) imply the following
formula for EN(p#

k):

EN

(
p#

k

) = ∑
1≤i1,i2,...,ik≤N

∂i1i2 ∂i2i3 · · · ∂iki1

× exp
(
N

(
t1(N)Tr(X) + t2(N)

2
Tr

(
X2)

(4.4)

+ · · · + tr (N)

r
Tr

(
Xr) + · · ·

))∣∣∣∣
X=0

,

where the coefficients ti(N) satisfy limN→∞ ti (N) = ti [the coefficients ti are
given by (3.2)].

To deal with this formula, we need to introduce a bit of combinatorial formal-
ism. Below we use the term graph to denote a finite connected oriented graph,
possibly with loops and multiple edges. A cycle in such a graph is a closed ori-
ented path without repeated edges. A cycle is simple if it does not contain repeated
vertices. A cycle is said to be Eulerian if it contains all the edges of the graph. By
an Eulerian graph, we mean a graph together with a distinguished enumeration of
the edges such that it forms an Eulerian cycle (note that this slightly differs from
the conventional terminology).

Let Gk denote the set of (equivalence classes of) Eulerian graphs with k edges.
For G ∈ Gk we denote by e = (e1, . . . , ek) the distinguished Eulerian cycle of G.

All Eulerian graphs with k = 1,2,3 are shown in Figure 4.

REMARK 4.5. There exists a one-to-one correspondence G ↔ π between the
graphs G ∈ Gk and the set partitions of [k] := {1, . . . , k}. Indeed, let us consider
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FIG. 5. A simple Eulerian graph with 4 vertices and 4 edges.

first the finest partition,

π0 := {1} ∪ {2} ∪ · · · ∪ {k}.
By definition, the corresponding graph G0 ↔ π0 is the (unique) Eulerian graph
with k edges and k vertices (see an example in Figure 5). Let us enumerate the
vertices of G0 in such a way that

e1 = (1 → 2), . . . , ek−1 = (k − 1 → k), ek = (k → 1).

Then, given an arbitrary set partition π of [k], we glue together the vertices of G0
corresponding to every block of π ; the result is the graph G ↔ π .

Equivalently, the vertices of G are identified with the blocks of π , and the ith
edge ei is directed from the block containing i to that containing i + 1 (with the
understanding that k + 1 is identified with 1).

By v(G), we will denote the number of vertices of G; this is the same as the
number of blocks in the corresponding set partition π .

By a cycle structure on G, we mean a partition C = (C1, . . . ,Cp) of the edge
set {e1, . . . , ek} such that each block Cj is a cycle; we also assume that the blocks
are enumerated in the ascending order of their minimal elements. Below we write
the number of blocks by p(C) and denote by |Cj | the size of the j th block. The
set of all cycle structures on G is denoted by C(G).

Note that cycle structures exist for every Eulerian graph G. For instance, the
Eulerian cycle e is itself a cycle structure with a single block. Another example is
obtained when one cuts e into simple cycles, which is always possible, but some-
times can be made in different ways.

Examples of cycle structures are shown in Figure 6.
To shorten the notation, let us abbreviate

t1 := t1(N), t2 := t2(N), . . . .

LEMMA 4.6. The right-hand side of (4.4) can be written in the form

∑
G∈Gk

N(N − 1) · · · (N − v(G) + 1
) ∑
C∈C(G)

α(C)Np(C)
p(C)∏
j=1

t|Cj |,(4.5)
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FIG. 6. All cycle structures on the Eulerian graph 1 → 2 → 3 → 2 → 4 → 1.

α(C) is a coefficient depending on C only. If all the blocks of C are simple cycles,
then α(C) = 1.

PROOF. Step 1. Let us fix a sequence i = (i1, i2, . . . , ik) ∈ [N ]k . The corre-
sponding term in (4.4) can be written as

∂i1i2 · · · ∂iki1 exp
(
N

(
t1

∑
1≤j1≤N

xj1j1 + t2

2

∑
1≤j1,j2≤N

xj1j2xj2j1

(4.6)

+ · · · + tr
r

∑
1≤j1,j2,...,jr≤N

xj1j2xj2j3 · · ·xjrj1 + · · ·
))∣∣∣∣

x=0
,

where “x = 0” means that finally all the x-variables are set to be equal to 0.
The order of partial derivatives is not important; let us assume that one applies

∂i1i2 first, then ∂i2i3 , etc. Since the sum inside the exponential converges uniformly,
we can differentiate this expression term by term. Namely, each differentiation
operator ∂ can be applied to one of the terms inside the exponential (as a result,
a pre-exponential polynomial appears), or it can be applied to a pre-exponential
factor which was brought down by previous differentiations. However, due to the
final substitution x = 0, a nonzero contribution can only come from those terms
for which the pre-exponential factors do not contain the x-variables.

Step 2. We will encode such terms by means of cycle structures.
First, we assign to i an Eulerian graph G = Gi with k edges—the vertex set of

G is the subset of [N ] consisting of the numbers entering the sequence i, and the
edges are

e1 = (i1 → i2), e2 = (i2 → i3), . . . , ek−1 = (ik−1 → ik),

ek = (ik → i1).

In other words, we associate the edges with the ∂-operators in (4.6).
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Next, given a term whose preexponential factor does not contain the x-variables,
we assign to it a partition C = (C1, . . . ,Cp) of the edge set {e1, . . . , ek} in the fol-
lowing way. The first block C1 starts with the edge e1 ↔ ∂i1i2 , and the remaining
edges correspond to the ∂-operators killing the x-variables from the preexponen-
tial factor that arises after application of ∂i1i2 to the exponential. The second block
starts with the edge labeling the next ∂-operator that is being applied to the expo-
nential, etc.

We claim that C is a cycle structure, that is, all blocks are cycles. Indeed, a pre-
exponential factor that may result from the application of ∂i1i2 to the exponential
always has the form

N

r
trxj1j2 · · · x̂jmjm+1 · · ·xjrj1, jm = i1, jm+1 = i2(4.7)

(with the understanding that m + 1 = 1 if m = r ; the hat over ximim+1 means
that this variable has to be omitted). Our assumption is that r = |C1| and the
∂-operators corresponding to the edges from C1 different from e1 kill all the x-
variables from the above monomial. But this just means that the edges of C1 form
a cycle.

For the blocks C2, C3, etc. the argument is the same.
Step 3. The reasoning of step 2 shows that the quantity (4.6) can be represented

as the sum of contributions coming from various cycle structures C ∈ C(G). Let
us fix C = (C1, . . . ,Cp) and analyze its contribution in more detail. Assume first
that all the cycles are simple. Let us focus on the first cycle and keep the notation
of step 2. The fact that C1 is simple just means that the indices j1, . . . , jr must
be pairwise distinct. Therefore, given a simple cycle C1, there are exactly r =
|C1| eligible r-tuples (j1, . . . , jr) that correspond to values m = 1, . . . , r . Then the
summation over these r variants results in the cancellation of the factor r in the
denominator of (4.7). The same argument applies to all the cycles, and we finally
obtain that the whole contribution of C is equal to

Npt|C1| · · · t|Cp|,

as desired.
In the general case, when the cycles are not necessarily simple, we argue as

above, and the only difference is that the contribution of C may involve a constant
numeric factor α(C). For instance, if the graph G has a single vertex and k loops,
then there is a single one-component cycle structure whose contribution equals
(k − 1)!N tk , so that in this case α(C) = (k − 1)!.

Step 4. We have explained the origin of the interior sum in (4.5). It remains
to explain the exterior sum, and this is easy. Namely, we observe that the whole
contribution of a given k-tuple i ∈ [N ]k depends solely on the equivalence class of
the corresponding Eulerian graph Gi. Indeed, two k-tuples producing equivalent
graphs can be transformed to each over by a permutation of [N ], which does not
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affect the quantity (4.6). Finally, given G ∈ Gk , the number of k-tuples i ∈ [N ]k
such that Gi is equivalent to G is equal to

N(N − 1) · · · (N − v(G) + 1
)

(to see this one may use Remark 4.5). This completes the proof. �

Let us rewrite (4.5) as

∑
(G,C)

α(C)N(N − 1) · · · (N − v(G) + 1
)
Np(C)

p(C)∏
j=1

t|Cj |,

where the summation is taken over all pairs (G,C) such that G ∈ Gk and C ∈ C(G).
For N large, the contribution of a fixed pair (G,C) grows as Nv(G)+p(C), so that
the leading part in the asymptotics comes from the pairs with the maximal possible
value of the quantity v(G) + p(C). Our goal now is to describe such pairs.

Assume A is an ordered set and A1 ⊂ A and A2 ⊂ A are two nonempty disjoint
subsets. Then A1 and A2 are said to be crossing if there exists a quadruple a <

b < c < d of elements such that a and c are in one of these subsets while b and
d are in another subset; otherwise A1 and A2 are said to be noncrossing. Next,
a noncrossing partition of A is a set partition of A whose blocks are pairwise
noncrossing.

By the very definition, every cycle structure C = (C1, . . . ,Cp) on a graph G ∈
Gk is a partition of the set {e1, . . . , ek}. We introduce the natural order e1 < · · · <

ek on the Eulerian cycle, so that {e1, . . . , ek} becomes an ordered set isomorphic
to [k].

LEMMA 4.7. Let us fix k = 1,2, . . . and let (G,C) range over the set of pairs
such that G ∈ Gk and C ∈ C(G).

Then the maximal possible value of the quantity v(G) + p(C) is equal to k + 1.
It is attained exactly for those pairs (G,C) for which all the cycles of C are simple
and the set partition σ(C) is noncrossing.

Moreover, under the identification {e1, . . . , ek} ↔ [k] of ordered sets, for every
noncrossing partition σ of the set [k], there exists exactly one pair (G,C) such
that v(G) + p(C) = k + 1 and C ↔ σ .

PROOF. Step 1. Let us fix a pair (G,C) with C = (C1, . . . ,Cp), and estimate
v(G) + p(C).

Let us observe that C2 always has a common vertex with C1, C3 has a common
vertex with C1 ∪ C2, and so on. Indeed, this follows from the very definition of a
cycle structure (in particular, we use the fact the cycles in C are enumerated in the
ascending order of their minimal elements).

Let v(·) stand for the number of vertices in a given cycle or a union of cycles.
We have

v(C1) ≤ |C1|, . . . , v(Cp) ≤ |Cp|
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and, by virtue of the above observation,

v(C1 ∪ · · · ∪ Cm) ≤ v(C1 ∪ · · · ∪ Cm−1) + v(Cm) − 1

≤ v(C1 ∪ · · · ∪ Cm−1) + |Cm| − 1

for m = 2, . . . , p. Since |C1| + · · · + |Cp| = k, it follows that

v(G) = v(C1 ∪ · · · ∪ Cp) ≤ k − (p − 1),

so that v(G) + p ≤ k + 1.
Moreover, the equality v(G)+p = k + 1 is attained if and only if the following

two conditions are satisfied:

(1) v(Cm) = |Cm| for every m = 1, . . . , p, which is equivalent to saying that all
cycles are simple.

(2) For every m = 2, . . . , p, the cycle Cm has a single common vertex with the
union C1 ∪ · · · ∪ Cm−1.

Step 2. Let us assume that (G,C) is such that C satisfies condition (1) above;
we are going to show that C satisfies condition (2) if and only if C is noncrossing.

The key observation is that if (G,C) is such that C satisfies both (1) and (2),
then removing the last cycle Cp we still get a pair (G′,C′) with the same proper-
ties. Likewise, if σ is a noncrossing set partition, then removing its last block we
still get a noncrossing partition σ ′ (we always assume that the blocks are ordered
according to the order of their minimal elements).

This suggests the idea to prove the desired claim by induction on p, the number
of blocks. The base of induction is obvious: if p = 1, then there is nothing to prove.
To justify the induction step, we observe that the possible transitions (G′,C′) →
(G,C) preserving property (2) are directed by exactly the same mechanism as the
possible transitions σ ′ → σ preserving the noncrossing property.

Indeed, in the first case, we may insert a simple cycle of length |Cp| at any place
of the Eulerian cycle of G′ which is after the minimal edge of Cp−1 (which is the
last cycle of C′). Likewise, in the second case, we may insert a block of the same
size after the minimal element of the last block of σ ′. (Let us emphasize that in
both cases, we have to insert a new cycle/block as a whole.)

Step 3. The argument of step 3 shows that both the pairs (G,C) satisfying con-
ditions (1) and (2), and the noncrossing set partitions σ can be obtained by one and
the same recursive procedure. This completes the proof. �

REMARK 4.8. The recursive procedure described above assigns a pair (G,C)

to every noncrossing partition σ of the set [k]. On the other hand, according to
Remark 4.5, the graph G is completely determined by a set partition π of [k].
One can show that the correspondence σ �→ π that arises in this way is just the
complementation operation first discovered by Kreweras [15]: it is a nontrivial
involution on the set of noncrossing partitions of [k] (see an example in Figure 7).
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FIG. 7. A noncrossing partition of edges (dashed lines) gives rise to a noncrossing partition of
vertices (solid lines).

Denote by NCk the set of noncrossing partitions of [k]. Define the weight of a
partition σ = (σ1 ∪ · · · ∪ σp) ∈ NCk as the monomial

wt(σ ) := t|σ1| · · · t|σp|.
Lemmas 4.6 and 4.7 show that the leading term of the large-N asymptotics can be
written as

Nk+1
∑

σ∈NCk

wt(σ ).(4.8)

LEMMA 4.9. For any k ≥ 1, we have∑
σ∈NCk

wt(σ ) = 1

k + 1

[
uk]{(1 + t1u + t2u

2 + · · ·)k+1}
.

PROOF. Given σ ∈ NCk , let (1s12s2 · · ·) denote the corresponding ordinary
partition of the number k, written in the multiplicative notation; this means that σ

has exactly si blocks of size i, where i = 1,2, . . . . We say that (1s12s2 · · ·ksk ) is
the type of σ . Obviously,

wt(σ ) = t
s1
1 t

s2
2 · · · t skk .

Therefore, we have to prove that∑
σ∈NCk

t
s1
1 t

s2
2 · · · t skk = 1

k + 1

[
uk]{(1 + t1u + t2u

2 + · · ·)k+1}
.

Now we apply Exercise 5.35a in Stanley [25], which says that the number of
partitions σ ∈ NCk of a given type (1s12s2 · · ·ksk ) is equal to

k(k − 1) · · · (k − � + 2)

s1!s2! · · · sk! = 1

k + 1

(k + 1)k(k − 1) · · · (k − � + 2)

s1!s2! · · · ,

� := s1 + s2 + · · · + sk.
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This is equivalent to the desired formula. �

4.3. Proof of Proposition 4.2. Let us abbreviate l := l(ρ). Relations (2.5)
and (3.1) imply

lim
N→∞

EN(p#
ρ)

Nwt(ρ)
= lim

N→∞
1

Nk1+k2+···+kl+l

× ∑
i∈[N]k

∂i1i2 ∂i2i3 · · · ∂ik1 i1 ∂ik1+1ik1+2 · · ·
(4.9)

× exp
(

t1(N)

(∑
j

xj

)
+ t2(N)

2

( ∑
j1,j2

xj1j2xj2j1

)
+ · · ·

+ tr (N)

r

( ∑
j1,j2,...,jr

xj1j2xj2j3 · · ·xjrj1

)
+ · · ·

)∣∣∣∣
xij≡0

,

where the coefficients ti (N) satisfy limN→∞ ti(N) = ti [the numbers ti were de-
fined in (3.2)].

We shall deal with this formula in the same way as in Section 4.2. To every
sequence i = (i1, . . . , ik) ∈ [N ]k we assign an oriented graph Gi whose edges cor-
respond to the ∂-operators from (4.9). This graph is composed from l Eulerian
graphs, which may be glued together or disjoint, depending on whether the subse-
quences

(i1, . . . , ik1), (ik1+1,. . . , ik1+k2), . . . , (ik1+···+kl−1+1, . . . , ik)(4.10)

have common indices or not.
First, let us consider the case when there are no common indices, so that the

corresponding Eulerian graphs are pairwise disjoint. Then the differential opera-
tors from different graphs are applied to nonintersecting sets of x-variables, and
the arguments of Section 4.2 show that the total contribution from such i’s equals

ck1ck2 · · · ckl
N(k1+1)+(k2+1)+···+(kl+1) + O

(
Nk+l−1)

.

It remains to show that the contribution from the remaining sequences i [those
for which the subsequences in (4.10) have common indices] has lower degree in N .

To simplify the argument, let us assume that l = 2, so that k = k1 + k2 = r +
(k − r). Thus, there are two subsequences in (4.10), which we denote as

(i1, . . . , ir ), (ir+1, . . . , ik),

and these two subsequences share a common index, say ia = ir+b for some a ∈
{1, . . . , r} and b ∈ {1, . . . , k − r}.

Then it is readily seen that the term corresponding to the differential operator

∂i1i2 ∂i2i3 · · · ∂ir i1 ∂ir+1ir+2 ∂ir+2ir+3 · · · ∂ikir+1
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is equal to the contribution of a single Eulerian graph with k edges, corresponding
to the sequence

i1, . . . , ia, ir+b+1, ir+b+2, . . . , ik, ir+1, ir+2, . . . , ir+b, ia+1, ia+2, . . . , ir , i1.

Therefore, this contribution has order at most Nk+1, which is less than Nk+l =
Nk+2.

The same argument holds when l > 2 as well.

4.4. Proof of Proposition 4.3. Recall that we consider the functions pk as ran-
dom variables on the probability space (GTN,MN). First, let us prove that after
scaling the functions pk converge to constants in L2.

LEMMA 4.10. There exist constants m̄k , k = 1,2, . . . , such that for any k ≥ 1

lim
N→∞

EN(pk)

Nk+1 = m̄k, lim
N→∞

EN(p2
k)

N2(k+1)
= m̄2

k.

PROOF. Let f ∈ Sym∗ be arbitrary. Since f is a linear combination of p#
ρ ’s

with wt(ρ) ≤ wt(f ), and there exist limits of EN(p#
ρ)/Nk+1, we obtain

lim
N→∞

EN(f )

Nk+1 = af ,

for some constants af .
It is known (see [12]) that

p#
ρ1

p#
ρ2

= p#
ρ1∪ρ2

+ lower weight terms,

where ρ1 ∪ ρ2 stands for the union of the partitions ρ1 and ρ2, and “lower weight
terms” denotes terms with weight ≤ wt(p#

ρ1
) + wt(p#

ρ2
) − 1. Hence,

lim
N→∞

EN(p#
ρ1

p#
ρ2

)

N
wt(p#

ρ1
)+wt(p#

ρ2
)
= lim

N→∞
EN(p#

ρ1∪ρ2
)

N
wt(p#

ρ1
)+wt(p#

ρ2
)
.

This equality and Proposition 4.2 imply that

lim
N→∞

EN(f 2)

N2 wt(f )
= a2

f .

Therefore, the functions f converge to af in L2.
Choosing the function pk as f we obtain the statement of the lemma. By m̄k

we denote the limit constant. �

It remains to prove that m̄k = m̃k for all k = 1,2, . . . (recall that the constants
m̃k were defined in Section 3.1).
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Consider formal power series of the form

a(z) = a1z + a2z
2 + · · · , ai ∈ R.

Recall that a series of this form is invertible if and only if a1 �= 0. Let a(−1)(z)

denote the inverse of a(z), that is, a(−1)(a(z)) = z. Set

Ā(z) = m̄1z
2 + m̄2z

3 + m̄3z
4 + · · ·

and

C(z) = 1 + c1z
2 + c2z

3 + c3z
4 + · · · .

LEMMA 4.11. The formal power series z exp(Ā(z)) and z/C(z) are inverse
to each other.

PROOF. Recall that [see (2.3)]

pk = 1

k + 1

[
uk+1]{(

1 + p#
1u

2 + p#
2u

3 + · · ·)k+1} + lower weight terms,

where “lower weight terms” denotes terms with weight ≤ k. Since

EN(f ) = O
(
Nwt(f )), f ∈A(N),

the “lower weight terms” do not affect the asymptotics of EN(pk), and we have

m̄k = 1

k + 1

[
uk+1]{(

1 + c1u
2 + c2u

3 + · · ·)k+1}
.

The lemma follows from this formula; cf. [12], Propositions 3.6, 3.7. �

Let us find an expression for C(z) using the formula for ck’s given by Proposi-
tion 4.1.

LEMMA 4.12. We have

C(z) = 1 − z +
(

z

1 + t1z + t2z2 + · · ·
)(−1)

.

PROOF. This is a direct consequence of the Lagrange inversion formula (see,
e.g., [25], Theorem 5.4.2). �

Two previous lemmas imply that

m̄1z
2 + m̄2z

3 + · · · = log
(

1

z

(
z

1 − z + (z/(1 + t1z + t2z2 + · · ·))(−1)

)(−1))
.

In order to show that m̄k = m̃k , k = 1,2, . . . , we prove the equality of their
generating functions. Formulas (3.7) and (4.1) imply

m̃1z
2 + m̃2z

3 + · · · = log
(

z

1 + z(1 + z)(t1 + t2z + · · ·)
)(−1)

− log(1 + z).

Therefore, the following lemma completes the proof.
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LEMMA 4.13. We have(
z

1 + z(1 + z)(t1 + t2z + · · ·)
)(−1)

+ 1

(4.11)

= z + 1

z

((
z

1 − z + (z/(1 + t1z + t2z2 + · · ·))(−1)

)(−1))
.

PROOF. It is easy to see that both series have the form

a0 + a1z + a2z
2 + · · · ,

and the coefficients a0 and a1 of both of the series are equal to 1. Let us prove the
equality of the coefficients of zn, n ≥ 2.

Recall that the Lagrange inversion formula has the following form (see,
e.g., [25], Theorem 5.4.2)

n
[
zn]

F (−1)(z)k = k
[
zn−k]( z

F (z)

)n

.

Let s(z) denote the series 1 + t1z + t2z
2 + · · · . We have

1 + z(1 + z)(t1 + t2z + · · ·) = s(z) + zs(z) − z.

Hence, the coefficient of zn in the left-hand side of (4.11) can be written in the
following form:

1

n

[
zn−1](

s(z) + zs(z) − z
)n

= 1

n

∑
i1+i2+i3=n;i1≥1

n!
i1!i2!i3!

[
zn−1]

s(z)i1zi2s(z)i2(−1)i3zi3(4.12)

= ∑
i1+i2+i3=n;i1≥1

(n − 1)!
i1!i2!i3!

[
zi1−1]

s(z)i1+i2(−1)i3 .

Now let us consider the expression in the right-hand side of (4.11). The La-
grange inversion formula implies that the coefficient of zn in the right-hand side
can be written as

1

n

[
zn−1]

C(z)n + 1

n + 1

[
zn]

C(z)n+1.

Since

C(z) = 1 − z +
(

z

s(z)

)(−1)

,

the coefficient of zl (for any l ≥ 1) in an arbitrary power of C(z) can be found by
the Lagrange inversion formula again. We obtain

[
zl]((

z

s(z)

)(−1)

(z)

)k

= k

l

[
zk−l]s(z)l.
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Therefore,

1

n

[
zn−1]

C(z)n

= 1

n

( ∑
i1+i2+i3=n;i1≥1,i3≥1

(−1)i2
i3

n − 1 − i2

[
zi1−1]

s(z)n−1−i2
n!

i1!i2!i3!

+ (−1)n−1n

)
.

This formula with n replaced by n + 1 reads

1

n + 1

[
zn]

C(z)n+1

= 1

n

( ∑
j1+j2+j3=n+1;j1≥1,j3≥1

(−1)j2
j3

n − j2

[
zj1−1]

s(z)n−j2
(n + 1)!
j1!j2!j3!

+ (−1)n(n + 1)

)
.

Now add the two equalities above and combine the coefficients of [za]s(z)b for
all a and b. We obtain the sum∑

j1+j2+j3=n;j1≥0

(−1)j2
(n − 1)!
j1!j2!j3!

[
zj1−1]

s(z)j1+j3 .

Changing the notation of indices in the summation, we see that this expression
coincides with (4.12). This completes the proof. �

APPENDIX: EXAMPLES OF LIMIT SHAPES

In this section, we consider several examples of sequences ω = ω(N) which
satisfy the main condition (3.1).

(a) One-sided Plancherel character. Let γ + = γN , where γ is a fixed constant,
and all other Voiculescu’s parameters are equal to 0. In this case, the main condi-
tion holds with t1 = γ and tk = 0, for k ≥ 2. Then we have

Q(z) = 1 + γ z(1 + z).

It follows that

v0(z) = 1 − γ z −
√

y2(z2 − 4γ ) − 2γ z + 1

2γ z
.

Using (3.7), one can derive the expression for the Stieltjes transform:

S

(
1

z

)
= StilPlanch(z) = log

z + γ −
√

(z − γ )2 − 4γ

2γ
.
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FIG. 8. Limit shapes for the one-sided Plancherel character with γ = 0.3,1,2, respectively.

Given the Stieltjes transform of a measure, there is a standard way to compute
the density of this measure; see, for example, [1], Section 2.4, and the end of
Section 3.2 above. After computations, we obtain that for γ > 1 we have

dPlanch(x) = 1

π
arccos

x + γ

2
√

γ (x + 1)
for x ∈ [γ − 2

√
γ ;γ + 2

√
γ ] ,

and for γ < 1 we have

dPlanch(x) =
⎧⎪⎨
⎪⎩

1

π
arccos

x + γ

2
√

γ (x + 1)
, for x ∈ [γ − 2

√
γ ;γ + 2

√
γ ],

1, for x ∈ [−1;γ − 2
√

γ ].
Examples of these limit shapes are shown in Figure 8.
After rescaling, these limit shapes coincide with Biane’s limit shapes (see [3]).
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(b) One multiple α+-parameter. Assume that α+
1 = α+

2 = · · · = α+
[aN] = α, and

all other Voiculescu’s parameters are equal to 0. Note that we fix two different real
numbers a and α. Then t1 = aα, t2 = aα2, . . . , tk = aαk, . . . .

In this case, we have

Q(z) = 1 + z(1 + z)aα

1 − αz
.

After computations, we obtain

Stilmulti-α(z) = log
α(a + 1) + (2α + 1)z − √

(z − α(a + 1))2 − 4aα(α + 1)

2α(a + z)
.

The limiting density is given by the following formulas.
For a ≥ (α + 1)/α, we have

dmulti-α(x) = 1

π
arccos

α(a + 1) + (2α + 1)x

2
√

α(α + 1)(x + 1)(x + a)
,

x ∈ [
α(a + 1) − 2

√
aα(α + 1);α(a + 1) + 2

√
aα(α + 1)

]
.

For α/(α + 1) ≤ a ≤ (α + 1)/α, we have

dmulti-α(x)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, x ∈ [−1;α(a + 1) − 2
√

aα(α + 1)
]
,

1

π
arccos

α(a + 1) + (2α + 1)x

2
√

α(α + 1)(x + 1)(x + a)
,

x ∈ [
α(a + 1) − 2

√
aα(α + 1);α(a + 1) + 2

√
aα(α + 1)

]
.

Finally, for a ≤ α/(α + 1) we have

dmulti-α(x)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, x ∈ [−1;−a],
1

π
arccos

α(a + 1) + (2α + 1)x

2
√

α(α + 1)(x + 1)(x + a)
,

x ∈ [
α(a + 1) − 2

√
aα(α + 1);α(a + 1) + 2

√
aα(α + 1)

]
.

Limit shapes for α = 1 and various a are shown in Figure 9.
(c) One multiple β+-parameter. Let us fix two positive real numbers b and

β ≤ 1. Assume that β+
1 = β+

2 = · · · = β+
[bN] = β .

The computations in this case are equivalent to the previous one:

Q(z) = 1 + z(1 + z)
bβ

1 + βz
,

Stilmulti-β(z) = log
z(1 − 2β) + β(b − 1) −

√
(z − β(b − 1))2 + 4bβ2 − 4bβ

2βb − 2βz
.
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FIG. 9. The limit shapes for one folded α+-parameter with α = 1 and a = 0.25,1,2, respectively.

Inside the interval [β(b − 1) − 2
√

bβ(1 − β);β(b − 1) + 2
√

bβ(1 − β)], the
density has the following form:

dmulti-β(x) = 1

π
arccos

(1 − 2β)x + β(b − 1)

2
√

β(1 − β)(1 + z)(b − z)
.

Furthermore, as in the previous case, for some parameters β and b there exist
intervals with constant density which is equal to 1.

(d) Two-sided Plancherel character. Assume that γ + = γ1N , γ − = γ2N for
fixed γ1 and γ2, and all other parameters are equal to 0. Then

Q(z) = 1 + z(1 + z)

(
γ1 − γ2

(z + 1)2

)
.
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FIG. 10. The limit shape for two-sided Plancherel character with parameters γ1 = 0.04, γ2 = 0.06.

Hence, to obtain an explicit formula for the answer one need to solve the cubic
equation

z(z + 1)

(z + 1) + γ1z(z + 1)2 − γ2z
= y.

If z = v0(y) is the formal power series that satisfies this equation, then the Stieltjes
transform is equal to

Stil2sP (z) = log
(

1 + v0

(
1

z

))
.

An example of such a shape is shown in Figure 10.
In greater detail, this case was studied in [6].
(e) The case of one multiple α+-parameter and one multiple α−-parameter.

Assume that α+
1 = α+

2 = · · · = α+
[aN] = α+ and α−

1 = α−
2 = · · · = α−

[aN] = α−.
Then

P ′(z) = aα

1 − α1z
− ãα̃

(1 + z)(1 + (α̃ + 1)z)
.

In this case, the generating function of moments is determined by the solution
of the cubic equation

z

1 + z(z + 1)(aα/(1 − α1z) − (ãα̃/((1 + z)(1 + (α̃ + 1)z))))
= y.

(g) The case of the continuous limit measure. Assume that α+
i = i/N for i =

1, . . . ,N . It is easy to see that

P ′(z) = −z − log(1 − z)

z2 .
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Then the generating function of moments is determined by the solution of the
equation

z2

−z2 − (1 + z) log(1 − z)
= y.
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