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LIMIT THEOREMS FOR A GENERALIZED
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Abstract

In this paper we study limit theorems for the Feller game which is constructed from one-
dimensional simple symmetric random walks, and corresponds to the St. Petersburg game.
Motivated by a generalization of the St. Petersburg game which was investigated by Gut
(2010), we generalize the Feller game by introducing the parameter α. We investigate
limit distributions of the generalized Feller game corresponding to the results of Gut.
Firstly, we give the weak law of large numbers for α = 1. Moreover, for 0 < α ≤ 1,
we have convergence in distribution to a stable law with index α. Finally, some limit
theorems for a polynomial size and a geometric size deviation are given.
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1. Introduction

1.1. The Feller game and the St. Petersburg game

Feller wrote the following coin tossing procedure in his textbook [5, Section X.2, p. 231].

For n ∈ N := {1, 2, 3, . . .}, suppose that n coins are tossed one by one. For i = 1, 2, . . . , n,
consider the waiting time for the ith coin up to the first equalization of the accumulated
numbers of heads and tails.

We assume that if the waiting time is i = 2k then the player receives 2k yen for k ∈ N. Then,
the coin tossing game is regarded as a game of chance which corresponds to the St. Petersburg
game. So, we will call it the Feller game. Indeed, in the St. Petersburg game a fair coin is
tossed repeatedly until the first head appears. If this happens at the kth trial then the player
receives 2k yen (see [5, Section X.4, p. 235]).

By the definition of the Feller game, it is formulated as the sum of independent and identically
distributed (i.i.d.) random variables which are distributed according to the law of the return
times of one-dimensional simple symmetric random walks from the origin. Since the setting
is natural, the Feller game is described in some standard textbooks of probability theory (see
[15, Chapter 4, Theorem 4.8.3], [2, Section 9.12, Theorem 9.40], [4, Example 3.7.2], and [17,
Example 1.0.1, p. 25]). For the St. Petersburg game, a natural fair price to participate would be
the expected value, which is infinite, as in the Feller game. Let {Xi} be i.i.d. random variables
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which denote the waiting times of the ith coin in the Feller game. The common distribution of
{Xi} is

P(X = 2k) = 1

2k − 1

(
2k

k

)
2−2k for k = 1, 2, . . . (1)

from a general theory of random walks (see, e.g. [6, Exercises 3.10.1, p. 83]). Similarly, let
{Yi} be i.i.d. random variables which denote the waiting times in the St. Petersburg game. By
definition, the common distribution of {Yi} is

P(Y = 2k) = 2−k for k = 1, 2, . . . . (2)

For (1) and (2), we have EX = EY = ∞, so these two games have a similar property in that
they are of infinite expectation. The fact that EY = ∞ is trivial. The fact that EX = ∞ follows
from the null recurrence property of simple symmetric random walks (see [14, Example 1.7.8]).
The direct proof of EX = ∞ will be given in Lemma 2.

The St. Petersburg and Feller games have different properties. One difference between the
two games concerns the regular variation at ∞ of the tail probability. For the St. Petersburg
game, the tail probability P(Y > y) for y > 1 of (2) satisfies

P(Y > y) =
∑
2k>y

2−k =
∞∑

k=�log2 y�+1

2−k = 2−�log2 y� = y−12{log2 y}, (3)

where, for x ∈ R
+ := (0, +∞), the notation �x� denotes the integer part of x, and the notation

{x} denotes the fractional part of x. Note that 1 ≤ 2{log2 y} < 2, which is the coefficient of y−1

in (3), fluctuates depending on y. Thus, (3) is not regularly varying at ∞ (see Definition 1), a
fact that was also noted in [3, p. 373]. So, (3) is intractable because we cannot apply standard
convergence theorems concerning both stable distributions and extreme distributions (see, e.g.
[4, Theorem 3.7.2] and [8, Theorem 9.6.3 (a)]). Therefore, the proof of Theorem 2.1(ii) and
(iii) of [9] should be reexamined. For the Feller game, the tail probability P(X > x) for x ∈ R

+
of (1) is regularly varying at ∞ (see Lemma 2). Hence, we can easily apply standard theorems
to the Feller game.

1.2. Known results

1.2.1. The law of large numbers. To the authors’ knowledge, the law of large numbers has
not been established for the Feller game. On the other hand, the weak law of large numbers
was established for the St. Petersburg game by Feller [5, Section X.4, Equation (4.1)]. Let
Tn := ∑n

i=1 Yi be the total gain for n coins, where {Yi} is a sequence of i.i.d. random variables
with common distribution (2). Feller showed that

Tn

n log2 n

P−→ 1 as n → ∞, (4)

where ‘
P−→’ denotes convergence in probability. In other words, Tn is relatively stable with the

normalizing constant n log2 n (see [3, Section 8.8] and [11]). Moreover, Adler [1, Example 4]
showed the following results concerning almost-sure convergence:

lim inf
n→∞

Tn

n log2 n
= 1 almost surely, lim sup

n→∞
Tn

n log2 n
= ∞ almost surely. (5)
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1.2.2. The limit distributions. For the Feller game, let {Xi} be a sequence of i.i.d. random
variables with distribution (1), and let Sn := ∑n

i=1 Xi . Then, the following limit distribution
is known.

Theorem 1. ([5, Theorem 2, Equation (6.8), p. 83].) We have

lim
n→∞ P

(
Sn

n2 < x

)
=

√
2

π

∫ ∞

1/
√

x

e−s2/2 ds = 2

{
1 − N

(
1√
x

)}
for x > 0, (6)

where N (α) := ∫ α

−∞ e−x2/2/
√

2π dx.

A direct proof of Theorem 1 was given in [5, Theorem 2, Equation (6.8), p. 83]). See
also [2, Section 9.12, Theorem 9.40], [4, Example 3.7.2], [15, Chapter 4, Theorem 4.8.3],
and [17, Example 1.0.1]. Moreover, the density function of the limit distribution (6) is
e−1/(2x)/(

√
2πx3/2) for x > 0, which is the one-sided stable Lévy distribution of index 1

2
(see [13, p. 5]).

For the St. Petersburg game, a limit distribution along the subsequence 2n was given by
Martin-Löf [12].

Theorem 2. ([12, Theorem 1].) For the random variable Tn in the St. Petersburg game and
N := 2n, we have

TN − N log2 N

N
= TN

N
− n

d−→ Z as n → ∞,

where ‘
d−→’denotes convergence in distribution and Z is defined via the characteristic function

log E(eiuZ) =
0∑

k=−∞
(exp{iu2k} − 1 − iu2k)2−k +

∞∑
k=1

(exp{iu2k} − 1)2−k.

Note that log(·) denotes the natural logarithm throughout the paper. The distribution of
Z is infinitely divisible. Moreover, the Lévy measure has 2−k atoms at the points 2k for
k = 0, ±1, ±2, . . .. This distribution is not stable but semistable in the sense of Paul Lévy (see
[12, Theorem 2]).

1.3. A generalization of the Feller game

Motivated by [9], in this paper we consider a generalization of the probability distribution
(1) by introducing the parameter α > 0:

P(X(α) = (2k)1/(2α)) = 1

2k − 1

(
2k

k

)
2−2k for k = 1, 2, . . . . (7)

Actually, the amount concerning the Feller game is adjusted by α. We call it a generalized
Feller game. Note that if α = 1

2 , the probability distribution (7) is equivalent to (1). Let {X(α)
i }

be a sequence of i.i.d. random variables with distribution (7). Define the random variables

S(α)
n :=

n∑
k=1

X
(α)
k and M(α)

n := max
1≤k≤n

X
(α)
k ,

which respectively denote the total gain for n coins and the maximal gain for n coins. We will
study some statistical properties of both S

(α)
n and M

(α)
n .
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We focus on the case 0 < α ≤ 1. If α > 1 then EX(α) < +∞ holds (see (19) below). Then
we can obtain the strong law of large numbers, but the essential property of the Feller game,
EX(α) = +∞, is lost.

The main goal of this paper is to give the corresponding results of [9, Theorems 2.1, 6.1,
and 6.2] with respect to the generalized Feller game for 0 < α ≤ 1. In Theorem 3(i), S

(1)
n

is relatively stable, as well as Tn in (4), namely, S
(1)
n /(

√
2/πn log n)

P−→ 1 as n → ∞ via the
Gut–Kolmogorov–Feller theorem (see [7, Theorem 1.3] or [8, Theorem 6.4.2]). However, if
0 < α < 1 then S

(α)
n is not relatively stable. Namely, the weak law of large numbers with any

suitable constant does not hold, which is easily proved using [11, Theorem 1]. In Proposition 1
we show that the strong law of large numbers with respect to S

(1)
n does not hold. It corresponds

to (5). In Theorem 3(ii) we show that an appropriately normalized S
(α)
n converges in distribution

to a stable law with index α for 0 < α ≤ 1. Comparing Theorem 2 and Theorem 3(ii) for
α = 1, we confirm that the Feller game and the St. Petersburg game have different properties.
In Theorem 3(iii) we show that M

(α)
n converges in distribution to the Fréchet distribution (see,

e.g. [8, p. 452]) for 0 < α ≤ 1. Finally, referring to results in [10] and [16], we give results for
a polynomial size and a geometric size deviation of S

(α)
n and M

(α)
n in Section 5. The arguments

are the same as those in [9, Theorems 6.1 and 6.2].

2. Main results

To state our main theorem, we need the sign function

sgn(t) :=

⎧⎪⎨
⎪⎩

−1, t < 0,

0, t = 0,

1, t > 0.

Theorem 3. (i) The weak law of large numbers:

• if 0 < α < 1 then S
(α)
n is not relatively stable, namely, there are no sequences {an} that

satisfy
S

(α)
n

an

P−→ 1 as n → ∞, (8)

• if α = 1 then S
(1)
n is relatively stable with normalizing constant

√
2/πn log n, namely,

we have
S

(1)
n√

2/πn log n

P−→ 1 as n → ∞. (9)

(ii) The stable laws:

• if 0 < α < 1 then we have(
π

2

)1/(2α)
S

(α)
n

n1/α

d−→ Z(α) as n → ∞, (10)

where Z(α) is the random variable whose distribution is stable with index α defined via
the characteristic function

E(eitZ(α)

) = exp

{
itc − b|t |α

(
1 + i sgn(t) tan

(
πα

2

))}
(11)

for some c ∈ R and b > 0,
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• if α = 1 then we have √
π

2

S
(1)
n

n
− log n

d−→ Z(1) as n → ∞, (12)

where Z(1) is the random variable whose distribution is stable with index 1 defined via
the characteristic function

E(eitZ(1)

) = exp

(
itc′ − b′|t |

{
1 + i sgn(t)

(
2

π

)
log |t |

})
(13)

for some c′ ∈ R and b′ > 0.

(iii) The extreme laws: if 0 < α ≤ 1 then we have(
π

2

)1/(2α)
M

(α)
n

n1/α

d−→ �α as n → ∞, (14)

where �α(x) = exp{−x−α} for x > 0 is the Fréchet distribution.

Note that 0 log 0 is interpreted as 0 in (13). The following result is analogous to (5).

Proposition 1. We have

lim sup
n→∞

S
(1)
n√

2/πn log n
= ∞ almost surely,

lim inf
n→∞

S
(1)
n√

2/πn log n
= 1 almost surely.

(15)

3. Preliminaries

For 0 < α ≤ 1, we investigate the tail probability of X(α). By the Stirling formula (see [5,
Equation (9.8)]) we have

P(X(α) = 2k) = 1

2
√

π
k−3/2(1 + O(k−1)), (16)

where ak = O(bk) denotes lim supk→∞ ak/bk < ∞.
To approximate the sums of positive terms by integration, we state without proof the

following elementary lemma.

Lemma 1. Let f : R
+ → R

+ be a continuous function. Then the following statements
hold.

(i) If f is monotone increasing or monotone decreasing then, for s > 1,∣∣∣∣ ∑
1≤k≤�s�

f (k) −
∫ �s�+1

1
f (t) dt

∣∣∣∣ ≤ |f (1) − f (�s� + 1)|. (17)

(ii) If f is monotone decreasing and
∑∞

k=1 f (k) < +∞, then, for s > 0,∫ ∞

s+1
f (t) dt ≤

∑
k>s

f (k) ≤
∫ ∞

s

f (t) dt + f (s). (18)
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Using Lemma 1 and (16), we examine the statistical properties of X(α).

Lemma 2. For X(α) defined by (7), we have

EX(α)

{
< ∞ for α > 1,

= ∞ for 0 < α ≤ 1,
E((X(α))β)

{
< ∞ for 0 < β < α ≤ 1,

= ∞ for β ≥ α.
(19)

Moreover, as x → ∞, we have

P(X(α) > x) ∼
√

2

π
x−α for α > 0, (20)

EX(α)1{X(α) ≤ x} ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2

π
log x for α = 1,

α

1 − α

√
2

π
x1−α for 0 < α < 1,

(21)

E(X(α))21{X(α) ≤ x} ∼ α

2 − α

√
2

π
x2−α for 0 < α ≤ 1,

where f (x) ∼ g(x) denotes

lim
x→∞

f (x)

g(x)
= 1. (22)

Proof. For α > 0 and β > 0, (16) yields

E((X(α))β) =
∞∑

k=1

(2k)β/(2α) 1

2
√

π
k−3/2(1 + O(k−1)) = C

∞∑
k=1

kβ/(2α)−3/2(1 + O(k−1)),

where C > 0 is some constant. Since

∞∑
k=1

kγ

{
< ∞ for γ < −1,

= ∞ for γ ≥ −1,

we have (19). Next, for sufficiently large x ∈ R
+, using (16), we see that

P(X(α) > x) =
∑

k>x2α/2

1

2
√

π
k−3/2(1 + O(k−1)) ∼

√
2

π
x−α. (23)

We check the ‘∼’ of (23). Equation (18) implies that

2
√

2x−α

(
1 + 2

x2α

)−1/2

=
∫ ∞

x2α/2+1
t−3/2 dt

≤
∑

k>x2α/2

k−3/2

≤
∫ ∞

x2α/2
t−3/2 dt +

(
x2α

2

)−3/2

= 2
√

2(x−α + x−3α).
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By the definition of ‘∼’ (see (22)), we have
∑

k>x2α/2 k−3/2 ∼ 2
√

2x−α. This implies (23).
Moreover, for sufficiently large x ∈ R

+, using (16), we also obtain

EX(α)1{X(α) ≤ x} = 21/(2α)−1

√
π

�x2α/2�∑
k=1

k1/(2α)−3/2(1 + O(k−1)).

If α = 1 then we have

EX(1)1{X(1) ≤ x} = 1√
2π

∫ �x2/2�

1

1

t
dt + O(1) ∼

√
2

π
log x.

If 0 < α < 1 then we see that

EX(α)1{X(α) ≤ x} ∼ 21/(2α)−1

√
π

∫ �x2α/2�

1
t1/(2α)−3/2 dt ∼ α

1 − α

√
2

π
x1−α. (24)

We check the first ‘∼’ of (24). From (17) we obtain

∣∣∣∣
�x2α/2�∑

k=1

k1/(2α)−3/2 −
∫ �x2α/2�

1
t1/(2α)−3/2 dt

∣∣∣∣ ≤
∣∣∣∣1 −

(⌊
x2α

2

⌋
+ 1

)(1−3α)/(2α)∣∣∣∣. (25)

The integral part of (25) is

∫ �x2α/2�

1
t1/(2α)−3/2 dt = 2α

1 − α

⌊
x2α

2

⌋(1−α)/(2α)

− 2α

1 − α
. (26)

Hence, dividing both sides of (25) by (26), and letting x → ∞, we obtain the first ‘∼’ of (24).
The second ‘∼’ of (24) is also given by (26).

By the same arguments, we have, for all 0 < α ≤ 1,

E(X(α))21{X(α) ≤ x} =
�x2α/2�∑

k=1

(2k)1/α 1

2
√

π
k−3/2(1 + O(k−1))

∼ 21/α−1

√
π

∫ �x2α/2�

1
t1/α−3/2 dt

∼ α

2 − α

√
2

π
x2−α.

This completes the proof.

We also need the concepts of regularly varying and slowly varying functions.

Definition 1. Let a∗ ∈ R
+. A positive function u on [a∗, ∞) varies regularly at ∞ with

exponent ρ (−∞ < ρ < ∞), denoted by u ∈ RV(ρ), if

lim
t→∞

u(tx)

u(t)
= xρ for all x ∈ R

+.

If ρ = 0 then the function is slowly varying at ∞, denoted by u ∈ SV.

For details of regularly and slowly varying functions, we refer the reader to [3] and [8,
Section A.7].
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4. Proofs of Theorem 3 and Proposition 1

Proof of Theorem 3. (i) Suppose that α = 1. Then, from (20) we see that

lim
n→∞ nP(X(1) > n log n) = lim

n→∞

√
2

π
n

(√
2

π
n log n

)−1

= 0.

In the Gut–Kolmogorov–Feller theorem (see [7, Theorem 1.3]), we choose

b(x) =
√

2

π
x log x.

Indeed, by Definition 1 we have b(x) ∈ RV(1). Therefore, since we can apply the Gut–
Kolmogorov–Feller theorem to this case, it follows that

S
(1)
n − nEX(1)1{X(1) ≤ √

2/πn log n}√
2/πn log n

P−→ 0 as n → ∞. (27)

By (21) we have

lim
n→∞

nEX(1)1{X(1) ≤ √
2/πn log n}√

2/πn log n
= 1.

Using this and (27) we obtain (9).
Next, suppose that 0 < α < 1. Note that P(|X(α)| > x) = P(X(α) > x) > 0 for every

x > 0. Moreover, by (20) and (21), we have

lim
x→∞

xP(|X(α)| > x)

EX(α)1{|X(α)| ≤ x} = lim
x→∞

xP(X(α) > x)

EX(α)1{X(α) ≤ x} = 1 − α

α
�= 0.

Hence, [11, Theorem 1] yields (8).
(ii) For 0 < α ≤ 1, we confirm the assumptions of [4, Theorem 3.7.2] with respect to X(α).

Namely, we check the following two conditions.

(a) θ := limx→∞ P(X(α) > x)/P(|X(α)| > x) = 1 ∈ [0, 1],
(b) P(|X(α)| > x) = P(X(α) > x) = x−αL(x) for α < 2 and L ∈ SV.

Condition (a) follows from P(X(α) > 0) = 1. By (20) and (22), there exists δ(x) satisfying
P(X(α) > x) = √

2/πx−α(1 + δ(x)) and limx→∞ δ(x) = 0. If we put L(x) = √
2/π(1 +

δ(x)) then, owing to Definition 1, L ∈ SV. Therefore, condition (b) also follows. Hence, we
can apply [4, Theorem 3.7.2] to X(α) for all 0 < α ≤ 1. Indeed, for two sequences {an} and
{bn}, defined by

an := inf{x : P(|X(α)| > x) ≤ n−1}, bn := nEX(α)1{|X(α)| ≤ an}, (28)

we have (S
(α)
n − bn)/an

d−→ Z(α) as n → ∞, where the distribution of Z(α) is nondegenerate.
We explicitly determine {an} and {bn} for 0 < α ≤ 1. By (20) and (28), solving

√
2/πx−α ≤

1/n we obtain, for 0 < α ≤ 1,

an =
(

2

π

)1/(2α)

n1/α =
(√

2

π
n

)1/α

.
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On the other hand, (21) and (28) imply that

bn = n
α

1 − α

√
2

π

{(√
2

π
n

)1/α}1−α

= α

1 − α

(√
2

π
n

)1/α

for 0 < α < 1.

Hence, we obtain (10). If α = 1 then we have bn = n
√

2/π log(
√

2/πn) by (21) and (28).
This implies (12).

The characteristic function of Z(α) is given by [4, Equation (3.7.11)] with κ = 2θ − 1 = 1.
Hence, if 0 < α < 1, we obtain (11) and if α = 1, we obtain (13).

(iii) For 0 < α ≤ 1, (20) implies P(X(α) > x) ∈ RV(−α). Hence, applying [8, Theo-
rem 9.6.3 (a)] yields (14).

Proof of Proposition 1. To show (15), we quote [1, Theorem 2 and Example 4]. In the
notation of [1, Theorem 2], α = 0, µ(x) ∼ log x, and cn = (1 + o(1))

√
2/πn log n, where

en = o(dn) denotes limn→∞ en/dn = 0. Since all the hypotheses of [1, Theorem 2] hold, we
have (15).

5. Polynomial size and geometric size deviations

For a polynomial size deviation, we have the following result.

Theorem 4. ([9, Theorem 6.1].) For 0 < α ≤ 1, consider b ∈ R
+ satisfying b > 1/α. Then

we have

lim
n→∞

log P(S
(α)
n > nb)

log n
= 1 − αb, lim

n→∞
log P(M

(α)
n > nb)

log n
= 1 − αb.

Proof. See [9, Proof of Theorem 6.1].

For a geometric size deviation, we have the following result.

Theorem 5. ([9, Theorem 6.2].) For all 0 < α ≤ 1, ε > 0, and b > 1, we have

lim
n→∞

log P(X(α) > εbn/α)

log(εbn/α)
= −α, (29)

lim
n→∞

log P(M
(α)
n > εbn/α)

n
= − log b. (30)

Moreover, if b > 1/α then we have

lim
n→∞

log P(S
(α)
n > εbn/α)

n
= −log b. (31)

Proof. The proof follows the same arguments as those given in the proof of [9, Theorem 6.2];
however, as that proof contains some trivial errors, we provide a short proof here. Equation
(29) follows from (20). By [8, Equation (6.2.1)] we have

1
2nP(X(α) > εbn/α) ≤ P(M(α)

n > εbn/α) ≤ nP(X(α) > εbn/α).

By (29) we have

lim
n→∞

log P(X(α) > εbn/α)

n
= −α lim

n→∞
log(εbn/α)

n
= − log b,

completing the proof of (30).
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Finally, we check (31). Since S
(α)
n ≥ M

(α)
n , we have lim infn→∞ n−1 log P(S

(α)
n > εbn/α) ≥

−log b, because of (30). By (19), for 0 < 1/b < α ≤ 1, we have E((X(α))1/b) < ∞. Therefore,
we can apply [10, Lemma 3.2], namely,

P(S(α)
n > tb) ≤ nP

(
X(α) >

(
t

s

)b)
+ es{E((X(α))1/b)}sb

(
n

t

)sb

for all s > 0 and t > 0.

Putting t = (εbn/α)1/b and s = b1/b, we have

P(S(α)
n > εbn/α) ≤ (1 + o(1))

√
2

π
bα−nn + es

ε
{E((X(α))1/b)}bnbb−n/α

for sufficiently large n. By the same arguments as those in [16, p. 565] we have

lim sup
n→∞

n−1 log P(S(α)
n > εbn/α) ≤ − log b.

Hence, we obtain the desired results.
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