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LIMIT THEOREMS FOR A COX–INGERSOLL–ROSS
PROCESS WITH HAWKES JUMPS

LINGJIONG ZHU,∗ New York University

Abstract

In this paper we propose a stochastic process, which is a Cox–Ingersoll–Ross process
with Hawkes jumps. It can be seen as a generalization of the classical Cox–Ingersoll–
Ross process and the classical Hawkes process with exponential exciting function. Our
model is a special case of the affine point processes. We obtain Laplace transforms and
limit theorems, including the law of large numbers, central limit theorems, and large
deviations.
Keywords: Cox–Ingersoll–Ross process; point process; Hawkes process; self-exciting
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1. Introduction and main results

1.1. Cox–Ingersoll–Ross process

A Cox–Ingersoll–Ross process is a stochastic process rt satisfying the stochastic differential
equation

drt = b(c − rt ) dt + σ
√

rt dWt,

where Wt is a standard Brownian motion, b, c, σ > 0, and 2bc ≥ σ 2. The process was
proposed by Cox et al. [5] to model the short-term interest rate. Under the assumption that
2bc ≥ σ 2, Feller [10] proved that the process is nonnegative. Given r0, it is well known that
4brt/σ

2(1 − e−bt ) follows a noncentral χ2 distribution with degree of freedom 4bc/σ 2 and
noncentrality parameter 4br0e−bt /σ 2(1 − e−bt ). As t → ∞, rt → r∞, where r∞ follows a
gamma distribution with shape parameter 2bc/σ 2 and scale parameter σ 2/2b. The conditional
first and second moments are given by, for s > t ,

E[rs | rt ] = rte
−b(s−t) + c(1 − e−b(s−t)), (1)

E[r2
s | rt ] = rt

(
2c + σ 2

b

)
e−b(s−t) +

(
r2
t − rt

σ 2

b
− 2rt c

)
e−2b(s−t)

+
(

cσ 2

2b
+ c2

)(
1 − e−b(s−t)

)2

. (2)

The Cox–Ingersoll–Ross process has been widely applied in finance, mostly for the short-
term interest rate (see, e.g. [5]) and the Heston stochastic volatility model (see, e.g. [14]).
Other applications include the modelling of mortality intensities (see, e.g. the extended Cox–
Ingersoll–Ross process used in [6]) and of default intensities in credit risk models (see, e.g. the
special affine process case in [8]).
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A natural generalization of the classical Cox–Ingersoll–Ross process takes into account the
jumps, i.e.

drt = b(c − rt ) dt + σ
√

rt dWt + a dNt,

where Nt is a homogeneous Poisson process with constant intensity λ > 0. However, in the real
world, the occurrence of events may not be time homogeneous, but should be time dependent.
Errais et al. [9] pointed out

The collapse of Lehman Brothers brought the financial system to the brink of a breakdown.
The dramatic repercussions point to the existence of feedback phenomena that are channeled
through the complex web of informational and contractual relationships in the economy ….
This and related episodes motivate the design of models of correlated default timing that
incorporate the feedback phenomena that plague credit markets.

According to Kou and Peng [15], ‘We need better models to incorporate the default clustering
effect, i.e., one default event tends to trigger more default ….’

In this respect, it is natural to replace the Poisson process with a simple point process which
can describe the time dependence in a natural way. The Hawkes process, a simple point process
that has a self-exciting property and clustering effect becomes a natural choice.

1.2. Hawkes process

A Hawkes process is a simple point process N admitting an intensity

λt := λ

(∫ t

−∞
h(t − s)N(ds)

)
, (3)

where λ(·) : R
+ → R

+ is locally integrable, left continuous, h(·) : R
+ → R

+, and we always
assume that ‖h‖L1 = ∫ ∞

0 h(t) dt < ∞. In (3),
∫ t

−∞ h(t − s)N(ds) stands for
∫
(−∞,t)

h(t −
s)N(ds) = ∑

τ<t h(t − τ), where τ are the occurrences of the points before time t .
In the literature, h(·) and λ(·) are often referred to as the exciting function and the rate

function, respectively. An important observation is that a Hawkes process is Markovian if and
only if h(·) is an exponential function. One usually assumes that λ(·) is increasing and h(·) is
decreasing.

A Hawkes process is linear if λ(·) is linear and it is nonlinear otherwise. The linear Hawkes
process, i.e. the classical Hawkes process, is named after Hawkes, who was the first to present the
model in [12]. The nonlinear Hawkes process was first introduced by Brémaud and Massoulié
[4].

By the definition of the Hawkes process, it has the self-exciting property, i.e. the intensity
λt increases when a jump is observed. It therefore creates a clustering effect, which is used
to model the default clustering in finance. When no new jumps are observed, the intensity λt

decreases as h(·) decays.
The law of large numbers and central limit theorem for the linear Hawkes process have been

obtained in [13]. The law of large numbers and central limit theorem have also been studied
in [2] as a special case of multivariate Hawkes processes. The large deviation principle for
linear Hawkes process was obtained in [3]. The moderate deviation principle for linear Hawkes
process was obtained in [19]. For nonlinear Hawkes process, the central limit theorem was
obtained in [18], and the large deviations have been studied in [21] and [22].

The central limit theorem for the Hawkes process has been applied to the study of high-
frequency trading and the microstructure in finance (see, e.g. [2] and [1]), and the large
deviations result has been applied to the study of ruin probabilities in insurance (see, e.g.
[16] and [20]).
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1.3. A Cox–Ingersoll–Ross process with Hawkes jumps

In this paper we propose a stochastic process rt that satisfies the stochastic differential
equation

drt = b(c − rt ) dt + a dNt + σ
√

rt dWt, (4)

where Wt is a standard Brownian motion and Nt is a simple point process with intensity
λt := α + βrt at time t . We assume that a, b, c, α, β, σ > 0 and that the following conditions
hold.

• b > aβ. This condition is needed to guarantee that there exists a unique stationary
process r∞ which satisfies (4).

• 2bc ≥ σ 2. This condition is needed to guarantee that rt ≥ 0 with probability 1. Indeed,
we know that rt stochastically dominates the classical Cox–Ingersoll–Ross process and,
hence, 2bc ≥ σ 2 is enough to guarantee rt ≥ 0. On the other hand, on any given
time interval, the probability that there is no jump is always positive, which implies that
2bc ≥ σ 2 is needed to guarantee positivity.

The Cox–Ingersoll–Ross process with Hawkes jumps preserves the mean-reverting and
nonnegative properties of the classical Cox–Ingersoll–Ross process. In addition, it contains the
Hawkes jumps, which have the self-exciting property that create a clustering effect.

Clearly, the Cox–Ingersoll–Ross process proposed in (4) includes the classical Cox–Inger-
soll–Ross process and the classical linear Hawkes process with exponential exciting function.
We summarize this in the following.

(i) When a = 0 or α = β = 0, it reduces to the classical Cox–Ingersoll–Ross process, i.e.

drt = b(c − rt ) dt + σ
√

rt dWt.

(ii) When β = 0 and a, α > 0, it reduces to the Cox–Ingersoll–Ross process with Poisson
jumps, i.e.

drt = b(c − rt ) dt + σ
√

rt dWt + a dNt,

where Nt is a homogeneous Poisson process with intensity α.

(iii) When c = 0 and σ = 0, Nt reduces to a Hawkes process with intensity λt = α + βrt ,
where

drt = −brt dt + a dNt,

and it is easy to see that the intensity λt indeed satisfies

λt = α + β

∫ t

0
ae−b(t−s)N(ds),

which implies that Nt is a classical linear Hawkes process with λ(z) = α + βz and
h(t) = ae−bt .

It is easy to observe that rt is Markovian with generator

Af (r) = bc
∂f

∂r
− br

∂f

∂r
+ 1

2
σ 2r

∂2f

∂r2 + (α + βr)[f (r + a) − f (r)].
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1.4. Main results

In this section we summarize the main results of this paper. We will start with conditional
first and second moments of rt , and then move onto the limit theorems, i.e. the law of large
numbers, central limit theorems, and large deviations. Next, we show that there exists a unique
stationary probability measure for rt and we obtain the Laplace transform of rt and r∞. Finally,
we consider a short-rate interest model. The proofs will be given in Section 2.

In the following proposition we give the formulae for the conditional first and second
moments of the Cox–Ingersoll–Ross process with Hawkes jumps.

Proposition 1. (i) For any s > t , we have the conditional expectation

E[rs | rt ] = bc + aα

b − aβ
− e−(b−aβ)(s−t)

[
bc + aα

b − aβ
− rt

]
. (5)

(ii) For any s > t , we have the conditional expectation

E[r2
s | rt ] = r2

t e−2(b−aβ)(s−t)

+
[
(2bc + σ 2 + 2aα + a2β)

bc + aα

2(b − aβ)2 + a2α

2(b − aβ)

]
[1 − e−2(b−aβ)(s−t)]

− (2bc + σ 2 + 2aα + a2β)
bc + aα

(b − aβ)2 [e−(b−aβ)(s−t) − e−2(b−aβ)(s−t)]

+ (2bc + σ 2 + 2aα + a2β)
rt

b − aβ
[e−(b−aβ)(s−t) − e−2(b−aβ)(s−t)]. (6)

Remark 1. Let a = 0 in (5). Then E[rs | rt ] = c − e−b(s−t)(c − rt ) = rte−b(s−t) + c(1 −
e−b(s−t)), which recovers (1). Similarly, by letting a = 0 in (6), we recover (2).

Theorem 1. (Law of large numbers.) For any r0 := r ∈ R
+,

(i)
1

t

∫ t

0
rs ds → bc + aα

b − aβ
in L2(P) as t → ∞,

(ii)
Nt

t
→ b(α + βc)

b − aβ
in L2(P) as t → ∞.

Theorem 2. (Central Limit Theorem.) For any r0 := r ∈ R
+,

(i)

∫ t

0 rs ds − (bc + aα)t/(b − aβ)√
t

→ N

(
0,

a2α(b − aβ) + (a2β + σ 2)(bc + aα)

(b − aβ)3

)
in

distribution as t → ∞,

(ii)
Nt − b(α + βc)t/(b − aβ)√

t
→ N

(
0,

b3a2(α + βc) + 4σ 2b2(bc + aα)

a2(b − aβ)3

)
in distribu-

tion as t → ∞.

Before we proceed, recall that a sequence (Pn)n∈N of probability measures on a topological
space X satisfies the large deviation principle with rate function I : X → R if I is nonnegative
and lower semicontinuous, and, for any measurable set A, we have

− inf
x∈Ao

I (x) ≤ lim inf
n→∞

1

n
log Pn(A) ≤ lim sup

n→∞
1

n
log Pn(A) ≤ − inf

x∈Ā
I (x).
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Here Ao denotes the interior of A and Ā denotes its closure. We refer the reader to [7] and [17]
for general background on the theory and applications of large deviations.

Theorem 3. (Large deviation principle.) For any r0 := r ∈ R
+,

(i) ((1/t)
∫ t

0 rs ds ∈ ·) satisfies a large deviation principle with rate function

I (x) = sup
θ≤θc

{θx − bcy(θ) − α(eay(θ) − 1)},

where, for θ ≤ θc, y = y(θ) is the smaller solution of

−by + 1
2σ 2y2 + β(eay − 1) + θ = 0,

and
θc = byc − 1

2σ 2y2
c − β(eayc − 1)

with yc the unique positive solution to the equation b = σ 2yc + βaeayc ,

(ii) (Nt/t ∈ ·) satisfies a large deviation principle with rate function

I (x) = sup
θ≤θc

{θx − bcy(θ) − α(eay(θ)+θ − 1)},

where, for θ ≤ θc, y(θ) is the smaller solution of

−by(θ) + 1
2σ 2y2(θ) + β(eay(θ)+θ − 1) = 0,

and

θc = log

(√
σ 4 + a2b2 + 2a2σ 2β − σ 2

a2β

)
− σ 2 + ab − √

σ 4 + a2b2 + 2a2σ 2β

σ 2 .

Remark 2. It is easy to see that, when c = 0 and σ = 0, Theorem 1(ii), Theorem 2(ii), and
Theorem 3(ii) are consistent with the law of large numbers and central limit theorem results for
linear Hawkes process with exponential exciting function given in [2], and the large deviation
principle given in [3].

Proposition 2. Assume that b > aβ and 2bc ≥ σ 2. Then there exists a unique invariant
probability measure for rt .

Proposition 3. For any θ > 0, the Laplace transform of rt satisfies E[e−rt | r0 = r] =
eA(t)r+B(t), where A(t) and B(t) satisfy the ordinary differential equations

A′(t) = −bA(t) + 1
2σ 2A(t)2 + β(eaA(t) − 1),

B ′(t) = bcA(t) + α(eaA(t) − 1),

A(0) = −θ, B(0) = 0.

In particular, E[e−θr∞] = exp[∫ ∞
0 bcA(t) + α(eaA(t) − 1) dt].

We can use rt as a stochastic model for the short-rate term structure. We are interested in
the value of a default-free discount bond paying one unit at time T , i.e.

P(t, T , r) := E

[
exp

[
−

∫ T

t

rs ds

] ∣∣∣∣ rt = r

]
.
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Proposition 4. (i) P(t, T , r) = eA(t)r+b(t), where A(t) and B(t) satisfy the ordinary differen-
tial equations

A′(t) − bA(t) + 1
2σ 2A(t)2 + β(eaA(t) − 1) − 1 = 0,

B ′(t) + bcA(t) + α(eaA(t) − 1) = 0,

A(T ) = B(T ) = 0.

(ii) We have the asymptotic result

lim
T →∞

1

T
log P(t, T , r) = bcx∗ + α(eax∗ − 1),

where x∗ is the unique negative solution to the equation

−bx + 1
2σ 2x2 + β(eax − 1) − 1 = 0.

Remark 3. A natural way to generalize the Cox–Ingersoll–Ross process with Hawkes jumps
is to allow the jump size to be random, i.e.

drt = b(c − rt ) dt + σ
√

rt dWt + dJt ,

where Jt = ∑Nt−
i=1 ai , and the ai are independent and identically distributed positive random

variables, independent of the past history, with probability distribution Q(da). Here Nt is a
simple point process with intensity λt = α+βrt at time t > 0. We assume that a, b, c, α, β, σ >

0, b >
∫

R+ aQ(da)β, and 2bc ≥ σ 2.
We can write the generator as

Af (r) = bc
∂f

∂r
− br

∂f

∂r
+ 1

2
σ 2r

∂2f

∂r2 + (α + βr)

∫
R+

[f (r + a) − f (r)]Q(da).

All the results in this paper can be generalized to this model after a careful analysis.

Remark 4. Another possibility to generalize the Cox–Ingersoll–Ross process with Hawkes
jumps is to allow the jumps to follow a nonlinear Hawkes process, i.e. rt satisfies the dynamics
in (4) and Nt is a simple point process with intensity λ(rt ), where λ(·) : R

+ → R
+ is in general

a nonlinear function. This can be considered as a generalization to the classical nonlinear
Hawkes process with exponential exciting function. Because of the nonlinearity, we will not be
able to get a closed expression in the limit for the limit theorems or a set of ordinary differential
equations which are related to the Laplace transform of the process.

2. Proofs

Proof of Proposition 1. (i) Taking the expectation of both sides of (4), we have

dE[rt ] = b(c − E[rt ]) dt + a(α + βE[rt ]) dt,

which implies that for any s > t , we have the following conditional expectation,

E[rs | rt ] = bc + aα

b − aβ
− e−(b−aβ)(s−t)

[
bc + aα

b − aβ
− rt

]
.

(ii) By Itô’s formula, we have

d(r2
t ) = 2rt [b(c − rt ) dt + σ

√
rt dWt ] + σ 2rt dt + 2rta dNt + a2 dNt .
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Taking the expectation of both sides, we obtain

dE[r2
t ]

dt
= 2bcE[rt ] − 2bE[r2

t ] + σ 2
E[rt ] + 2a(αE[rt ] + βE[r2

t ]) + a2α + a2βE[rt ].

This implies that

E[r2
s | rt ]e2(b−aβ)s − r2

t e2(b−aβ)t

= (2bc + σ 2 + 2aα + a2β)

∫ s

t

e2(b−aβ)u
E[ru | rt ] du + a2α

∫ s

t

e2(b−aβ)u du

=
[
(2bc + σ 2 + 2aα + a2β)

bc + aα

2(b − aβ)2 + a2α

2(b − aβ)

]
[e2(b−aβ)s − e2(b−aβ)t ]

− (2bc + σ 2 + 2aα + a2β)
bc + aα

b − aβ

e(b−aβ)t

b − aβ
[e(b−aβ)s − e(b−aβ)t ]

+ (2bc + σ 2 + 2aα + a2β)rt
e(b−aβ)t

b − aβ
[e(b−aβ)s − e(b−aβ)t ],

which yields (6).

Proof of Theorem 1. (i) To prove the convergence in the L2(P) norm, we need to show that

E

(
1

t

∫ t

0
rs ds − bc + aα

b − aβ

)2

= 1

t2 E

(∫ t

0
rs ds

)2

− 2

t

∫ t

0
E[rs] ds

bc + aα

b − aβ
+

(
bc + aα

b − aβ

)2

→ 0,

as t → ∞. From (5), it is clear that

1

t

∫ t

0
E[rs] ds → bc + aα

b − aβ
as t → ∞.

Therefore, it suffices to show that

1

t2 E

(∫ t

0
rs ds

)2

→ bc + aα

b − aβ
as t → ∞.

Applying (5), we obtain

1

t2 E

(∫ t

0
rs ds

)2

= 2

t2

∫∫
0<s1<s2<t

E[rs1E[rs2 | rs1 ]] ds1 ds2

= 2

t2

∫∫
0<s1<s2<t

bc + aα

b − aβ
E[rs1 ] ds1 ds2

− 2

t2

∫∫
0<s1<s2<t

e−(b−aβ)(s2−s1)

[
bc + aα

b − aβ
E[rs1 ] − E[r2

s1
]
]

ds1 ds2.
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From Proposition 1, given r0 = r , E[rs1 ] and E[r2
s1

] are uniformly bounded by some universal
constant depending only on r , say M(r). Therefore,∣∣∣∣ 2

t2

∫∫
0<s1<s2<t

e−(b−aβ)(s2−s1)

[
bc + aα

b − aβ
E[rs1 ] − E[r2

s1
]
]

ds1 ds2

∣∣∣∣
≤ 2

t2 M(r)

[
bc + aα

b − aβ
+ 1

] ∫∫
0<s1<s2<t

e−(b−aβ)(s2−s1) ds1 ds2

→ 0 as t → ∞.

Again, by (5), it is easy to check that

2

t2

∫∫
0<s1<s2<t

bc + aα

b − aβ
E[rs1 ] ds1 ds2 →

(
bc + aα

b − aβ

)2

as t → ∞.

Hence, we have proved the law of large numbers.
(ii) Observe that Nt − ∫ t

0 λs ds = Nt − αt − β
∫ t

0 rs ds is a martingale and

E

[(
Nt − ∫ t

0 λs ds

t

)2]
= 1

t2 E

[∫ t

0
λs ds

]
= α

t
+ β

t2

∫ t

0
E[rs] ds → 0 as t → ∞

by Proposition 1. Therefore, we have

Nt

t
− α − β

t

∫ t

0
rs ds → 0

in L2(P) as t → ∞ and the conclusion follows from (i).

Remark 5. The L2 convergence in Theorem 1 implies the convergence in probability. Indeed,
the convergence in Theorem 1 also holds almost surely by using Proposition 2 and the ergodic
theorem. For example, by the ergodic theorem, (1/t)

∫ t

0 rs ds → E[r∞] almost surely as t →
∞. Let π be the unique invariant probability measure of rt . Then we have

∫
Af (r)π(dr) = 0

for any smooth function f . Consider f (r) = r . We have
∫
(bc − br+(α + βr)a)π(dr) = 0,

which implies that E[r∞] = (bc + aα)/(b − aβ). Similarly, we can show that Nt/t →
b(α + βc)/(b − aβ) as t → ∞ almost surely. Indeed, the almost-sure convergence also
follows by applying the large deviation principle and the Borel–Cantelli lemma. The limit can
be identified as the unique zero of the corresponding rate function for the large deviations.

Proof of Theorem 2. (i) Observe that f (rt ) − f (r0) − ∫ t

0 Af (rs) ds is a martingale for
f (r) = Kr , where K is a constant to be determined. Let f (r) = Kr . Then

Af (r) = K[(aβ − b)r + (αa + bc)].
Let us choose K = 1/(b − aβ) > 0. Then we have∫ t

0
rs ds − bc + aα

b − aβ
t =

[
f (rt ) − f (r0) −

∫ t

0
Af (rs) ds

]
− f (rt ) + f (r0).

Since f (r0) = Kr0 is fixed, f (r0)/
√

t → 0 as t → ∞. Also, we have

E[f (rt )]√
t

= KE[rt ]√
t

= K√
t

{
bc + aα

b − aβ
− e−(b−aβ)t

[
bc + aα

b − aβ
− r0

]}
→ 0 as t → ∞
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by Proposition 1. Therefore, f (rt )/
√

t → 0 as t → ∞ in probability. The quadratic variation
of the martingale f (rt ) − f (r0)−

∫ t

0 Af (rs) ds is the same as the quadratic variation of
f (rt ) = rt /(b − aβ), which is the same as the quadratic variation of (aNt+

∫ t

0 σ
√

rs dWs)/(b−
aβ), which is equivalent to [a2Nt + σ 2

∫ t

0 rs ds]/(b − aβ)2. By the law of large numbers
(Theorem 1), we have

1

t

1

(b − aβ)2

[
a2Nt + σ 2

∫ t

0
rs ds

]
→ 1

(b − aβ)2

[
a2α + (a2β + σ 2)(bc + aα)

b − aβ

]

as t → ∞. Hence, by the usual central limit theorem for martingales, we conclude that∫ t

0 rs ds − (bc + aα)t/(b − aβ)√
t

→ N

(
0,

a2α(b − aβ) + (a2β + σ 2)(bc + aα)

(b − aβ)3

)

in distribution as t → ∞.
(ii) From (4), we have

Nt = rt

a
− r0

a
+ bc

a
t − b

a

∫ t

0
rs ds − σ

a

∫ t

0

√
rs dWs,

which implies that

Nt − b(α + βc)

b − aβ
= rt

a
− r0

a
− b

a

∫ t

0

(
rs − bc + aα

b − aβ

)
ds − σ

a

∫ t

0

√
rs dWs

= rt

a
− r0

a
− f (rt ) + f (r0)

+
[
f (rt ) − f (r0) −

∫ t

0
Af (rs) ds

]
− σ

a

∫ t

0

√
rs dWs,

where f (r) = −b/a(b − aβ) and we know that

1√
t

[
rt

a
− r0

a
− f (rt ) + f (r0)

]
→ 0

as t → ∞ in probability by the arguments in (i). Now,[
f (rt ) − f (r0) −

∫ t

0
Af (rs) ds

]
− σ

a

∫ t

0

√
rs dWs

is a martingale and it has the same quadratic variation as

− b

b − aβ
Nt − bσ

a(b − aβ)

∫ t

0

√
rs dWs − σ

a

∫ t

0

√
rs dWs,

which has the quadratic variation b2/(b − aβ)2Nt + 4σ 2b2/a2(b − aβ)2
∫ t

0 rs ds. By law of
large numbers, i.e. Theorem 1, we have

1

t

[
b2

(b − aβ)2 Nt + 4σ 2b2

a2(b − aβ)2

∫ t

0
rs ds

]

→ b2

(b − aβ)2

b(aα + βc)

b − aβ
+ 4σ 2b2

a2(b − aβ)2

bc + aα

b − aβ
as t → ∞.
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Hence, by the usual central limit theorem for martingales, we conclude that

Nt − b(α + βc)t/(b − aβ)√
t

→ N

(
0,

b3a2(α + βc) + 4σ 2b2(bc + aα)

a2(b − aβ)3

)

in distribution as t → ∞.

Proof of Theorem 3. (i) Let u(θ, t, r) := E[exp[θ ∫ t

0 rs ds]]. Then, by the Feynman–Kac
formula, we have

∂u

∂t
= bc

∂u

∂r
− br

∂u

∂r
+ 1

2
σ 2r

∂2u

∂r2 + (α + βr)[u(θ, t, r + a) − u(θ, t, r)] + θru = 0,

u(θ, 0, r) = 1.

Let us try u(θ, t, r) = eA(t)r+B(t). Then A(t) and B(t) satisfy the ordinary differential equations

A′(t) = −bA(t) + 1
2σ 2A(t)2 + β(eaA(t) − 1) + θ,

B ′(t) = bcA(t) + α(eaA(t) − 1),

A(0) = B(0) = 0.

It is easy to see that limt→∞ A(t) = y, where y satisfies

−by + 1
2σ 2y2 + β(eay − 1) + θ = 0 (7)

if the equation has a solution, and limt→∞ A(t) = +∞ otherwise.
We claim that y(θ) is the smaller solution of (7) for θ ≤ θc, where

θc = max
y∈R+

{
by − 1

2σ 2y2 − β(eay − 1)
} = byc − 1

2σ 2y2
c − β(eayc − 1), (8)

where yc is the unique positive solution to the equation b = σ 2yc + βaeayc . This equation has
a unique positive solution since b > aβ.

Let us give more explanations here. The function F(y) := −by + 1
2σ 2y2 + β(eay − 1)+ θ

is convex, and F(y) = 0 has two distinct solutions when θ < θc and a unique positive solution
when θ = θc. When θ < 0, y(θ) is the unique negative solution of F(y) = 0 and, when
0 ≤ θ ≤ θc, y(θ) is the smaller nonnegative solution of F(y) = 0. Hence, we have

�(θ) := lim
t→∞

1

t
log u(θ, t, r) =

{
bcy(θ) + α(eay(θ) − 1) if θ ≤ θc,

+∞ otherwise.

Since b > aβ, for positive and sufficiently small y in (8), we have by − 1
2σ 2y2 −β(eay −1) ∼

by − βay > 0 and, thus, θc > 0. Also, �(θ) is differentiable for θ < θc, and differentiating
(7) with respect to θ we obtain

∂y

∂θ
= 1

b − σ 2y − βaeay
→ +∞

as θ ↑ θc, since y ↑ yc as θ ↑ θc. Therefore, we have the essential smoothness and, by
the Gärtner-Ellis theorem (for the definition of essential smoothness and a statement of the
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Gärtner-Ellis theorem, we refer the reader to [7]), ((1/t)
∫ t

0 rs ds ∈ ·) satisfies a large deviation
principle with rate function

I (x) = sup
θ∈R

{θx − bcy(θ) − α(eay(θ) − 1)}.

(ii) For a pair (rt , Nt ), the generator is given by

Af (r, n) = bc
∂f

∂r
− br

∂f

∂r
+ 1

2
σ 2r

∂2f

∂r2 + (α + βr)[f (r + a, n + 1) − f (r, n)].

Let u(t, r) := u(θ, t, r) := E[eθNt | r0 = r]. Consider f (t, rt , Nt ) = E[eθNT | rt , Nt ],
with f (t, rt , Nt )t≤T a martingale only if ∂f /∂t + Af = 0 and f (T , rT , NT ) = eθNT . Let
f (t, r, n) = u(t, r)eθn, and using t → T − t to change the backward equation to the forward
equation, we have

∂u

∂t
= bc

∂u

∂r
− br

∂u

∂r
+ 1

2
σ 2r

∂2u

∂r2 + (α + βr)[u(t, r + a)eθ − u(t, r)], u(0, r) ≡ 1.

Now, trying u(θ, t, r) = eA(t)r+B(t), we obtain

A′(t) = −bA(t) + 1
2σ 2A2(t) + β(eaA(t)+θ − 1),

B ′(t) = bcA(t) + α(eaA(t)+θ − 1),

A(0) = B(0) = 0.

Hence, we have limt→∞ A(t) = y(θ), where y(θ) satisfies

−by(θ) + 1
2σ 2y2(θ) + β(eay(θ)+θ − 1) = 0 (9)

if the equation has a solution, and limt→∞ A(t) = +∞ otherwise. Similar to the arguments
in (i), y(θ) is the smaller solution of (9) when θ ≤ θc and +∞ otherwise. We determine θc as
follows. We can rewrite (9) as

eθ =
(

by − 1

2
σ 2y2 + β

)
1

β
e−ay.

Let

θc = log max
y∈R+

{(
by − 1

2
σ 2y2 + β

)
1

β
e−ay

}

= log

{(
byc − 1

2
σ 2y2

c + β

)
1

β
e−ayc

}

= log

(
b − σ 2yc

aβ

)
− ayc

= log

(√
σ 4 + a2b2 + 2a2σ 2β − σ 2

a2β

)
− σ 2 + ab − √

σ 4 + a2b2 + 2a2σ 2β

σ 2 , (10)

where

yc = (σ 2 + ab − √
(σ 2 + ab)2 − 2aσ 2(b − aβ))

aσ 2 .
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Hence, we have

�(θ) := lim
t→∞

1

t
log u(θ, t, r) =

{
bcy(θ) + α(eay(θ)+θ − 1) if θ ≤ θc,

+∞ otherwise.

Since b > βa, for positive and sufficiently small y in (10), we have

(
by − 1

2
σ 2y2 + β

)
1

β
e−ay ∼

(
b

β
y + 1

)
(1 − ay) ∼ 1 +

(
b

β
− 1

)
y > 1

and, thus, θc > 0. Also, �(θ) is differentiable for θ < θc, and differentiating (9) with respect
to θ we obtain

∂y

∂θ
= βeay+θ

b − σ 2y − βaeay+θ
→ +∞

as θ ↑ θc since y ↑ yc as θ ↑ θc. By (10), we have eθc = (b − σ 2yc)e−ayc/aβ. Therefore,
we have the essential smoothness and by the Gärtner-Ellis theorem, (Nt/t ∈ ·) satisfies a large
deviation principle with rate function

I (x) = sup
θ∈R

{θx − bcy(θ) − α(eay(θ)+θ − 1)}.

Proof of Proposition 2. The lecture notes [11] by Hairer give the criterion for the existence
and uniqueness of the invariant probability measure for Markov processes. Suppose that we
have a jump diffusion process with generator A. If we can find a u such that u ≥ 0 and
Au ≤ C1 − C2u for some constants C1, C2 > 0, then there exists an invariant probability
measure. In our problem, recall that

Au(r) = bc
∂u

∂r
− br

∂u

∂r
+ 1

2
σ 2r

∂2u

∂r2 + (α + βr)[u(r + a) − u(r)].

Let us try u(r) = r, and choose 0 < C2 < b − aβ and C1 > αa + bc. Then we have

Au + C2u = bc − br + αa + βar + C2r = (bc + αa) + (βa − b + C2)r ≤ bc + αa ≤ C1.

Next, we will prove the uniqueness of the invariant probability measure. To obtain the
uniqueness of the invariant probability measure, it is sufficient to prove that, for any x, y > 0,
there exists some T > 0 such that P x(T , ·) and P y(T , ·) are not mutually singular. Here
P x(T , ·) = P(rx

T ∈ ·), where rx
T is rT starting at r0 = x. For any x, y > 0, conditional on

the event that rx
t and r

y
t have no jumps during the time interval (0, T ), which has a positive

probability, the laws of P x(T , ·) and P y(T , ·) are absolutely continuous with respect to the
Lebesgue measure on R

+, which implies that P x(T , ·) and P y(T , ·) are not mutually singular.

Proof of Proposition 3. By the Kolmogorov equation, u(t, r) = E[e−θrt | r0 = r] satisfies

∂u

∂t
= bc

∂u

∂r
− br

∂u

∂r
+ 1

2
σ 2r

∂2u

∂r2 + (α + βr)[u(t, r + a) − u(t, r)], u(0, r) = e−θr .

Now, trying u(t, r) = eA(t)r+B(t), we obtain the desired results.
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Proof of Proposition 4. (i) By the Feynman–Kac formula, P(t, T , r) satisfies the integro-
partial differential equation

∂P

∂t
+ bc

∂P

∂r
− br

∂P

∂r
+ 1

2
σ 2r

∂2P

∂r2 + (α + βr)[P(t, T , r + a) − P(t, T , r)] − rP (t, T , r)

= 0,

P (T , T , r) = 1.

Let us try P(t, T , r) = eA(t)r+B(t). We obtain

A′(t) − bA(t) + 1
2σ 2A(t)2 + β(eaA(t) − 1) − 1 = 0,

B ′(t) + bcA(t) + α(eaA(t) − 1) = 0,

A(T ) = B(T ) = 0.

(ii) By using the same arguments as in the proof of Theorem 3, we obtain the asymptotic
result

lim
T →∞

1

T
log P(t, T , r) = bcx∗ + α(eax∗ − 1),

where x∗ is the unique negative solution of

−bx + 1
2σ 2x2 + β(eax − 1) − 1 = 0.
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