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Abstract. We study the following random walks system on the complete graph
with n vertices. At time zero, there is a number of active and inactive particles
living on the vertices. Active particles move as continuous-time, rate 1, random
walks on the graph, and, any time a vertex with an inactive particle on it is visited,
this particle turns into active and starts an independent random walk. However,
for a fixed integer L ≥ 1, each active particle dies at the instant it reaches a total
of L jumps without activating any particle. We prove a Law of Large Numbers and
a Central Limit Theorem for the proportion of visited vertices at the end of the
process.

1. Description of the model

We study a continuous-time random walks system formulated as a model for
information spreading through a network. The dynamics of this model is described
as follows. For n ≥ 3, let Kn be the complete graph with n vertices and L ≥ 1
be a fixed integer. At time zero, there is one particle at each vertex of Kn; one
of them is active, the others are inactive. The active particle begins to move as a
continuous-time, rate 1, random walk on Kn; and, as soon as any active particle
visits an inactive one, the latter becomes active and starts an independent random
walk. However each active particle dies at the instant it reaches a total of L jumps
(consecutive or not) without activating any particle. We may think that each active
particle starts with L lives and looses one life whenever it jumps on a vertex which
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has been already visited by the process. Observe that the process eventually finishes
(when there are no active particles). Other initial configurations are considered in
the sequel.

For a realization of this model on Kn, let V (n)(t) be the number of visited vertices
at time t, and A

(n)
i (t) be the number of active particles with i lives at time t

(i = 1, . . . , L). Notice that {(V (n)(t), A(n)
1 (t), . . . , A(n)

L (t))}t≥0 is a continuous-time
Markov chain in ZL+1 with transitions and rates given by

transition rate

u0 = (1, 0, . . . , 0, 1)
(

n− V

n− 1

) L∑
i=1

Ai

u1 = (0,−1, 0, . . . , 0)
(

V − 1
n− 1

)
A1

uj = (0, . . . , 0,
j

1,
j+1

−1, 0, . . . , 0)
(

V − 1
n− 1

)
Aj j = 2, . . . , L.

In words, u0 indicates the transition of the process in which an inactive particle
is activated, u1 represents the death of an active particle with one life, and, for
j = 2, . . . , L, uj indicates the event that an active particle with j lives looses one
life.

Let us define a more general initial configuration. We suppose that there exist
ρ
(n)
0 ∈ [1/n, 1] and ρ

(n)
i ≥ 0, i = 1, . . . , L, such that

∑L
i=1 ρ

(n)
i > 0 and nρ

(n)
i is an

integer for every i = 0, . . . , L. The process begins with

V (n)(0) = nρ
(n)
0 and A

(n)
i (0) = nρ

(n)
i , i = 1, . . . , L.

As already mentioned, this process eventually ends. Let

γ(n) = inf

{
t :

L∑
i=1

A
(n)
i (t) = 0

}
be the absorption time of the process running on Kn. Our main purpose is to estab-
lish limit theorems for the coverage of Kn, that is, for the proportion n−1 V (n)(γ(n))
of visited vertices at the end of the process. Throughout the paper, we assume that

ρi = lim
n→∞

ρ
(n)
i exists for every i = 0, . . . , L, (1.1)

and define

ρ =
L∑

i=1

i ρi

the limiting proportion of lives at time zero. Note that ρ0 = ρ = 0 for the one-
particle-per-vertex initial configuration.

Seen as a random walks system, the model under study is a variant of the so-
called frog model. In the discrete-time setup (simultaneous jumps), this model
is often considered on an infinite connected graph, and the lifetime of an active
particle is either infinite or a random variable which is independent of the trajec-
tory. The main subjects are shape theorems on Zd and phase transition on Zd

and homogeneous trees. See Alves et al. (2002a,b), Lebensztayn et al. (2005) and
references therein. As far as we know, only Alves et al. (2006) deals with this model
on complete graphs. The authors study a critical parameter related to the coverage
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in the case of geometrically distributed lifetimes, and present a couple of results
obtained from computational analysis, simulations and mean field approximation in
the case L = 1. The present work was motivated by the results and open problems
presented there, and provides rigorous and explicit answers for the continuous-time
model in a more general setup. Regarding other continuous-time versions, we refer
to Ramı́rez and Sidoravicius (2004) and Kesten and Sidoravicius (2005) for shape
theorems on Zd.

The studied model can be thought as a model for the evolution of a disease in
a population or the spreading of a virus in a computer network. To understand
this interpretation, first consider the case L = 1 and think the active particles as
diffusion agents (viruses) which move along the vertices (individuals/computers).
During its life, at the time points of a homogeneous Poisson process with intensity 1,
a virus chooses at random a new position in the graph. If the contacted individual
is still susceptible, then it catches the disease and the virus duplicates. Once that
happens, this individual is regarded as immunized, that is, it activates an anti-virus
which will kill any virus that tries to infect it in the future. In the general case, the
parameter L is interpreted as the initial resistance of the virus, which weakens each
time the contacted individual is already immunized. The main problem we study
in this paper refers to the distribution of the proportion of the population which is
visited by the disease after all the viruses are dead.

Let us underline that in our model the infection is spread by the random walks,
while the individuals are represented by the vertices of the graph. Nevertheless, in
terms of rates, the case L = 1 has a certain similarity to the model known as general
stochastic epidemic (Markovian SIR), which was originated with Bartlett (1949).
Recalling this model, we denote by X(t) and Y (t) the number of susceptible and
infective individuals, respectively, at time t. Then, (X, Y ) is a Markov process with
the following transition table:

from to at rate
(i, j) (i− 1, j + 1) λij/n

(i, j − 1) γj.

Here, n is the initial number of susceptibles in the population, λ is the rate at which
a given infective makes contact with other individuals, and γ is the parameter of
the exponential lifetimes of the infective individuals. The most important result in
this context is known as the Threshold Theorem, which in brief identifies the ratio
λ/γ as a threshold quantity to determine whether the epidemic builds up or not for
n large. There are also limit theorems concerning the asymptotic distribution of
the number of susceptible individuals that ultimately become infected. We observe
that the principal difficulty in studying our model is that the classical coupling
techniques cannot be applied, by virtue of the dependence between the progeny
and the lifetime of the active particles. For more details on epidemic models,
see Andersson and Britton (2000) and the references therein.

2. Main results

First we state the Weak Law of Large Numbers for the coverage of Kn. Recall
that we are assuming (1.1) and that ρ =

∑L
i=1 i ρi.
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Definition 2.1. Consider the function f : [ρ0, 1) → R given by

f(v) = ρ + (L + 1) (v − ρ0) + log
(

1− v

1− ρ0

)
. (2.1)

We define v∞ = v∞(L, ρ0, ρ) as the unique solution of f(v) = 0 satisfying f ′(v) ≤ 0,
and

γ∞ = γ∞(L, ρ0, ρ) = ρ + (L + 1) (v∞ − ρ0).

Figure 1 illustrates the four possible cases of the graph of f depending on the
values of ρ0 and ρ. Observe that v∞ is the unique root of f , except in the case that
ρ = 0 and ρ0 < L/(L + 1). Moreover,

v∞ = inf{v ∈ [ρ0, 1) : f(v) ≤ 0}. (2.2)

fmax

L

L+1

ρ0 < L/(L + 1) and ρ > 0

ρ0

ρ

f(v)

v

v∞

1

L

L+1

ρ0 ≥ L/(L + 1) and ρ > 0

ρ0

ρ

f(v)

v

v∞

1

fmax

L

L+1

ρ0 < L/(L + 1) and ρ = 0

ρ0

f(v)

v

v∞

1

L

L+1

ρ0 ≥ L/(L + 1) and ρ = 0
f(v)

v

v∞ = ρ0

1

Figure 1: Behavior of f – The four possible cases in terms of ρ0 and ρ.

Theorem 2.2.

lim
n→∞

V (n)(γ(n))
n

= v∞ in probability.

It is worthwhile recalling that, by Skorohod’s theorem, the convergence in Theo-
rem 2.2 can be represented by versions defined on the same probability space, in
such a way that the convergence is almost sure. In Section 3, we present such a
construction, based on the theory of density dependent Markov chains.

Remark 2.3. One can express the limiting coverage v∞ as

v∞ = 1 + (L + 1)−1
W0(−(1− ρ0) (L + 1) e−(1−ρ0) (L+1)−ρ),
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where W0 is the principal branch of the so-called Lambert W function (which is the
inverse of the function x 7→ x ex). More details about this function can be found in
Corless et al. (1996).

In particular, for the one-particle-per-vertex initial configuration,

v∞ = 1 + W0(−c e−c)/c, (2.3)

where c = L + 1. Formulae similar to (2.3) appear in the study of the final size
of epidemic models and the relative size of the giant component in certain random
graphs. See respectively Andersson and Britton (2000) and Bollobás (1998, p. 241)
for more details.

Next we present the Central Limit Theorem for the coverage.

Theorem 2.4. Suppose that ρ > 0 or that ρ = 0 and ρ0 < L/(L + 1). Then,

√
n

(
V (n)(γ(n))

n
− v∞

)
D→ N(0, σ2) as n →∞,

where D→ denotes convergence in distribution, and N(0, σ2) is the Gaussian distri-
bution with mean zero and variance given by

σ2 = σ2(L, ρ0, ρ) =
(1− v∞) (v∞ − ρ0 − γ∞ (1− ρ0) (1− v∞))

(1− ρ0) ((L + 1) v∞ − L)2
. (2.4)

Observe that, for the one-particle-per-vertex initial configuration, the asymptotic
variance simplifies to

σ2 =
v∞ (1− v∞)

(L + 1) v∞ − L
.

Table 1 exhibits the approximate values of v∞, γ∞ and σ2 in this case for L =
1, . . . , 6; Table 2 does the same for L = 1, 2 and some arbitrarily chosen values of
ρ0 and ρ.

L 1 2 3 4 5 6
v∞ 0.7968 0.9405 0.9802 0.9930 0.9975 0.9991
γ∞ 1.5936 2.8214 3.9207 4.9651 5.9849 6.9936
σ2 0.2727 0.06814 0.02111 0.007179 0.002549 0.0009228

Table 1: One-particle-per-vertex initial configuration.

ρ0 = 0.05, ρ = 0.2 ρ0 = 0.45, ρ = 0.05 ρ0 = 0.7, ρ = 0.1
L = 1 L = 2 L = 1 L = 2 L = 1 L = 2

v∞ 0.8397 0.9473 0.6477 0.8353 0.7585 0.7972
γ∞ 1.7794 2.8919 0.4453 1.2060 0.2171 0.3916
σ2 0.1896 0.0589 0.8180 0.3229 0.1289 0.3234

Table 2: Values of v∞, γ∞ and σ2.

Finally, we prove
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Theorem 2.5. Let N (n) be the number of jumps that the process makes until ab-
sorption. Then,

lim
n→∞

E
(
N (n)

)
n

= γ∞.

3. Proofs

The proofs of the results rely strongly on the theory of density dependent Markov
chains, presented in Chapter 11 of Ethier and Kurtz (1986). To fit the notation,
we define for t ≥ 0,

Z(n)(t) = (V (n+1)(t)− 1, A
(n+1)
1 (t), A(n+1)

2 (t), . . . , A(n+1)
L (t)),

z(n)(t) =
Z(n)(t)

n
= (v(n)(t), a(n)

1 (t), a(n)
2 (t), . . . , a(n)

L (t)).

In addition, let

a(n)(t) =
L∑

i=1

a
(n)
i (t),

y(n)(t) =
L∑

i=1

i a
(n)
i (t), and

τ (n) = γ(n+1) = inf{t : a(n)(t) = 0}.

Notice that we are dealing with the model on Kn+1, and that a(n)(t) and y(n)(t)
are respectively the “proportions” of active particles and lives at time t. We use
the quotation marks due to the division by n.

We observe that {z(n)(t)}t≥0 is a density dependent Markov chain with

βu0(v, a1, . . . , aL) = (1− v)
L∑

i=1

ai, and

βuj (v, a1, . . . , aL) = v aj , j = 1, . . . , L.

Hence, applying Theorem 6.4.1 of Ethier and Kurtz (1986), we write

v(n)(t) =
(n + 1)ρ

(n+1)
0 − 1

n
+

1

n
Y0

„
n

Z t

0

(1− v(n)(s))a(n)(s)ds

«
,

a
(n)
i (t) =

(n + 1)ρ
(n+1)
i

n
+

1

n
Yi+1

„
n

Z t

0

v(n)(s)a
(n)
i+1(s)ds

«
− 1

n
Yi

„
n

Z t

0

v(n)(s)a
(n)
i (s)ds

«
,

i = 1, . . . , L− 1,

a
(n)
L (t) =

(n + 1)ρ
(n+1)
L

n
+

1

n
Y0

„
n

Z t

0

(1− v(n)(s))a(n)(s)ds

«
− 1

n
YL

„
n

Z t

0

v(n)(s)a
(n)
L (s)ds

«
,

where {Y0, Y1, . . . , YL} is a set of independent standard Poisson processes. Thus,
we have coupled all the processes with different values of n.

In brief, here is the main idea to prove Theorems 2.2 and 2.4. Using a ran-
dom time change, we speed up the process without affecting where it is absorbed.
That is, we define a coupled process {z̃(n)(t)}t≥0 having the same transitions as
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{z(n)(t)}t≥0, though with time at a fast pace. Then, {(ṽ(n)(t), ỹ(n)(t))}t≥0 turns
out to be a Markov chain that converges to a deterministic limit as n →∞ and for
which we can apply Theorem 11.4.1 of Ethier and Kurtz (1986).

Our task is done once we prove the following claims.

Claim 3.1. limn→∞ v(n)(τ (n)) = v∞ almost surely.

Claim 3.2. Suppose that ρ > 0 or that ρ = 0 and ρ0 < L/(L + 1). Then,
√

n
(
v(n)(τ (n))− v∞

)
D→ N(0, σ2) as n →∞,

where σ2 is given by (2.4).

Claim 3.3. limn→∞ n−1 E
(
N (n+1)

)
= γ∞.

3.1. Random time change. We define

θ(n)(t) =
∫ t

0

a(n)(s) ds, 0 ≤ t ≤ τ (n),

α(n)(s) = inf{t : θ(n)(t) > s}, 0 ≤ s ≤
∫ ∞

0

a(n)(u) du,

and let z̃(n)(t) = z(n)(α(n)(t)). Hence, this time-changed system is described by

ṽ(n)(t) =
(n + 1)ρ

(n+1)
0 − 1

n
+

1

n
Y0

„
n

Z t

0

(1− ṽ(n)(s))ds

«
,

ã
(n)
i (t) =

(n + 1)ρ
(n+1)
i

n
+

1

n
Yi+1

 
n

Z t

0

ṽ(n)(s)
ã
(n)
i+1(s)

ã(n)(s)
ds

!
− 1

n
Yi

 
n

Z t

0

ṽ(n)(s)
ã
(n)
i (s)

ã(n)(s)
ds

!
,

i = 1, . . . , L− 1,

ã
(n)
L (t) =

(n + 1)ρ
(n+1)
L

n
+

1

n
Y0

„
n

Z t

0

(1− ṽ(n)(s))ds

«
− 1

n
YL

 
n

Z t

0

ṽ(n)(s)
ã
(n)
L (s)

ã(n)(s)
ds

!
,

for t ≤
∫∞
0

a(n)(u) du.
Figure 2 shows the evolution of a(n) before and after the random time change

α(n) in a simulation with n = 10, L = 1 and initial configuration of one particle
per vertex. The next proposition discloses the effect of the random time change.
In order to prove it, one uses that α(n) (like its inverse θ(n)) is a strictly increasing,
continuous, piecewise linear function.

Proposition 3.4. The process {z̃(n)(t)} has the same transitions as {z(n)(t)}, and
the waiting times are identically distributed random variables following an exponen-
tial distribution with parameter n.

Therefore, defining
τ̃ (n) = inf{t : ã(n)(t) = 0},

we conclude that v(n)(τ (n)) = ṽ(n)(τ̃ (n)).

3.2. Dimension reduction. Although the time-changed system has a nontrivial de-
terministic limit as n → ∞ (which is defined only for t ∈ [0, γ∞]), one cannot use
Theorem 11.4.1 of Ethier and Kurtz (1986) directly in order to prove the desired
limit theorems in the case L ≥ 2. To overcome this problem, we work with a
reduced Markov chain.
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Figure 2: Evolution of a(n) and ã(n). (Simulation with n = 10, L = 1 and initial
configuration of one particle per vertex).

Let x̃(n)(t) = (ṽ(n)(t), ỹ(n)(t)), t ≥ 0. Note that {x̃(n)(t)}t≥0 is a density depen-
dent Markov chain with transitions (1, L) and (0,−1), and

β(1,L)(v, y) = 1− v, β(0,−1)(v, y) = v.

So ỹ(n)(t) can be written as

ỹ(n)(t) =

„
n + 1

n

« LX
i=1

i ρ
(n+1)
i +

L

n
Y0

„
n

Z t

0

(1− ṽ(n)(s))ds

«
− 1

n
Y ∗1

„
n

Z t

0

ṽ(n)(s)ds

«
,

where Y ∗1 is a standard Poisson process independent of Y0. In addition, notice that
τ̃ (n) = inf{t : ỹ(n)(t) = 0}.

Using Theorem 11.2.1 of Ethier and Kurtz (1986), we conclude that the limiting
deterministic system is governed by the following system of ordinary differential
equations {

v′(t) = 1− v(t),
y′(t) = L− (L + 1) v(t),

with initial conditions v(0) = ρ0 and y(0) = ρ. Summing up,

Lemma 3.5. Let x(t) = (v(t), y(t)), where

v(t) = 1− (1− ρ0) e−t,

y(t) = f(v(t)) = ρ + (L + 1) (v(t)− ρ0)− t,
(3.1)

and f is given by (2.1). We have that x̃(n)(t) converges almost surely to x(t),
uniformly on bounded time intervals.

With respect to ṽ(n)(t), we prove a little more.

Lemma 3.6. ṽ(n)(t) converges almost surely to v(t), uniformly on R.

Proof . Given any ε > 0, we take t0 = t0(ε) such that v(t) ≥ 1− ε/2 for all t ≥ t0.
By the uniform convergence on the interval [0, t0], there exists n0 = n0(ε) such that

|ṽ(n)(t)− v(t)| ≤ ε/2 for all n ≥ n0 and t ∈ [0, t0].

Therefore, for all n ≥ n0 and t ≥ t0,

ṽ(n)(t) ≥ ṽ(n)(t0) ≥ v(t0)− ε/2 ≥ 1− ε,
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whence |ṽ(n)(t)− v(t)| ≤ ε. �

3.3. Proof of Claim 3.1. First notice that v(·) in (3.1) establishes a one-to-one
correspondence between [0,∞) and [ρ0, 1). From (2.2) and (3.1), it follows that
γ∞ = inf{t : y(t) ≤ 0} and v∞ = v(γ∞). Hence, recalling that v(n)(τ (n)) =
ṽ(n)(τ̃ (n)), we obtain Claim 3.1 from Lemma 3.6 and the next result.

Lemma 3.7. limn→∞ τ̃ (n) = γ∞ almost surely.

Proof . Assuming that ρ > 0, this is exactly the first main statement of the proof of
Theorem 11.4.1 from Ethier and Kurtz (1986). Here the drift function is F (v, y) =
(1− v, L− (L + 1) v), ϕ(v, y) = y, and

∇ϕ(x(γ∞)) · F (x(γ∞)) = y′(γ∞) = L− (L + 1) v∞ < 0. (3.2)

For the sake of completeness, let us recall the original argument. The fact that
y(0) > 0 and (3.2) imply that y(γ∞ − ε) > 0 and y(γ∞ + ε) < 0 for 0 < ε < γ∞.
The convergence stated in Lemma 3.7 follows as yn converges to y almost surely
uniformly on bounded time intervals.

In the case that ρ = 0 and ρ0 < L/(L + 1), we argue that the result is also
valid because y′(0) > 0 and the fact that (3.2) still holds. Finally, we note that if
ρ = 0 and ρ0 ≥ L/(L + 1), then y(t) < 0 for all t > 0, and again the almost sure
convergence of yn to y uniformly on bounded intervals yields that limn→∞ τ̃ (n) =
0 = γ∞ almost surely. �

3.4. Proof of Claim 3.2. We keep on applying Theorem 11.4.1 from Ethier and
Kurtz (1986). For this, we adopt the notations presented there, except by the
Gaussian process V defined in p. 458, that we would rather denote by U = (Uv, Uy).
Observing that we can use the mentioned theorem in the case that ρ > 0 or that
ρ = 0 and ρ0 < L/(L + 1), we obtain that

√
n
(
ṽ(n)(τ̃ (n))− v∞

)
D→ Uv(γ∞)− 1− v∞

L− (L + 1) v∞
Uy(γ∞) as n →∞.

The resulting normal distribution clearly has mean zero, so to prove Claim 3.2
it remains to calculate the variance, an easy (though tedious) computation, whose
main steps are as follows. The matrix of partial derivatives of the drift function F
and the matrix G are

∂F (v, y) =
(

−1 0
−(L + 1) 0

)
and G(v, y) =

(
1− v L (1− v)

L (1− v) L2 (1− v) + v

)
.

Moreover, the solution Φ of the matrix equation

∂

∂t
Φ(t, s) = ∂F (v(t), y(t))Φ(t, s), Φ(s, s) = I2

is given by

Φ(t, s) =
(

e−(t−s) 0
(L + 1) (e−(t−s) − 1) 1

)
.

Hence, the covariance matrix of the Gaussian process U is

Cov(U(t), U(r)) =
∫ t∧r

0

Φ(t, s) G(v(s), y(s)) [Φ(r, s)]T ds. (3.3)
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But we need to find out Cov(U(γ∞), U(γ∞)). Using (3.3), we obtain that

Cov(U(t), U(t)) = (1− ρ0)×„
e−t(1− e−t) e−t

`
(L + 1)(1− e−t)− t

´
e−t

`
(L + 1)(1− e−t)− t

´
(L + 1)2e−t(1− e−t) + ((1− ρ0)

−1 − 2(L + 1)e−t)t

«
.

Therefore, since (1− ρ0) e−γ∞ = 1− v∞ and (1− ρ0) (1− e−γ∞) = v∞ − ρ0,

Var(Uv(γ∞)) =
(1− v∞) (v∞ − ρ0)

1− ρ0
,

Var(Uy(γ∞)) =
(L + 1)2 (1− v∞) (v∞ − ρ0)

1− ρ0
+ (1− 2 (L + 1) (1− v∞)) γ∞,

Cov(Uv(γ∞), Uy(γ∞)) =
(L + 1) (1− v∞) (v∞ − ρ0)

1− ρ0
− (1− v∞) γ∞.

Using the well-known properties of the variance and simplifying properly, we get
formula (2.4). �

3.5. Proof of Claim 3.3. Claim 3.3 is a corollary of Lemma 3.7. Let us recall that
N (n+1) is the number of transitions that x̃(n) makes until the time τ̃ (n). We can

write τ̃ (n) =
∑N(n+1)

i=1 Ri, where {Ri}i≥1 is a set of independent and identically
distributed random variables having exponential distribution with parameter n,
and N (n+1) is independent of {Ri}i≥1. By Wald’s equation,

E(τ̃ (n)) =
E(N (n+1))

n
.

Thus, in view of Lemma 3.7, the desired result is established once we show that the
sequence {τ̃ (n)} is uniformly integrable. To prove this fact, we note that N (n+1) ≤
N̄ (n+1), where

N̄ (n+1) = (n + 1)

(
(L + 1)(1− ρ

(n+1)
0 ) +

L∑
i=1

i ρ
(n+1)
i

)
.

This upper bound is achieved when ṽ(n)(τ̃ (n)) = 1 (or, equivalently, Kn+1 is fully
visited), in which case there are (n + 1)

(
L (1− ρ

(n+1)
0 ) +

∑L
i=1 i ρ

(n+1)
i

)
transi-

tions (0,−1) and (n + 1) (1− ρ
(n+1)
0 ) transitions (1, L). Consequently,

τ̃ (n) ≤ Γ(n) ∼ Gamma(N̄ (n+1), n).

Since supn E(Γ(n))2 < ∞, we have that {Γ(n)} is uniformly integrable, and so is
{τ̃ (n)}. �
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