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Abstract

We generalize the exactly solvable corner growth models by choosing the rate of the
exponential distribution ai + bj and the parameter of the geometric distribution aibj
at site (i, j), where (ai)i≥1 and (bj)j≥1 are jointly ergodic random sequences. We
identify the shape function in terms of a simple variational problem, which can be
solved explicitly in some special cases.
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1 Introduction

The corner growth model is a frequently studied model of random growth. See [29]
for a detailed introduction, and [22], [28] for an overview of related research. The model
describes a cluster of sites that emerges from the corner of a quadrant and grows over
time. We represent the quadrant with N2 and the cluster with a family of subsets St ⊂ N2

indexed by time t ≥ 0. Each site (i, j) ∈ N2 waits for (i − 1, j) if i > 1 and (i, j − 1) if
j > 1 to be in the cluster and, after an additional waiting time of W (i, j), joins the cluster
permanently at time G(i, j). More precisely, St = {(i, j) ∈ N2 : G(i, j) ≤ t} for t ≥ 0 and

G(i, j) = G(i− 1, j) ∨G(i, j − 1) +W (i, j) for i, j ∈ N, (1.1)

where G(i, 0) = G(0, j) = 0 for i, j ∈ N. As first observed in [23], the preceding recursion
implies

G(m,n) = max
π∈Π1,1,m,n

∑
(i,j)∈π

W (i, j) for m,n ∈ N, (1.2)

where Πu,v,u′,v′ is the set of all directed paths from (u, v) to (u′, v′), that is, all finite
sequences π = ((ik, jk))1≤k≤l in Z2 such that (ik+1 − ik, jk+1 − jk) ∈ {(1, 0), (0, 1)} for
1 ≤ k < l, (i1, j1) = (u, v) and (il, jl) = (u′, v′). We will refer to the random quantities
{W (i, j) : i, j ∈ N} and {G(i, j) : i, j ∈ N} as weights and last-passage times, respectively,
because of connection (1.2) with directed last-passage percolation. The problem is
typically to understand the statistical properties of the last-passage times given the joint
probability distribution P of the weights.
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Limit shapes for some inhomogeneous corner growth models

Consider the corner growth model in which the weights are i.i.d. and exponentially
distributed with rate λ > 0 i.e. P (W (i, j) ≥ x) = e−λx for i, j ∈ N and x ≥ 0. We will
refer to this special case as the exponential model. In a seminal paper [25], H. Rost
observed the equivalence of the exponential model with the totally asymmetric simple
exclusion process (TASEP) and proved that

lim
n→∞

G(bns c, bnt c)
n

=
(
√
s+
√
t)2

λ
for s, t > 0 P -a.s. (1.3)

He also interpreted (1.3) as an asymptotic shape result in the sense that the rescaled
cluster Sn/n converges as n→∞ to the parabolic region {s, t ∈ R+ :

√
s+
√
t ≤
√
λ} in

the Hausdorff metric. The discrete counterpart of the exponential model is the geometric
model in which the weights are i.i.d. and geometrically distributed with (fail) parameter
q ∈ (0, 1) i.e. P (W (i, j) ≥ k) = qk for i, j ∈ N and k ∈ Z+. For the geometric model, one
can also compute that

lim
n→∞

G(bns c, bnt c)
n

=
q

1− q
(s+ t) +

2
√
q

1− q
√
st for s, t > 0 P -a.s., (1.4)

[5], [16], [27]. The existence of the deterministic (nonrandom) a.s. limits in (1.3) and
(1.4) follows from standard subadditive arguments, which hold in greater generality,
for example, when P is an arbitrary i.i.d. measure. Define the shape function g by
g(s, t) = limn→∞ n−1G(bns c, bnt c) for s, t > 0 P -a.s.

The basic properties of g such as concavity and homogeneity are also easily derived
[29, Theorem 2.1]. An interesting matter is the explicit identification of g. Despite much
effort, this has not been possible except for the exponential and geometric models, which
are called exactly solvable cases. In this paper, we introduce certain corner growth
models with non i.i.d P whose shape functions exist and can be determined explicitly.

We study inhomogeneous generalizations of the exponential and geometric models in
which the parameters λ and q are site-dependent and drawn randomly from an ergodic
distribution. More specifically, let a = (an)n∈N and b = (bn)n∈N be stationary random
sequences in (0,∞) such that the distribution µ of (a,b) is separately ergodic under
the map τk × τl for each k, l ∈ N, where τk is the shift (cn)n∈N 7→ (cn+k)n∈N for k ∈ Z+.
In particular, a and b can be independent i.i.d. sequences. Suppose that, given (a,b),
the weights are conditionally independent and W (i, j) is exponentially distributed with
rate λ = ai + bj for i, j ∈ N. The inhomogeneous geometric model is defined similarly
except now a and b are sequences in (0, 1) and, given (a,b), W (i, j) is geometrically
distributed with parameter q = aibj for i, j ∈ N. Let us write P for the joint distribution
of the weights and Pa,b for the joint conditional distribution of the weights given (a,b).

To be clear, Pa,b is a product measure on RN
2

+ and P(B) =
∫
Pa,b(B)µ(da, db) for any

Borel set B ⊂ RN
2

+ . Identifying W (i, j) with the projection RN
2

+ → R+ onto coordinate
(i, j),

Pa,b(W (i, j) ≥ x) = e−(ai+bj)x for i, j ∈ N and x ≥ 0

for the exponential model and

Pa,b(W (i, j) ≥ k) = aki b
k
j for i, j ∈ N and k ∈ Z+

for the geometric model. A noteworthy feature that distinguishes these models from the
classical homogeneous counterparts is the correlations of the weights along the rows
and the columns, that is, W (i, j) and W (i′, j′) are not independent under P if i = i′ or
j = j′.
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Limit shapes for some inhomogeneous corner growth models

Our main result is a simple variational description of the shape function. To state it,
let α and β denote the distributions of a = a1 and b = b1, respectively. For the exponential
model,

g(s, t) = inf
z∈[−

¯
α,

¯
β]

{
s

∫ ∞
0

α(dx)

x+ z
+ t

∫ ∞
0

β(dx)

x− z

}
for s, t > 0, (1.5)

where
¯
η is the left endpoint of the support (the complement of the largest open η-null

set) of a Borel measure η on R. (We will also use η̄ for the right endpoint of the support).
When α and β are uniform measures, we can compute g explicitly. For example, if the
supports of α and β are the interval [1/2, 3/2] then, for s, t > 0,

g(s, t) = s log

(
7s+ t+

√
(s− t)2 + 16st

4s

)
+ t log

(
s+ 7t+

√
(s− t)2 + 16st

4t

)
. (1.6)

We obtain similar results for the geometric model in which explicit formulas arise when
α and β have densities proportional to x 7→ 1/x. We deduce from (1.5) that g is linear or
infinite if

¯
α =

¯
β = 0, and is differentiable if

¯
α+

¯
β > 0. In the latter case, in contrast with

(1.3), g may be linear close to the axes depending on the behaviors of α and β near
¯
α and

¯
β. More precisely, there exist constants 0 ≤ c1 < c2 ≤ ∞ such that g is strictly concave
only inside the cone c1 < s/t < c2, see Corollary 2.3. This is illustrated through the level
set g = 1 in Figure 1.1 below. We expect the finer statistics of G(bns c, bnt c) as n→∞
to be qualitatively different in the linear and concave sectors. This has been confirmed
for large deviation properties in [9]. A project currently underway is to understand the
limit fluctuations.
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Figure 1.1: The plot of g = 1 for (1.6) where c1 = 0 and c2 = ∞ (left).
The plot of g = 1 and the rays s/t = c1 = (−8 + 12 log 2)/3 ≈ 0.105922 and
s/t = c2 = 4/(9− 12 log 2) ≈ 5.863092 for (1.5) when α(dx) = 1{0≤x≤1} 3x

2dx

and β(dx) = 1{1≤x≤2} 4(x− 1)3dx (right).

A short discussion of the technical aspects of the paper is in order. To calculate
the shape function, we rely on certain stationary processes with explicit product-form
distributions. This approach dates back to [27] and is illustrated in [29] to derive (1.4),
which we briefly outline. Introduce a parameter z ∈ (q, 1/q) and boundary weights
{W (k, 0),W (0, k) : k ∈ Z+} such that {W (i, j) : i, j ∈ Z+} are independent, W (0, 0) = 0,
and W (k, 0) and W (0, k) are geometrically distributed with parameters q/z and qz,
respectively. Choose the boundary values in recursion (1.1) as G(i, 0) =

∑i
k=1W (k, 0)
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Limit shapes for some inhomogeneous corner growth models

and G(0, j) =
∑j
k=1W (0, k) for i, j ∈ N. Then the resulting model turns out to be

stationary in the sense that the distributions of the processes {G(i, n)−G(i−1, n) : i ∈ N}
and {G(n, j)−G(n, j − 1) : j ∈ N} do not depend on n. Consequently, these distributions
are product measures with geometric marginals. This allows computing the shape
function gz of the stationary model and relating it to g via

gz(1, 1) = sup
t∈[0,1]

max{gz(1− t, 0) + g(t, 1), gz(0, 1− t) + g(1, t)} (1.7)

for z ∈ (q, 1/q). Then (1.4) can be extracted from (1.7). The main observation of the
present work is that, given (a,b), if we choose the parameters of W (i, 0) and W (0, j) as
ai/z and bjz for z ∈ (ᾱ, 1/β̄), we still obtain a stationary model. Then, adapting some
arguments from [29], we also arrive at (1.7). To identify g, [29] uses the symmetry
g(s, t) = g(t, s), which is not true for the inhomogeneous model unless α = β. For this
step, we develop an argument that removes the need for symmetry and makes only a
few general assumptions on g and gz.

Literature review. We mention briefly some related results and conjectures begin-
ning with the case of i.i.d. P . For the exponential and geometric models,

g(s, t) = m(s+ t) + 2
√
σ2st, (1.8)

where m and σ2 are the common mean and the variance of the weights. Furthermore,
g satisfies (1.8) up to an error of order o(

√
t) as t ↓ 0 provided that the weights have

sufficiently light tail [21]. There are also known cases in which g has linear segments.
For example, if the weights are bounded by 1 and P (W (i, j) = 1) = p > pc, where
pc is the critical probability for the oriented site percolation, then g(s, t) = s + t in a
nontrivial cone [1], [7], [20]. Nevertheless, it is expected that g is strictly concave and
differentiable for a large class of P , for instance, when the weights have continuous
distributions with enough moments. In our setting, g also enjoys these properties under
some moment conditions but can be far from (1.8) as (1.6) exemplifies. More recently,
variational formulas in terms of stationary, integrable cocycles have been developed for
g under the mild assumption that the weights have finite 2 + ε moment for some ε > 0

[11]. Minimizers of these formulas are identified as Busemann functions in [10] relying
on some fixed point results from queueing theory [19].

There has also been interest to identify the shape function for non-i.i.d. P . For the
exponential model with columnwise inhomogeneity (i.i.d. a and constant b), [30] obtained
a variational description of g, which (1.5) includes as a special case. Asymptotics of g
near the axes are determined for more general P in [18]. Their Theorem 2.4 can be
deduced from (1.5). Another direction of generalizing the exponential and geometric
models is to choose the parameters at site (i, j) as λ = Λ(i/n, j/n) and q = Q(i/n, j/n) for
some deterministic functions Λ and Q that encode inhomogeneity. Then, under suitable
conditions, g can be characterized as the unique monotone viscosity solution of a certain
Hamilton-Jacobi equation [4].

While we will not take advantage of it in the present paper, we mention that exact
solvability of the exponential and geometric models goes beyond the explicit limits (1.3)
and (1.4). The distributions of the last-passage times can be expressed as a Fredholm
determinant with an explicit kernel. Using this, [12] established that G(bns c, bnt c)
has fluctuations of order n1/3 and converges weakly, after suitable rescaling, to the
Tracy-Widom GUE distribution. These features are characteristic of the conjectural
Kardar-Parisi-Zhang (KPZ) universality class, see survey [6]. More generally, Fredholm
determinant representations of the distribution of the last-passage times under Pa,b have
been derived by relating Pa,b to the Schur measures introduced in [24] and, thereby, to
determinantal point processes with explicit correlation kernels [3], [13], [14], [15].
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Limit shapes for some inhomogeneous corner growth models

Outline. Our results are formally stated in Section 2. We sketch the existence and
the basic properties of g in Section 3. We discuss stationary versions of the exponential
and geometric models in Section 4. We prove (1.5) in Section 5.

Notation and conventions. N = {1, 2, 3, . . . } and Z+ = {0, 1, 2, . . . }. For x ∈ R,
define bx c = max{i ∈ Z : i ≤ x} and dx e = min{i ∈ Z : i ≥ x}. Also, x ∨ y = max{x, y}
and x ∧ y = min{x, y} for x, y ∈ R. The imaginary unit is denoted by i. Adjectives
increasing and decreasing are used in the strict sense. For convenience, we set 1/0 =∞
and 1/∞ = 0.

2 Results

Let E denote the expectation under µ (the distribution of (a,b)). Recall that a = a1

and b = b1. It is convenient to break (1.5) into the next two theorems.

Theorem 2.1. Suppose that
¯
α+

¯
β > 0 in the exponential model. Then

g(s, t) = inf
z∈(−

¯
α,

¯
β)

{
sE

[
1

a+ z

]
+ tE

[
1

b− z

]}
for s, t > 0. (2.1)

Hence, g depends on (a,b) only through the marginal distributions α and β. Let us
write gα,β to indicate this. Replacing z with −z in (2.1) reveals that gα,β(s, t) = gβ,α(t, s)

for s, t > 0, which is expected due to the symmetric roles of a and b in the model. In
particular, if α and β are the same then g(s, t) = g(t, s) for s, t > 0. Also, (by dominated
convergence) the infimum can be taken over [−

¯
α,

¯
β] in (2.1). When

¯
α =

¯
β = 0, this

interval degenerates to {0} and we expect that g(s, t) = sE[1/a] + tE[1/b] for s, t > 0.
Indeed, this is true.

Theorem 2.2. Suppose that
¯
α =

¯
β = 0 in the exponential model. Then

g(s, t) = sE

[
1

a

]
+ tE

[
1

b

]
for s, t > 0.

We turn to the concavity and differentiability properties of g. In the case
¯
α+

¯
β > 0,

define the critical values c1 =
E[(b+

¯
α)−2]

E[(a−
¯
α)−2]

and c2 =
E[(b−

¯
β)−2]

E[(a+
¯
β)−2]

. Note that 0 ≤ c1 <

c2 ≤ ∞. Also, c1 = 0 if and only if E[(a −
¯
α)−2] = ∞, and c2 = ∞ if and only if

E[(b−
¯
β)−2] =∞.

Corollary 2.3. Suppose that
¯
α+

¯
β > 0 in the exponential model. Then

(a) g(s, t) = sE[(a−
¯
α)−1] + tE[(b+

¯
α)−1] for s/t ≤ c1.

(b) g(s, t) = sE[(a+
¯
β)−1] + tE[(b−

¯
β)−1] for s/t ≥ c2.

(c) g(cs1 + (1 − c)s2, ct1 + (1 − c)t2) > cg(s1, t1) + (1 − c)g(s2, t2) for c ∈ (0, 1) and
s1, s2, t1, t2 > 0 such that c1 < s1/t1, s2/t2 < c2 and (s1, t1) 6= k(s2, t2) for any k ∈ R.

(d) g is continuously differentiable.

By Schwarz inequality, if c1 > 0 then E[(a−
¯
α)−1] <∞ and if c2 <∞ then E[(b−

¯
β)−1] <

∞. Hence, g is finite and linear in (s, t) in the regions s/t ≤ c1 and s/t ≥ c2.

Proof of Corollary 2.3. Let A(z) = E[(a+z)−1] for z > −
¯
α and B(z) = E[(b−z)−1] for z <

¯
β. Using dominated convergence, A and B can be differentiated under the expectation.
Thus, A′(z) = −E[(a + z)−2], B′(z) = E[(b − z)−2], A′′(z) = 2 E[(a + z)−3], B′′(z) =

2 E[(b− z)−3], etc. Also, define A,B and their derivatives at the endpoints by substituting
−

¯
α and

¯
β for z in the preceding formulas. Then, by monotone convergence, the values
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Limit shapes for some inhomogeneous corner growth models

at the endpoints match the appropriate one-sided limits, that is, A(−
¯
α) = limz↓−

¯
αA(z) =

E[(a−
¯
α)−1], B(

¯
β) = limz↑

¯
β B(z) = E[(b−

¯
β)−1], and similarly for the derivatives.

Since A′ and B′ are increasing and continuous on (−
¯
α,

¯
β), the derivative z 7→ sA′(z) +

tB′(z) is positive if s/t ≤ c1, is negative if s/t ≥ c2 and has a unique zero if c1 < s/t < c2.
Hence, (a) and (b) follow, and if c1 < s/t < c2 then g(s, t) = sA(z) + tB(z), where
z ∈ (−

¯
α,

¯
β) is the unique solution of the equation

− B′(z)

A′(z)
=
s

t
. (2.2)

Since −B′/A′ is increasing and continuous, it has an increasing inverse ζ defined on
(c1, c2). Let s1, t1, s2, t2 be as in (c). Then ζ(s1/t1) 6= ζ(s2/t2), which implies the strict
inequality

(s1 + s2)A(z) + (t1 + t2)B(z) > s1A(ζ(s1/t1)) + t1B(ζ(s1/t1))

+ s2A(ζ(s2/t2)) + t2B(ζ(s2/t2))

= g(s1, t1) + g(s2, t2)

(2.3)

for any z ∈ (−
¯
α,

¯
β). Note that c1 < (s1 +s2)/(t1 +t2) < c2. Setting z = ζ((s1 +s2)/(t1 +t2))

in (2.3) yields g(s1 + s2, t1 + t2) > g(s1, t1) + g(s2, t2), and (c) comes from this and
homogeneity. Since −B′/A′ is continuously differentiable with positive derivative (as
A′′, B′, B > 0 and A′ < 0 on (−

¯
α,

¯
β)), by the inverse function theorem, ζ is continuously

differentiable as well. Using (2.2), we compute the gradient of g for c1 < s/t < c2
as ∇g(s, t) = (A(ζ(s/t)), B(ζ(s/t))), which tends to (A(−

¯
α), B(−

¯
α)) as s/t → c1 and to

(A(
¯
β), B(

¯
β)) as s/t→ c2. Hence, (d).

When α and β are uniform distributions, we can compute the infimum in (2.1)
explicitly.

Corollary 2.4. Let λ, l,m > 0. Suppose that α and β are uniform distributions on
[λ/2, λ/2 + l] and [λ/2, λ/2 +m], respectively. Then, for s, t > 0,

g(s, t) =
s

l
log

(
1 +

l

λ
+
l

λ
·
lt−ms+

√
(lt−ms)2 + 4st(λ+ l)(λ+m)

2s(λ+m)

)

+
t

m
log

(
1 +

m

λ
+
m

λ
·
ms− lt+

√
(lt−ms)2 + 4st(λ+ l)(λ+m)

2t(λ+ l)

)
.

Proof. Since α and β are uniform distributions,

A(z) = E

[
1

a+ z

]
=

1

l
log

(
1 +

l

z + λ/2

)
B(z) = E

[
1

b− z

]
=

1

m
log

(
1 +

m

−z + λ/2

)
for z ∈ (−λ/2, λ/2). We compute the derivatives as

A′(z) = − 1

(z + λ/2)(z + λ/2 + l)
B′(z) =

1

(−z + λ/2)(−z + λ/2 +m)
.

Because A′(−λ/2) = −∞ and B′(λ/2) =∞, we have c1 = 0 and c2 =∞. Also, (2.2) leads
to

(s− t)z2 − (s(λ+m) + t(λ+ l))z + sλ(λ+ 2m)/4− tλ(λ+ 2l)/4 = 0.

It follows from the discriminant formula that the solution in the interval (−λ/2, λ/2) is

z =
λ

2

s(λ+ 2m)− t(λ+ 2l)

s(λ+m) + t(λ+ l) +
√

(sm+ tl)2 + 4stλ(λ+m+ l)
.

Inserting this into g(s, t) = sA(z)+tB(z) and some elementary algebra yield the result.
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The preceding argument can be repeated when l = 0 or m = 0. In these cases, α and
β are understood as point masses at λ/2. For instance, when l = 0 and m > 0, we obtain

g(s, t) =
2sλ+ms+

√
(ms)2 + 4stλ(λ+m)

2λ(λ+m)

+
t

m
log

(
1 +

m

λ
+
m

λ
·
ms+

√
(ms)2 + 4stλ(λ+m)

2tλ

)
When l = 0 and m = 0, we recover (1.3).

We can also determine g along the diagonal when α and β are the same.

Corollary 2.5. Suppose that α = β. Then g(s, s) = 2sE

[
1

a

]
for s > 0.

Proof. We have (a + z)−1 + (a − z)−1 ≥ 2a−1 for |z| ≤
¯
α with equality if only if z = 0.

Therefore,

g(s, s) = s inf
z∈(−

¯
α,

¯
α)

E

[
1

a+ z
+

1

a− z

]
= 2sE

[
1

a

]
.

We only report the analogous results for the geometric model.

Theorem 2.6. Suppose that ᾱβ̄ < 1 in the geometric model. Then

g(s, t) = inf
z∈(ᾱ,1/β̄)

{
sE

[
a/z

1− a/z

]
+ tE

[
bz

1− bz

]}
for s, t > 0.

Theorem 2.7. Suppose that ᾱ = β̄ = 1 in the geometric model. Then

g(s, t) = sE

[
a

1− a

]
+ tE

[
b

1− b

]
for s, t > 0.

Corollary 2.8. Let q ∈ (0, 1) and 0 < l,m <
√
q. Choose α and β as the distributions

with densities proportional to x 7→ 1/x on the intervals [
√
q − l,√q] and [

√
q −m,√q],

respectively. Then

g(s, t) =
s

L
log

(
1 +

l
√
q

1− q
+

l

1− q
ly −mx+

√
K

2x(1 +m
√
q − q)

)

+
t

M
log

(
1 +

m
√
q

1− q
+

m

1− q
mx− ly +

√
K

2y(1 + l
√
q − q)

)

for s, t > 0, where x = slM , y = tmL, L = log

( √
q

√
q − l

)
,M = log

( √
q

√
q −m

)
and

K = (ly −mx)2 + 4xy(1 +m
√
q − q)(1 + l

√
q − q).

Corollary 2.9. Suppose that α = β. Then g(s, s) = 2sE

[
a

1− a

]
for s > 0.

3 The existence of the shape function

Lemma 3.1. There exists a deterministic function g : (0,∞)2 → [0,∞] such that

lim
n→∞

G(bns c, bnt c)
n

= g(s, t) for s, t > 0 P -a.s.

Furthermore, g is nondecreasing, homogeneous and concave.
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Here, nondecreasing means that g(s′, t′) ≤ g(s, t) for 0 < s′ ≤ s and 0 < t′ ≤ t, and
homogeneity means that g(cs, ct) = cg(s, t) for s, t, c > 0. In the exponential model, g is
finite if

¯
α+

¯
β > 0. This is by the standard properties of the stochastic order [31, Theorem

1.A3]. Briefly, the i.i.d. measure P on RN
2

+ under which each W (i, j) is exponentially
distributed with rate

¯
α +

¯
β stochastically dominates Pa,b and G is a nondecreasing

function of the weights. Thus, g(s, t) does not exceed the right-hand side of (1.3) with
λ =

¯
α +

¯
β. Similarly, g is finite in the geometric model if ᾱβ̄ < 1. Extend g to R2

+ by
setting g(0, 0) = 0, g(s, 0) = limt↓0 g(s, t) and g(0, t) = lims↓0 g(s, t) for s, t > 0.

Lemma 3.1 can be proved using the ergodicity properties of P and superadditivity
of the last-passage times. As this is quite standard, we will leave out many details.

For k, l ∈ Z+, let θk,l : RN
2

→ RN
2

be given by θk,l(ω)(i, j) = ω(i + k, j + l) for i, j ∈ N
and ω ∈ RN

2

. Note that P is stationary with respect to θk,l because P(θ−1
k,l (B)) =

EPa,b(θ−1
k,l (B)) = EPτk(a),τl(b)(B) = P(B) for any Borel set B ⊂ RN

2

+ .

Lemma 3.2. P is ergodic with respect to θk,l for any k, l ∈ N.

Proof. Suppose θ−1
k,l (B) = B for some Borel set B ⊂ RN

2

+ . For n ≥ 1, let T n denote the
σ-algebra generated by An, the collection of W (i, j) with i > k(n− 1) and j > l(n− 1).
Then B is in T =

⋂
n∈N T n. Also, T is the tail σ-algebra of the σ-algebras generated by

AnrAn+1. Because Pa,b is a product measure, by Kolmogorov’s 0–1 law, Pa,b(B) ∈ {0, 1}.
Therefore, P(B) = µ(Pa,b(B) = 1). On the other hand,

(τk × τl)−1{Pa,b(B) = 1} = {Pτk a,τl b(B) = 1} = {Pa,b(θ−1
k,l (B)) = 1} = {Pa,b(B) = 1}.

Since µ is ergodic under τk × τl, we conclude that P(B) ∈ {0, 1}.

Proof of Lemma 3.1. Fix s, t ∈ N and define, for integers 0 ≤ m < n,

Z(m,n) = −G((n−m)s, (n−m)t) ◦ θms,mt = max
π∈Πms+1,mt+1,ns,nt

∑
(i,j)∈π

W (i, j).

Using the definition and Lemma 3.2, we observe that {Z(m,n) : 0 ≤ m < n} is a sub-
additive process that satisfies the hypotheses of Liggett’s subadditive ergodic theorem
[17]. Hence, Z(0, n)/n = G(ns, nt)/n converges P-a.s. to a deterministic limit, g(s, t).
The existence of the limit for all s, t > 0 P-a.s. and the claimed properties of g follow as
in the case of i.i.d. weights [29, Theorem 2.1].

4 Stationary distributions of the last-passage increments

Let us extend the sample space to R
Z2

+

+ . Now W (i, j) denotes the projection onto

coordinate (i, j) for i, j ∈ Z+. Define the last-passage time Ĝ(i, j) through recursion
(1.1) but with the boundary values Ĝ(i, 0) =

∑i
k=1W (k, 0) and Ĝ(0, j) =

∑j
k=1W (0, k)

for i, j ∈ N. We then have

Ĝ(m,n) = max
π∈Π0,0,m,n

∑
(i,j)∈π

W (i, j) for m,n ∈ Z+ . (4.1)

In the exponential model, for each value of (a,b) such that an ≥
¯
α and bn ≥

¯
β

for n ∈ N (which holds µ-a.s.) and parameter z ∈ (−
¯
α,

¯
β), define Pza,b as the product

measure on R
Z2

+

+ by

Pza,b(W (i, j) ≥ x) = exp(−(ai + bj)x) Pza,b(W (0, 0) = 0) = 1

Pza,b(W (i, 0) ≥ x) = exp(−(ai + z)x) Pza,b(W (0, j) ≥ x) = exp(−(bj − z)x)
(4.2)
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for x ≥ 0 and i, j ∈ N. When
¯
α =

¯
β = 0, we make definition (4.2) for z = 0. Note

that the projection of Pza,b onto coordinates N2 is Pa,b. For the geometric model, the
construction is similar. For z ∈ (ᾱ, 1/β̄) and each value of (a,b) such that an ≤ ᾱ and
bn ≤ β̄ for n ∈ N, the measure Pza,b is given by

Pza,b(W (i, j) ≥ k) = aki b
k
j Pza,b(W (0, 0) = 0) = 1

Pza,b(W (i, 0) ≥ k) = aki /z
k Pza,b(W (0, j) ≥ k) = bkj z

k
(4.3)

for k ∈ Z+ and i, j ∈ N. When ᾱ = β̄ = 1, definition (4.3) makes sense for z = 1.
Introduce the increment variables as I(m,n) = Ĝ(m,n) − Ĝ(m − 1, n) for m ≥ 1

and n ≥ 0, and J(m,n) = Ĝ(m,n) − Ĝ(m,n − 1) for m ≥ 0 and n ≥ 1. We capture the
stationarity of the increments in the following proposition.

Proposition 4.1. Let k, l ∈ Z+. Under P
z
a,b,

(a) I(i, l) has the same distribution as W (i, 0) for i ∈ N.

(b) J(k, j) has the same distribution as W (0, j) for j ∈ N.

(c) The random variables {I(i, l) : i > k} ∪ {J(k, j) : j > l} are (jointly) independent.

(1.1) leads to the recursion [29, (2.21)]

I(m,n) = I(m,n− 1)− I(m,n− 1) ∧ J(m− 1, n) +W (m,n)

J(m,n) = J(m− 1, n)− I(n, n− 1) ∧ J(m− 1, n) +W (m,n)
(4.4)

for m,n ∈ N. Proposition 4.1 can be proved via induction using (4.4) and Lemma 4.2
below. We will omit the induction argument as it is the same as in [29, Theorem 2.4].

Lemma 4.2. Let F : R3 → R3 denote the map (x, y, z) 7→ (x−x∧y+z, y−x∧y+z, x∧y).
Let P be a product measure on R3 with marginals P1, P2, P3. Suppose that one of the
following holds.

(i) P1, P2 and P3 are exponential distributions with rates a, b and a + b, for some
a, b ∈ (0,∞).

(ii) P1, P2 and P3 are geometric distributions with parameters a, b and ab, for some
a, b ∈ (0, 1).

Then P (F−1(B)) = P (B) for any Borel set B ⊂ R3.

In earlier work [29, Lemma 2.3] and [2, Lemma 4.1], Lemma 4.2 was proved by
comparing the Laplace transforms of the measures P and P (F−1(·)). We include another
proof below.

Proof of Lemma 4.2. We prove (i) only as the proof of (ii) is the discrete version of the
same argument and is simpler. Observe that F is a bijection on R3 with F−1 = F . It
suffices to verify the claim for any open set B in R3. By continuity, F−1(B) is also open.
Furthermore, F is differentiable on the open set {(x, y, z) : x > y or x < y} and its
Jacobian equals 1 in absolute value. Hence, by the change of variables [26, Theorem
7.26],

P (F−1(B)) = ab(a+ b)

∫
F−1(B)

e−ax−by−(a+b)zdxdydz

= ab(a+ b)

∫
F−1(B)

e−a(x−x∧y+z)−b(y−x∧y+z)−(a+b)(x∧y)dxdydz

= ab(a+ b)

∫
B

e−au−bv−(a+b)wdudvdw = P (B).
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In the exponential and geometric models, respectively, define

gz(s, t) = sE

[
1

a+ z

]
+ tE

[
1

b− z

]
for s, t ≥ 0 and z ∈ [−

¯
α,

¯
β]

gz(s, t) = sE

[
a/z

1− a/z

]
+ tE

[
bz

1− bz

]
for s, t ≥ 0 and z ∈ [ᾱ, 1/β̄].

Lemma 4.3. In the exponential model, let z ∈ (−
¯
α,

¯
β) if

¯
α +

¯
β > 0, and let z = 0 and

assume that E[1/a + 1/b] < ∞ if
¯
α =

¯
β = 0. In the geometric model, let z ∈ (ᾱ, 1/β̄) if

ᾱβ̄ < 1, and let z = 1 and assume that E[a/(1− a) + b/(1− b)] <∞ if ᾱ = β̄ = 1. Then

lim
n→∞

Ĝ(bns c, bnt c)
n

= gz(s, t) for s, t ≥ 0 in Pza,b -probability for µ-a.e. (a,b). (4.5)

In fact, the convergence in (4.5) is Pza,b-a.s. for µ-a.e (a,b) provided that
¯
α+

¯
β > 0

in the exponential model and ᾱβ̄ < 1 in the geometric model [8, Theorem 4.3]. By
(1.2), (4.1) and nonnegativity of weights, G(m,n) ≤ Ĝ(m,n) for m,n ∈ N. Then Lemma
4.3 implies that g(s, t) ≤ gz(s, t) for any s, t ≥ 0. The main result of this paper is that
g(s, t) = infz gz(s, t).

Proof of Lemma 4.3. We will consider the exponential model only, the geometric model
is treated similarly. Note that Ĝ(bns c, bnt c) =

∑bns c
i=1 I(i, 0) +

∑bnt c
j=1 J(bns c, j) for

s, t ≥ 0 and n ∈ N. By Proposition 4.1, {J(bns c, j) : j ∈ N} has the same distribution as
{J(0, j) : j ∈ N} under Pza,b. Hence, it suffices to show that

lim
n→∞

1

n

n∑
i=1

I(i, 0) = E

[
1

a+ z

]
and lim

n→∞

1

n

n∑
j=1

J(0, j) = E

[
1

b− z

]

in Pza,b for µ-a.s. We will only derive the first limit above, for which we will show that,
for z > −

¯
α and for z = −

¯
α when E[(a−

¯
α)−1] <∞,

lim
n→∞

1

n

n∑
i=1

I(i, 0) = E

[
1

a+ z

]
in Qz

a µ-a.s., (4.6)

where Qz
a is the product measure on the coordinates N×{0} given by Qz

a(W (i, 0) ≥ x) =

e−(ai+z)x for i ∈ N and x ≥ 0. It suffices to prove the convergence in distribution under
Qz

a µ-a.s. because the limit is deterministic.
The characteristic function of n−1

∑n
i=1 I(i, 0) under Qz

a is given by

n∏
i=1

(
1− ix

n(ai + z)

)−1

= exp

(
−

n∑
i=1

log

(
1− ix

n(ai + z)

))
for x ∈ R,

where the complex logarithm denotes the principal branch. Hence, (4.6) follows if we
prove

lim
n→∞

−
n∑
i=1

log

(
1− ix

n(ai + z)

)
= ixE

[
1

a+ z

]
for x ∈ R µ-a.s.,

Using the bound | log(1 + ix)| ≤ |x| for x ∈ R and the ergodicity of a, we obtain

lim sup
n→∞

∣∣∣∣∣
n∑
i=1

log

(
1− ix

n(ai + z)

)∣∣∣∣∣ ≤ lim
n→∞

|x|
n

n∑
i=1

1

ai + z
= |x|E

[
1

a+ z

]
for x ∈ R µ-a.s.
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Therefore, it suffices to prove the following for x ∈ R µ-a.s.

lim
n→∞

−
n∑
i=1

arg

(
1− ix

n(ai + z)

)
− xE

[
1

a+ z

]
= lim
n→∞

n∑
i=1

arctan

(
x

n(ai + z)

)
− x

n(ai + z)

= 0. (4.7)

Since arctanx =
∫ x

0
(1 + u2)−1du, we can rewrite the second sum above as

n∑
i=1

xn−1(ai+z)
−1∫

0

du

1 + u2
− x

n(ai + z)
= −

n∑
i=1

xn−1(ai+z)
−1∫

0

u2 du

1 + u2

= −x
n

n∑
i=1

(ai+z)
−1∫

0

x2v2 dv

n2 + x2v2
,

where we changed the variables via u = vx/n. Pick M > 0. The limsup as n→∞ of the
absolute value of the last sum is bounded µ-a.s. by |x| times

lim
n→∞

1

n

n∑
i=1

(ai+z)
−1∫

0

x2v2 dv

M2 + x2v2
= E

 (a+z)−1∫
0

x2v2 dv

M2 + x2v2

 ,
where the a.s. convergence is due to the ergodicity of a and the integrability of∫ (a+z)−1

0

x2v2 dv

M2 + x2v2
≤ 1

a+ z
.

The last integral is monotone in x2 and vanishes as M →∞. Hence, (4.7) holds for x ∈ R
µ-a.s.

The next proposition relates gz to g through a variational formula.

Proposition 4.4.

gz(1, 1) = sup
t∈[0,1]

max{gz(1− t, 0) + g(t, 1), gz(0, 1− t) + g(1, t)} (4.8)

For z ∈ (−
¯
α,

¯
β) in the exponential model and for z ∈ (ᾱ, 1/β̄) in the geometric model.

Proof. Fix z ∈ (−
¯
α,

¯
β) in the exponential model. Since g ≤ gz and gz is linear, (4.8) with

≥ instead of = is immediate. For the opposite inequality, we adapt the argument in [29,
Proposition 2.7]. It follows from (1.2) and (4.1) that

Ĝ(n, n) = max
k∈[n]

max{Ĝ(k, 0)+G(n−k+1, n)◦θk−1,0, Ĝ(0, k)+G(n, n−k+1)◦θ0,k−1}. (4.9)

Let L ∈ N and consider n > L large enough so that d(i+ 1)n/L e > d in/L e for 0 ≤ i < L.
For any k ∈ [n] there exists some 0 ≤ i < L such that d in/L e < k ≤ d(i + 1)n/L e, and
the weights are nonnegative. Therefore, (4.9) implies that

Ĝ(n, n) ≤ max
0≤i<L

max{Ĝ(d(i+ 1)n/L e, 0) +G(b(1− i/L)n c, n) ◦ θd in/L e,0,

Ĝ(0, d(i+ 1)n/L e) +G(n, b(1− i/L)n c) ◦ θ0,d in/L e}.
(4.10)

By stationarity of P, we have the following limits in P-probability.

lim
n→∞

G(b(1− i/L)n c, n) ◦ θd in/L e,0
n

= g (1− i/L, 1)

lim
n→∞

G(n, b(1− i/L)n c) ◦ θ0,d in/L e

n
= g(1, 1− i/L)

(4.11)
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Hence, these limits are P-a.s. and, consequently, Pa,b a.s. µ-a.s. if n → ∞ along a
suitable sequence (nk)k∈N. Also, by Lemma 4.3, there is a subsequence (n′k)k∈N in N
µ-a.s. such that Pza,b a.s.

lim
k→∞

Ĝ(d(i+ 1)n′k/L e, 0)

n′k
= gz(i+ 1/L, 0) lim

k→∞

Ĝ(0, d(i+ 1)n′k/L e)
n′k

= gz(0, i+ 1/L)

(4.12)
Because Pa,b is a projection of Pza,b, we can choose (a,b) such that (4.11) and (4.12)
hold Pza,b-a.s. Hence, we obtain from (4.10) that

gz(1, 1) ≤ max
0≤i<L

max{gz((i+ 1)/L, 0) + g(1− i/L, 1), gz(0, (i+ 1)/L) + g(1, 1− i/L)}

≤ sup
0≤t≤1

max{g(t, 1) + gz(1− t, 0), g(1, t) + gz(0, 1− t)}

+
E[(a+ z)−1] + E[(b− z)−1]

L
.

Finally, let L→∞. The geometric model is treated similarly.

5 Variational characterization of the shape function

We now prove Theorems 2.1 and 2.2. The assumption
¯
α+

¯
β > 0 is in force until the

proof of Theorem 2.2. We begin with computing g on the boundary. Recall that g is
extended to the boundary of R2

+ through limits. By homogeneity, it suffices to determine
g(1, 0) and g(0, 1).

Lemma 5.1.

g(1, 0) = E

[
1

a+
¯
β

]
g(0, 1) = E

[
1

b+
¯
α

]
.

Proof. We have g(1, 0) ≤ gz(1, 0) = E[(a + z)−1] for all z ∈ (−
¯
α,

¯
β). Letting z ↑

¯
β yields

the upper bound g(1, 0) ≤ E[(a+
¯
β)−1]. Now the lower bound. Let ε > 0. By Lemma 3.1,

(4.6) and since µ(b1 ≤
¯
β + ε) > 0, there exists (a,b) such that b1 ≤

¯
β + ε and

lim
n→∞

G(n, bnε c)
n

= g(1, ε) Pa,b -a.s. (5.1)

lim
n→∞

1

n

n∑
i=1

I(i, 0) = E

[
1

a+
¯
β + ε

]
in Q¯

β+ε
a -probability. (5.2)

(Qz
a is defined immediately after (4.6)). The distribution of {W (i, 1) : 1 ≤ i ≤ n} under

Pa,b stochastically dominates the distribution of {I(i, 0) : 1 ≤ i ≤ n} under Q¯
β+ε
a as

these distributions have product forms and ith marginals are exponentials with rates
ai + b1 ≤ ai +

¯
β + ε for i ∈ [n]. Therefore, for x ∈ R and n ≥ 1/ε,

Pa,b(G(n, bnε c) ≥ nx) ≥ Pa,b

(
n∑
i=1

W (i, 1) ≥ nx

)
≥ Q¯

β+ε
a

(
n∑
i=1

I(i, 0) ≥ nx

)
.

Set x = E[(a +
¯
β + ε)−1] − ε and let n → ∞. By (5.1) and (5.2), we obtain g(1, ε) ≥ x.

Sending ε ↓ 0 gives g(1, 0) ≥ E[(a+
¯
β)−1]. Computation of g(0, 1) is similar.

We now extract g from (1.7). For this, we will only use the boundary values of
g provided in Lemma 5.1, and that A(z) = E[(a + z)−1] and B(z) = E[(b − z)−1] are
continuous, stricly monotone functions on (−

¯
α,

¯
β).
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Lemma 5.2. Let r be a positive, continuous function on [0, π/2]. For z ∈ (−
¯
α,

¯
β),

sup
0≤θ≤π/2

{g(x(θ), y(θ))− gz(x(θ), y(θ))} = 0,

where (x(θ), y(θ)) = (r(θ) cos θ, r(θ) sin θ) for 0 ≤ θ ≤ π/2.

Proof. We can rewrite (4.8) as

A(z) +B(z) = sup
π/4≤θ≤π/2

{(1− cot θ)A(z) + g(cot θ, 1)}

∨ sup
0≤θ≤π/4

{(1− tan θ)B(z) + g(1, tan θ)}

= sup
π/4≤θ≤π/2

{(
1− x(θ)

y(θ)

)
A(z) + g

(
x(θ)

y(θ)
, 1

)}
∨ sup

0≤θ≤π/4

{(
1− y(θ)

x(θ)

)
B(z) + g

(
1,
y(θ)

x(θ)

)}
,

where we use that x and y are nonzero, respectively, on the intervals [0, π/4] and
[π/4, π/2]. Collecting the terms on the right-hand side and using homogeneity, we obtain
that

0 = max

{
sup

π/4≤θ≤π/2

1

y(θ)
{−x(θ)A(z)− y(θ)B(z) + g(x(θ), y(θ))},

sup
0≤θ≤π/4

1

x(θ)
{−x(θ)A(z)− y(θ)B(z) + g(x(θ), y(θ))}

}
.

(5.3)

The expressions inside the supremums in (5.3) are continuous functions of θ over closed
intervals. Hence, there exists θz ∈ [0, π/2] such that

0 = −x(θz)A(z)− y(θz)B(z) + g(x(θz), y(θz))

= sup
0≤θ≤π/2

{−x(θ)A(z)− y(θ)B(z) + g(x(θ), y(θ))},

where the second equality is due to g ≤ gz.

Corollary 5.3.

B(z) = sup
0≤s<∞

{−sA(z) + g(s, 1)} for z ∈ (−
¯
α,

¯
β). (5.4)

Proof. Let S > 0. The set {(s, 1) : 0 ≤ s ≤ S} ∪ {(S, t) : 0 ≤ t ≤ 1} is the image of a curve
θ 7→ (r(θ) cos θ, r(θ) sin θ) for [0, π/2] with continuous and positive r. Hence, by Lemma
5.2,

0 = max{ sup
0≤s≤S

{g(s, 1)− gz(s, 1)}, sup
0≤t≤1

{g(S, t)− gz(S, t)}}. (5.5)

Using homogeneity and Lemma 5.1, we observe that

g(S, t)− gz(S, t) = g(S, t)− SA(z)− tB(z) ≤ S(g(1, 1/S)−A(z))→ −∞ (5.6)

as S → ∞. Hence, the second supremum in (5.5) can be dropped provided that S is
sufficiently large, which results in 0 = sup0≤s≤S{g(s, 1)− gz(s, 1)}. This equality remains
valid if S is replaced with∞ by (5.6) with t = 1. Rearranging terms gives (5.4).

Proof of Theorem 2.1. Define the function γ : R→ R∪{∞} by γ(s) = −g(s, 1) for s ≥ 0

and γ(s) =∞ for s < 0. By Proposition 3.1, γ is nonincreasing, continuous and convex
on [0,∞) and completely determines g. Let γ∗ denote the convex conjugate of γ, that is,

γ∗(x) = sup
s∈R
{sx− γ(s)} = sup

s≥0
{sx− γ(s)} for x ∈ R . (5.7)
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Let f be the function whose graph is the image of the curve z 7→ (−A(z), B(z)). That
is, f is defined on the interval (−A(−

¯
α),−A(

¯
β)) and is given by the formula f(x) =

B ◦A−1(−x). By Corollary 5.3,

f(x) = sup
0≤s<∞

{sx− γ(s)} for x ∈ (−A(−
¯
α),−A(

¯
β)) (5.8)

Comparison of (5.7) and (5.8) shows that γ∗ coincides with f on (−A(−
¯
α),−A(

¯
β)). Since

γ is a lower semi-continuous, proper convex function on the real line, by the Fenchel-
Moreau theorem, γ equals the convex conjugate of γ∗, hence,

γ(s) = sup
x∈R
{sx− γ∗(x)} for s ∈ R (5.9)

To prove the result, we need to show the supremum in (5.9) can be taken over
the interval (−A(−

¯
α),−A(

¯
β)) instead of the real line. It is clear from (5.7) that γ∗ is

nondecreasing and is bounded below by −γ(0) = g(0, 1) = B(−
¯
α). Since γ∗ agrees with

f on (−A(−
¯
α),−A(

¯
β)),

B(−
¯
α) ≤ γ∗(−A(−

¯
α)) ≤ lim

x↓−A(−
¯
α)
f(x)

= lim
x↓−A(−

¯
α)
B ◦A−1(−x) = lim

z→−
¯
α
B(z) = B(−

¯
α),

(5.10)

where we used continuity of A−1 and B. Hence, γ∗(x) = B(−
¯
α) for x ≤ −A(−

¯
α). On the

other hand, if x > −A(
¯
β) = −g(1, 0) then γ∗(x) =∞ by (5.7) because

lim
s→∞

sx− γ(s) = lim
s→∞

s(x+ g(1, 1/s)) =∞.

Finally, we compute γ∗ at −A(
¯
β). Being a convex conjugate, γ∗ is lower semi-continuous.

Since γ∗ is also nondecreasing, limy↑x γ
∗(y) = γ∗(x) for any x ∈ R. Then, proceeding as

in (5.10),
γ∗(−A(

¯
β)) = lim

x↑−A(
¯
β)
f(x) = B(

¯
β).

We conclude that the function x 7→ sx− γ∗(x) is increasing for x ≤ −A(−
¯
α) and is −∞

for x > −A(
¯
β). Moreover, the left- and right-hand limits agree with the value of the

function at −A(
¯
β) and −A(−

¯
α), respectively. Hence, by (5.9),

γ(s) = sup
s∈(−A(−

¯
α),−A(

¯
β))

{sx− γ∗(x)} = sup
z∈(−

¯
α,

¯
β)

{−sA(z)−B(z)}

= − inf
z∈(−

¯
α,

¯
β)
{sA(z) +B(z)},

which implies (2.1).

Proof of Theorem 2.2. Introduce δ > 0 and let ϕ : RN+ → RN+ denote the map (cn)n∈N 7→
(cn∨δ)n∈N. Because ϕ commutes with the shift τ1, ϕ(a) and ϕ(b) are stationary sequences
in (0,∞). Moreover, for each k, l ∈ N, the distribution µδ of (ϕ(a), ϕ(b)) is ergodic with
respect to τk × τl. To see this, suppose that B = (τk × τl)−1(B) for some k, l ∈ N and
Borel set B ⊂ RN+×R

N
+. Then

(ϕ× ϕ)−1(B) = (ϕ× ϕ)−1((τk × τl)−1(B)) = (τk × τl)−1((ϕ× ϕ)−1(B)).

Hence, by the ergodicity of µ, we get µδ(B) = µ((ϕ× ϕ)−1(B)) ∈ {0, 1}.
Let αδ and βδ denote the marginal distributions of ϕ(a) and ϕ(b), respectively. Then

¯
αδ =

¯
βδ = δ. Applying Theorem 2.1 gives

gαδ,βδ(s, t) = inf
z∈(−δ,δ)

{
sE

[
1

a ∨ δ + z

]
+ tE

[
1

b ∨ δ − z

]}
. (5.11)
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Limit shapes for some inhomogeneous corner growth models

Since Pa,b stochastically dominates Pϕ(a),ϕ(b), we have gαδ,βδ(s, t) ≤ gα,β(s, t) for s, t ≥ 0.
Using this and (5.11), we obtain

gα,β(s, t) ≥ inf
z∈(−δ,δ)

{
sE

[
1

a ∨ δ′ + z

]
+ tE

[
1

b ∨ δ′ − z

]}
,

where we fix δ′ > δ. Because the expression inside the infimum is continuous in z, letting
δ ↓ 0 yields gα,β(s, t) ≥ sE[(a ∨ δ′)−1] + tE[(b ∨ δ′)−1] for s, t ≥ 0. Then, by monotone
convergence, letting δ′ → 0 results in

gα,β(s, t) ≥ sE

[
1

a

]
+ tE

[
1

b

]
for s, t ≥ 0.

The opposite inequality is noted after Lemma 4.3.
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