LIMIT THEOREMS FOR DIVISOR DISTRIBUTIONS

MICHAEL D. VOSE

Abstract

For a positive integer N, let X_{N} be a random variable uniformly distributed over the set $\{\log d: d \mid N\}$. Let F_{N} be the normalized (to have expectation zero and variance one) distribution function for X_{N}. Necessary and sufficient conditions for the convergence of a sequence $F_{N_{j}}$ of distributions are given. The possible limit distributions are investigated, and the case where the limit distribution is normal is considered in detail.

1. Introduction. Let the positive integer N have prime factorization $N=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{h}}$. Define $\mu_{n}(N)$, for positive integer n, by

$$
\mu_{n}=\left(12^{-1} \sum_{1 \leqslant j \leqslant h}\left(\left(\alpha_{j}+1\right)^{n}-1\right)\left(\log p_{j}\right)^{n}\right)^{1 / n}
$$

The divisor distribution of N refers to the function

$$
F_{N}(x)=\tau^{-1} \sum_{d \mid N}^{\prime} 1
$$

where τ is the number of divisors of N, and the sum is restricted to those divisors satisfying $\log (d / \sqrt{N}) \leqslant x \mu_{2}$.

In this paper, we determine when a sequence of divisor distributions tends to a limit, and investigate the limit distributions that arise. Erdös and Nicolas [2] had previously shown the divisor distribution of $N_{j}=\Pi_{p<j} p$ (we reserve the letters p and q for primes) to be asymptotically normal as $j \rightarrow \infty$. With regard to the normal distribution we prove

Theorem 2. The normal distribution

$$
\Phi(x)=(2 \pi)^{-1 / 2} \int_{-\infty}^{x} \exp \left(-\frac{1}{2} t^{2}\right) d t
$$

is the only infinitely divisible distribution that can arise as the limit of a sequence $F_{N_{1}}$ of divisor distributions. A necessary and sufficient condition for convergence is that

$$
\lim _{j \rightarrow \infty}\left(\mu_{2}\left(N_{j}\right)\right)^{-1} \mu_{\infty}\left(N_{j}\right)=0
$$

Moreover,

$$
\sup _{w}\left|F_{N}(w)-\Phi(w)\right| \ll \frac{\mu_{\infty}}{\mu_{2}},
$$

and

$$
\left|\frac{1-F_{N}(x)}{1-\Phi(x)}-1\right| \ll\left(x+\frac{1}{x}\right) \frac{\mu_{4}}{\mu_{2}}
$$

for $x \leqslant \mu_{2} \mu_{4}^{-1}$.
Here $\mu_{\infty}(N)$ means $\lim _{n \rightarrow \infty} \mu_{n}(N)$.
We define the (Fourier) transform of a distribution F as

$$
\hat{F}(t)=\int_{R} e^{2 \pi i t x} d F(x)
$$

If $\hat{F}(t)$ is the restriction to R of an entire function, we say that \hat{F} is entire. In the general case we have

Theorem 1. A necessary and sufficient condition for a sequence $F_{N_{i}}$ of divisor distributions to converge to a distribution F is that for each n the limits $a_{n}=$ $\lim _{j \rightarrow \infty} \mu_{2 n}\left(N_{j}\right)\left(\mu_{2}\left(N_{j}\right)\right)^{-1}$ exist. In this case \hat{F} is entire and is represented in the disk $|z|<1 / 4$ by

$$
\hat{F}(z)=\exp \left(-\sum_{n=1}^{\infty}(n(2 n)!)^{-1} 6 B_{n}\left(2 \pi a_{n} z\right)^{2 n}\right)
$$

where

$$
B_{n}=4 n \int_{0}^{\infty}\left(e^{2 \pi t}-1\right)^{-1} t^{2 n-1} d t
$$

are the Bernoulli numbers.
We say that a sequence F_{j} of distributions converges to F, if $F_{j}(\pm \infty) \rightarrow F(\pm \infty)$, and $F_{j}(x) \rightarrow F(x)$ at all continuity points x of F.

A reasonable characterization of the possible limit distributions seems difficult. We do however have the following "factoring theorem":

Theorem 3. Suppose the sequence $F_{N_{\prime}}$ of divisor distributions converges to F. If F is not a finite point mass distribution then, for some $\phi \in[0, \pi / 2)$,

$$
F(x)=G(x \sec \phi) * H(x \csc \phi)
$$

The convolution factor G is a normal, uniform, or singular distribution. H is the limit of a sequence of divisor distributions when $\phi>0$, and otherwise is to be interpreted as point mass at 0 . Moreover, if $\liminf _{j \rightarrow \infty} \omega\left(N_{j}\right)=K<\infty$, then F may be written as a convolution product involving no more than K uniform or arithmetic distributions.

Here $\omega(N)$ is the number of distinct prime divisors of N. A finite point mass distribution is a finite convolution of arithmetic distributions. An arithmetic distribution is a probability distribution with zero expectation, and, a step function, whose finitely many jump discontinuities are of equal height and occur along an arithmetic progression. A uniform distribution has density (12) ${ }^{-1 / 2} \chi_{[-\sqrt{3}, \sqrt{3}]}$ (where χ_{I} is the indicator of the interval I), and a singular distribution is continuous with zero derivative almost everywhere.

2. Necessary and sufficient conditions.

Lemma 1. The transform \hat{F}_{N} of the divisor distribution of N is an entire function which is represented in the disk $|z|<\mu_{2} \mu_{\infty}^{-1}$ by

$$
\hat{F}_{N}(z)=\exp \left\{-\sum_{n=1}^{\infty}(n(2 n)!)^{-1} 6 B_{n}\left(\mu_{2 n} \mu_{2}^{-1} 2 \pi z\right)^{2 n}\right\}
$$

Proof. \hat{F}_{N} is entire since $d F_{N}$ is compactly supported. For notational convenience, let $u=\pi \mu_{2}^{-1} t$. The transform of F_{n} is

$$
\begin{equation*}
F(t)=\prod_{j=1}^{k}\left(\left(\alpha_{j}+1\right) \sin \left(u \log p_{j}\right)\right)^{-1} \sin \left(u\left(\alpha_{j}+1\right) \log p_{j}\right) . \tag{2.1}
\end{equation*}
$$

Taking the logarithm of (2.1) yields

$$
\begin{equation*}
\hat{F}(t)=\exp \left\{\sum_{j=1}^{k} \int_{u \log p_{j}}^{u\left(\alpha_{j}+1\right) \log p_{j}} \cot x-x^{-1} d x\right\} \tag{2.2}
\end{equation*}
$$

Substituting the power series for $\cot x-x^{-1}$ in (2.2), integrating term by term, and interchanging the order of summation completes the proof.

Corollary 1. If $|y|<\lambda<1 / 4$, then $\hat{F}_{N}(x+i y)<{ }_{\lambda} 1$. Also, \hat{F} has a zero at $\mu_{2} \mu_{\infty}^{-1}$.

Proof. (2.1) shows that $\hat{F}_{N}\left(\mu_{2} \mu_{\infty}^{-1}\right)=0$. If m is a positive integer, $m \leqslant 2 n$, then

$$
\begin{equation*}
\mu_{2 n} \mu_{m}^{-1} \leqslant\left(1-2^{-m}\right)^{-1 / m} 12^{1 / m-1 / 2 n} \tag{2.3}
\end{equation*}
$$

Since $\hat{F}_{N}(x+i y) \ll \hat{F}_{N}(i y)$, using inequality (2.3) in Lemma 1 completes the proof.
Proof of Theorem 1. By Corollary 1, the collection $\mathscr{F}=\left\{\hat{F}_{N j}\right\}_{1}^{\infty}$ of analytic functions is uniformly bounded on compact subsets of $G_{\lambda}=\{x+i y \in \mathbf{C}:|y|<\lambda$ $<1 / 4\}$. Therefore, Montel's theorem [1] implies that any sequence of functions from \mathscr{F} has a subsequence which converges uniformly on compact subsets of G_{λ}. This, together with the representation of \hat{F}_{N} provided by Lemma 1 , implies that the sequence $\hat{F}_{N_{j}}$ converges to a function H if and only if the limits a_{n} exist, and in such case,

$$
H(z)=\exp \left\{-\sum_{n=1}^{\infty}(n(2 n)!)^{-1} 6 B_{n}\left(a_{n} 2 \pi z\right)^{2 n}\right\}
$$

in the disk $|z|<1 / 4$. It follows from the continuity theorem for Fourier-Stieltjes transforms that the convergence of $\hat{F}_{N_{j}}$ to such a function H is equivalent to the convergence of $F_{N_{j}}$ to some distribution F, and in such case, $\hat{F}=H$. It remains to show that \hat{F} is entire.

The inequality (for $x \geqslant 0$)

$$
\begin{equation*}
1-F(x) \leqslant F(-x) \leqslant \exp \left\{-x^{2} / 6\right\} \tag{2.4}
\end{equation*}
$$

implies that the sequence of entire functions

$$
H_{L}(z)=\int_{-L}^{L} e^{2 \pi i z x} d F(x)
$$

is uniformly Cauchy on compact subsets of \mathbf{C}. It therefore suffices to prove (2.4). Note that for positive λ and positive x,

$$
\begin{equation*}
1-F_{N}(x) \leqslant F_{N}(-x) \leqslant \tau(N)^{-1} \sum_{d \mid N} \exp \left\{-\lambda x+\lambda \mu_{2}^{-1} \log \frac{\sqrt{N}}{d}\right\} \tag{2.5}
\end{equation*}
$$

With $\lambda_{j}=\lambda \mu_{2}^{-1} \log p_{j}$, the right-hand side of (2.5) is equal to

$$
\begin{equation*}
e^{-\lambda x} \prod_{j=1}^{k}\left(\exp \left\{\frac{1}{2} \alpha_{j} \lambda_{j}\right\}\left(\alpha_{j}+1\right)^{-1} \sum_{n=0}^{\alpha_{j}} \exp \left\{-n \lambda_{j}\right\}\right) \tag{2.6}
\end{equation*}
$$

Using the convexity of e^{x} and the inequality $\cosh (x) \leqslant \exp \left\{x^{2} / 2\right\}$, we see that (2.6) is not greater than $\exp \left\{-\lambda x+\lambda^{2} / 2\right\}$. Choosing $\lambda=3^{-1} x$ finishes the proof.

Note that our method of proving Theorem 1 (via Montel's Theorem) shows that any sequence of $F_{N_{j}}\left(\right.$ or $\hat{F}_{N_{J}}$) has a subsequence which converges to some F (respectively \hat{F}).

Proof of Theorem 2. Suppose $F_{N,}$ converges to Φ. By Theorem 1, we have

$$
\hat{\Phi}(t)=\exp \left\{-\sum_{n=1}^{\infty}(n(2 n)!)^{-1} 6 B_{n}\left(a_{n} 2 \pi t\right)^{2 n}\right\} .
$$

On the other hand, $\hat{\Phi}(t)=\exp \left\{-2 \pi^{2} t^{2}\right\}$. It follows that $a_{j}=0$ for $j>1$. Conversely, if $a_{j}=0$ for $j>1$, then the sequence $F_{N,}$ converges to some distribution F, where $\hat{F}(t)=\exp \left\{-2 \pi^{2} t^{2}\right\}$. Hence $F=\Phi$. It follows that $\mu_{\infty} \mu_{2}^{-1} \rightarrow 0$ is necessary and sufficient since

$$
\mu_{\infty} \mu_{2}^{-1} \ll \mu_{2 j} \mu_{2}^{-1} \ll\left(\mu_{\infty} \mu_{2}^{-1}\right)^{1 / 4}
$$

If $F_{N,}$ does not converge to Φ, then there is some compact interval of \mathbf{R} containing infinitely many of the points $t_{j}=\mu_{2}\left(N_{j}\right)\left(\mu_{\infty}\left(N_{j}\right)\right)^{-1}$. Let t^{*} be a limit point. Each t_{j} is a zero of \hat{F}_{N} by Corollary 1 , so if F_{N}, were to converge to F, then $F\left(t^{*}\right)=0$. This precludes the possibility that F is infinitely divisible, since such distributions have positive transforms.

The first inequality of Theorem 2 is a straightforward application of the following result, referred to as the Berry-Eseen inequality. Let F and G be probability distributions, and suppose G has density g. Then for all $T>0$

$$
\sup _{x}|F(x)-G(x)| \ll T^{-1}\|g\|_{\infty}+\int_{-T}^{T}|t|^{-1}|\hat{F}(t)-\hat{G}(t)| d t
$$

(Feller [3]).
To prove the second inequality of Theorem 2, define the measures $d V$ and $d G$ by

$$
d V(x)=e^{-A+y x} d F_{N}(x), \quad d G(x)=(2 \pi)^{-1 / 2} e^{-(x-y)^{2} / 2} d x
$$

Let $R(x)=\exp \left(x^{2} / 2\right)(1-\Phi(x))$. Then

$$
\begin{equation*}
\frac{1-F_{N}(y)}{1-\Phi(y)}=e^{y^{2} / 2} R(y)^{-1}\left(I+e^{A-y^{2}} R(y)\right) \tag{2.7}
\end{equation*}
$$

where

$$
I=e^{A} \int_{y}^{\infty} e^{-v x} d(V(x)-G(x))
$$

Now define $A-y^{2} / 2$ to be the function

$$
H(y)=-\sum_{n=2}^{\infty} 6 B_{n}(n(2 n)!)^{-1}\left(\mu_{2 n} \mu_{2}^{-1} y\right)^{2 n}
$$

Assuming that $|V(x)-G(x)| \leqslant \Delta$ and $y>0$, (2.7) becomes

$$
\begin{equation*}
\frac{1-F_{N}(y)}{1-\Phi(y)}=e^{H(y)}+O\left(\Delta R(y)^{-1} e^{H(y)}\right) \tag{2.8}
\end{equation*}
$$

It is well known that $R(y)^{-1} \leqslant \sqrt{2 \pi}\left(y+y^{-1}\right)$ (see for example Mitrinovic [4]), so the proof is completed by establishing, for $0<y \leqslant \mu_{2} / \mu_{4}$, the inequalities

$$
\begin{equation*}
|H(y)| \ll y^{4}\left(\mu_{4} / \mu_{2}\right)^{4} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta \ll \mu_{4} / \mu_{2} . \tag{2.10}
\end{equation*}
$$

$H(m)$ is the sum of an alternating decreasing sequence, hence (2.9). The Berry-Eseen inequality, with $F=V$ and $G=G$, yields (2.10).

3. The factoring theorem.

Lemma 3. If M and N are relatively prime positive integers, then

$$
\hat{F}_{M N}(t)=\hat{F}_{M}(t \cos \phi) \hat{F}_{N}(t \sin \phi)
$$

where

$$
\cos \phi=\frac{\mu_{2}(M)}{\sqrt{\left(\mu_{2}(M)\right)^{2}+\left(\mu_{2}(N)\right)^{2}}}
$$

Proof. The functions $\left(\mu_{n}(N)\right)^{n}$ are additive. Therefore, Lemma 1 implies $\hat{F}_{M N}\left(t \mu_{2}(M N)\right)=\hat{F}_{M}\left(t \mu_{2}(M)\right) \hat{F}_{N}\left(t \mu_{2}(N)\right)$, and Lemma 3 follows.

Lemma 4. Let p and q be primes, and α a positive integer. Then $F_{p^{\alpha}}=F_{q^{\alpha}}$ is an arithmetic distribution with discontinuities at the points

$$
\left\{\left(2 \alpha^{-1} k-1\right)\left((\alpha+2)^{-1} 3 \alpha\right)^{1 / 2}\right\}_{k=0}^{\alpha} .
$$

As $\alpha \rightarrow \infty, F_{p^{\alpha}}$ converges to the uniform distribution U having density $(12)^{-1 / 2} \chi_{[-\sqrt{3}, \sqrt{3}]}$.
Lemma 4 follows immediately from Lemma 1 and Theorem 1.
Lemma 5. Let F_{j} be a sequence of arithmetic distributions with $d_{j}>1$ discontinuities such that $d F_{j}$ is supported in $[-1,1]$. Let s_{j} be the distance between discontinuities of F_{j}, and assume v_{j} is a sequence of positive numbers such that
(1) $\sum_{j>J} v_{j}<\frac{1}{4} s_{J} v_{J}$ for $J=1,2, \ldots$,
(2) $\left(\prod_{j=1}^{J} d_{j}\right) \sum_{j>J} v_{j} \rightarrow 0$ as $J \rightarrow \infty$.

Then the convolution $H_{k}(x)=F\left(x / v_{1}\right) * \cdots * F_{k}\left(x / v_{k}\right)$ converges to a singular distribution as $k \rightarrow \infty$.

The proof is easy, and will be omitted.
We now prove Theorem 3. Let N_{j} have prime factorization

$$
N_{j}=p_{j}(1)^{\alpha_{j}(1)} \cdots p_{j}\left(k_{j}\right)^{\alpha_{j}\left(k_{j}\right)}
$$

We abbreviate $p_{j}(i)^{\alpha_{j}(i)}$ as (j, i), and use $\langle x\rangle$ to mean 2^{x}.
First consider the case $\liminf _{j \rightarrow \infty} \omega\left(N_{j}\right)=K$. By passing to a subsequence and reindexing, we may assume $\omega\left(N_{j}\right)=k$, and $(j, k)>(j, l)$ for $k<l$. Let $v_{j}(k)=$ $\mu_{2}((j, k))\left(\mu_{2}\left(N_{j}\right)\right)^{-1}$, and $M_{j}(k)=(j, k)^{-1} N_{j}$. Assume that F is not a finite point mass distribution.

Repeated use of Lemma 3 gives

$$
\begin{equation*}
\hat{F}_{N_{j}}(t)=\prod_{k=1}^{K} \hat{F}_{(j, k)}\left(v_{j}(k) t\right) . \tag{3.1}
\end{equation*}
$$

Since each $v_{j}(k) \in[0,1]$, we may pass to a subsequence and assume $v_{j}(k) \rightarrow v_{k}$ as $j \rightarrow \infty$. If any $v_{k}=0$, then $\hat{F}_{(j, k)}\left(v_{j}(k) t\right) \rightarrow 1$ for all t. Hence such a factor can be ignored when considering $\lim _{j \rightarrow \infty} F_{N_{j}}$, and so we may assume $v_{k}>0$. We may also pass to a subsequence and assume each $F_{(j, k)}$ in (3.1) converges. Therefore, Theorem 1 implies that either $\alpha_{j}(k) \rightarrow \infty$ or the sequence $\alpha_{j}(k)$ becomes constant, say $\alpha_{j}(k)=\alpha_{k}$, for large j. If for all $k, \alpha_{j}(k) \rightarrow \alpha_{k}$, then (3.1) and Lemma 4 give

$$
\hat{F}_{N_{j}}(t) \rightarrow \hat{F}_{\left\langle\alpha_{1}\right\rangle}\left(v_{1} t\right) \cdots \hat{F}_{\left\langle\alpha_{k}\right\rangle}\left(v_{K} t\right),
$$

so that F would be a finite point mass distribution, contrary to hypothesis. Therefore, let k be such that $\alpha_{j}(k) \rightarrow \infty$, and let $M_{j}=M_{j}(k)$. By Lemma 3 we have

$$
\hat{F}_{N_{j}}(t)=\hat{F}_{M_{j}}\left(t \sin \phi_{j}\right) \hat{F}_{(j, k)}\left(t \cos \phi_{j}\right),
$$

where $\cos \phi_{j}=v_{j}(k)$. As $j \rightarrow \infty$, we have $\cos \phi_{j} \rightarrow \cos \phi=v_{k}>0$, and by Lemma $4, \hat{F}_{(j, k)}(t) \rightarrow \hat{U}(t)$. Passing to a subsequence, we have also $\hat{F}_{M_{j}} \rightarrow \hat{H}$ as $j \rightarrow \infty$. Therefore, $F(x)=U(x \sec \phi) * H(x \csc \phi)$.

Note that $\omega\left(M_{j}\right)<k=\omega\left(N_{j}\right)$; so, by redefining N_{j} as M_{j}, the above argument can be repeated at most $k-1$ times.

Now consider the case $\omega\left(N_{j}\right) \rightarrow \infty$. Assume that F has no uniform or normal convolution factors, and is not a finite point mass distribution. We will show that F either has a singular convolution factor, or is the limit of a sequence $F_{L_{j}}$ with $\omega\left(L_{j}\right)=O(1)$.

Since F is not normal, Theorem 2 gives the existence of a $\delta>0$ such that, for infinitely many $j, \mu_{\infty}\left(N_{j}\right)\left(\mu_{2}\left(N_{j}\right)\right)^{-1}>\delta$. Passing to a subsequence we may assume this for all j. Lemma 3 gives

$$
\begin{equation*}
\hat{F}_{N_{j}}(t)=\hat{F}_{M_{j}(1)}\left(t \sin \phi_{j}\right) \hat{F}_{(j, 1)}\left(t \cos \phi_{j}\right), \tag{3.2}
\end{equation*}
$$

where $\cos \phi_{j}=v_{j}(1)$. Inequality (2.3) implies that $v_{j}(1)>\delta / 4$, so we may pass to a subsequence and assume $\cos \phi_{j} \rightarrow \cos \phi=v_{1} \geqslant \delta / 4$ as $j \rightarrow \infty$. If $\sin \phi=0$, then $\hat{F}_{M_{j}(1)}\left(t \sin \phi_{j}\right) \rightarrow 1$ for all t. Hence, this factor could be ignored when considering $\lim _{j \rightarrow \infty} F_{N_{j}}$, and F would be the limit of a sequence $F_{L_{j}}$ with $\omega\left(L_{j}\right)=O(1)$ (take $L_{j}=(j, 1)$). By passing to a subsequence, we may assume that each factor in (3.2) converges. Since F has no uniform convolution factor, this implies that the sequence $\alpha_{j}(1)$ becomes constant, say $\alpha_{j}(1)=\alpha_{1}$, for large j.

If we assume that F is not the limit of a sequence $F_{L_{j}}$ with $\omega\left(L_{j}\right)=O(1)$, then by redefining N_{j} as $M_{j}(1)$, the above argument can be repeated indefinitely. The k th application of the argument produces a subsequence $\hat{F}_{N_{k 1}}, \hat{F}_{N_{k 2}}, \ldots$ of the sequence
generated at the $k-1$ st stage along which

$$
\hat{F}_{(j, k)}\left(v_{j}(k) t\right) \rightarrow \hat{F}_{\left\langle\alpha_{k}\right\rangle}\left(v_{k} t\right)
$$

Let $N_{j}=N_{j j}$ be the diagonal sequence. It follows that

$$
\begin{equation*}
\hat{F}_{N_{j}}(t)=\prod_{k=1}^{k_{j}} \hat{F}_{\left\langle\alpha_{j}(k)\right\rangle}\left(v_{j}(k) t\right) \tag{3.3}
\end{equation*}
$$

where for any $k, v_{j}(k) \rightarrow v_{k}$ and $\alpha_{j}(k) \rightarrow \alpha_{k}$ as $j \rightarrow \infty$.
Fatou's Lemma gives

$$
\sum_{k=1}^{\infty} v_{k}^{2} \leqslant \liminf _{j \rightarrow \infty} \sum_{k=1}^{k_{j}} v_{j}^{2}(k)=1
$$

Hence there exists a subset $\left\{v_{k^{*}}\right\}_{k=1}^{\infty}$ of the set $\left\{v_{k}\right\}_{k=1}^{\infty}$ satisfying the conditions of Lemma 5 with respect to the distributions $F_{\left\langle\alpha_{k}\right\rangle}(x)$. Let $f: Z^{+} \rightarrow Z^{+}$be a nondecreasing function satisfying the following conditions:
(A) $f(j) \leqslant k_{j}$ and $\lim _{j \rightarrow \infty} f(j)=\infty$,
(B) $k<f(j)$ implies $\alpha_{j}\left(k^{*}\right)=\alpha_{k^{*}}$ and $\left|v_{j}\left(k^{*}\right)-v_{k^{*}}\right|<2^{-f(j)} v_{k^{*}}$.

Let $M_{j}=\Pi_{k<f(j)}\left(j, k^{*}\right)$, and $\cos \phi_{j}=\left(\mu_{2}\left(N_{j}\right)\right)^{-1} \mu_{2}\left(M_{j}\right)$. Applying Lemma 3, we reorganize (3.3) as

$$
\begin{equation*}
\hat{F}_{N_{j}}(t)=\hat{F}_{M_{j}^{-1} N_{j}}\left(t \sin \phi_{j}\right) \prod_{k<f(j)} F_{\left\langle\alpha_{k} \cdot\right\rangle}\left(v_{j}\left(k^{*}\right) t\right) \tag{3.4}
\end{equation*}
$$

By passing to a subsequence, the first factor on the right-hand side of (3.4) converges to $\hat{H}(t \sin \phi)$ for some distribution H. The proof is completed by noting that the second factor converges to

$$
\prod_{k=1}^{\infty} F_{\left.\left\langle\alpha_{k}\right\rangle\right\rangle}\left(v_{k^{*}} t\right)
$$

which by Lemma 5 is the transform of a singular distribution.

References

1. J. Conway, Functions of one complex variable, Springer-Verlag, New York, 1978.
2. P. Erdös and J. L. Nicolas, Méthodes probabilistes et combinatoires en theorie des nombres, Bull. Sci. Math. France (2) 100 (1976), 301-320.
3. W. Feller, An introduction to probability theory and its applications, Vol. II, Wiley, New York, 1966.
4. D. S. Mitrinovic, Analytic inequalities, Springer-Verlag, New York, 1970.

Department of Mathematics, Texas A \& M University, College Station, Texas 77843
Current address: 2005B Cheshire Drive, Austin, Texas 78723

