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A general set-up is proposed to study stochastic volatility models. We consider here a two-dimensional

diffusion process (Yt, Vt) and assume that only (Yt) is observed at n discrete times with regular

sampling interval Ä. The unobserved coordinate (Vt) is an ergodic diffusion which rules the diffusion

coef®cient (or volatility) of (Yt). The following asymptotic framework is used: the sampling interval

tends to 0, while the number of observations and the length of the observation time tend to in®nity.

We study the empirical distribution associated with the observed increments of (Yt). We prove that it

converges in probability to a variance mixture of Gaussian laws and obtain a central limit theorem.

Examples of models widely used in ®nance, and included in this framework, are given.
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1. Introduction

Diffusion processes are now widely used for modelling purposes in various ®elds and

especially in ®nance. Many papers are devoted to the estimation of drift and diffusion

coef®cients of such models. The diffusion sample path may be continuously or discretely

observed and numerous asymptotic results have been obtained. Among many references, let

us quote Kutoyants (1984), Dacunha-Castelle and Florens-Zmirou (1986), Donahl (1987),

Genon-Catalot (1990), LareÂdo (1990), Genon-Catalot and Jacod (1993), Bibby and Sorensen

(1995) and Kessler (1995). In these studies, when multidimensional diffusions are considered,

all coordinates are assumed to be observed.

However, the case of an unobserved or hidden coordinate may occur in practice. Examples

can be found in the ®eld of ®nance with the introduction of the stochastic volatility models.

Indeed, in this area, the term volatility stands for the diffusion coef®cient of stock returns.

The seminal model of Black and Scholes (1973) assumes that stock price processes follow a

geometric Brownian motion with constant volatility, but recent empirical evidence has

extensively shown that this constant volatility assumption is unrealistic (see, for example,
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Bollerslev et al. (1992) for a survey paper, and Taylor and Xu (1994, 1995) among many

others). As an answer, some researchers have proposed models which include stochastic

volatility in such a way that the couple (stock price, volatility) still behaves as a two-

dimensional diffusion process (Hull and White (1987); Wiggins (1987); Scott (1987);

Chesney and Scott (1989); Stein and Stein (1991); Heston (1993); Leblanc (1996)). This

raises a dif®culty since only the stock price is observable, while the volatility is unobservable.

Indeed, assume that (St) is the price process of some stock or asset and that the stock

returns are ruled as usual by

dSt

St

� ì t dt � ó t dBt:

Here, (ó t) is the volatility of (St), and (Bt) is a Brownian motion. In the ®rst models, ì t and

ó t are constants or deterministic functions of t. It follows from the discussion above that

Vt � ó 2
t can be modelled by a diffusion process, driven by another Brownian motion

(Wt, t > 0).

In this set-up, Nelson (1992) and Foster and Nelson (1994) give a solution to the problem

of ®ltering (Vt) through (St), i.e., they de®ne estimators V̂t of Vt given the data up to time t

of (Su). Our concern here is different. It is not to estimate the stochastic value Vt, but to get

information on the distribution of the (Vt) process. So we are in the presence of a hidden

Markov process. Most references in this ®eld are concerned with discrete-time models, e.g.,

hidden Markov chains (see, for example, Elliott et al. (1995)). However, among the

references quoted above, a few continuous-time models have been studied; in these papers,

some estimators of parameters present in the (Vt) model are computed in speci®c cases, using

stock prices data, with heuristic and empirical approach, but no theoretical study.

Our aim here is to propose a general set-up to study stochastic volatility models. Let us

consider a two-dimensional diffusion (Yt, Vt) such that

dYt � j(Vt) dt � V
1=2
t dBt, Y0 � 0,

dVt � b(Vt) dt � a(Vt) dWt, V0 � ç,

where (Bt, Wt) t>0 is a two-dimensional standard Brownian motion, (Vt) is a positive diffusion

process and ç is a positive random variable independent of (Bt, Wt) t>0.

In the model equations above, Yt stands for log St. The sample path (Yt) is discretely

observed at regularly spaced times ti � iÄ, i � 0, . . . , n. The aim is to get information on

the (Vt) model from the observations (Yt1
, . . . , Yt n

) only. We introduce here the appropriate

assumptions and asymptotic framework. The key assumption is that the diffusion (Vt) has to

be ergodic. Apart from this assumption, the diffusion model for (Vt) can be quite general;

so our results will apply to most of the speci®c models proposed in the ®nancial literature.

Our asymptotic framework is as follows. The number of observations n tends to in®nity,

the sampling interval Ä � Än tends to zero, and the length of the observation time interval

nÄn tends to in®nity. We investigate the asymptotic behaviour of the empirical distribution

P̂n associated with the random variables

Xi � X n
i �

1

Ä1=2
n

(Yti
ÿ Ytiÿ1

), (1)
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where ti � tn
i � iÄn, i � 0, . . . , n, i.e.,

P̂n � 1

n

Xn

i�1

äX n
i
,

where äa is the Dirac measure at point a.

The paper is organized as follows. In Sections 2 and 3, we set j � 0. We assume that

(Vt) is a strictly stationary positive process with stationary distribution ð(v) dv on (0, �1).

The main result of this paper is a convergence theorem for

P̂n( f ) �
�

R

f (x) dP̂n(x) � 1

n

Xn

i�1

f (X n
i ), (2)

where f belongs to a class of functions F satisfying appropriate conditions. This class

contains the functions f (x) � x2 p, p > 1 such that Eç2 p is ®nite. We prove in Theorem 1

that P̂n( f ) converges in probability to Pð( f ), where Pð is the distribution of X � Eç1=2 and

(E, ç) has distribution N (0, 1)
 ð(v) dv. Therefore, the distribution Pð is a variance mixture

of Gaussian laws, the mixing distribution being the stationary distribution of the unobservable

diffusion (Vt).

In Theorem 2, we prove that, under the additional assumption nÄ2
n ! 0,

(nÄn)1=2[P̂n( f )ÿ Pð( f )]

converges in distribution to a Gaussian distribution N (0, V ( f )). A dif®culty arises when

checking V ( f ) ,�1. For this, we give a suf®cient condition (Proposition 1) involving only

the distribution ð, which implies that V ( f ) is ®nite for any f in F . The convergence in

distribution also holds for ®nite-dimensional distributions (Theorem 3).

In Section 4, we study the case j 6� 0. Under appropriate assumptions on j, the results

of Theorems 1 and 2 are unchanged (Theorem 4). This implies that j may be known or

unknown. Section 5 is devoted to the study of related models. We investigate the case

where Vt � ó 2
t with (ó t) a stationary diffusion on R. This includes the case of (ó t) a

Gaussian diffusion. Some examples are given in Section 6.

The results obtained here clearly have several statistical implications. The empirical

distribution P̂n can be used to estimate the stationary distribution ð of the unobserved

diffusion (Vt). This subject will be investigated in a forthcoming paper.

2. Model and assumptions

2.1. The model

Let (Yt, Vt) t>0 be the two-dimensional diffusion process de®ned as the solution of

dYt � V
1=2
t dBt, Y0 � 0, (3)

dVt � b(Vt) dt � a(Vt) dWt, V0 � ç, (4)
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where

(1) (Bt, Wt) t>0 is a standard Brownian motion of R2 de®ned on a probability space

(Ù, A, P) and

(2) ç is a random variable de®ned on Ù, independent of (Bt, Wt) t>0.

Equation (4) de®nes a one-dimensional diffusion process. We make now the classical

assumptions on functions b and a which ensure that the solution of (4) is a positive

recurrent diffusion on (0, �1) and a strictly stationary and ergodic process.

(A1) b, a are continuous real functions on R, and C1 functions on (0, �1) such that

9k . 0, 8v . 0, b2(v)� a2(v) < k(1� v2) and 8v . 0, a(v) . 0:

For v0 . 0, de®ne

s(v) � exp ÿ2

�v

v0

b(u)

a2(u)
du

 !
: (5)

(A2) �
0�

s(v) dv � �1,

��1
s(v) dv�1,

��1
0

dv

a2(v)s(v)
� M ,�1:

Let

ð(v) � 1

M

1

a2(v)s(v)
1(v . 0): (6)

(A3) The initial random variable ç has distribution ð(v) dv.

(A4) 9ã > 2,
��1

0
vãð(v) dv ,�1.

Assumptions (A1) and (A2) ensure existence and uniqueness of the solution of (4)

together with the positive recurrence on (0, �1). In particular, the following holds:

P(Vt . 0, 8t > 0) � 1:

Assumption (A3) provides the strict stationarity property. Note that, for each t > 0, Vt has

distribution ð(v) dv which satis®es, under (A4), EV
ã
t ,1. So we introduce the notation

m( p) �
��1

0

v pð(v) dv � EV
p
t for 0 < p < ã: (7)

Comment 1. We are aware that, in the ®nancial papers, more general models are considered.

The two Brownian motions (Bt) and (Wt) are supposed to be correlated; the drift function of

(Yt) may depend on t, Yt and Vt. Here, we have chosen to simplify the model in order to

clarify the statistical problems involved in this class of models.
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2.2. Observations and asymptotic framework

The diffusion (Vt) is supposed to be unobservable but it rules the conditional variance of (Yt)

(see (3) and (4)). We assume that (Yt) is observable but only at n discrete times with regular

sampling interval Ä. We denote by ti � iÄ, i � 0, . . . , n, these observation times. Our results

are obtained in the asymptotic framework de®ned as follows. As n! �1,

Ä � Än ! 0 and Tn � nÄn ! �1: (8)

The length Tn of the time interval where observations are available tends to in®nity, while the

sampling interval tends to 0.

Comment 2. In order to justify the double asymptotic framework, let us point out that a

discrete Ä-sampling observation of (Yt) on a ®xed time interval provides information on the

conditional variance VT as Ä! 0. This is the ®ltering approach of Nelson (1992). To go

further and obtain estimators for parameters in b(:) and a(:), we have to use the ergodicity

properties of (Vt), and so let T � nÄn tends to in®nity. We refer for this to a forthcoming

paper.

Our concern is the study of the asymptotic behaviour of P̂n( f ) (see (2)). In the next

section, we introduce the appropriate class of functions f for this study.

2.3. The class of functions

For f : R! R, let us consider, when de®ned, the function h f : R� ! R:

h f (v) �
�

R

f (xv1=2)n(x) dx, (9)

where n(x) � 1=(2ð)1=2 exp (ÿx2=2) is the N (0, 1) density. We consider the following

conditions.

(C1) Function f is C1 and such that, for the exponent ã given in (A4),

9K1 . 0, 8x 2 R, j f (x)j < K1(1� jxjã): (10)

(C2) Function f is such that h f 2 C1[0, �1) and, for ã given in (A4),

9K2 . 0, 8v > 0, jh9f (v)j < K2(1� vã=2): (11)

Denote by F ã the class of functions satisfying (C1) and (C2). Under (C1), the function

h f is well de®ned and continuous and satis®es h f (v) � E f (Ev1=2), where E is a N (0, 1)

random variable. Let us point out that, for f 2 F ã, using (C1), (C2) and (A4),

Eh2
f (Vt) � Eh2

f (ç) ,�1, Eh9f
2(Vt) � Eh9f

2(ç) ,�1:
Note that Eh f (ç) � E f (Eç1=2) where (E, ç) has distribution N (0, 1)
 ð(v) dv. Therefore, the

distribution of Eç1=2 is a variance mixture of Gaussian laws, the mixing distribution being the

stationary distribution of Vt. We shall denote this distribution by Pð. For f 2 F ã, we have
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Pð( f ) �
�

R

f (x) dPð(x) �
��

f (Ev1=2)n(x)ð(v) dx dv �
�

R�
h f (v)ð(v) dv: (12)

Let us give examples of functions f belonging to F ã.

(1) For t 2 R and f (x) � exp (itx), h f (v) � exp (ÿt2v=2), and Pð( f ) � E[exp (ÿt2ç=2)].

Although in this example, the function f is complex valued, the results below will be true

because h f is a real-valued function so that Pð( f ) is real.

(2) For 1 < p < ã=2, f (x) � x2 p, h f (v) � C2 pv p, where

Ck �
�

R

jxjk n(x) dx (13)

is the kth absolute moment of the distribution N (0, 1) and, using (7) and (12),

Pð( f ) � C2 pEç p � C2 p m( p):

(3) This is a generalization of Example 2. Set f (x) � g(x2), g 2 C1[0, �1), and

9K . 0, 8u > 0, jg(u)j � jg9(u)j < K(1� uã=2):

Finally, we introduce the function

Af (v) �
�v

0

[h f (u)ÿ Pð( f )]ð(u) du: (14)

Note that A f (�1) � 0.

3. Limit theorems for the empirical distribution

3.1. Main results

We successively state the convergence in probability of P̂n( f ) and then the central limit

theorem.

Theorem 1. Assume (A1)±(A4) and let f belong to F ã. Then, if Än ! 0 and nÄn ! �1,

P̂n( f ) !
n!�1 Pð( f ) in probability:

Going a step further into the analysis, we de®ne

V ( f ) � 4M

��1
0

s(v)A2
f (v) dv, (15)

where s(:) and M are de®ned in (A2) and A f (v) is given in (14). Let us notice that the

formula for V ( f ) does not depend on the choice of the value v0 used to compute s(v) (see

assumption (A2)). This is because the product Ms(v) does not depend on v0.
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Theorem 2. Assume (A1)±(A4) and let f belong to F ã. Assume that Än ! 0 and

nÄn ! �1. If, moreover, nÄ2
n ! 0 and V ( f ) ,�1, then

(nÄn)1=2[P̂n( f )ÿ Pð( f )] !D
n!�1N (0, V ( f )):

If f (x) � x2, the additional condition nÄ2
n ! 0 is not needed.

Proofs of both theorems rely upon lemmas that we state now.

3.2. Preliminary lemmas

Let us de®ne

V�i � 1

Än

� t i

t iÿ1

Vs ds: (16)

Lemma 1. Assume (A1)±(A4). Then, for 1 < p < ã,

EV� p
i < m( p),

where m( p) is given in (7).

Proof. Since p > 1, the HoÈlder inequality gives

V� p
i <

1

Än

� t i

t iÿ1

V p
s ds,

which, by stationarity, gives the result. u

Lemma 2. Assume (A1)±(A4). There exists a constant C such that, for 0 < v < 1,

E(Vv ÿ V0)2 < Cv,

where C only depends on m(2) and k (see (A1) and (7)).

Proof. This lemma is a straightforward consequence of our assumptions. We have

Vv ÿ V0 �
�v

0

b(Vu) du�
�v

0

a(Vu) dWu:

Thus, it follows that

(Vv ÿ V0)2 < 2

�v

0

b(Vu) du

� �2

�2

�v

0

a(Vu) dWu

� �2

< 2v

�v

0

b2(Vu) du� 2

�v

0

a(Vu) dWu

� �2

:
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By (A1), we obtain

E(Vv ÿ V0)2 < 2k v

�v

0

[1� E(V 2
u)] du�

�v

0

[1� E(V 2
u)] du

� �
:

Now, by (A4), EV 2
u �

�
v2ð(v) dv � m(2) ,�1. Hence, E(Vv ÿ V0)2 < 2k[1 �

m(2)](v2 � v). This gives the lemma. u

Lemma 3. Assume (A1)±(A4). Let ø 2 C1[0, �1) be such that

9K . 0, 8v > 0, jø9(v)j < K(1� vã=2):

Then,

Bn(ø) � 1

n

Xn

i�1

ø(V�i)ÿ 1

nÄn

� nÄ n

0

ø(Vs) ds � Ä1=2
n OP(1):

Proof. First note that, if ø is linear, Bn(ø) � 0. Otherwise,

Bn(ø) � 1

nÄn

Xn

i�1

� t i

t iÿ1

[ø(V�i)ÿ ø(Vs)] ds:

Applying the Taylor formula yields

ø(V�i)ÿ ø(Vs) � (V�i ÿ Vs)Ri(s),

with

Ri(s) �
�1

0

ø9[Vs � u(V�i ÿ Vs)] du:

Now consider

V�i ÿ Vs � 1

Än

� ti

tiÿ1

(Vt ÿ Vs) dt:

Thus

jBn(ø)j < 1

nÄ2
n

Xn

i�1

� t i

t iÿ1

ds jRi(s)j
� ti

tiÿ1

jVt ÿ Vsj dt:

Therefore, taking the expectation and then applying the Schwarz inequality lead to

EjBn(ø)j < 1

nÄ2
n

Xn

i�1

� t i

t iÿ1

� t i

t iÿ1

ds dt [E(Vt ÿ Vs)
2 ERi(s)2]1=2: (17)

Lemma 2 and the strict stationarity give, for s, t 2 [tiÿ1, ti] and n large enough,

E(Vt ÿ Vs)
2 � E(Vj tÿsj ÿ V0)2 < Cjt ÿ sj: (18)

Coming back to Ri(s), we have, using the assumption on ø9,
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jRi(s)j < K

�1

0

[1� jVs � u(V�i ÿ Vs)jã=2] du,

Vs � u(V�i ÿ Vs) � 1

Än

� t i

t iÿ1

[uVt � (1ÿ u)Vs] dt:

Thus, by HoÈlder's inequality, since ã=2 > 1,

jVs � u(V�i ÿ Vs)jã=2 <
1

Än

� t i

t iÿ1

juVt � (1ÿ u)Vsjã=2 dt <
K(ã)

Än

� ti

tiÿ1

(V
ã=2
t � Vã=2

s ) dt,

for some constant K(ã) and for all u 2 [0, 1]. So,

jRi(s)j < KK(ã) 1� 1

Än

� t i

t iÿ1

(V
ã=2
t � Vã=2

s ) dt

 !
and

Ri(s)2 < L 1� 1

Än

� t i

t iÿ1

(V
ã
t � Vã

s ) dt

 !
,

for some constant L . 0. Using now assumption (A4), we obtain

ERi(s)2 < L[1� 2m(ã)]: (19)

Applying inequalities (18) and (19) to (17) leads to

EjBn(ø)j < fCL[1� 2m(ã)]g1=2 1

nÄ2
n

Xn

i�1

� t i

tiÿ1

� ti

tiÿ1

ds dt jt ÿ sj1=2:

By a straightforward computation� t i

t iÿ1

� t i

t iÿ1

ds dt jt ÿ sj1=2 � 8
15
Ä2

nÄ
1=2
n :

This implies that EjBn(ø)j < L9Ä1=2
n for some constant L9 . 0. Thus, we get the result of

Lemma 3. u

3.3. Proofs of the theorems

Let us now prove the theorems.

Proof of Theorem 1. Let us study P̂n( f )ÿ Pð( f ) when f belongs to F ã. Let G �
ó (V0, Wt, t > 0), and denote by EG the conditional expectation with respect to G .

Conditionally on G , the random variables (Xi, i � 1, . . . , n) de®ned in (1) are independent

and Xi has distribution N (0, V�i) where V�i is de®ned in (16). Moreover, let us check that
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Ej f (X i)j,1, EG f (X i) � hf (V�i):

By (C1), j f (X i)j < K1(1� jX ijã). So, using Lemma 1, and (13) for the de®nition of Cã,

EjX ijã � E EG jX ijã � Cã EV�
ã=2
i < Cãm

ã

2

� �
:

Thus, j f (X i)j has ®nite expectation and

EG f (Xi) �
�

R

f (x) exp ÿ x2

2 �Vi

� �
dx

(2ðV�i)1=2
�
�

R

f (xV�
1=2
i )n(x) dx � hf (V�i):

Now, we can split the difference P̂n( f )ÿ Pð( f ) into the sum of three terms:

P̂n( f )ÿ Pð( f ) � An � Bn � Dn, (20)

with, using the notation introduced in Lemma 3,

An � 1

n

Xn

i�1

[ f (X i)ÿ EG f (X i)], (21)

Bn � 1

n

Xn

i�1

EG f (Xi)ÿ 1

nÄn

� nÄ n

0

hf (Vs) ds � Bn(hf ), (22)

Dn � 1

nÄn

� nÄn

0

hf (Vs) dsÿ
�1

0

hf (v)ð(v) dv: (23)

Recall that

Pð( f ) �
�1

0

hf (v)ð(v) dv:

Since f satis®es (C2), we can apply Lemma 3 with ø � hf . Thus,

Bn(hf ) � Ä1=2
n OP(1): (24)

We may apply to (Vt) an ergodic theorem for one-dimensional positive recurrent diffusion

(see, for example, Rogers and Williams (1987, p. 300)). Since nÄn ! �1, we have, almost

surely,

1

nÄn

� nÄn

0

hf (Vs) ds !
n!�1

�1
0

hf (v)ð(v) dv:

Thus,

Dn !
n!�1 0 almost surely: (25)
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Let us now study An. For this, set

÷n
i �

1

n
[ f (X i)ÿ EG f (Xi)]:

Conditionally on G , the random variables ÷n
i are centred and independent. Thus,

EG (A2
n) �

Xn

i�1

EG (÷n
i )2:

Now

EG (÷n
i )2 � 1

n2
fEG f 2(X i)ÿ [EG f (X i)]

2g <
1

n2
EG f 2(Xi) � 1

n2

�
f 2(xV�

1=2
i )n(x) dx:

Using condition (C1) leads to f 2(x) < K91(1� x2ã). Thus,

EG f 2(Xi) < K91(1� C2ãV�ãi ):

Therefore, by Lemma 1,

E(÷n
i )2 <

1

n2
K91[1� C2ãm(ã)]:

This implies that

EA2
n <

1

n
K91[1� C2ãm(ã)]:

Thus,

An � nÿ1=2OP(1): (26)

Joining (24)±(26) achieves the proof of Theorem 1. u

Proof of Theorem 2. We study now (nÄn)1=2 [P̂n( f )ÿ Pð( f )]. Using the notation in (21)±

(23),

(nÄn)1=2[P̂n( f )ÿ Pð( f )] � (nÄn)1=2 An � (nÄn)1=2 Bn(hf )� (nÄn)1=2 Dn: (27)

Two cases may occur; if f (x) � x2, the function hf (v) � v, and, in this case, Bn(hf ) � 0.

Otherwise, it follows from (24) that

(nÄn)1=2 Bn(hf ) � (nÄ2
n)1=2OP(1):

Hence, if nÄ2
n ! 0 as n! �1, this term will asymptotically vanish. From (26), we see that
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(nÄn)1=2 An � Ä1=2
n OP(1),

which also goes to 0.

We only have to study the convergence in distribution of the third term of (27). It is

equal to

(nÄn)1=2 Dn � 1

(nÄn)1=2

� nÄn

0

hf (Vs)ÿ
�1

0

hf (v)ð(v) dv

� �
ds:

In order to apply a central limit theorem for one-dimensional positive recurrent diffusions

(see, for example, Florens-Zmirou (1984)), let us set

Hf (u) � hf (u)ÿ
�1

0

hf (v)ð(v) dv:

Clearly, the following holds: �1
0

Hf (v)ð(v) dv � 0:

Therefore,

1

(nÄn)1=2

� nÄ n

0

Hf (Vs) ds !D
n!�1N (0, V ( f )),

where V ( f ) is given by the formula

V ( f ) � 4

�1
0

ð(v) s(v)a(v)

�v

0

du
Hf (u)

a2(u)s(u)

� �2

dv:

De®nitions (5), (6), (9) and (14) lead to the expression of V ( f ) given in (15). u

Consequence. Let us consider sampling intervals Än � nÿá. The conditions Än ! 0 and

nÄn ! �1 lead to 0 ,á, 1. The additional condition nÄ2
n ! 0 leads to 1

2
,á, 1.

Therefore, the rate of convergence of Theorem 2 is (nÄn)1=2 � n(1ÿá)=2 with 0 ,
(1ÿ á)=2 , 1

4
.

3.4. Some bounds for the asymptotic variance

The result of Theorem 2 holds under the assumption that the quantity V ( f ) de®ned in (15) is

®nite. For this, we have to study the behaviour around 0 and �1 of the function s(v)A2
f (v).

The proposition below provides explicit bounds which can be easily computed.

Proposition 1. Assume (A1)±(A4) and

(i)

�
0�

dv s(v)

�v

0

ð(u) du

� �2

,�1,

and
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(ii)

�1
dv s(v)

��1
v

uã=2ð(u) du

 !2

,�1,

then, for all f 2 F ã, V ( f ) ,�1.

Proof. This result is a straightforward consequence of the following lemma.

Lemma 4. Assume (A1)±(A4) and let f belong to F ã. Then,

(i) there exist C . 0 and v0 . 0 such that

8v 2 [0, v0], jAf (v)j < C

�v

0

ð(u) du

and

(ii) there exist C9 . 0 and v1 . 0 such that

8v > v1, jAf (v)j < C9

��1
v

uã=2ð(u) du:

Proof. Condition (C1) states that

9K1 . 0, 8x 2 R, j f (x)j < K1(1� jxjã):

Therefore, see (9) and (13),

8v > 0, jhf (v)j < K1(1� Cãvã=2):

Now,

jAf (v)j <
�v

0

[jhf (u)j � jPð( f )j]ð(u) du:

This leads to (i).

To deal with the neighbourhood of �1, we ®rst recall that Af (�1) � 0. Hence

Af (v) � ÿ
��1

v

ð(u) du [h f (u)ÿ Pð( f )]:

Therefore,

jAf (v)j <
��1

v

ð(u) du [jhf (u)j � jPð( f )j],

which leads to (ii). u

Remark. In some cases, V ( f ) can be explicitly computed. However, Proposition 1 gives

suf®cient conditions for checking that V ( f ) is ®nite. Both conditions are easy to check and

interesting because they only involve the diffusion model for (Vt) and the moment condition

on the stationary distribution ð.
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3.5. Finite-dimensional distributions

Theorem 2 can be extended to ®nite-dimensional distributions. Let f , g be two functions in

F ã. Set V ( f ) � V ( f , f ) and

V ( f , g) � 4M

�1
0

s(v)Af (v)Ag(v) dv: (28)

Theorem 3. Assume (A1)±(A4) and let ( f 1, . . . , f k) be a ®nite set of functions in F ã.

Assume that Än ! 0 and nÄn ! �1. If, moreover, nÄ2
n ! 0 and V ( f i, f i) ,�1 for

i � 1, . . . , k, then the vector

(nÄn)1=2[P̂n( f i)ÿ Pð( f i)]1<i<k

converges in distribution to N k(0, (V ( f i, f j))1<i, j<k).

Proof. Clearly, the assumption V ( f i, f i) ,1 for i � 1, . . . , k implies that all the quantities

V ( f i, f j) are well de®ned. Now, let á1, . . . , ák be given real numbers, and set f � á1 f 1 �
. . . � ák f k . Then,

P̂n( f )ÿ Pð( f ) �
Xk

i�1

ái[P̂n( f i)ÿ Pð( f i)]:

Since hf (v) �Pk
i�1ái h f i

(v), the function Af (v) associated with f satis®es

A f (v) �
Xk

i�1

ái A f i
(v):

and V ( f , f ) has the expansion

V ( f , f ) �
Xk

i�1

á2
i V ( f i, f i)� 2

X
1<i, j<k

áiá jV ( f i, f j):

This gives the result. u

4. Extension to the presence of a drift in the (Yt) model

Stochastic models for stock prices and instantaneous standard deviations of the stock returns

are generally given by

dSt � ìSt dt � V
1=2
t S t dBt,

dVt � b(Vt) dt � a(Vt) dWt:

Only (St) is observed and, in the simplest case, ì is a deterministic constant. In order to

recover the previous setting, let Yt � log St. Then, a standard application of the Ito formula

yields
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dYt � (ìÿ 1
2
Vt) dt � V

1=2
t dBt:

This example shows the interest of studying models where there is a drift term in (Yt)

depending only on the instantaneous conditional variance Vt.

Let us now consider the model

dYt � j(Vt) dt � V
1=2
t dBt, Y0 � 0,

dVt � b(Vt) dt � a(Vt) dWt V0 � ç,

with ç independent of (Bt, Wt) t>0. From now on, we assume (A1)±(A4). As previously,

de®ne

Xi � 1

Ä1=2
n

(Yti
ÿ Ytiÿ1

), i � 1, . . . , n,

and introduce the random variables

îi � 1

Ä1=2
n

� ti

tiÿ1

V 1=2
s dBs, i � 1, . . . , n:

Clearly, the results of Section 3 apply to the îi variables. We obtain below that these results

are still true when Xi is substituted for îi.

Let us de®ne

P̂n � 1

n

Xn

i�1

äX i
, Q̂n � 1

n

Xn

i�1

äîi
:

Theorem 4. Assume (A1)±(A4). Let f belong to F ã and assume moreover that f 9 is such

that

9p, 1 < p < ã, 9C, 8x 2 R, j f 9(x)j < C(1� jxj p):

Then, if the drift function j satis®es Ejj(ç)j p�1 ,�1, one has

(i) if Än tends to 0 and nÄn tends to in®nity, Theorem 1 holds for P̂n( f ), and

(ii) if moreover nÄ2
n tends to 0, Theorem 2 holds for P̂n( f ).

Proof. Theorem 1 and Theorem 2 hold for Q̂n. So, only the difference P̂n( f )ÿ Q̂n( f ) has to

be studied. By the Taylor formula,

P̂n( f )ÿ Q̂n( f ) � 1

n

Xn

i�1

(Xi ÿ îi)

�1

0

f 9[îi � u(Xi ÿ îi)] du:

Note that Xi ÿ îi � Äÿ1=2
n

� t i

tiÿ1
j(Vs) ds are G -measurable random variables where

G � ó (V0, (Wt, t > 0)). Using the assumption on f 9,

j f 9[îi � u(Xi ÿ îi)]j < C(1� jîi � u(X i ÿ îi)j p) < C9(1� jîij p � jXi ÿ îij p),

for all u 2 [0, 1]. Taking the conditional expectation with respect to G and using that îi is

N (0, V�i) lead to

Limit theorems for stochastic volatility models 297



EG j f 9[îi � u(X i ÿ îi)]j < C9(1� CpV�
p=2
i � jXi ÿ îij p):

Recall that V�i � (1=Än)
� ti

t iÿ1
Vs ds and that Cp is the pth absolute moment of the N (0, 1)

distribution. Therefore,

EjP̂n( f )ÿ Q̂n( f )j < C9

n

Xn

i�1

Li,

with

Li � E[jXi ÿ îij(1� C pV�
p=2
i � jXi ÿ îij p)]:

For k > 1, one has

EjX i ÿ îijk � Äk=2
n E

���� 1

Än

� ti

tiÿ1

j(Vs) ds

����k
 !

< Äk=2
n Ejj(ç)jk :

Using now the Cauchy±Schwarz inequality, and applying Lemma 1 to V�i, we get

E(jX i ÿ îijV� p=2
i ) < [E(X i ÿ îi)

2EV� p
i ]1=2 < Ä1=2

n [Ej2(ç)]1=2 m( p)1=2:

Joining these results, we obtain

Li < Ä1=2
n fEjj(ç)j � Cp[Ej2(ç)]1=2 m( p)1=2g � Ä( p�1)=2

n Ejj(ç)j p�1:

Therefore,

EjP̂n( f )ÿ Q̂n( f )j < C 0Ä1=2
n :

Thus jP̂n( f )ÿ Q̂n( f )j � Ä1=2
n OP(1). So, the presence of a drift function j in the (Yt) model

induces a bias of order Ä1=2
n . We see that

P̂n( f )ÿ Q̂n( f ) !
n!1 0 in probability,

and, if nÄ2
n ! 0,

(nÄn)1=2[P̂n( f )ÿ Q̂n( f )] !
n!1 0 in probability:

This achieves the proof of Theorem 4. u

5. Extension to some related models

Usually, in the ®nancial models, the conditional instantaneous variance of the observed

diffusion (Yt) is given by ó 2
t and, depending on the researchers, either ó t or Vt � ó 2

t is ruled

by a stochastic differential equation. The second case has been studied above. However, this

framework puts aside some models (see, for example, Example 4 in Section 6). This is the

reason why we study the extension to the case where the stochastic differential equation

involves ó t.
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Let (Yt, ó t) t>0 be the two-dimensional diffusion process de®ned by

dYt � ó t dBt, Y0 � 0, (29)

dó t � b(ó t) dt � a(ó t) dWt, ó0 � î, (30)

with (Bt, Wt) t>0 a standard Brownian motion of R2, and î independent of (Bt, Wt) t>0. Note

that dYt � ó t dBt and dYt � (ó 2
t )

1=2 dBt gives the same distribution for the process Yt. Now

we assume the following.

(A91) Functions b and a are C1 on R and such that

9k . 0, 8u 2 R, b2(u)� a2(u) < k(1� u2):

(A92) The function s(u) of diffusion ó t is de®ned as in (5) but now for u in R, and��1
s(u) du �

�
ÿ1

s(u) du � �1, M~ �
��1
ÿ1

du

a2(u)s(u)
,�1:

(A93) Let ð~(u) � 1=M~a2(u)s(u) denote the stationary distribution of ó t on R.

Assumption (A3) therefore becomes as follows: the initial random variable î has

distribution ð~(u) du.

(A94) We assume that ð~ veri®es

9á > 4,

�
R

jujáð~(u) du ,�1:

We consider now the class of functions F á=2 (see (10) and (11) for the de®nition of F ã, and

(9) for the de®nition of hf (v)). Denote the pth moment of ð~ by

m~( p) �
�

R

u pð~(u) du for 0 < p < á: (31)

From the observations Yti
de®ned by (29), we consider the same variables X i as de®ned in

(1). Now, let us denote

Pð~( f ) �
�

R

hf (u2)ð~(u) du: (32)

The main difference here is that Pð~ is the distribution of Ejîj, where (E, î) has distribution

N (0, 1)
 ð~(u) du. Note that

Ehf (î2) � E f (Ejîj) � Pð~( f ):

Let us de®ne

A~ f (v) �
�v

ÿ1
[hf (u2)ÿ Pð~( f )]ð~(u) du, v 2 R, (33)

V~( f ) � 4M~
�

R

s(u)A~2
f (u) du: (34)

Then, the following holds.
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Theorem 5. Assume (A91)±(A94) and that f belongs to F á=2. Now, if Än ! 0 and

nÄn ! �1, then

(i) P̂n( f )! Pð~( f ) in probability, as n tends to in®nity and

(ii) if moreover nÄ2
n ! 0 and V~( f ) ,�1,

(nÄn)1=2[P̂n( f )ÿ Pð~( f )] !D
n!�1N (0, V~( f )):

If f (x) � x2, the additional assumption nÄ2
n ! 0 is not needed.

The proof is a minor generalization of our earlier results and is omitted. As previously

for Theorem 2, Theorem 5 holds whenever V~( f ) ,�1. The useful suf®cient conditions

which allow one to check this property are now the following:

(i)

�
ÿ1

dv s(v)

�v

ÿ1
jujã=2ð~(u) du

� �2

,�1,

(ii)

�1
dv s(v)

��1
v

jujã=2ð~(u) du

 !2

,�1:

Then, if (i) and (ii) hold, for all f 2 F á=2, V~( f ) ,�1. As in Lemma 4, these

conditions are deduced from upper bounds for A~ f (v) near ÿ1 and �1.

6. Examples

Several parametric models for the stochastic volatility Vt have been proposed by various

workers. We give below some examples which are all included in the above framework.

Assumptions (A1)±(A4) are readily checked and the stationary distribution ð, is, in each

case, a simple and classical distribution whose moments can be easily computed.

Now, the results of the previous sections show that the moments of the distribution Pð

can be consistently estimated by means of empirical moments built from the observations.

An important point is that the 2 pth moments of Pð are linked to the pth moments of ð by

the relation �
x2 p dPð(x) � C2 p

�
v pð(v) dv � C2 p m( p)

(see (7) and (13)).

Therefore all the moments of the distribution ð can be consistently estimated. Details and

simulation results will be investigated in a separate paper. Let us now consider the

examples.

Example 1 (Heston 1993).

dVt � c2

2
(aÿ ëVt) dt � cVt

1=2 dWt:
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Assumption (A2) holds if ë. 0 and a > 1. The stationary distribution ð(v) dv of (Vt) is the

standard gamma distribution with parameters a and ë:

ð(v) � ëa

Ã(a)
exp (ÿëv) vaÿ11(v . 0):

This distribution has moments of order p for all positive p. Hence (A4) holds. These

moments are given by

m( p) � Ã(a� p)

Ã(a)ë p
:

Example 2. This example is the diffusion approximation of a discrete GARCH(1, 1) model:

dVt � c2

2
(ëÿ aVt) dt � cVt dWt:

Assumption (A2) holds if ë. 0 and a .ÿ1. The stationary distribution ð of (Vt) is the

distribution with density

ð(v) � ëa�1

Ã(a� 1)
vÿa exp ÿ ë

v

� �
1

v2
1v . 0:

Hence, it is the distribution of 1=X where X is a random variable distributed according to a

gamma distribution with parameters a� 1 and ë. The moments of ð are de®ned by

m( p) � ë p Ã(a� 1ÿ p)

Ã(a� 1)
if p , a� 1,

m( p) � �1 if p > a� 1:

Example 3. (Chesney and Scott 1989).

Vt � exp (Xt), dX t � á(âÿ Xt) dt � r dWt:

Clearly, since (Xt) is an Ornstein±Uhlenbeck diffusion process with stationary distribution

N (â, r2=2á), if á. 0, (Vt) is ergodic with a log-normal stationary distribution which has

moments of any order, given by

m( p) � exp pâ� p2

2

r2

2á

� �
:

Example 4 (Scott 1987; Stein and Stein 1991).

Vt � ó 2
t , dó t � á(âÿ ó t) dt � r dWt:

Here, when á. 0, (ó t) is an ergodic diffusion on R (see Section 5), ð~(u) is the distribution

N (â, r2=2á) and
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m~(2 p) � E â� r2

2á

� �1=2

E

" #2 p

,

where E has distribution N (0, 1). When â � 0, this is a special case of Example 1.
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