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Introduction

We prove limit theorems for solutions of BSDEs with local time.

Those limit theorems will permit us to deduce that any solution of
that equation is the limit in a strong sense of a sequence of
semi–martingales which are solutions of ordinary BSDE.
comparison theorem for BSDE involving measures is discussed. As
an application we obtain, with the help of the connection between
BSDE and PDE, some corresponding limit theorems for a class of
singular non–linear PDE and a new probabilistic proof of the
comparison theorem for PDE.
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Introduction

BSDEs : Bismut 1976 in the linear case.

Non–linear BSDE : Pardoux and Peng in 1990.
Motivations :

BSDE and mathematical finance (El Karoui et al. 1997),

Probabilistic interpretation of PDE Pardoux-Peng,

Stochastic differential games and stochastic control :
Hamadène-Lepeltier 1995 etc

Quadratic BSDE (Imkeller, CIRM 2006)
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BSDE with local time

Consider the following particular BSDE

Yt = ξ +

∫ T

t
f (Ys)Z 2

s ds −
∫ T

t
ZsdWs . (2.1)

From the equality d 〈Y ,Y 〉t = Z 2
t dt and from occupation time

formula, we have, for any bounded measurable function f∫ t

0
f (Ys)Z 2

s ds =

∫ ∞
−∞

La
t (Y )f (a)da.

Set ν(da) = f (a)da, then (2.1) takes the form

Yt = ξ +

∫
R

(La
T (Y )− La

t (Y )) ν(da)−
∫ T

t
ZsdWs (2.2)
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BSDE with local time

The process La
t (Y ) is the local time of the continuous

semi-martingales Y and can be expressed by Tanaka’s formula as

La
t (Y ) = |Yt − a| − |Y0 − a| −

∫ t

0
sgn(Ys − a)dYs

and

sgn(x) =


1 for x > 0
0 for x = 0
−1 for x < 0.

It is proved by Dermoune et al. ’99 that there exists an adapted
couple (Y ,Z ) solution to equation (2.2) under the following
conditions :

(H1) The r.v. ξ belongs to L2(Ω,FT ,P).

(H2) The measure ν is bounded and |ν({x})| < 1, ∀ x in R.
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BSDE with local time

Our aim in this talk is

to prove some limit theorems for the class of BSDE of the
form (2.2), that are some kind of the stability properties for
BSDEs.

We show that a solution to (2.2) can be obtained as a limit of
sequence of solution to (2.1).

To prove a comparison theorem for the above singular BSDE,
As application : limit theorems in the monotone case.

We deduce limit theorems for a class of non–linear PDEs
involving the square of the gradient and a comparison
theorem is discussed for this PDEs.
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BSDE with local time

The main tool to study the BSDE (2.2) is the Zvonkin’s
transformation . Let us set

fν(x) = exp (2νc((−∞, x ]))
∏
y≤x

(
1 + ν(({y}))

1− ν(({y}))

)
where νc is the continuous part of the measure ν.
If f is of bounded variation (increasing in our case), f (x−) will
denote the left limit of f at a point x and f ′(dx) will be the
bounded measure associated with f .
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BSDE with local time

It is well known that the function (since ν is bounded) that fν(·) is
increasing, right continuous and satisfies

0 < m ≤ fν(x) ≤ M ∀ x ∈ R

for some constants m, M. Moreover fν satisfies

f ′ν(dx)− {fν(x) + fν(x−)} ν(dx) = 0.

Set

Fν(x) =

∫ x

0
fν(y)dy and gν(x) = fν(F−1

ν (x)).

The functions Fν and F−1
ν are Lipschitz functions.
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BSDE with local time

Let M2
T (R× Rd) denote the space of Ft–prog. meas. proc.

(Y ,Z ) satisfying (??)

Proposition

(Y ,Z ) ∈M2
T (R× Rd) solves (2.2) iff(
Ỹ , Z̃

)
=

(
Fν(Y ),

Z

2
{fν(Y ) + fν(Y−)}

)
solves ξ̃ = Fν(ξ) the BSDE

Ỹt = ξ̃ −
∫ T

t
Z̃sdWs , (2.3)
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BSDE with local time

Proof. The proof is based on Tanaka’s formula to Fν(Yt) with the
symmetric derivative of the convex function Fν instead of its left
derivative.

Remark

Stroock and Yor (1981), Le Gall ’84) and Rutkowski ’90 have
already used the transformation Fν to study the SDE

Xt = x +

∫ t

0
σ(Xs)dWs +

∫
R

La
t (X )ν(da).
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Theorem

Under the assumptions (H1) and (H2), there exists a unique
solution (Y ν ,Z ν) belonging to M2

T (R× Rd) for the equation
(2.2). Moreover

Y ν
t = F−1

ν (E [Fν(ξ) / Ft ]) , 0 ≤ t ≤ T .
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BSDE with local time

Example

Let ν = αδ, where |α| < 1. Then fν(x) = 1 for x < 0 and
fν(x) = 1+α

1−α for x ≥ 0. The function Fν(x) = x for x < 0 and

Fν(x) = 1+α
1−αx for x ≥ 0. The solution of the BSDE

Yt = ξ + αL0
T (Y )− αL0

t (Y )−
∫ T

t
ZsdWs ,

where ξ ∈]−∞, 0[ or ξ ∈ [0,∞[ is given by

Yt = E [ξ /Ft ] ,

and L0
t (Y ) = 0 for all 0 ≤ t ≤ T .
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BSDE with local time

Remark

In the case where ν is a non–necessary bounded measure on R
which is diffuse and σ–finite, the associated function
fν(x) = exp(2ν((−∞, x ])) is positive, continuous and non
necessary bounded function. Hence the function Fν(x) is only
locally Lipschitz, however if ξ and Fν(ξ) are square integrable
random variables then the BSDE (2.2) has a unique solution which
is given by

Y ν
t = F−1

ν (E [Fν(ξ) /Ft ]) .
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Limit theorems for BSDEs

Let νn(da), n = 1, 2, . . . be a sequence of Radon measures and ξn

a sequence of random variables in L2(Ω,FT ,P). Suppose that
there exist two positive constants ε, M such that :

|νn| (R) ≤ M ∀ n ≥ 1,

|νn({x})| ≤ ε < 1 ∀ n ≥ 1, ∀ x ∈ R.

Let (Y n,Zn) be the solution of

Yt = ξn +

∫
R

(La
T (Y )− La

t (Y )) νn(da)−
∫ T

t
ZsdWs .
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Assume that ξn −→n→∞ ξ in L2(Ω,FT ,P).
Assume further that there exist a function f BV such that :

lim
n→+∞

∫ L

−L
|fνn − f |2 (x) dx = 0 for all L > 0,

ν(da) =
f ′ (da)

f (a) + f (a−)
·

Then

lim
n→+∞

E sup
0≤t≤T

|Y n
t − Y ν

t |
2 + E

∫ T

0
|Zn

s − Z ν
s |

2 ds = 0 (3.4)

where (Y ν ,Z ν) is the unique solution to the BSDE equation :

Yt = ξ +

∫
R

(La
T (Y )− La

t (Y )) ν(da)−
∫ T

t
ZsdWs .
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Proof. We shall use the following notations :

fνn(x) = exp(2νcn((−∞, x ]))
∏
y≤x

(
1 + νn(({y}))

1− νn(({y}))

)

Fνn(y) =

∫ y

0
fνn(x)dx and F (y) =

∫ y

0
f (x)dx .

By Theorem 1, it holds

Y n
t = F−1

νn (E [Fνn(ξn) /Ft ]) 0 ≤ t ≤ T .

Y ν
t = F−1 (E [F (ξ) /Ft ]) 0 ≤ t ≤ T .
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Limit theorems for BSDEs

The convergence of fνn to f in L2
loc(R) implies that Fνn converges

to F uniformly on compact sets and then, using a truncating
argument, Fνn(ξn) converges to F (ξ). It follows that
Yt

n
:= E[Fνn(ξn)/Ft ] converges to E[F (ξ)/Ft ] =: Yt

ν
in L2(Ω). It

is, trivial to see that F−1
νn converges to F−1 uniformly on compact

sets and so Y n
t = F−1

νn (Yt
n
) converges to F−1(Yt

ν
) = Y ν

t . Hence
Esup0≤t≤T |Y n

t − Y ν
t | tends to zero when n goes to infinity, and

using the isometry property, one can see that E
∫ T

0 |Z
n
s − Z ν

s |
2 ds

converges to zero when n tends to infinity. �
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Remark

Let ξn = ξ for all n, νn(dx) = fn (x) dx where fn (x) ≥ 0 ;∫
fn (x) dx = 1 and supp (fn) = [− 1

n ,
1
n ].

Let us consider the BSDE

Y n
t = ξ +

∫ T

t
fn(Y n

s ) (Zn
s )2 ds −

∫ T

t
Zn
s dWs ,

then the last theorem implies the convergence of Y n
· to the unique

solution of the BSDE

Yt = ξ +
1− e2

1 + e2

(
L0
T (Y )− L0

t (Y )
)
−
∫ T

t
ZsdWs .
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Limit theorems for BSDEs

If νn converges to a measure ν, then in general Y νn does not
converges to Y ν . We replace the convergence of measures νn by
the convergence of its associated function fνn .
In the sequel M (R) will denote the space of all bounded measure
on R such that :

|ν({x})| < 1 ∀ x ∈ R.
Let ν be in M (R) . We define

‖ν‖ = |νc(R)|+ 1

2

∑
y

∣∣∣∣1 + ν({y})
1− ν({y})

∣∣∣∣ ·
Note that

‖ν‖ = var

(
1

2
log (fν)

)
where, var, denotes the total variation.
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In the space Let M2
T we define the distance d [., .] given by :

d
[
(Y ,Z ) ,

(
Y ′,Z ′

)]
=

(
E sup

0≤t≤T

∣∣Yt − Y ′t
∣∣2 + E

∫ T

0

∣∣Zs − Z ′s
∣∣2 ds

)1

2
·

Theorem

Let C be a fixed constant. Then, K = {(Y ν ,Z ν) : ‖ν‖ ≤ C} is a
compact set for the topology induced by d [·, ·].
The set of all (Y ν ,Z ν) belonging to K such that ν is absolutely
continuous with respect to Lebesgue measure is dense in K.
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Proof. Let νn be a sequence in M (R) such that ‖νn‖ ≤ C .
Since the total variation of the fνn ’s are uniformly bounded, we can
find a function f of bounded variation and a subsequence (fνnk )
such that :

fνnk (x)−→f (x) as k −→ +∞, for all x ∈ R\Df

where, Df , is at most countable. Set

ν(da) =
f ′ (da)

f (a) + f (a−)
·

Then the first limit Theorem implies that :

d [(Y νnk ,Z νnk ) , (Z ν ,Z ν)]−→0 when k −→ +∞.
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It remains to prove that ‖ν‖ ≤ C .
Note that f satisfies the same equation as fν , then, there exist
λ > 0 such that f = λfν .
Hence

‖ν‖ = var

(
1

2
log (fν)

)
= var

(
1

2
log (f )

)

≤ lim sup
n→+∞

var

(
1

2
log (fνn)

)
≤ C .
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Let us prove the second point ; Let ν ∈M (R) and θn an
approximation of the identity.
Set

fn = fν ∗ θn and gn =
f ′n

2fn
·

Let (Y n,Zn) be the unique solution of the following BSDE

Y n
t = ξ +

∫ T

t
gn(Y n

s ) (Zn
s )2 ds −

∫ T

t
Zn
s dWs ·

Using Theorem 3.4, it is easy to see that :

d [(Y n,Zn) , (Y ν ,Z ν)]−→ 0 as n −→ +∞.

�
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Comparison theorems for BSDEs

Lepeltier and San Martin consider BSDEs with terminal data
ξ ∈ L∞(Ω,FT ,P), and gave a comparison theorem for BSDE with
parameter (f , ξ) i.e.

Yt = ξ +

∫ T

t
f (Ys)Z 2

s ds −
∫ T

t
ZsdWs .

In the following theorem, we prove a general comparison theorem,
without boundedness of the terminal value of the BSDE. As a
byproduct, we obtain the comparison theorem, for the standard
BSDE under fairly weak conditions on the coefficients.
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Theorem

Let ν, µ be in M (R). Let (Y ν ,Z ν), (Y µ,Zµ) be two processes
such that :

Y ν
t = ξ +

∫
R

(La
T (Y ν)− La

t (Y ν)) ν(da)−
∫ T

t
Z ν
s dWs ,

Y µ
t = ξ′ +

∫
R

(La
T (Y µ)− La

t (Y µ))µ(da)−
∫ T

t
Zµ
s dWs .

Assume that ξ ≥ ξ′ a.s. and the measure ν − µ is positive.
Then Y ν

t ≥ Y µ
t for all t P–a.s.
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Comparison theorems for BSDEs

Proof. Let us first recall Tanaka’s formula. Since Fµ is a convex
function, then

Fµ(Y ν
T ) = Fµ(Y ν

t ) +

∫ T

t

1

2
(fµ(Y ν

s ) + fµ(Y ν
s −)) dY ν

s

+
1

2

∫
R

(La
T (Y ν)− La

t (Y ν)) f
′
µ (da)

hence

Fµ(ξ) = Fµ(Y ν
t ) + (MT −Mt)

−1

2

∫
R
{fµ(a) + fµ(a−)} (La

T (Y ν)− La
t (Y ν)) (ν − µ) (da)

where M· is a square integrable martingale.
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Since the function a 7→ [fµ(a) + fµ(a−)](La
T (Y ν)− La

t (Y ν)) is
positive, and Fµ is an increasing function, then

Fµ (Y ν
t ) ≥ E

[
Fµ(ξ′) /Ft

]
and

Y ν
t ≥ F−1

µ

(
E
[
Fµ
(
ξ′
)

/Ft

])
= Y µ

t .

�
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Comparison theorems for BSDEs

An immediate consequence of the above comparison result is the

Corollary

Let (νn)n≥1 be an sequence of measures such that
supn≥1 ‖νn‖ < +∞ and fνn increases to a BV function f .
If ξn increases to ξ ∈ L2(Ω,FT ,P) as n→∞. Then
d [(Y ν ,Z ν)− (Y n,Zn)] → 0 where

ν(da) =
f ′ (da)

f (a) + f (a−)
·

and (Y n,Zn), (Y ν ,Z ν) solves the corresponding BSDEs
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Comparison theorems for BSDEs

Corollary

Let (f 1, ξ1) and (f 2, ξ2) be two parameters of BSDE, and let(
Y 1,Z 1

)
and

(
Y 2,Z 2

)
be associated solution.

Suppose that :
ξ1 ≤ ξ2 a.s. and f 1(y) ≤ f 2(y) for almost all y .
Then for all t ∈ [0,T ], we have Y 1

t ≤ Y 2
t a.s.

As a consequence of the above results, we have obtained an
interesting limit theorem for generalized BSDE in monotonic case.
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Comparison theorems for BSDEs

Theorem

Let (νn)n≥1 be an increasing sequence of measures such that
supn≥1 ‖νn‖ < +∞, assume ξn increases to ξ ∈ L2(Ω,FT ,P) as n
tends towards infinity. Then

lim
n→+∞

E sup
0≤t≤T

|Y ν
t − Y n

t |
2 +

∫ T

0
|Z ν

s − Zn
s |

2 ds = 0,

where (Y ν ,Z ν) is the unique solution of the BSDE

Y ν
t = ξ +

∫
R

(La
T (Y ν)− La

t (Y ν)) ν(da)−
∫ T

t
Z ν
s dWs ,

and ν = supn≥1 νn.
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Comparison theorems for BSDEs

Proof. For any measurable set, we have ν (A) = supn≥1 νn (A), it
follows from the bound supn≥1 ‖νn‖ < +∞, that ν is a bounded
measure.
Set

Fn(y) := Fνn(y) and F (y) := Fν(y).

Then Fn(·) is increasing and converges to the continuous function
F (·), hence by Dini’s theorem this convergence is uniform. By the
comparison Theorem 3, the sequence Y n

t is increasing. Set

Y ν
t = lim

n→+∞
Y n
t ,

hence Fn(Y n
t ) converges to F (Y ν

t ).
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But
Fn (Y n

t ) = E [Fn(ξn) /Ft ] 0 ≤ t ≤ T .

and
|Fn (ξn)| ≤

(∣∣ξ1
∣∣+ |ξ|

)
exp (2|ν|(R)) .

Then passing to the limit, using dominated convergence theorem
for conditional expectation, it holds that

Y ν
t = F−1 (E [F (ξ) /Ft ]) 0 ≤ t ≤ T .
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Comparison theorems for BSDEs

By Theorem 1, (Y ν ,Z ν) is the unique solution of the BSDE

Y ν
t = ξ +

∫
R

(La
T (Y ν)− La

t (Y ν)) ν(da)−
∫ T

t
Z ν
s dWs .

We deduce from Burkholder–Davis–Gundy inequality, that

lim
n→+∞

E sup
0≤t≤T

|Y ν
t − Y n

t |
2 = 0,

using the transformation Fν and the isometry property, we get

lim
n→+∞

E
∫ T

0
|Z ν

s − Zn
s |

2 ds = 0.

�
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This section is devoted to limit theorems for PDE that can be
deduced from the above limit theorems for BSDE using the
connection between these different kind of equations.
Let {X x ,t

s : 0 ≤ t ≤ s ≤ T} be the unique solution of the
stochastic differential equation

X x ,t
s = x +

∫ s

t
b(X x ,t

r )dr +

∫ s

t
σ(X x ,t

r )dWr ,

where the coefficients b and σ are globally Lipschitz.
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Let ν be a measure on R and satisfy the assumption (H2), we
consider the singular non–linear Cauchy problem

∂u

∂t
= Lu − 1

2
σ2(x)

(
∂Fν(u)

∂x

)2

Fν(u)∗
(

d2F−1
ν

d2x

)2

u(0, x) = g(x), x ∈ R,

 (5.5)

where g is a continuous real valued function with polynomial
growth and L is the infinitesimal generator of the diffusion process
{X x ,t

s : 0 ≤ t ≤ s ≤ T} and π∗(φ) stands for the pullback of the
distribution φ by π.
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In the case where the convex function Fν is twice continuously
differentiable, the equation (5.5) takes the form

∂u

∂t
= Lu + σ2(x)

(
F ′′ν (u)

2F ′ν(u)

)(
∂u

∂x

)2

u(0, x) = g(x), x ∈ R.

 (5.6)

This situation corresponds to the case where ν << dx .
Let {Y x ,t

s : s ∈ [t,T ]} be the unique solution to BSDE

Y x ,t
s = g(X x ,t

T ) +

∫ T

s

F ′′ν
2F ′ν

(Y x ,t
r )

(
Z x ,t
r

)2
ds −

∫ T

s
Z x ,t
r dWr , t ≤ s

Then Y x ,t
t is a viscosity solution to the equation (5.6).
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Now, let {(Y x ,t
s ,Z x ,t

s ) : s ∈ [t,T ]} be the unique solution to the
singular BSDE

Y x ,t
s = g(X x ,t

T )+

∫
R

(
La
T

(
Y x ,t

)
− La

s

(
Y x ,t

))
ν(da)−

∫ T

s
Z x ,t
r dWr .

With the help of the transformation Fν one can see that Y x ,t
t is a

viscosity solution to the equation (5.5).
Let us now go back to the corresponding limit theorems.
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Theorem Let νn(da), n = 1, 2, . . . be a sequence of Radon
measures. Suppose that there exist two positive constants ε, M
such that :

|νn| (R) ≤ M ∀ n ≥ 1,

|νn({x})| ≤ ε < 1 ∀ n ≥ 1, ∀ x ∈ R.

and there exist a function f BV such that :∫ L

−L
|fνn − f |2 (x) dx−→0 as n→ +∞ for all L > 0,

M’hamed Eddahbi Limit theorems for BSDE with local time applications to non–linear PDE



Introduction
BSDE with singular drift

Limit theorems for BSDEs
Comparison theorems for BSDEs

Applications to non–linear PDE

Applications to non–linear PDE

Set

ν(da) =
f ′ (da)

f (a) + f (a−)
and F (x) :=

∫ x

0
f (y)dy ·

If un(t, x) and u(t, x) denote respectively the unique solution of
the PDE (5.5) with νn respectively with ν.
Then un(t, x) converges to u(t, x) as n tends to ∞ for any
(t, x) ∈ [0,T ]× R.
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Proof. For any t ∈ R+, we let {Y x ,t,n
s : t ≤ s ≤ T} and

{Y x ,t
s : t ≤ s ≤ T} be respectively the solution of the BSDE

Y x ,t,n
s = g(X x ,t

T )+

∫
R

(
La
T

(
Y x ,t,n

)
− La

s

(
Y x ,t,n

))
νn(da)−

∫ T

s
Z x ,t,n
r dWr

and

Y x ,t
s = g(X x ,t

T )+

∫
R

(
La
T

(
Y x ,t

)
− La

s

(
Y x ,t

))
ν(da)−

∫ T

s
Z x ,t
r dWr .

If we set ũ := Fν(u), then equation (5.5) becomes

∂ũ

∂t
(t, x) = Lũ(t, x)

ũ(0, x) = Fν(g(x)), x ∈ R.

}
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Therefore the process {ũ(s,X x ,t
s ) : t ≤ s ≤ T} is the unique

solution to the BSDE

Ỹ x ,t
s = Fν

(
g(X x ,t

T )
)
−
∫ T

s
Z̃ x ,t
r dWr ,

hence Y x ,t
s = F−1

ν (Ỹ x ,t
s ) = F−1

ν (ũ(s,X x ,t
s )) = u(s,X x ,t

s ), in
particular un(t, x) = Y x ,t,n

t and Y x ,t
t := uν(t, x), then by virtue of

the previous results, un(t, x) and uν(t, x) are respectively the
unique viscosity solution to (5.5) with νn respectively ν. So
Theorem 3.4 implies that

lim
n→+∞

E sup
t≤s≤T

∣∣Y x ,t,n
s − Y x ,t

s

∣∣ = 0

which implies that un(t, x) converges to u(t, x) as n tends to ∞.
The convergence is uniform on compacts by continuity. �
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Let uhn be the unique solution of the following PDE

∂u

∂t
(t, x) = Lu(t, x) + σ2(x)hn(u(t, x))

(
∂u

∂x
(t, x)

)2

u(0, x) = g(x), x ∈ R.

 (5.7)

The following theorem gives the relative compactness of the family
{uν : ‖ν‖ ≤ C} and states that a solution to equation (5.5) is a
limit of sequence of solution to the equation (5.7).
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Theorem

Let C be a fixed constant. Then, K = {uν : ‖ν‖ ≤ C} is a
compact set for the topology induced by uniform convergence.
The set of all uν belonging to K such that ν is absolutely
continuous with respect to Lebesgue measure is dense in K.

Proof. The proof of the first part is an immediate consequence of
the connection between BSDEs and PDEs and Theorem 2.
Let us prove the second part ; Let ν be in M (R) and θn be an

approximation of the identity, we set fn = fν ∗ θn and gn = f ′n
2fn

.
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Theorem

Let C be a fixed constant. Then, K = {uν : ‖ν‖ ≤ C} is a
compact set for the topology induced by uniform convergence.
The set of all uν belonging to K such that ν is absolutely
continuous with respect to Lebesgue measure is dense in K.

Proof. The proof of the first part is an immediate consequence of
the connection between BSDEs and PDEs and Theorem 2.
Let us prove the second part ; Let ν be in M (R) and θn be an

approximation of the identity, we set fn = fν ∗ θn and gn = f ′n
2fn

.
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Let ugn be the unique solution of the PDE (5.7). Using BSDE
representation we get :

lim
n→+∞

‖ugn − uν‖∞ = 0. �

We use the connection between BSDEs and PDEs to give a
probabilistic proof to a comparison theorem for non–linear PDE.

Theorem

Let g1 and g2 be two functions such that g1(x) ≤ g2(x), ∀ x ∈ R.
Let ν1 and ν2 be in M (R) such that the measure ν2 − ν1 ≥ 0.
If u1 and u2 are the solutions to the PDE (5.5) corresponding to
ν1 and ν2. Then u1(t, x) ≤ u2(t, x).
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Comparison theorem for PDEs.

Proof. We can write u1(t, x) = Y x ,t,1
t and u2(t, x) = Y x ,t,2

t , where
{(Y x ,t,i

s ,Z x ,t,i
r ) : t ≤ s ≤ T} is the unique solution to the BSDE

Ys = gi (X x ,t
T )+

∫
R

(La
T (Y )− La

s (Y )) ν i (da)−
∫ T

s
ZrdWr , i = 1, 2.

Now, from Theorem 3, we have Y x ,t,1
s ≤ Y x ,t,2

s for all t ≤ s ≤ T ,
in particular Y x ,t,1

t ≤ Y x ,t,2
t .
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Comparison theorem for PDEs.

Remark

Using the same argument as in Corollary 1 and the comparison
Theorem 6 one can obtain the corresponding limit theorem in the
monotone case for PDE.

Theorem 6 implies the uniqueness property for a class of non–linear
PDEs (at least of the form (5.5)).
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Comparison theorem for PDEs.

Example
Consider the non-linear Cauchy problem

∂u

∂t
(t, x) =

1

2
∆u(t, x)− 1

2

(
∂u

∂x
(t, x)

)2

+ k(x), (5.8)

where u(0, x) = g(x), x ∈ R and k : R→ [0,+∞) is continuous.
If g = 0, the unique solution, is given for all (t, x) ∈ [0,+∞[×R
by :

u(t, x) = − logE
[

exp

{
−
∫ t

0
k(x + Ws)ds

}]
.
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Comparison theorem for PDEs.

In the case where k = 0 the equation (5.8) is a particular equation
of (5.7) which corresponds to the case where σ = 1, b = 0 and
h = −1

2 , hence we can use BSDE to construct a solution to the

equation (5.8), more precisely, let {Y x ,t
s : t ≤ s ≤ T} be the

unique solution to the BSDE

Y x ,t
s = g(X x ,t

T )−
∫ T

s

1

2

(
Z x ,t
r

)2
dr −

∫ T

s
Z x ,t
r dWr (5.9)

where X x ,t
T = x + 1

2 (BT − Bt).
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Comparison theorem for PDEs.

It is clear that the hypotheses of the Remark 2 are satisfied since
the Brownian motion has exponential finite moment, and hence
the equation (5.9) has a unique solution and u(t, x) = Y x ,t

t is the
viscosity solution to the equation (5.8) with u(0, ·) = g(·).
In the case where k 6= 0, the BSDE associated to the equation
(5.8) is the following

Y x ,t
s = g(X x ,t

T )+

∫ T

s
k(X x ,t

r )dr−
∫ T

s

1

2

(
Z x ,t
r

)2
dr−

∫ T

s
Z x ,t
r dWr ,

consequently the function u(t, x) = Y x ,t
t is the unique viscosity

solution to the equation (5.8).
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BSDEs with reflexion

Let us now assume that ν be nonnegative σ–finite measure on R.
We want to solve

Yt = ξ +

∫
R

(La
T (Y )− La

t (Y )) ν(da)−
∫ T

t
Zs · dWs . (5.10)

Set α = ν({x0}), such that |α| ≥ 1. The equation (5.10) is
equivalent to

Yt = ξ +

∫
R

(La
T (Y )− La

t (Y ))µ(da) (5.11)

+α
(
Lx0
T (Y )− Lx0

t (Y )
)
−
∫ T

t
Zs · dWs (5.12)

where µ(da) = ν(da)− αδx0(da), |µ({x})| < 1 for all x ∈ R.
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BSDEs with reflexion

Lemma

The equation (5.11) is equivalent to

Ỹt = ξ̃ −
∫ T

t
Z̃s · dWs + α

(
L
Fµ(x0)
T (Ỹ )− L

Fµ(x0)
t (Ỹ )

)
. (5.13)
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BSDEs with reflexion

Proof. Let us now use the transformation Fµ, using Tanaka
formula we obtain

Fµ(YT ) = Fµ(Yt) +

∫ T

t

1

2
(fµ(Ys) + fµ(Ys−)) dYs

+
1

2

∫
R

(La
T (Y )− La

t (Y )) f
′
µ (da)

= Fµ(Yt) +

∫ T

t

1

2
(fµ(Ys) + fµ(Ys−)) Zs · dWs

+L
Fµ(x0)
T (Fµ(Y ))− L

Fµ(x0)
t (Fµ(Y )).
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BSDEs with reflexion

Set αi = ν({xi}), such that |αi | ≥ 1 for i ∈ I , where I is at most a
countably subset of indices. The equation (5.10) is equivalent to

Yt = ξ +

∫
R

(La
T (Y )− La

t (Y ))µ(da)

+
∑
i∈I

αi

(
Lxi
T (Y )− Lxi

t (Y )
)
−
∫ T

t
Zs · dWs

where µ(da) = ν(da)−
∑

i∈I αiδxi (da). Now we may assume
|µ({x})| < 1 for all x ∈ R.
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BSDEs with reflexion

Lemma

The equation (5.11) is equivalent to

Yt = Fµ(ξ)−
∫ T

t
Zs · dWs +

∑
i∈I

αi

(
L
Fµ(xi )
T (Y )− L

Fµ(xi )
t (Y )

)
.
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BSDEs with reflexion

To study the BSDE of the form equation (5.11) it suffices to solve
the following BSDE

Yt = ξ −
∫ T

t
Zs · dWs + α

(
Lx0
T (Y )− Lx0

t (Y )
)
. (5.14)

Without loss of generality we may assume that α ≥ 1. The problem
(5.14) is a classical reflected BSDE at the deterministic point x0.

Proposition

If ξ ≤ x0 a.s. or ξ ≥ x0 a.s. such that ν({x0}) = α. Then the
equation (5.14) has a unique solution.
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BSDEs with reflexion

Proposition

Let x1 and x2 be two real numbers such that ν({x1}) = α1,
ν({x2}) = α2 and x1 < x2. If x1 ≤ ξ ≤ x2 a.s. Then the equation

Yt = ξ−
∫ T

t
Zs ·dWs+α1

(
Lx1
T (Y )− Lx1

t (Y )
)
+α2

(
Lx2
T (Y )− Lx2

t (Y )
)

has a unique solution. Moreover x1 ≤ Yt ≤ x2 a.s. and
Lx1
t (Y ) = Lx2

t (Y ) = 0, for all t ∈ [0,T ].

M’hamed Eddahbi Limit theorems for BSDE with local time applications to non–linear PDE



Introduction
BSDE with singular drift

Limit theorems for BSDEs
Comparison theorems for BSDEs

Applications to non–linear PDE

BSDEs with reflexion

Proof of Proposition 2. Consider the following reflected BSDE

Yt = ξ −
∫ T

t
Zs · dWs + KT − Kt ,

where {Kt : t ∈ [0,T ]} is an increasing such that K0 = 0. The
reflected BSDE has a unique solution. (Yt = E (ξ/Ft),Zt , 0) is a
solution. ξ ≤ x0 a.s. implies that Yt ≤ x0 a.s. Consequently
Lx0
t (Y ) = 0 for all t ∈ [0,T ], indeed by Tanaka’s formula

(ξ − x0)+ = (Yt − x0)+ +

∫ T

t
1{Ys>x0}dYs +

1

2

(
Lx0
T (Y )− Lx0

t (Y )
)

But
∫ T
t 1{Ys>x0}dYs = 0, hence Lx0

T (Y ) = Lx0
t (Y ) = Lx0

0 (Y ) = 0.
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BSDEs with reflexion

The Proposition 3 corresponds to a two barrier reflected BSDE
whose proof is similar to that of Proposition 2.

Proposition

OPEN PROBLEM : If P (ξ ≤ x0) P (ξ ≥ x0) > 0 such that
ν({x0}) = α. Then equation (5.14) has no unique solution.
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Thank you for your attention
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