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A general set-up is proposed to study stochastic volatility models. We consider here a two-dimensional
diffusion process (Y;, V;) and assume that only (Y;) is observed at n discrete times with regular
sampling interval A. The unobserved coordinate (V;) is an ergodic diffusion which rules the diffusion
coefficient (or volatility) of (Y;). The following asymptotic framework is used: the sampling interval
tends to 0, while the number of observations and the length of the observation time tend to infinity.
We study the empirical distribution associated with the observed increments of (Y;). We prove that it
converges in probability to a variance mixture of Gaussian laws and obtain a central limit theorem.
Examples of models widely used in finance, and included in this framework, are given.
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1. Introduction

Diffusion processes are now widely used for modelling purposes in various fields and
especially in finance. Many papers are devoted to the estimation of drift and diffusion
coefficients of such models. The diffusion sample path may be continuously or discretely
observed and numerous asymptotic results have been obtained. Among many references, let
us quote Kutoyants (1984), Dacunha-Castelle and Florens-Zmirou (1986), Donahl (1987),
Genon-Catalot (1990), Larédo (1990), Genon-Catalot and Jacod (1993), Bibby and Sorensen
(1995) and Kessler (1995). In these studies, when multidimensional diffusions are considered,
all coordinates are assumed to be observed.

However, the case of an unobserved or hidden coordinate may occur in practice. Examples
can be found in the field of finance with the introduction of the stochastic volatility models.
Indeed, in this area, the term volatility stands for the diffusion coefficient of stock returns.
The seminal model of Black and Scholes (1973) assumes that stock price processes follow a
geometric Brownian motion with constant volatility, but recent empirical evidence has
extensively shown that this constant volatility assumption is unrealistic (see, for example,
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Bollerslev ef al. (1992) for a survey paper, and Taylor and Xu (1994, 1995) among many
others). As an answer, some researchers have proposed models which include stochastic
volatility in such a way that the couple (stock price, volatility) still behaves as a two-
dimensional diffusion process (Hull and White (1987); Wiggins (1987); Scott (1987);
Chesney and Scott (1989); Stein and Stein (1991); Heston (1993); Leblanc (1996)). This
raises a difficulty since only the stock price is observable, while the volatility is unobservable.

Indeed, assume that (S;) is the price process of some stock or asset and that the stock
returns are ruled as usual by

@ =u,dt+o0,dB,.

St
Here, (0/) is the volatility of (S;), and (B,) is a Brownian motion. In the first models, x, and
o0, are constants or deterministic functions of ¢. It follows from the discussion above that
V: =02 can be modelled by a diffusion process, driven by another Brownian motion
(W, t = 0).

In this set-up, Nelson (1992) and Foster and Nelson (1994) give a solution to the problem
of filtering (V) through (S,), i.., they define estimators ¥; of ¥, given the data up to time ¢
of (S,). Our concern here is different. It is not to estimate the stochastic value V;, but to get
information on the distribution of the (V) process. So we are in the presence of a hidden
Markov process. Most references in this field are concerned with discrete-time models, e.g.,
hidden Markov chains (see, for example, Elliott ef al. (1995)). However, among the
references quoted above, a few continuous-time models have been studied; in these papers,
some estimators of parameters present in the (/) model are computed in specific cases, using
stock prices data, with heuristic and empirical approach, but no theoretical study.

Our aim here is to propose a general set-up to study stochastic volatility models. Let us
consider a two-dimensional diffusion (Y;, V;) such that

dY, = (V) dt + Vi dB,, Yy =0,
dv, = b(V)di + a(V)dW,, Vo =1,

where (B;, W;)= is a two-dimensional standard Brownian motion, (V) is a positive diffusion
process and # is a positive random variable independent of (B, W;)=¢.

In the model equations above, Y; stands for logS,. The sample path (Y;) is discretely
observed at regularly spaced times #; = iA, i =0, ..., n. The aim is to get information on
the (V;) model from the observations (Y, ..., Y;,) only. We introduce here the appropriate
assumptions and asymptotic framework. The key assumption is that the diffusion (V;) has to
be ergodic. Apart from this assumption, the diffusion model for (¥;) can be quite general;
so our results will apply to most of the specific models proposed in the financial literature.

Our asymptotic framework is as follows. The number of observations » tends to infinity,
the sampling interval A = A, tends to zero, and the length of the observation time interval
nA, tends to infinity. We investigate the asymptotic behaviour of the empirical distribution
13,, associated with the random variables

Xi:X?:ﬁ(Yh_Yfil)ﬂ (1)
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where t; =1t =iA,, i=0,..., n, ie,

o 1<&
Py :lel:a)(,"a

where 0, is the Dirac measure at point a.
The paper is organized as follows. In Sections 2 and 3, we set ¢ = 0. We assume that
(V;) is a strictly stationary positive process with stationary distribution st(v)dv on (0, +00).
The main result of this paper is a convergence theorem for

R R 1
P = | 108,00 =1 > s, )
R =

where f belongs to a class of functions .7 satisfying appropriate conditions. This class
contains the functions f(x) = x2?, p =1 such that E»?? is finite. We prove in Theorem 1
that P,(f) converges in probability to Py(f), where Py is the distribution of X = ¢5'/? and
(¢, 17) has distribution ./(0, 1) ® 71(v) dv. Therefore, the distribution P, is a variance mixture
of Gaussian laws, the mixing distribution being the stationary distribution of the unobservable
diffusion (V).

In Theorem 2, we prove that, under the additional assumption nAi — 0,

(A PLP(f) — Pa(f)]

converges in distribution to a Gaussian distribution ./ (0, V' (f)). A difficulty arises when
checking V(f) < +o0. For this, we give a sufficient condition (Proposition 1) involving only
the distribution sz, which implies that V' (f) is finite for any f in .. The convergence in
distribution also holds for finite-dimensional distributions (Theorem 3).

In Section 4, we study the case ¢ # 0. Under appropriate assumptions on ¢, the results
of Theorems 1 and 2 are unchanged (Theorem 4). This implies that ¢ may be known or
unknown. Section 5 is devoted to the study of related models. We investigate the case
where V; :0% with (0,) a stationary diffusion on R. This includes the case of (0,) a
Gaussian diffusion. Some examples are given in Section 6.

The results obtained here clearly have several statistical implications. The empirical
distribution P, can be used to estimate the stationary distribution 7 of the unobserved
diffusion (V). This subject will be investigated in a forthcoming paper.

2. Model and assumptions

2.1. The model

Let (Y, V;)i=0 be the two-dimensional diffusion process defined as the solution of
dv, = v\ dB,, Yo = 0, 3)

dV[ == b(V[) dt + a(V;)dW[, V() = 77, (4)
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where

(1) (B;, W));=0 is a standard Brownian motion of R’ defined on a probability space
(R, .7, P) and
(2) n is a random variable defined on €, independent of (B;, W,)>o.

Equation (4) defines a one-dimensional diffusion process. We make now the classical
assumptions on functions b and a which ensure that the solution of (4) is a positive
recurrent diffusion on (0, +00) and a strictly stationary and ergodic process.

(Al) b, a are continuous real functions on R, and C' functions on (0, +00) such that
Jk>0, Yo>0, bP@O)+d@)<k(l+v*) and VYo>0, a(v)>0.

For vy >0, define

b
s(v) = exp <2J az((b;)) du). 5)
(A2)
—+00 —+00 do
Jy, s =too [ smaoron [ o p <o
Let
1
.7'[(7)) :MW)S(U)I(Z)>O). (6)

(A3) The initial random variable # has distribution 7(v) dv.
(A4) Fy =2, [ v’ a(v)do < +o0.

Assumptions (Al) and (A2) ensure existence and uniqueness of the solution of (4)
together with the positive recurrence on (0, +00). In particular, the following holds:

P(V,>0,Vt=0)=1.

Assumption (A3) provides the strict stationarity property. Note that, for each # = 0, V, has
distribution 7(v) dv which satisfies, under (A4), EV’ < oco. So we introduce the notation

+00
m(p):J v’a(v)do = EV? for0<p=<y. @)
0

Comment 1. We are aware that, in the financial papers, more general models are considered.
The two Brownian motions (B;) and (W;) are supposed to be correlated; the drift function of
(Y;) may depend on ¢, Y, and V;. Here, we have chosen to simplify the model in order to
clarify the statistical problems involved in this class of models.
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2.2. Observations and asymptotic framework

The diffusion (V) is supposed to be unobservable but it rules the conditional variance of (Y;)
(see (3) and (4)). We assume that (Y;) is observable but only at » discrete times with regular

sampling interval A. We denote by t; = iA, i =0, ..., n, these observation times. Our results
are obtained in the asymptotic framework defined as follows. As n — 400,
A=A,—0 and T, = nA, — +oo. (8)

The length T, of the time interval where observations are available tends to infinity, while the
sampling interval tends to 0.

Comment 2. In order to justify the double asymptotic framework, let us point out that a
discrete A-sampling observation of (Y;) on a fixed time interval provides information on the
conditional variance V7 as A — 0. This is the filtering approach of Nelson (1992). To go
further and obtain estimators for parameters in b(.) and a(.), we have to use the ergodicity
properties of (V;), and so let T = nA, tends to infinity. We refer for this to a forthcoming

paper.
Our concern is the study of the asymptotic behaviour of P,(f) (see (2)). In the next
section, we introduce the appropriate class of functions f for this study.

2.3. The class of functions

For f: R — R, let us consider, when defined, the function A,: Rt — R:

) = | 1 P ds, ©)
where n(x) = 1/(2m)"/? exp(—x?/2) is the ./7(0, 1) density. We consider the following
conditions.

(C1) Function fis C' and such that, for the exponent y given in (A4),

3K >0, Vx e R, |f()] < Ki(1 + [x]). (10)
(C2) Function f is such that A, € C'[0, +00) and, for y given in (A4),

3K, >0, Yo = 0, |1 (0)] < Ky(1 +07/?). (11)

Denote by .7, the class of functions satisfying (C1) and (C2). Under (Cl), the function
hy is well defined and continuous and satisfies 4 ,(v) = Ef (ev'/?), where € is a ./7(0, 1)
random variable. Let us point out that, for /" €.7,, using (Cl), (C2) and (A4),

ER3(V,) = B2 <+oo,  EWyA(V) = Ehy () < +c.

Note that B/ (17) = Ef(en'/?) where (¢, 1) has distribution ./ (0, 1) ® (v) dv. Therefore, the
distribution of ex'/? is a variance mixture of Gaussian laws, the mixing distribution being the
stationary distribution of ;. We shall denote this distribution by P,. For f € .7,, we have
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Pa(f) = JRf(x) dPy(x) = “f(ev‘/z)n(x)ﬂ(v) drdo = jw h@a@do.  (12)

Let us give examples of functions f belonging to .7,,.

(1) For 1 € R and f(x) = exp(itx), hs(v) = exp (—t*v/2), and P(f) = E[exp (—t*17/2)].
Although in this example, the function f is complex valued, the results below will be true
because /4, is a real-valued function so that P.(f) is real.

(2) For 1 < p<y/2, f(x)=x, hy(v) = C;,v”, where

Cy = J |x|¥n(x) dx (13)
R
is the kth absolute moment of the distribution ./"(0, 1) and, using (7) and (12),
Pn(f) = CZpEnp = Cme(p)-
(3) This is a generalization of Example 2. Set f(x) = g(x?), g € C'[0, +00), and
IK>0, Yu=0, |guw|+]|gw|=<Kd+u"?.
Finally, we introduce the function
U
Ay (v) = J (7 (u) — P(f)]w(u) du. (14)
0

Note that 4 s(400) = 0.

3. Limit theorems for the empirical distribution

3.1. Main results

We successively state the convergence in probability of P,(f) and then the central limit
theorem.

Theorem 1. Assume (A1)—(A4) and let f belong to .7,. Then, if A, — 0 and nA, — o0,

Pu(f) T2 Palf) i probability.

Going a step further into the analysis, we define
+00
_ 2
V(f) = 4MJ0 s(v)A4%7(v) do, (15)
where s(.) and M are defined in (A2) and 4 ,(v) is given in (14). Let us notice that the

formula for V(f) does not depend on the choice of the value vy used to compute s(v) (see
assumption (A2)). This is because the product Ms(v) does not depend on vy.
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Theorem 2. Assume (Al)—(A4) and let f belong to 7,. Assume that A, — 0 and
nA, — +oo. If, moreover, nAi — 0 and V(f)<+oo, then

(A PIPAS) = Polf)] 2 A0, V().

If f(x) = x*, the additional condition nAi — 0 is not needed.

Proofs of both theorems rely upon lemmas that we state now.

3.2. Preliminary lemmas

Let us define

1"
P = Vsds. 16
al,, 19

Lemma 1. Assume (Al1)—(A4). Then, for 1 < p <y,
EV} < m(p),
where m(p) is given in (7).
Proof. Since p = 1, the Holder inequality gives
_ 1 (4
VP < —J VP ds,
nJti

which, by stationarity, gives the result. (]

Lemma 2. Assume (Al)—(A4). There exists a constant C such that, for 0 <v < |,
E(Vo — Vo)’ < Cu,
where C only depends on m(2) and k (see (Al) and (7)).

Proof. This lemma is a straightforward consequence of our assumptions. We have

v

Vo — Vo =J b(V,Jdu—&—J a(V,)dw,.
0 0

Thus, it follows that

v 2 v 2 v v 2
(Vo — Vo) < 2<J b(V.,) du) 12 (J a(V,,)qu) < 2vj PA(V,) du +2<J a(Vu)qu> :
0 0

0 0
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By (Al), we obtain
0 v
E(V, — Vo) < 2k<vJ [l +E(W?)]du +J [14+E(V?)] du).
0 0

Now, by (A4), EV2= [v*a(v)dv= m(2)<+oco. Hence, E(V,— Vy)*=<2k[l +
m(2)](v* + v). This gives the lemma. O
Lemma 3. Assume (A1)—(A4). Let ¢ € C'[0, +00) be such that

IK>0, Yo=0, [|p'@©)|<K(l1+0"?.
Then,

1 n B 1 nA,
B = S0 = | pds = A0
i=1 n

Proof. First note that, if ¥ is linear, B,(y) = 0. Otherwise,

1 & B
nA, ;J ][w(Vi) —yY(Vy)lds.

t;
ti

Bu(y) =

Applying the Taylor formula yields

1/1([71) - w(Vs) = (171 - VS)Ri(S)a
with

1
R(5) = | /07 = Vol
0
Now consider
_ 1 (4
Vi v, =—j (V, — Vodr.
Thus

t t
J ds |Ri<s)|J W, - v de.
1 ti1

fi _

1 n
|Ba(y)| < n?z

n i=1
Therefore, taking the expectation and then applying the Schwarz inequality lead to

J J dsdt[E(V; — V> ERi(s)*]"/>. (17)

tic1Jtic

1 n
E[B.(y)| < WZ

n i=1
Lemma 2 and the strict stationarity give, for s, ¢ € [¢;_;, t;] and n large enough,
E(V: — V> = B(Vj,—y — Vo)* < C|t —s]. (18)

Coming back to Ri(s), we have, using the assumption on ',
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1 —
R = K| [+ 17+ a7 = V0P
0
_ 1 (%
Vi+uV, = V) = —J [uVi+ (1 —wV]dt.

A" tizi

Thus, by Holder’s inequality, since y/2 = 1

_ 1
|m+mm—mwﬂsgﬁ wm+a—MVW%r<(”J(W”+m%m,
tio iy

n

for some constant K(y) and for all u € [0, 1]. So,
1 (%
|MW<M@O+KJUW+W%ﬂ
nJditiy

and

nJtiy

t;
Ri(s)* < L<l +ALJ V7 + VZ)dt),

for some constant L > 0. Using now assumption (A4), we obtain
ER(s)* < L[1 + 2m(y)]. (19)
Applying inequalities (18) and (19) to (17) leads to
ti
E| B, ()| < {CL[1 + 2m(y)]}'/? J J dsdz|r — s|'/2,
|By(y)| < {CL[1 +2m(y)]} M;;hlm |t =]

By a straightforward computation

ti t

J J dsdr|r—s|'/? = SAZAL2.
tio1J iy

This implies that E|B,(y)| < L’Al/ % for some constant L' >0. Thus, we get the result of
Lemma 3. O

3.3. Proofs of the theorems

Let us now prove the theorems.

Proof of Theorem 1. Let us study P,(f)— Pz(f) when f belongs to Fy. Let &=
o(Vy, Wi, t =0), and denote by E“ the conditional expectation with respect to <.
Conditionally on &, the random variables (X;, i =1, ..., n) defined in (1) are independent
and X; has distribution ./(0, ;) where V; is defined in (16). Moreover, let us check that
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Elf(X)|<oo,  E7f(X)=h(V).
By (C1), |f(X)| = Ki(1 + |X;|"). So, using Lemma 1, and (13) for the definition of C,,

ElX,]” =EE”|X,[’ = C,EV/* < cym@).

Thus, |f(X;)| has finite expectation and

% o x? dx - =1/2 B >
E7 £(X,) = JRf(x) exp (— ZV) AT J[Rf(xVi ya(@)dx = by (7).

Now, we can split the difference P,,(f ) — P;(f) into the sum of three terms:
pn(f) - Pﬂ(f) = A, + B, + D,, (20)

with, using the notation introduced in Lemma 3,

1 <& .
Ap == LX) =B f(X)], 1)
i=1
B =15 B o) - —— [ ds = B 22
=B | s = B, (2)
1 nA, 00
D, = A Jo hy(Vs)ds — L hy(v)m(v) do. (23)

Recall that

{o¢]

P.(f) = J hy(v)m(v) do.

0

Since f satisfies (C2), we can apply Lemma 3 with ¢ = h,. Thus,
Bu(hy) = A2 Op(1). (24)

We may apply to (V;) an ergodic theorem for one-dimensional positive recurrent diffusion
(see, for example, Rogers and Williams (1987, p. 300)). Since nA, — +o0o, we have, almost
surely,

00

nA,
Jo h(Vo)ds — JO hy(v)(v) do.

nA,
Thus,

D, — 0 almost surely. (25)

n—+00
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Let us now study 4,. For this, set

2 =)~ B[]

Conditionally on &, the random variables y are centred and independent. Thus,

E7(47) =D _E7 (i)
i=1

Now
- 1 . o | 1 _
B2 () = {7 f200) — [E7 f(X)P} < S E7 12(X) = ;jﬁ(wi/ () d.
Using condition (C1) leads to f2(x) < K{(1 + x*). Thus,
E7 f2(X)) < Ki(1 + Cy, V7).
Therefore, by Lemma 1,
ny\2 1 ’
E(i)” < 3 Kill + Coym(y)]-
This implies that
2 1 ’
Thus,
A, = n"20p(1). (26)
Joining (24)—(26) achieves the proof of Theorem 1. O

Proof of Theorem 2. We study now (nA,)"2 [P,(f) — P«(f)]. Using the notation in (21)—
(23),

(nA)PPL(f) = Pa()] = (nA)2 A4, + (nA )2 By(hy) + (nA )2 D, (27)

Two cases may occur; if f(x) = x?, the function he(v) = v, and, in this case, B,(hs) = 0.
Otherwise, it follows from (24) that

(nA,)2By(hy) = (nA})"2 Op(1).

Hence, if nAi — 0 as n — 400, this term will asymptotically vanish. From (26), we see that
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(nA)' 24, = A2 0p(1),

which also goes to 0.
We only have to study the convergence in distribution of the third term of (27). It is
equal to

(nA )1/2D = ;Jmn (h V) — Jooh (v)7(v) dv) ds.
SN CT WS AN

In order to apply a central limit theorem for one-dimensional positive recurrent diffusions
(see, for example, Florens-Zmirou (1984)), let us set

(o.¢]

Hy(u) = hy(u) — JO hy(0)7(v) do.

Clearly, the following holds:
J Hy(v)m(v)dv = 0.
0
Therefore,

1

nA" f/ A"
WJ Hy(Vo)ds :;Oou/f’ O, V(f),

0

where V(f) is given by the formula

00 v 2
V(f):4jo n(v)(s(v)a(v)J dy 200 ) do.

o a*(u)s(u)

Definitions (5), (6), (9) and (14) lead to the expression of V(f) given in (15). O

Consequence. Let us consider sampling intervals A, = n~“*. The conditions A, — 0 and
nA, — +oo lead to 0<a<1. The additional condition nA? — 0 leads to I<a<l.
Therefore, the rate of convergence of Theorem 2 is (nA,)/? = n(=9/2 with 0<
(1-a)/2<i

3.4. Some bounds for the asymptotic variance
The result of Theorem 2 holds under the assumption that the quantity V(f) defined in (15) is
finite. For this, we have to study the behaviour around 0 and +oco of the function s(v)Af‘v(v).
The proposition below provides explicit bounds which can be easily computed.
Proposition 1. Assume (Al)—(A4) and
1] 2

@) J dv s(v) <J 7(u) du) <+o0,

0+ 0

and
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2
00 +00
(ii) J dv s(v) (J uy/zn(u)du> < +oo,
then, for all [ €.7,, V(f)<4oo.

Proof. This result is a straightforward consequence of the following lemma.

Lemma 4. Assume (A1)—(A4) and let [ belong to 7,. Then,

(i) there exist C>0 and vy>0 such that

Voe[0, 0], |4r(v)] < CJvn(u) du
0

and

(ii) there exist C' >0 and vy >0 such that

+00
Yo =0, |4r()| < C’J u? () du.

[

Proof. Condition (C1) states that
dK; >0, VxeR, [f(x)|=Ki(l+ |x]").
Therefore, see (9) and (13),
Yo=0, |k <K+ Co'?).

Now,
4 (0)] = thf(un 1 1P 1) du

This leads to (i).
To deal with the neighbourhood of +oo, we first recall that 4y(4+00) = 0. Hence
+00

4(0) = —j sty du T () — Po(P)]-

Therefore,

+00

14,(0)] = J sty du 1Ay ()] + | PoCOI,

v

which leads to (ii). Il

Remark. In some cases, V(f) can be explicitly computed. However, Proposition 1 gives
sufficient conditions for checking that V(f) is finite. Both conditions are easy to check and
interesting because they only involve the diffusion model for (¥;) and the moment condition
on the stationary distribution .
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3.5. Finite-dimensional distributions

Theorem 2 can be extended to finite-dimensional distributions. Let f, g be two functions in
Fy. Set V(f)=V(f, f) and

Vif, g = 4MJO ‘s(v)Af(v)Ag(U) do. (28)

Theorem 3. Assume (Al)—(A4) and let (f1, ..., fr) be a finite set of functions in .7,.
Assume that A, — 0 and nA, — +oco. If, moreover, nA?1 — 0 and V(f;, fi) <+4oco for
i=1, ...,k then the vector

(1) LIPS = Pa(f)lii=k

converges in distribution to A" (0, (V(fi, [i)i=ij<k)-

Proof. Clearly, the assumption V(f;, f;) <<oco for i =1, ..., k implies that all the quantities
V(fi, f;) are well defined. Now, let a;, ..., a; be given real numbers, and set ' = a;f| +
...+ arfr. Then,

Py(f) = Pa(f) = zk; ailPo(fi) — Pal(f)]-
Since hr(v) = Zleaihfi(v), the function Ay(v) associated with f satisfies
Ar(v) = i a;Ay,(v).
and V(f, f) has the expansion
V(f, ) = Z:ja? Vi f)+2 Y @V, -

I<i<j<k

This gives the result. U

4. Extension to the presence of a drift in the (¥;) model

Stochastic models for stock prices and instantaneous standard deviations of the stock returns
are generally given by

ds, = uS,dt + v/*s,dB,,

th - b(Vt) dt + a(Vt)th.
Only (S;) is observed and, in the simplest case, u is a deterministic constant. In order to

recover the previous setting, let ¥; = log S;. Then, a standard application of the Ito formula
yields
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dY, = (u—1vydr+ vy dB,

This example shows the interest of studying models where there is a drift term in (Y;)
depending only on the instantaneous conditional variance V.
Let us now consider the model

dY, = (V) dt + V/* dB, Yo =0,
de:b(Vt)dl+a(Vt)de V() :77,

with 7 independent of (B;, W,),=¢. From now on, we assume (Al)—(A4). As previously,
define

and introduce the random variables

1
gi:_J vi2dB, i=1,...,n
Al/z ti1 '

Clearly, the results of Section 3 apply to the &; variables. We obtain below that these results
are still true when X; is substituted for &;.
Let us define

P, :%iax,, On :%iagi.
i=1 i=1

Theorem 4. Assume (Al)—(A4). Let f belong to 7, and assume moreover that f' is such
that

dp, 1=sp=<y, 3C, VxeR, [/ =<C1+|x|?).
Then, if the drift function ¢ satisfies E|o(n)|?*! < +o0, one has
(1) if A, tends to 0 and nA, tends to infinity, Theorem 1 holds for 13,,(}”), and
(i1) if moreover nAi tends to 0, Theorem 2 holds for P,(f).

Proof. Theorem 1 and Theorem 2 hold for Q,,. So, only the difference P,(f) — Qn(f ) has to
be studied. By the Taylor formula,

N . 1 n 1
Pa) = 0u() =7 > K = 8] £+ s = £ .
i=1
Note that X;—&; = A;l/ 2 fff: Le(Vs)ds are £ -measurable random variables where
& =o(Vy, (W, t =0)). Using the assumption on f’,
|f'[8i + u(X; — 8NNl < C( + |& + u(X; — E)|7) < C'(1 + |&i] " + | Xi — &I7),

for all u € [0, 1]. Taking the conditional expectation with respect to . and using that &; is
70, V) lead to
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E7|f'[E + u(X; — EDI| < C'(1+ G, PP 4+ X, — &|7).

Recall that V; = (1/A,) jt,il Vyds and that C, is the pth absolute moment of the ./7(0, 1)
distribution. Therefore,

. . CI n
EIPAf) = OuN < > L
i=1

with
L = E[X; — &[(1+ C, 777 11X, — &)7)].

For k =1, one has
1

1
E|Xi§,-"A’,;/2E<‘AnJ (V) ds

tio1

k
) < AKE|p()|F.

Using now the Cauchy—Schwarz inequality, and applying Lemma 1 to 7;, we get
E(1X; — &7 =< [ECX; - &YEVITY < AR’ 0p] P m(p) 2.
Joining these results, we obtain
L < A{Elon]| + GE@*(n]m(p) 2} + AP TV2E o).
Therefore,
BIP.(/) — Qu()] = C"A}2.

Thus |P,(f) — Ou(f)| = AL/ZOP(l). So, the presence of a drift function ¢ in the (¥;) model
induces a bias of order A/ We see that

P.(f) — Ou(f) — 0 in probability,
and, if nA% — 0,
(A PIBy(f) — Ou(f)] — O in probability.

This achieves the proof of Theorem 4. Ll

5. Extension to some related models

Usually, in the financial models, the conditional instantaneous variance of the observed
diffusion (Y;) is given by 0% and, depending on the researchers, either o, or V; = 0? is ruled
by a stochastic differential equation. The second case has been studied above. However, this
framework puts aside some models (see, for example, Example 4 in Section 6). This is the
reason why we study the extension to the case where the stochastic differential equation
involves o ,.
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Let (Y;, 04)s=0 be the two-dimensional diffusion process defined by
dY,=0,dB, Yy=0, (29)
do,=blo)dt+a(o)dW,, o0¢=24, (30)

with (B;, W,)=¢ a standard Brownian motion of R?, and & independent of (B;, W;)=¢. Note
that dY, = 0,dB, and dY, = (6%)"/2dB, gives the same distribution for the process ¥;. Now
we assume the following.

(A'1) Functions b and a are C' on R and such that
k>0, YueR, b u)+du)=<k(l+u?.
(A'2) The function s(u) of diffusion o, is defined as in (5) but now for u# in R, and

+00 du

Py T

+00
J s(u)du:J s(u) du = 400, M:J
(A'3) Let (u) = 1/Ma*(u)s(u) denote the stationary distribution of o, on R.
Assumption (A3) therefore becomes as follows: the initial random variable & has
distribution 77(u) du.
(A'4) We assume that 77 verifies

Ja = 4, J |u|*70(u) du < +-o0.
R

We consider now the class of functions .7, /, (see (10) and (11) for the definition of .7, and
(9) for the definition of /y(v)). Denote the pth moment of 7 by

m(p) = J u’a(u)ydu for0< p<a. (31)
R

From the observations Y,, defined by (29), we consider the same variables X; as defined in
(1). Now, let us denote

Paf) = JR Iy ()7t dus (32)

The main difference here is that P; is the distribution of ¢|&|, where (¢, &) has distribution
A7(0, 1) ® 7t(u) du. Note that

Eny(E%) = Ef(c|E)) = Pa(/).

Let us define

) = J Uy ) — Po(DViy du, v € R, (33)

V(f) = 4MJRs(u)/I?f(u) du. (34)

Then, the following holds.
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Theorem 5. Assume (A'l)—(A'4) and that f belongs to .7 ,,. Now, if A, — 0 and
nA, — +oo, then

() P.(f) — Pa(f) in probability, as n tends to infinity and
(ii) if moreover nAi — 0 and V(f)<+oo,

(nA) PIPA(f) = PAT = 470, P/

If f(x) = x?, the additional assumption nAi — 0 is not needed.

The proof is a minor generalization of our earlier results and is omitted. As previously
for Theorem 2, Theorem 5 holds whenever V(f)<<+oc. The useful sufficient conditions
which allow one to check this property are now the following:

v 2
@) J, dvs(v)(J |u|V/2ﬁ(u)du> < 400,

00 +00 2
(ii) J dvs(v)(J |u|7’/2ﬁ(u)du> < +00.

Then, if (i) and (ii) hold, for all f € .7 ¢, V(f)<+oo. As in Lemma 4, these
conditions are deduced from upper bounds for 4 ;(v) near —oo and +oo.

6. Examples

Several parametric models for the stochastic volatility ¥, have been proposed by various
workers. We give below some examples which are all included in the above framework.
Assumptions (A1)—(A4) are readily checked and the stationary distribution 7, is, in each
case, a simple and classical distribution whose moments can be easily computed.

Now, the results of the previous sections show that the moments of the distribution P,
can be consistently estimated by means of empirical moments built from the observations.
An important point is that the 2 pth moments of P, are linked to the pth moments of 7 by
the relation

szi’ dPy(x) = Cngv"n(v) do = Cy,m(p)

(see (7) and (13)).

Therefore all the moments of the distribution 7t can be consistently estimated. Details and
simulation results will be investigated in a separate paper. Let us now consider the
examples.

Example 1 (Heston 1993).

2
av, = %(a V) di + eV, 2 dw,.
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Assumption (A2) holds if 1 >0 and a = 1. The stationary distribution 7(v) dv of (V;) is the
standard gamma distribution with parameters a and A:

la
exXp (—lv) v“_l l(v >0)-

)=o)

This distribution has moments of order p for all positive p. Hence (A4) holds. These
moments are given by

Example 2. This example is the diffusion approximation of a discrete GARCH(1, 1) model:
2
th = ?(/1 — th)dt + CthWt-

Assumption (A2) holds if A>0 and a> —1. The stationary distribution & of (V;) is the
distribution with density

ﬂ( )—vaa (_&) il
P Tarn” P\

Hence, it is the distribution of 1/X where X is a random variable distributed according to a
gamma distribution with parameters ¢ + 1 and 4. The moments of s are defined by

L, la+1-p)
(S (PR

m(p)=4oc0 if p=a+l.

if p<a+l,

Example 3. (Chesney and Scott 1989).
V,ZCXp(X,), dXt:awaf)dt‘i’det

Clearly, since (X,) is an Ornstein—Uhlenbeck diffusion process with stationary distribution
A(B, p?2a), if a>0, (V,) is ergodic with a log-normal stationary distribution which has
moments of any order, given by

2 2
m(p) = exp (pﬁ + %g—a) :

Example 4 (Scott 1987; Stein and Stein 1991).
V[_O'z dO'[:a(ﬂ_O'[)dt"_de[.

= 4

Here, when a >0, (0,) is an ergodic diffusion on R (see Section 5), 77(u) is the distribution
7B, p?/2a) and



302 V. Genon-Catalot, T. Jeantheau and C. Laredo

2 12 %7
ﬁ+ <%) € 5

where ¢ has distribution ./(0, 1). When 8 = 0, this is a special case of Example 1.

m(2p) =E
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