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LIMIT THEOREMS FOR DIVISOR DISTRIBUTIONS

MICHAEL D. VOSE

Abstract. For a positive integer zV, let XN be a random variable uniformly

distributed over the set (log d: d\N}. Let FN be the normalized (to have expectation

zero and variance one) distribution function for XN. Necessary and sufficient

conditions for the convergence of a sequence Fv of distributions are given. The

possible limit distributions are investigated, and the case where the limit distribution

is normal is considered in detail.

1. Introduction. Let the positive integer N have prime factorization N = p"' ■ ■ ■ p"k.

Define p„( A/), for positive integer n, by

f. - (12-1 e ((«,+i)n-i)(iogp,r
^   i«,«*

The divisor distribution of N refers to the function

^(^) = t-1E'i
d\N

where t is the number of divisors of N, and the sum is restricted to those divisors

satisfying log(d/ yN ) < xp2-

In this paper, we determine when a sequence of divisor distributions tends to a

limit, and investigate the limit distributions that arise. Erdös and Nicolas [2] had

previously shown the divisor distribution of A^ = Y\p<jp (we reserve the letters p and

q for primes) to be asymptotically normal as j -» oo. With regard to the normal

distribution we prove

Theorem 2. The normal distribution

•00 = (2tr)-1/2f   expi-i-2)d<

is the only infinitely divisible distribution that can arise as the limit of a sequence FN of

divisor distributions. A necessary and sufficient condition for convergence is that

lim MNj))~1H»(Nj) = 0.
j -»00

Moreover,

sup \FN(w) -•(w)|«: —,
w ^2
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and

l-fzv(*)       ,

1 -<_>(;.)
x + l-W

x I p2

for x < \i2p¿.

Here p -_( TV ) means lim. _ M p „( A/ ).

We define the (Fourier) transform of a distribution F as

F(0 = f e2vitxdF(x).

If F(?) is the restriction to R of an entire function, we say that F is entire. In the

general case we have

Theorem 1. A necessary and sufficient condition for a sequence FN of divisor

distributions to converge to a distribution F is that for each n the limits an =

lim _00p2n(A'/)(p2(A7;))"1 exist. In this case F is entire and is represented in the disk

|z| < 1/4 by  '

F0) = exp(-f („(2«)!)-165_(2™nz)2nj,

(e2« _ l)"1/2"-1^
n

where

are the Bernoulli numbers.

We say that a sequence F¡ of distributions converges to F, if Fy-(± oo) -» F(± oo),

and _^-(-c) -» F(x) at all continuity points x of F

A reasonable characterization of the possible limit distributions seems difficult.

We do however have the following "factoring theorem":

Theorem 3. Suppose the sequence FN of divisor distributions converges to F. If F is

not a finite point mass distribution then, for some <b e [0, Jr/2),

F(x) = G(xsec<b) * H(xcsc <b).

The convolution factor G is a normal, uniform, or singular distribution. H is the limit of

a sequence of divisor distributions when tp > 0, and otherwise is to be interpreted as

point mass at 0. Moreover, r/liminf _w u(N-) = K < oo, then F may be written as a

convolution product involving no more than K uniform or arithmetic distributions.

Here (¿(N) is the number of distinct prime divisors of N. A finite point mass

distribution is a finite convolution of arithmetic distributions. An arithmetic distri-

bution is a probability distribution with zero expectation, and, a step function,

whose finitely many jump discontinuities are of equal height and occur along an

arithmetic progression. A uniform distribution has density (12)~1/2x¡-,/3 ./J] (where

Xi is the indicator of the interval /), and a singular distribution is continuous with

zero derivative almost everywhere.
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2. Necessary and sufficient conditions.

Lemma 1. The transform FN of the divisor distribution of N is an entire function

which is represented in the disk \z\ < p2fi-_ by

FN(z) = exp - ¿ (z7(2/7)!)"16_.„(p2_p212t7z)2"

I     n = \

Proof. Fn is entire since dFN is compactly supported. For notational convenience,

let u = irp~2t. The transform of F„ is

k

(2.1) F(t)= n((«, + l)sin(«logp,))" sin(u(a, + l)logp,).
7 = 1

Taking the logarithm of (2.1) yields

(2.2) P{t) = exp( £ f"(aj+1)toiPj cotx - x-'dx

Substituting the power series for cot x — x~l in (2.2), integrating term by term, and

interchanging the order of summation completes the proof.    D

Corollary 1. If |_y| < A < 1/4, then FN(x + iy) «:xl. Also, F has a zero at

Proof. (2.1) shows that FN(p2p~^) = 0. If m is a positive integer, m < 2«, then

(2.3) p^1 « (1 - 2-)-l/ml2^~^.

Since Pff(x + iy) -^ FN(iy), using inequality (2.3) in Lemma 1 completes the proof.

Proof of Theorem 1. By Corollary 1, the collection J5"= {FNj}f of analytic

functions is uniformly bounded on compact subsets of Gx = {x + iy g C: \y\ < X

< 1/4}. Therefore, Montel's theorem [1] implies that any sequence of functions

from J^has a subsequence which converges uniformly on compact subsets of Gx.

This, together with the representation of FN provided by Lemma 1, implies that the

sequence FN converges to a function H if and only if the limits an exist, and in such

case,

H(z) = exp - £ (n(2n)\yl6Bn(an2vz)2{n\zny.)   oa„'anZ7rz^'
n = l

in the disk |z| < 1/4. It follows from the continuity theorem for Fourier-Stieltjes

transforms that the convergence of PN to such a function H is equivalent to the

convergence of FN to some distribution F, and in such case, F = H. It remains to

show that F is entire.

The inequality (for x > 0)

(2.4) 1 - F(x) < F(-x) < exp{-x2/6}

implies that the sequence of entire functions

HL(z)=  fL e2™*dF(x)
J-L
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is uniformly Cauchy on compact subsets of C. It therefore suffices to prove (2.4).

Note that for positive A and positive x,

(2.5) 1 - FN(x) ^ FN(-x) < t(N)-1 £ expf-Ax + Ap'/log^).
d\N \ I

With \/ = \p~2 log pj, the right-hand side of (2.5) is equal to

(2.6) e-^n iexp{|«yAyj(ay + I)"1 t^p{-n\A

Using the convexity of ex and the inequality cosh(x) < exp{x2/2}, we see that (2.6)

is not greater than exp{-Aj. + X2/2}. Choosing A = 3~lx finishes the proof.

Note that our method of proving Theorem 1 (via Montel's Theorem) shows that

any sequence of FN (or FN ) has a subsequence which converges to some F

(respectively F).

Proof of Theorem 2. Suppose FN converges to <_». By Theorem 1, we have

*(0 = exp - £ (zz(2zz)!)-16Jß„(a_2^)2

I       H-l

On the other hand, •(/) = exp{-2772.2}. It follows that aj = 0 for y > 1. Con-

versely, if a- = 0 for j > 1, then the sequence FN converges to some distribution F,

where F(t) = exp(-27r2.2}. Hence F = •. It follows that pxp~2 —> 0 is necessary

and sufficient since

-1 -1 I _i\l/4

Moor12    "*= r»2yr«2    «  (VocVl)       ■

If FN does not converge to <t>, then there is some compact interval of R containing

infinitely many of the points t, = /^(^/XPo-i-W,)) '• Let t* be a limit point. Each t¡

is a zero of FN by Corollary 1, so if FN were to converge to F, then F(t*) = 0. This

precludes the possibility that F is infinitely divisible, since such distributions have

positive transforms.

The first inequality of Theorem 2 is a straightforward application of the following

result, referred to as the Berry- Eseen inequality. Let F and G be probability

distributions, and suppose G has density g. Then for all T > 0

sup|F(x) - G(x)\ « T-l\\g\\x + f kfV(0 - G(t)\dt
x -T

(Feller [3]).

To prove the second inequality of Theorem 2, define the measures dV and dG by

dV(x) = e~A+vxdFN(x),        dG(x) = (2trY1/2e'ix-y)2/2dx.

LctR(x) = exp(x2/2)(l - <_»(*))• Then

(2.7) \-»n = e"1/2R(yrV+ '"-^(jO).

where

/oo e">'jrd(F(^)-G(x)).
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Now define A — y /2 to be the function
00

H(y) = -Z(>Bn(n(2n)\)-\p2na¿iy)2n.

B-2

Assuming that \V(x) - G(x)\ ^ A and y > 0, (2.7) becomes

(2.8) \ ~ F¿y}  = e"<» + 0(AR(yy1e"^).1 - <b(y) v '

It is well known that /((.y)1 < v7^^ + j"1) (see for example Mitrinovic [4]), so

the proof is completed by establishing, for 0 < y < p2/p4, the inequalities

(2-9) \H(y)\«y\u4/u2)4,

and

(2.10) A <K p4/p2.

H(m) is  the  sum  of an  alternating decreasing sequence,  hence (2.9).  The

Berry-Eseen inequality, with F = V and G = G, yields (2.10).   D

3. The factoring theorem.

Lemma 3. If M and N are relatively prime positive integers, then

Fmn(0 = FM(t cos <b)FN(t sin cb)

where

p2(M)
cos<f> =

(p2(A/))2+(p2(/Y))2

Proof. The functions (pn(N))" are additive. Therefore, Lemma 1 implies

FMN(tp2(MN)) = FM(tp2(M))FN(tp2(N)), and Lemma 3 follows.

Lemma 4. Let p and q be primes, and a a positive integer. Then Fp« = Fq« is an

arithmetic distribution with discontinuities at the points

{(2a-1zc-l)((a + 2)"13a)1/y    .

As a -» oo, Fpa converges to the uniform distribution Uhaving density (12)"1/2X[_V/J ßy

Lemma 4 follows immediately from Lemma 1 and Theorem 1.

Lemma 5. Let Fj be a sequence of arithmetic distributions with d} > 1 discontinuities

such that dFj is supported in [-1,1]. Let s, be the distance between discontinuities of F;,

and assume v¡ is a sequence of positive numbers such that

(1)T.j>JVj < \sjVjforJ = 1,2,...,

(2) (U^idj^jVj-» 0 as J-* oo.

Then the convolution Hk(x) = F(x/v1)*  ■■■  *Fk(x/vk) converges to a singular

distribution as k -* oo.

The proof is easy, and will be omitted.

We now prove Theorem 3. Let Nj have prime factorization
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We abbreviatePj(i)aj(,) as (j, i), and use (x) to mean 2X.

First consider the case lim inf ■_,,,_ w(yV-) = K. By passing to a subsequence and

reindexing, we may assume co(A-) = k, and (j, k) > (j, I) for k < I. Let Vj(k) =

p2((j, k))(p2(Nj))~l, and Mj(k) = (j, k)'lNj. Assume that F is not a finite point

mass distribution.

Repeated use of Lemma 3 gives

(3.1) PNj(t)-nFiM){vj(k)t).

Since each Vj(k) e [0,1], we may pass to a subsequence and assume v¡(k) —> vk as

j —> co. If any vk = 0, then F(y k)(vXk)t) -* 1 for all t. Hence such a factor can be

ignored when considering liin^^F^, and so we may assume vk > 0. We may also

pass to a subsequence and assume each F(J_k) in (3.1) converges. Therefore, Theorem

1 implies that either aj(k) -» oo or the sequence a-(fc) becomes constant, say

aj(k) = ak, for large/ If for all k, a/fc) -* ak, then (3.1) and Lemma 4 give

FNj{t)^P<aù{vxt)--- F{ttk)(vKt),

so that F would be a finite point mass distribution, contrary to hypothesis.

Therefore, let k be such that ctj(k) -* oo, and let M¡ = Mj(k). By Lemma 3 we have

hj(t) = ^('"«n*y)^ü.*)('0OB*y)'

where cos £. = ¡z/z. ). As j' -* oo, we have cos <p- -» cos $ = zj ̂ > 0, and by Lemma

4, F(J k)(t) -* Û(t). Passing to a subsequence, we have also FM -» H as y -» oo.

Therefore, F(x) = i/(x sec <p)* H(xcsc <b).

Note that co(Mj) < k = cc(Nj); so, by redefining TV, as M¡, the above argument

can be repeated at most fc — 1 times.

Now consider the case w(A^) -> oo. Assume that F has no uniform or normal

convolution factors, and is not a finite point mass distribution. We will show that F

either has a singular convolution factor, or is the limit of a sequence FL with

o(Lj) = 0(\).

Since F is not normal, Theorem 2 gives the existence of a ô > 0 such that, for

infinitely many/ px(Nj)(p2(Nj))~l > S. Passing to a subsequence we may assume

this for ally. Lemma 3 gives

(3.2) PNj(t) = FMj(l)(t sin ̂ )Fu^(t cos <t>j),

where cosfy = u/l). Inequality (2.3) implies that Vj(l) > 5/4, so we may pass to a

subsequence and assume cos <f>. -* cos<i> = o1 > 8/4 as j' -* oo. If sin<i> = 0, then

FMil)(tsin<f>j) -» 1 for all i. Hence, this factor could be ignored when considering

lim-_00FAr., and F would be the limit of a sequence FL with w(Ly) = 0(1) (take

Lj = (y, 1)). By passing to a subsequence, we may assume that each factor in (3.2)

converges. Since F has no uniform convolution factor, this implies that the sequence

a/1) becomes constant, say a/1) = a,, for largey.

If we assume that F is not the limit of a sequence FL with «(L,) = 0(1), then by

redefining N, as M/l), the above argument can be repeated indefinitely. The fcth

application of the argument produces a subsequence PN , PN ,... of the sequence

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LIMIT THEOREMS FOR DIVISION DISTRIBUTIONS 511

generated at the k — 1st stage along which

FuAvj(k)t)^p<ai)(vk')-

Let Nj = Njj be the diagonal sequence. It follows that

k<

(3-3) F  0)= YlF(aM))(^(k)t),

where for any k, Vj(k) -* vk and oij(k) -» ak as y -» oo.

Fatou's Lemma gives

oo "\Z

£ ^«ltminf £ vf(k) = 1.
*-i        y-*« /<=!

Hence there exists a subset {¡v}z°=i of the set {vk}f_x satisfying the conditions of

Lemma 5 with respect to the distributions F^ y(x). Let /: Z + -> Z+ be a nonde-

creasing function satisfying the following conditions:

(A)/(y) < kj and lim^/O) = oo,

(B) k < f(j) implies a/fc*) = a*, and |o,(fc*) - vk,\ < 2~i(J)vk..

Let Mj = Y\k<fU)(j, k*), and cos ty = (p2(Nj))~lp2(Mj). Applying Lemma 3, we

reorganize (3.3) as

(3.4) PNj(t) = F^^tsin^)   U   F(ak,}{Vj(k*)t).

By passing to a subsequence, the first factor on the right-hand side of (3.4) converges

to H(tsin4>) for some distribution H. The proof is completed by noting that the

second factor converges to

CO

t-i

which by Lemma 5 is the transform of a singular distribution.    D
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