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Limit theorems for free Lévy processes

Octavio Arizmendi* Takahiro Hasebe†

Abstract

We consider different limit theorems for additive and multiplicative free Lévy pro-
cesses. The main results are concerned with positive and unitary multiplicative free
Lévy processes at small times, showing convergence to log free stable laws for many
examples. The additive case is much easier, and we establish the convergence at
small or large times to free stable laws. During the investigation we found out that
a log free stable law with index 1 coincides with the Dykema-Haagerup distribution.
We also consider limit theorems for positive multiplicative Boolean Lévy processes at
small times, obtaining log Boolean stable laws in the limit.
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1 Introduction

1.1 Background

This article investigates the asymptotic behavior of additive and multiplicative free
Lévy processes (AFLP and MFLP, resp.) at small times and large times. These are the
free analogs of Lévy processes and were introduced by Biane [Bia98] as particular cases
of processes with free increments. There are two possibilities for doing these, depending
on weather one considers stationary free increments or stationary Markov transition
functions. We will only consider the former ones, since they are related directly to
convolution semigroups for the free convolutions.

In this setting there are various interesting questions which naturally appear as
analogs of classical results. However, in the free world the answer to this questions
sometimes is similar to and sometimes can be quite different from the classical.
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Limit theorems for free Lévy processes

The first question that we investigate is the following. Given an AFLP {Xt}t≥0 such
that X0 = 0, when does the convergence in law of the process

a(t)Xt + b(t), as t ↓ 0 or t → ∞, (1.1)

holds for some functions a : (0,∞) → (0,∞) and b : (0,∞) → R? This problem can be
settled by the Bercovici-Pata bijection, and the result has one-to-one correspondence
with the classical case (see Section 3). In both cases of small times and large times, the
set of limiting distributions is exactly the set of free stable distributions (Proposition 3.2).
It is notable that, in classical probability, while limit theorems for sums of independent
random variables (discrete time case) have been well studied around 1930’s and 1940’s
[GK54], limit theorems for Lévy processes (continuous time case) were only settled
rather recently: de Weert [deW03] and Doney-Maller [DM02] for small times (see also
[MM08]); Maller-Mason [MM09] for large times.

The second question that can be considered concerns, given a positive MFLP such
that X0 = 1, the convergence in law of

b(t)(Xt)
a(t), as t → ∞, (1.2)

where a, b : (0,∞) → (0,∞) are some functions. This problem was solved by Haagerup-
Möller [HM13], following previous results of Tucci [Tuc10]. The set of possible limit
distributions is completely known. In fact, for every positive MFLP {Xt}t≥0, the law of the
process (Xt)

1/t converges weakly to a probability measure ν, and this map {Xt}t≥0 7→ ν

(more precisely, the map L(X1) 7→ ν, where L(X1) is the law of X1) is injective. This
result is quite different from classical probability where the limit distributions must
be log stable distributions, which are push-forward of stable distributions by the map
x 7→ ex. This terminology is adopted for other distributions as well, e.g. log Cauchy
distributions. Note that in classical probability, additive and multiplicative classical Lévy
processes (ACLP and MCLP, resp.) can be identified by the exponential map, so one need
not study MCLPs. However, due to the non-commutativity of processes, MFLPs cannot
be identified with AFLPs by the exponential map.

The third question to be considered is the limit in law of (1.2) at small times, namely

b(t)(Xt)
a(t), as t ↓ 0, (1.3)

where {Xt}t≥0 is a positive MFLP starting at 1, and a, b : (0,∞) → (0,∞) are some
functions as before. However, as we will see, the situation is very different than for the
large t limit. The main results in this direction are summarized in Section 1.2.

A similar question one can consider is the limit distribution of

b(t)(Ut)
a(t), as t ↓ 0, (1.4)

where {Ut}t≥0 is a unitary MFLP such that U0 = 1 and a : (0,∞) → Z and b : (0,∞) → T

are some functions. The function a should take only integral values, since a power
function zp is continuously defined on the unit circle only when p is an integer. Notice
that in this case we should talk about small time limits, since for large times, the
distribution of Ut spreads and hence we have to require a(t) → 0 to get a non-Haar
measure in the limit, but then a(t) ≡ 0 eventually.

In other directions, we also consider the Boolean analogues of the processes (1.1) and
(1.3). In the Boolean case we cannot talk about large time limits (1.2) since in generic
cases positive multiplicative Boolean Lévy processes (MBLP) do not exist at large times
[Ber06]. We do not analyze the unitary case in this paper.

EJP 23 (2018), paper 101.
Page 2/36

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP224
http://www.imstat.org/ejp/


Limit theorems for free Lévy processes

1.2 Main results

Our main results are summarized in the following list.

(1) The set of possible limit distributions of processes of the form (1.3) contains the
following distributions:

• the log free stable distributions with index 1, which contain log Cauchy distri-
butions and the Dykema-Haagerup distribution (Theorems 4.9 and 4.16 and
Corollary 4.15);

• some log free α-stable distributions with 1 < α ≤ 2 (Theorem 4.11 and Corol-
lary 4.14).

Moreover, we provide a general sufficient condition on {Xt}t≥0 and on functions a and
b such that the law of (1.3) converges to the log Cauchy distribution (Theorem 4.1).

(2) The set of possible limit distributions of (1.3), now with {Xt}0≤t≤1 a positive MBLP,
contains the log Boolean stable distributions with index ≤ 1. We provide a general
condition on {Xt}t≥0, functions a and b such that the process converges in law
(Theorems 5.1 and 5.5).

(3) The set of possible limit distributions of processes of the form (1.4) contains all
“wrapped free stable distributions”, which are the distributions of random variables
eiX where X follows a free stable law (Corollary 7.5). We also give a fairly large
domain of attraction of a wrapped free stable distribution (Theorem 7.3). A similar
result is obtained for unitary MCLPs, which seems unknown in the literature.

Before going into the proofs, we would like to make some comments regarding the
above results.

The Dykema-Haagerup distribution mentioned in (1) was introduced in [DH04a] and
it appeared as the limiting eigenvalue distribution of T ∗

NTN where TN is an N × N

upper-triangular random matrices with independent complex Gaussian entries. During
our investigation of (1), we discovered a mysterious fact that the Dykema-Haagerup
distribution coincides with a log free 1-stable law (Proposition 4.4).

One observation on the result (1) is that the limit distributions for positive MFLPs at
small times seem to be universal, in contrast to the non-universal limit distributions of
MFLPs at large times.

The proof of (1) is mostly based on the moment method. We find explicit MFLPs
{Xt}t≥0 and explicit functions a and b such that the moments of (1.3) converge. A
particularly strong result can be obtained for the convergence to log Cauchy distributions
(Theorem 4.1). In this case we can reduce the problem to the Boolean case (2), which
is rather easy to analyze. This reduction procedure, however, needs a considerable
generalization of free and boolean convolutions beyond probability measures, which
we prepare in Section 6. After all our investigation, it remains open whether the set of
possible limit distributions of (1.3) is exactly the set of all log free stable distributions.

The term MBLP in (2) is not very rigorous since it is only defined in the sense of
a convolution semigroup of distributions, and no operator model is known. Also, the
convolution semigroup is only defined for time t ∈ [0, 1] in general. The proof of (2) is
easier than the free case (1) and a more solid result can be proved. Thanks to a simple
formula for multiplicative Boolean convolution, we can directly compute the density of
the process, and show that it converges to the density of log Boolean stable distributions.

For the unitary case (3), it again remains open whether the set of limit distributions
of (1.4) is exactly the set of push-forwards of free stable distributions by the exponential
map x 7→ eix. The proof of (3) uses the (clockwise) exponential map x 7→ e−ix, in order to
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reduce unitary MFLPs to AFLPs. In spite of the non-commutativity of the process, such
a reduction is possible, thanks to the work of Anshelevich and Arizmendi [AA17]. This
method is unfortunately not developed to positive multiplicative convolutions, and hence
not available to (1).

1.3 Organization of the paper

Apart from this introduction there are six sections. We introduce notations and
preliminaries in Section 2. This includes background in free probability and useful
lemmas on convergence of measures and the exponential map. In Section 3 we present,
for completeness, limit theorems for additive free Lévy processes. The main results are
in Sections 4, 5, 6 and 7. More specifically, in Section 4 we consider positive MFLPs
at small times. This section is mostly devoted to give many examples of families for
which we can prove convergence to log free stable distributions. The general result for
log Cauchy is separated as Section 6 since, on one hand, the proof is rather technical,
and on the other hand, we introduce a class of generalized η-transforms which may be
helpful in other problems in future. Section 5 is devoted to the positive MBLPs. Finally,
in Section 7 we use the exponential map to study unitary MCLPs and MFLPs.

2 Preliminaries

2.1 Notation

1. C+,C−: the upper and lower half-planes of the complex plane C, respectively.

2. T: the unit circle {z ∈ C : |z| = 1}.

3. D: the open unit disc {z ∈ C : |z| < 1}.

4. P(T ): the set of Borel probability measures on a topological space T .

5. L(X): the law of a random variable X.

6. µp, p ∈ R: the push-forward of a probability measure µ on (0,∞) by the map x 7→ xp.
If µ is a probability measure on [0,∞) then we can define µp for p ≥ 0, and if µ is a
probability measure on T then we define µn for n ∈ Z.

7. Ds(µ), s ∈ R: the dilation of a probability measure µ, that is, the push-forward of µ
induced by the map x 7→ sx.

8. Rw(µ), w ∈ T: the rotation of a probability measure µ on T induced by the map
z 7→ wz.

9. zα, log z: the principal value unless specified otherwise.

2.2 Classical convolution

We recall, for further reference, that a classical infinitely divisible distribution (∗-ID
for short) probability measure µ on R has the Lévy-Khintchine representation (see e.g.
[GK54, Sat99])∫

R

eixz dµ(x) = exp

[
iξz +

∫
R

(
eizx − 1− izx

1 + x2

)
1 + x2

x2
τ(dx)

]
, z ∈ R, (2.1)

where ξ ∈ R and τ is a nonnegative finite Borel measure on R. Conversely, given such
a pair (ξ, τ), the RHS of (2.1) is the characteristic function of a ∗-ID distribution. The
pair (ξ, τ) is unique and is called the (additive) classical generating pair of µ. We denote
by µξ,τ

∗ the ∗-ID distribution which has the classical generating pair (ξ, τ). For each
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∗-ID distribution µ, there exists an ACLP {Xt}t≥0 such that X0 = 0 and L(X1) = µ (see
[Sat99]).

2.3 Free convolution

Bercovici and Voiculescu [BV93] defined (additive) free convolution µ1 � µ2 of proba-
bility measures µ1, µ2 on R, corresponding to the sum of free random variables. Given
a probability measure µ on R, let Gµ(z) =

∫
R

µ(dx)
z−x and Fµ(z) = 1

Gµ(z)
for z ∈ C \ R,

be the Cauchy transform and the reciprocal Cauchy transform (or F -transform) of µ,
respectively.

The Voiculescu transform of µ is then defined by ϕµ (z) = F−1
µ (z)− z in some suitable

domain. Bercovici and Voiculescu [BV93] showed that the following formula holds

ϕµ1�µ2
(z) = ϕµ1

(z) + ϕµ2
(z). (2.2)

A �-ID measure has a free analogue of the Lévy-Khintchine representation.

Theorem 2.1 (Bercovici-Voiculescu [BV93]). Let µ be a probability measure on R. The
following are equivalent.

(1) µ is �-ID.

(2) For any t > 0, there exists a probability measure µ�t satisfying ϕµ�t(z) = tϕµ(z).

(3) There exist ξ ∈ R and a nonnegative finite Borel measure τ on R such that

ϕµ(z) = ξ +

∫
R

1 + zx

z − x
τ(dx), z ∈ Γα,β . (2.3)

Conversely, given a pair (ξ, τ) of a real number and a nonnegative finite Borel measure,
there exists a �-ID distribution µ such that (2.3) holds. The pair (ξ, τ) is unique and is
called the (additive) free generating pair of µ.

We denote by µ
(γ,τ)
� the �-ID distribution characterized by (2.3). The Bercovici-Pata

bijection is the map defined by

Λ: ID(∗) → ID(�), µξ,τ
∗ 7→ µξ,τ

� (2.4)

This map is a homeomorphism with respect to weak convergence [B-NT02, Corollary
3.9]. Similarly to classical probability, for each �-ID distribution µ there exists an AFLP
{Xt}t≥0 such that X0 = 0 and L(Xt) = µ�t (see [Bia98, B-NT02]).

2.4 Boolean convolution

The Boolean convolution µ1 ] µ2 of probability measures µ1 and µ2 on R corresponds
to the sum of Boolean independent selfadjoint random variables, see [SW97], Franz
[Fra09a]. It is characterized by using the η-transform ηµ(z) = 1−zFµ

(
1
z

)
, by the formula

ηµ1]µ2
(z) = ηµ1

(z) + ηµ2
(z), z ∈ C−. (2.5)

It can be proved that for any t ≥ 0 and any probability measure µ on R, there exists a
probability measure µ]t which satisfies ηµ]t(z) = tηµ(z) in C−. This implies that every
probability measure µ on R is ]-ID.

Since Fµ is an analytic map from C+ into itself such that Fµ(z) = z(1+o(1)) as z → ∞
non-tangentially, it has the Pick-Nevanlinna representation

Fµ(z) = z − ξ +

∫
R

1 + zx

x− z
τ(dx), z ∈ C+, (2.6)
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where ξ ∈ R and τ is a nonnegative finite measure on R. Conversely, if a map F

has the representation of the RHS of (2.6), it can be written as F = Fµ for some
probability measure µ. Thus we may denote by µξ,τ

] the probability measure having the
representation (2.6), and define the Boolean Bercovici-Pata bijection by

ΛB : ID(∗) → ID(]) = P(R), µξ,τ
∗ 7→ µξ,τ

] (2.7)

It can be proved that ΛB is a homeomorphism with respect to the weak convergence. A
proof is not written in the literature but follows the free case [B-NT02, Corollary 3.9].

2.5 Stable distributions

Stable and strictly stable distributions have been defined for different kinds of
convolution. Let A be the set of admissible parameters

A := ((0, 1]× [0, 1]) ∪ {(α, ρ) : α ∈ (1, 2], ρ ∈ [1− α−1, α−1]}. (2.8)

Up to scaling and shifts, stable distributions are classified by the admissible parameters.
For (α, ρ) ∈ A let sα,ρ be a classical stable distribution characterized by∫

R

exz dsα,ρ(x) =

{
exp

(
− 1

Γ(1+α)e
iαρπzα

)
, α 6= 1,

exp (−iρπz + (1− 2ρ)z log z) , α = 1
(2.9)

for z ∈ i(−∞, 0), and let fα,ρ be a free stable distribution characterized by

ϕfα,ρ(z) =

{
−eiαρπz1−α, α 6= 1,

−iρπ − (1− 2ρ) log z, α = 1,
(2.10)

for z ∈ C+. Note that the parametrization is changed from that of [BP99]. The parameter
ρ expresses the mass on the positive line: ρ = fα,ρ([0,∞)) if α 6= 1; see [HK14]. The
above free stable distributions fα,ρ cover all the free stable distributions up to affine
transformations.

For notational simplicity we denote by fα the free stable distribution with α ≥ 1 and
ρ = 1− 1/α, namely, ϕfα(z) = −(−z)1−α for α ∈ (1, 2] and ϕf1(z) = − log z. The classical
and free stable distributions are correspondent in terms of the Bercovici–Pata bijection:
fα,ρ = Λ(sα,ρ).

Boolean stable distributions are classified similarly. For later use we introduce an
additional scaling parameter:

Fbα,ρ,r (z) = z + reiαρπz1−α, z ∈ C+, (α, ρ) ∈ A, r > 0. (2.11)

The parameter r > 0 corresponds to the convolution power and the dilation: bα,ρ,r =

b]r
α,ρ,1 = Dr1/α(bα,ρ,1). For simplicity, we denote bα := bα,1,1 when 0 < α ≤ 1.
The Boolean stable laws have very explicit densities

dbα,ρ,r

dx
=


r sinαρπ

π
· xα−1

x2α + 2r(cosαρπ)xα + r2
, x > 0,

r sinα(1− ρ)π

π
· |x|α−1

|x|2α + 2r(cosα(1− ρ)π)|x|α + r2
, x < 0,

(2.12)

see [HS15]. For further information, see [HS15, AH16] and the original article [SW97].
Finally, we mention that the Cauchy distribution

cβ,γ(dx) =
γ

π
· 1

(x− β)2 + γ2
1R(x) dx, β ∈ R, γ > 0, cβ,0 = δβ (2.13)

plays a special role since it is a strictly 1-stable distribution in classical, free and Boolean
senses, and it satisfies cβ,γ ∗ µ = cβ,γ � µ = cβ,γ ] µ for all probability measures µ.
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2.6 Multiplicative classical convolutions

Let G be either (0,∞) or T. For µ1, µ2 ∈ P(G), the multiplicative classical convolution
µ1 ~ µ2 is the law of X1X2, where X1 and X2 are independent random variables such
that L(Xi) = µi, i = 1, 2. Lévy processes {Xt}t≥0 on G are defined similarly to the case
R, with the following replacements: X0 is the unit of G with probability one, and the
increment from time s to t is XtX

−1
s . In fact for G = (0,∞), the multiplicative group

((0,∞), ·) is isomorphic to the additive group (R,+) by the exponential map, and so Lévy
processes and probability measures on (0,∞) can be identified with those on R. For the
unit circle G = T, such an identification is not possible since the map x 7→ eix from R

to T is not injective. However, this map is still useful to prove limit theorems for Lévy
processes (see Sections 2.10 and 7).

The structure of ~-ID distributions on T is well known. For simplicity let us avoid
the case of vanishing mean; namely let ID∗(~,T) be the set of ~-ID distributions µ on T
such that

∫
T
ζ dµ(ζ) 6= 0. Any such measure has the Lévy-Khintchine representation∫
T

ζn dµ(ζ) = γn exp

(∫
T

ζn − 1− inIm(ζ)

1− Re(ζ)
dσ(ζ)

)
, n ∈ Z, (2.14)

where γ ∈ T and σ is a finite Borel measure on T. Conversely for any such pair (γ, σ)
there exists µ ∈ ID∗(~,T) such that (2.14) holds. Note that given µ the pair (γ, σ) is
not unique. We call (γ, σ) a (multiplicative) classical generating pair of µ and denote
µ = µγ,σ

~ . To each generating pair (γ, σ) and t ≥ 0 we can associate a probability measure

µγt,tσ
~ , denoted by µ~t if we write µ = µγ,σ

~ . Notice that a continuous function t 7→ γt is
not uniquely defined, so we need to specify its branch. Once we choose a branch, we can
associate a Lévy process on T which has the distribution µ~t at time t ≥ 0. For further
details see [Céb16, CG08, Par67].

2.7 Multiplicative free convolution on the positive real line

For µ, ν ∈ P([0,∞)), the multiplicative free convolution µ � ν is the distribution of
X1/2Y X1/2, where X and Y are nonnegative free random variables with distributions µ
and ν, respectively; see Bercovici and Voiculescu [BV93]. The following presentation is
based on [BV93, BB05].

If µ 6= δ0 is a probability measure on [0,∞), then the η-transform ηµ is strictly
increasing in (−∞, 0), ηµ(−0) = 0 and ηµ(−∞) = 1 − 1/µ({0}) (which is −∞ when
µ({0}) = 0) so that we can define the compositional inverse map η−1

µ and further define
the Σ-transform

Σµ(z) :=
η−1
µ (z)

z
, 1− 1

µ({0})
< z < 0. (2.15)

For µ 6= δ0 6= ν, the identity

Σµ�ν(z) = Σµ(z)Σν(z) (2.16)

holds in the intersection of the domains of the three Σ-transforms.

A variant of the Σ-transform is the S-transform, which satisfies Σµ(z) = Sµ

(
z

1−z

)
.

The �-ID distributions on [0,∞) are characterized in the following way.

Theorem 2.2 (Bercovici-Voiculescu [BV92, BV93]). A probability measure µ 6= δ0 on
[0,∞) is �-ID if and only if there exists a function vµ satisfying the following:

(1) vµ is analytic in C \ [0,∞), vµ(z) = vµ(z) for z ∈ C−, and vµ(C
−) ⊂ C+ ∪R;

(2) Σµ(z) = evµ(z) for z ∈ (1− 1/µ({0}), 0).
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Moreover, the condition (1) is equivalent to the Pick-Nevanlinna representation

vµ(z) = −az + b+

∫
[0,∞)

1 + xz

z − x
dτ(x), (2.17)

where a ≥ 0, b ∈ R and τ is a non-negative finite measure on [0,∞). The triplet (a, b, τ)
is unique. Conversely, for any such a triplet there exists a �-ID distribution µ such that
(2.17) holds.

Remark 2.3. If µ is �-ID and µ 6= δ0, then µ({0}) = 0 from [BV93, Lemma 6.10].
Therefore, we work only on probability measures on (0,∞) when considering �-ID laws.

Given a probability measure µ 6= δ0 on [0,∞) and t ≥ 1, there exists a unique
probability measure µ�t on [0,∞) such that

Σµ�t(z) = Σµ(z)
t (2.18)

on some interval (−α, 0). The reader is referred to [NS96, BB05] for further details.

The free convolution power µ�t can be extended to arbitrary t ≥ 0 if (and only if) µ is
�-ID. Similarly to additive free convolution, for each �-ID distribution µ on (0,∞) there
exists a positive MFLP {Xt}t≥0 such that X0 = 1 and L(Xt) = µ�t.

2.8 Multiplicative free convolution on the unit circle

The multiplicative free convolution µ � ν of probability measures in P(T) is the
distribution of UV when U and V are free unitary elements such that the laws of U and
V are µ and ν, respectively [Voi87]. Let µ ∈ P(T). Now, we consider Gµ(z) and Fµ(z) for
z outside the unit disc D, and ηµ(z) = 1− zFµ

(
1
z

)
in the unit disc D. Suppose that the

first moment m1(µ) =
∫
T
w dµ(w) of µ is not zero. Then the function ηµ has a convergent

series expansion ηµ(z) = m1(µ)z + o(z), and so one can define the compositional inverse
η−1
µ (z) in a neighborhood of 0 as a convergent series, and define

Σµ(z) :=
η−1
µ (z)

z
(2.19)

in a neighborhood of 0. Suppose that m1(µ) 6= 0 6= m1(ν). Then the multiplicative free
convolution is characterized by [Voi87]

Σµ�ν(z) = Σµ(z)Σν(z) (2.20)

in a neighborhood of 0. Only the normalized Haar measure h is a �-ID distribution with
mean 0. Thus we introduce the class ID∗(�,T) := ID(�,T) \ {h}.

A probability distribution µ is a member of ID∗(�,T) if and only if Σµ can be written
as [BV92]

Σµ(z) = γ−1 exp
(∫

T

1 + ζz

1− ζz
σ(dζ)

)
, z ∈ D, (2.21)

where γ ∈ T and σ is a non-negative finite measure on T. The pair (γ, σ) is unique
and is called the (multiplicative) free generating pair of µ. We denote by µγ,σ

� the �-ID
distribution characterized by (2.21). The �-infinite divisibility of µ is equivalent to the
existence of a weakly continuous �-convolution semigroup {µ�t}t≥0 with µ�0 = δ1 and
µ�1 = µ. This convolution semigroup can be realized as the law of a unitary MFLP, whose
asymptotic behaviour at time 0 is studied in Section 7.
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Limit theorems for free Lévy processes

2.9 Multiplicative Boolean convolution on the positive real line

There is no satisfactory definition of “multiplicative Boolean convolution on [0,∞)”.
Bercovici considered a possibility of an operation ∪× defined by

ηµ(z)

z

ην(z)

z
=

ηµ∪×ν(z)

z
, (2.22)

but the formula (2.22) does not always define a probability measure on [0,∞). In fact,
Bercovici showed that the power µ∪×n does not exist for sufficiently large n if µ ∈ P([0,∞))

is compactly supported and non-degenerate [Ber06]. Franz also tried another definition
of multiplicative Boolean convolution, which turned out to be non-associative [Fra09a].
On the other hand, Bercovici proved that the formula

ηµ∪×t(z)

z
=

(
ηµ(z)

z

)t

, z ∈ (−∞, 0), (2.23)

defines a probability measure µ∪×t on [0,∞) for any 0 ≤ t ≤ 1 and any probability measure
µ on [0,∞), and this definition works well e.g. in [AH13]

2.10 The wrapping map

2.10.1 The classical case

In the last section of this paper we will study unitary MFLPs. For this we will use the
wrapping (or exponential) map W : P(R) → P(T) defined by

W (µ)({e−ix : x ∈ A}) =
∑
n∈Z

µ(A+ 2πn) (2.24)

for Borel subsets A ⊂ [0, 2π). Equivalently, the map W : P(R) → P(T) is the push-
forward induced by the map x → e−ix. Namely, W (µ) equals L(e−iX) when L(X) = µ. It
is straightforward from the identity e−i(X+Y ) = e−iXe−iY that

W (µ ∗ ν) = W (µ)~W (ν) (2.25)

for all probability measures µ and ν on R, and hence W maps ID(∗,R) into ID(~,T).
From the computation [Céb16, Proposition 3.1] we deduce the following formula for
Lévy–Khintchine representations.

Proposition 2.4. For µξ,τ
∗ ∈ ID(∗,R) the measure W (µξ,τ

∗ ) has non zero mean, and the
multiplicative classical generating pair (γ, σ) of W (µξ,τ

∗ ) is given by

γ = exp

[
−iξ − i

∫
R

(
sinx− x

1 + x2

)
1 + x2

x2
dτ(x)

]
, (2.26)

and

1

1− Re(ζ)
dσ|T\{1}(ζ) = dW

(
1 + x2

x2
τ |R\{0}

) ∣∣
T\{1} (ζ), (2.27)

σ({1}) = 1

2
τ({0}). (2.28)

Now we establish that the map W |ID(∗) is surjective onto ID∗(~,T).

Proposition 2.5. Given a ~-ID law µγ,σ
~ on T, we define

ξ = − arg γ −
∫
R\{0}

(
sinx− x

1 + x2

)
1 + x2

x2
dτ(x), (2.29)

τ(dx) =
2

1 + x2

∑
n∈Z

(σ̃ ∗ δ2πn)(dx), (2.30)
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Limit theorems for free Lévy processes

where σ̃ is a measure on [0, 2π) ⊂ R defined by σ̃(A) = σ({e−ix : x ∈ A}) for Borel
subsets A, and arg γ is an arbitrary argument. Then W (µξ,τ

∗ ) = µγ,σ
~ .

Proof. It suffices to check the three relations (2.26)–(2.28) which is a standard calcula-
tion.

2.10.2 The free case

Furthermore, according to [AA17], the mapW restricted to a subclass of probability mea-
sures provides a homomorphism from additive free/Boolean convolutions to multiplicative
ones on the unit circle. Define FL = {F : C+ → C+, analytic | F (z + 2π) = F (z) + 2π}
and

L = {µ ∈ P(R) | Fµ ∈ FL}.

The class L is closed under the three additive convolutions ∗,],�, and under classical,
free and Boolean additive convolution powers whenever defined. On the other hand, for
µ ∈ L and n ∈ Z, we have

δ2πn ] µ = δ2πn � µ = δ2πn ∗ µ. (2.31)

Hence for µ, ν ∈ L and a convolution ? ∈ {∗,�,]}, we may and do write “µ = ν mod δ2π”
if µ = ν ? δ2πn for some n ∈ Z. This defines an equivalence relation on L independent of
the choice of a convolution ?.

Moreover, W |L maps L onto ID∗(∪×,T). While W |L is not a bijection, the pre-image
(W |L)−1(ν) of each ν ∈ ID∗(∪×,T) is equal to the set {µ ∗ δ2πn : n ∈ Z}, where µ is
any probability measure in (W |L)−1(ν). The most important property is that W |L is a
homomorphism between additive free and multiplicative free convolutions (also true for
Boolean and monotone convolutions).

Proposition 2.6 ([AA17]). For any µ1, µ2 ∈ L, we have

W (µ1 � µ2) = W (µ1)�W (µ2).

Conversely, for any ν1, ν2 ∈ ID∗(∪×,T), we have

W−1(ν1 � ν2) = W−1(ν1)�W−1(ν2) mod δ2π.

Recall that multiplicative Boolean convolution powers are in general multi-valued.
This ambiguity can be naturally avoided using the transformation W .

Proposition 2.7. Let µ ∈ L. Then, whenever µ�t is defined, the family of distributions
{W (µ�t)}t defines a weakly continuous �-convolution semigroup, which we denote by

W (µ�t) = W (µ)�t.

Moreover, W maps ID(�) ∩ L onto ID∗(�,T).

The following two results are not stated in [AA17], so we provide the proofs.

Proposition 2.8. Let µ ∈ ID(�) and let τ be the finite measure in (2.1). The following
conditions are equivalent.

(1) µ ∈ L.

(2) ϕµ(z + 2π) = ϕµ(z) for all z ∈ C+.

(3) The measure (1 + x2)τ(dx) is invariant under the shifts 2πn for all n ∈ Z.
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Proof. The equivalence between (1) and (2) follows from the definition of the class
L. That (2) implies (3) follows from the Stieltjes inversion formula. Indeed, letting
ρ(dx) := (1 + x2)τ(dx), we have that

ρ([a, b]) = − 1

π
lim
y↓0

∫ b

a

Im [ϕµ(x+ iy)] dx

= − 1

π
lim
y↓0

∫ b

a

Im [ϕµ(x+ 2π + iy)] dx

= ρ([a+ 2π, b+ 2π]),

(2.32)

where −∞ < a < b < ∞ are continuity points of ρ and its 2π shift. Conversely, assume
that (3) holds true. For simplicity, assuming ξ = 0 we obtain

ϕµ(z) =

∫
R

(
1

z − x
+

x

1 + x2

)
ρ(dx)

=

∫
R

(
1

z − x
+

x+ 2π

1 + (x+ 2π)2

)
ρ(dx) +

∫
R

(
x

1 + x2
− x+ 2π

1 + (x+ 2π)2

)
ρ(dx)

=

∫
R

(
1

z − (x− 2π)
+

x

1 + x2

)
ρ(dx)

= ϕµ(z + 2π),

(2.33)

where we used the fact that∫
R

(
x

1 + x2
− x+ 2π

1 + (x+ 2π)2

)
ρ(dx)

= lim
n→∞

∫
R

(
x+ 2πn

1 + (x+ 2πn)2
− x+ 2π(n+ 1)

1 + (x+ 2π(n+ 1))2

)
ρ(dx)

= 0.

(2.34)

Thus (3) implies (2).

In the following we notice that the Lévy-Khintchine representation used in [AA17, Eq.
(8)] for the Σ-transform was not correct, which should be replaced with (2.21) in this
paper.

Proposition 2.9. Given a �-ID law µγ,σ
� on T, let (ξ, τ) be defined as in (2.29) and (2.30).

Then the pre-image of µγ,σ
� by the map W |L is the family {µξ+2πn,τ

� }n∈Z ⊂ ID(�) ∩ L.

Proof. The fact that W (µξ+2πn,τ
� ) = µγ,σ

� follows from [AA17, Proposition 26]. Conversely,

let µξ′,τ ′

� be a �-ID distribution in L such that W (µξ′,τ ′

� ) = µγ,σ
� . Note then that (1 +

x2) dτ ′(x) is 2π-periodic by Proposition 2.8 (3). Again according to [AA17, Proposition
26], the pair (γ, σ) is determined by (2.26)–(2.28) with (ξ, τ) replaced by (ξ′, τ ′). Using
(2.27) we see that

1

1− cosx
dσ|T\{1}(e−ix) = dW

(
1 + x2

x2
dτ ′(x)|R\{0}

) ∣∣
T\{1} (e−ix)

=
∑
n∈Z

1

(x− 2nπ)2
[
(1 + x2)τ ′(dx)

] ∣∣
(0,2π)

=
1

2(1− cosx)

[
(1 + x2)τ ′(dx)

] ∣∣
(0,2π),

(2.35)

where we naturally identified the measure [(1+x2)τ ′(dx)]|(0,2π) with a measure on T\{1}.
The same computation holds for τ instead of τ ′. Considering τ ′({0}) = 2σ({1}) = τ({0}),
we have (1 + x2) dτ ′(x) = (1 + x2) dτ ′(x) on [0, 2π), and by periodicity, on R. This shows
that τ ′ = τ . It is easy to show that ξ′ = ξ + 2πn for some n ∈ Z from (2.26).

EJP 23 (2018), paper 101.
Page 11/36

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP224
http://www.imstat.org/ejp/


Limit theorems for free Lévy processes

2.11 Convergence of probability measures

This section gives several facts on convergence in law of random variables. Since
most results are elementary, we omit the proofs. The reader may find them in the
extended version in arXiv [AH].

Lemma 2.10. Let X,Xt, t > 0 be R-valued random variables such that Xt
law−→ X as

t ↓ 0, and let a, b : (0,∞) → R be functions such that a(t) → α ∈ R, b(t) → β ∈ R as t ↓ 0.
Then

a(t)Xt + b(t)
law−→ αX + β as t ↓ 0.

This lemma can be expressed in the multiplicative form.

Lemma 2.11. Let X,Xt be (0,∞)-valued random variables for t > 0 such that Xt
law−→ X

as t ↓ 0, and let a : (0,∞) → R and b : (0,∞) → (0,∞) be functions such that a(t) → α ∈
R, b(t) → β ∈ (0,∞) as t ↓ 0. Then

b(t)(Xt)
a(t) law−→ βXα as t ↓ 0.

If we assume that the limit distribution is non-degenerate (i.e. not a point mass) and
a(t) > 0 then the converse result of Lemma 2.10 is also true.

Lemma 2.12. Let X,Xt be R-valued random variables and let a(t) > 0, b(t) ∈ R for

t > 0. Assume that Xt
law−→ X as t ↓ 0 and X is non-degenerate. Then a(t)Xt + b(t)

converges in law to some non-degenerate random variable Y if and only if a(t) and b(t)

respectively converge to some α ∈ (0,∞) and β ∈ R as t ↓ 0. Moreover, Y
law
= αX + β.

Remark 2.13. By the transform t 7→ 1/t, the same statement holds for the limit t → ∞.

The following is a sufficient condition for weak convergence in terms of the local
uniform convergence of the absolutely continuous part.

Lemma 2.14. Let B be an open subset of R. Let {µt}t>0 be a family of Borel proba-
bility measures on R and let p : B → [0,∞) be a Borel measurable function such that∫
B
p(x) dx = 1. Suppose that for any compact subset K ⊂ B there exists δ > 0 such that

µt is Lebesgue absolutely continuous on K for any 0 < t < δ, and

lim
t↓0

sup
x∈K

∣∣∣∣dµt

dx
(x)− p(x)

∣∣∣∣ = 0.

Then µt converges weakly to the probability measure p(x)1B(x) dx.

3 Additive Lévy processes at large and small times

Let {Xt}t≥0 be an AFLP such that X0 = 0. We discuss the convergence of the process
a(t)Xt + b(t) as t → ∞ or t ↓ 0, where a : (0,∞) → (0,∞) and b : (0,∞) → R are some
functions. Alternatively, the above problem reads the weak convergence of

Da(t)(µ
�t)� δb(t). (3.1)

This problem can be solved by Bercovici-Pata bijection, and the result has a complete
correspondence to a classical result.

Remark 3.1. If a(t)Xt + b(t) converges in law to a non-degenerate R-valued random
variable Y , then Lemma 2.12 shows that the choice of functions a, b are essentially
unique: For other functions ã, b̃,

ã(t)Xt + b̃(t) =
ã(t)

a(t)
[a(t)Xt + b(t)] + b̃(t)− ã(t)b(t)

a(t)
(3.2)
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converges in law to a non-degenerate R-valued random variable Ỹ if and only if there

exist α > 0, β ∈ R such that ã(t)
a(t) → α and b̃(t)− ã(t)b(t)

a(t) → β, and in this case Ỹ
law
= αY +β.

Thus it suffices to find one specific pair of functions (a(t), b(t)) for which the distribution
of (3.1) converges.

First we establish that the limit of (3.1), if it exists, must be free stable. This fact
follows from [MM08, Theorem 2.3] and the Bercovici–Pata bijection, but we give a direct
simple proof which is valid for the classical and Boolean cases as well.

Proposition 3.2. Let {µ∗t}t≥0 be a weakly continuous ∗-convolution semigroup such
that µ∗0 = δ0. If there exist functions a : (0,∞) → (0,∞) and b : (0,∞) → R such that
Da(t)(µ

∗t)∗δb(t) converges weakly to a non-degenerate distribution ν as t ↓ 0 or as t → ∞,
then ν is stable. If b(t) ≡ 0 then ν is strictly stable. An analogous statement holds for
weakly continuous �- and ]-convolution semigroups.

Proof. We only focus on the limit t ↓ 0 since the other case is proved in the same way.
Instead of distributions we use stochastic processes. Let {Xt}t≥0 be an ACLP that has
the distribution µ∗t at time t ≥ 0, and let Y be a non-constant random variable such
that L(Y ) = ν. Take i.i.d. copies (Yi)

∞
i=1 of Y . The following identity holds true for each

n ∈ N:

a(t)

a(nt)
{a(nt)Xnt + b(nt)} − b(nt)

a(t)

a(nt)
+ nb(t)

= {a(t)Xt + b(t)}+ {a(t)(X2t −Xt) + b(t)}+ · · ·+
{
a(t)(Xnt −X(n−1)t) + b(t)

}
.

(3.3)

Since a(nt)Xnt + b(nt) converge in law to Y as t ↓ 0 and since the right hand side of (3.3)
converge in law to Y1 + · · ·+ Yn, it holds true from Lemma 2.12 that a(t)

a(nt) converge to

some αn ∈ (0,∞) and −b(nt) a(t)
a(nt) + nb(t) converge to some βn ∈ R as t → 0, and also

Y1 + · · ·+ Yn
law
= αnY + βn.

This implies that Y is stable, see [Zol86, p.14, Equation I.24]. If b(t) ≡ 0 then βn = 0 and
so Y is strictly stable. The proof for the free case is similar.

Theorem 3.3. Let µ be a ∗-ID distribution. Let a : (0,∞) → (0,∞) and b : (0,∞) → R

be functions, and ν be a stable distribution or a delta measure. Then the following are
equivalent.

(1) Da(t)(µ
∗t) ∗ δb(t)

w→ ν as t → ∞ (resp. t ↓ 0).

(2) Da(t)(Λ(µ)
�t)� δb(t)

w→ Λ(ν) as t → ∞ (resp. t ↓ 0).

(3) Da(t)(ΛB(µ)
]t) ] δb(t)

w→ ΛB(ν) as t → ∞ (resp. t ↓ 0).

Proof. For the equivalence between (1) and (2) we only have to use the distributional
identities Λ(Da(t)(µ

∗t) ∗ δb(t)) = Da(t)(Λ(µ)
�t) � δb(t) and the fact that the Bercovici-

Pata bijection Λ is a homeomorphism. The equivalence between (1) and (3) is proved
similarly.

Let ? denote any one of ∗ and �. In the present context, the ?-domain of attraction
of a probability measure ν on R at large times (resp. small times) is the set of all ?-ID
distributions µ on R such that Da(t)(µ

?t) ? δb(t)
w→ ν as t → ∞ (resp. t ↓ 0) for some
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functions a : (0,∞) → (0,∞) and b : (0,∞) → R. This set being denoted by D∞
? (ν) (resp.

D0
?(ν)), the above result shows that

D∞
∗ (ν) = D∞

� (Λ(ν)) and D0
∗(ν) = D0

�(Λ(ν)),

and they are nonempty if and only if ν is stable or degenerate.
A complete description of the domains of attraction of stable distributions is known

in [DM02, deW03] and [MM08, Theorem 2.3] at small times and in [MM09, Theorem 3]
at large times. For later use we quote the result for small times in a slightly different
form which can be deduced from the proof of [MM08, Theorem 2.3].

Theorem 3.4. Let µ be a ∗-ID distribution with classical generating pair (ξ, τ). Define

V (x) =

∫
|y|≤x

(1 + y2) dτ(y), Π
−
(x) =

∫ −x

−∞

1 + y2

y2
dτ(y),

Π
+
(x) =

∫ ∞

x

1 + y2

y2
dτ(y), Π(x) = Π

+
(x) + Π

−
(x), x > 0.

(1) µ ∈ D0
∗(s2,1/2) if and only if the function V is slowly varying as x ↓ 0.

(2) Let (α, ρ) ∈ A, α 6= 2. Then µ ∈ D0
∗(sα,ρ) if and only if the function Π is regularly

varying with index −α as x ↓ 0, and

lim
x↓0

Π
+
(x)

Π(x)
=

{
1
2

(
1 +

tan(ρ− 1
2 )απ

tan απ
2

)
, α 6= 1,

ρ, α = 1.

4 Positive multiplicative free Lévy processes at small times

We consider the limit distribution of the process b(t)(Xt)
a(t) as t ↓ 0, where a, b :

(0,∞) → (0,∞) are functions and {Xt}t≥0 is a positive MFLP such that X0 is an identity
operator. In terms of probability measures, the problem is equivalent to the convergence

Db(t)(µ
�t)a(t), t ↓ 0, (4.1)

where a, b : (0,∞) → (0,∞) are functions and µ is a �-ID distribution on (0,∞).
In classical probability, the possible limit distributions are only log stable distributions

and degenerate distributions. Our results for the free case are similar to this classical
case; we find log free stable distributions as the limit distribution of (4.1).

4.1 Log Cauchy distribution

In this section we present a limit theorem (4.1) when the functions a(t) = 1/t and
b(t) ≡ 1 can be taken. Let Cβ,γ be a random variable following the Cauchy distribution
cβ,γ . The law L(eCβ,γ ) is called the log Cauchy distribution whose probability density is
given by

γ

πx
· 1

(log x− β)2 + γ2
1(0,∞)(x).

The main theorem here is the convergence to the log Cauchy distribution.

Theorem 4.1. Let µ be a �-ID probability measure on (0,∞). Assume that the analytic
function vµ in (2.17) extends to a continuous function in (iC+) ∪ C− ∪ I where I is an
open interval containing 1, and assume that −β+iγ := vµ(1) ∈ C+. Then for any compact
set K ⊂ (0,∞), the measure (µ�t)1/t is Lebesgue absolutely continuous on K for small
t > 0, and the convergence

d(µ�t)1/t

dx
→ γ

πx[(log x− β)2 + γ2]
as t ↓ 0

holds uniformly on K. In particular, (µ�t)1/t converges to L(eCβ,γ ) weakly.
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Remark 4.2. The assumption on vµ is guaranteed if the generating measure τµ in (2.17)
is Lebesgue absolutely continuous on I and dτµ/dx is locally Hölder continuous and
strictly positive on I. See Example 5.3 for further details.

We reduce the problem to the Boolean case, and the proof is postponed to Section
6. The idea is the following. Suppose that we find a probability measure ν such that
µ = (ν�2)∪×

1
2 . Then using a commutation relation in [AH13] we obtain

µ�t =
[
(ν�(1+t))∪×

1
1+t

]∪×t

. (4.2)

The measure (ν�(1+t))∪×
1

1+t is close to ν when t ↓ 0, and so the study of Db(t)(µ
�t)a(t)

reduces to the study of Db(t)(ν
∪×t)a(t) which is easier. The relation between µ and ν is

that µ is the image of ν by the multiplicative Bercovici–Pata map, which is not a bijection.
Therefore, for some µ ∈ ID(�), we cannot find such a pre-image ν. However, we do not
need a “probability measure” ν, but only need its η-transform. This idea will be made
more precise in Section 6. The equation (4.2) will then be generalized to (6.9).

Example 4.3. The positive Boolean α-stable law (0 < α < 1) has the Σ-transform
Σbα

(z) = (−z)
1−α
α , and so

vbα
(z) =

1− α

α
log(−z).

This implies that

lim
y↑0

vbα(1 + iy) = i
(1− α)π

α
,

and hence we get the convergence

d(b�t
α )1/t

dx
→ 1

πx
· γ

(log x)2 + γ2

uniformly on each compact set of (0,∞), where γ = (1− α)π/α.

4.2 Dykema-Haagerup distribution

In this section we find a limit distribution of (4.1) which is not a log Cauchy distribu-
tion but still a log free stable distribution with index 1. Dykema and Haagerup [DH04a]
investigated the N ×N strictly upper triangular random matrix

TN :=



0 t12 t13 · · · t1,N−1 t1N
0 0 t23 · · · t2,N−1 t2N
0 0 0 · · · t3,N−1 t3N
...

...
. . .

...
0 0 0 · · · 0 tN−1,N

0 0 0 · · · 0 0


where the entries {tij}1≤i<j≤N are independent complex Gaussian with mean 0 and
variance 1/n. They showed that (TN ,E⊗ 1

NTrN ) converges in ∗-moments to some (T, τ),
where τ is a trace. The operator T is called the DT-operator. They conjectured that

τ
[
((T ∗)kT k)n

]
=

nkn

(1 + kn)!
, k, n ∈ N,

which was proved by Dykema and Haagerup for k = 1 and then proved by Śniady [Śni03]
in full generality. Cheliotis showed that the empirical eigenvalue distribution of T ∗

NTN
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converges weakly almost surely [Che, Theorem 1]. A similar but different random matrix
model was found by Basu et al. [BBGH12, Theorem 3.1].

Generalizing natural numbers k to positive real numbers, we introduce a probability
measure DHr (r ≥ 0) whose moments are given by

nrn

Γ(2 + rn)
, n = 0, 1, 2, 3, . . . , r ≥ 0, (4.3)

with the convention 00 = 1. More generally, the Mellin transform is given by∫
[0,∞)

xγ DHr(dx) =
γrγ

Γ(2 + rγ)
, r, γ > 0. (4.4)

The existence of such a probability measure is guaranteed by Theorem 4.9 in this section
because its proof implies the positive definiteness of the sequence (4.3). We call DHr the
Dykema-Haagerup distribution. It can be easily shown that

(DHr)
a = Daar (DHar), a, r ≥ 0. (4.5)

The probability distribution DH1 is the spectral distribution of the DT operator T ∗T , and
it is Lebesgue absolutely continuous and is supported on [0, e] [DH04a, Theorem 8.9].
Hence, DHr = Dr−r (DHr

1) is supported on [0, r−rer] for r > 0. The R-transform of DH1 is
explicitly computed in [DH04a, Theorem 8.7], which is not used in this paper.

The Dykema-Haagerup distribution is in fact a log free stable distribution, which
seems unknown in the literature.

Proposition 4.4. Let F1 be a random variable following the free stable law f1. Then

DH1 = L(eF1).

Proof. Dykema and Haagerup obtained an implicit expression of the density p(x) of DH1

in [DH04a, Theorem 8.9]:

p

(
sin θ

θ
eθ cot θ

)
=

sin θ

π
e−θ cot θ, θ ∈ (0, π). (4.6)

On the other hand Biane obtained an implicit expression of the density q(x) of f1 in
[BP99, Proposition A1.3]:

q

(
θ cot θ + log

sin θ

θ

)
=

sin2 θ

πθ
, θ ∈ (0, π). (4.7)

Since density r(x) of L(eF1) is given by r(x) = x−1q(log x) a simple change of variables
gives the result.

An interesting observation here is that the free 1-stable law has a random matrix
model.

Corollary 4.5. The eigenvalue distribution of the random matrix log(T ∗
NTN ) weakly

converges to f1 almost surely as N → ∞.

We know that the semicircle law f2,1/2 has the random matrix model TN + T ∗
N . Con-

sidering these facts, the following question comes up.

Problem 4.6. Find a random matrix model related to TN whose eigenvalue distribution
converges to another free stable distribution. Note that some random matrix model for
every �-ID distribution was constructed in [BG05, CD05], but a connection to TN is not
clear.
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Limit theorems for free Lévy processes

In this section, we show that the Dykema-Haagerup distribution appears in the limit
theorem (4.1), when we take the initial distribution µ to be the free Bessel law [BBCC11].
Suppose that r, s ≥ 0 and max{r, s} ≥ 1. The free Bessel law is defined by

π(r, s) =

{
π�(r−1) � π�s, r ≥ 1, s ≥ 0,

((1− s)δ0 + sδ1)� π�r, r ≥ 0, 0 ≤ s ≤ 1,
(4.8)

where π is the free Poisson distribution characterized by Σπ(z) = 1 − z. The two
definitions are compatible in the common domain r ≥ 1 and 0 ≤ s ≤ 1. If s 6= 0 then the
Σ-transform is

Σπ(r,s)(z) =
(1− z)r

(1− s)z + s
, (4.9)

which holds for z ∈ (−∞, 0) if s ≥ 1 and z ∈ (−s/(1 − s), 0) if 0 < s < 1. Note that
Σ-transform is not defined for δ0, so the formula (4.9) fails for s = 0.

Before studying the limit theorem, we need to clarify when the free Bessel law is
�-ID.

Proposition 4.7. Let r, s ≥ 0 and max{r, s} ≥ 1. The free Bessel law π(r, s) is �-ID if
and only if either (a) s = 0, (b) s = 1, or (c) r ≥ 1 and s > 1.

Proof. Since π(r, 0) = δ0 and π(r, 1) = π�r are both �-ID, we may assume that s 6= 0, 1.
If r, s ≥ 1, then both π�(r−1) and π�s are �-ID by [AH13, Example 5.5]. Hence their
multiplicative free convolution is �-ID as well. Conversely, suppose that 0 ≤ r < 1 or
0 < s < 1. The formula (4.9) yields

log Σπ(r,s)(z) = r log(1− z)− log ((1− s)z + s) . (4.10)

If 0 < s < 1 then Im(log Σπ(r,s)(z)) is not analytic at z = −s/(1−s) < 0, which implies that
π(r, s) is not �-ID by Theorem 2.2. If 0 ≤ r < 1 and s > 1 then Im(log Σπ(r,s)(x+ i0)) =

π(1− r) > 0 for x > s/(s− 1), and hence π(r, s) is not �-ID by Theorem 2.2.

We use the moment method to prove the weak convergence. The main tool is a
formula connecting the Mellin transform with the S-transform discovered by Haagerup
and Möller [HM13, Lemma 10].

Lemma 4.8. Let µ be a probability measure on (0,∞). Then

∫
(0,∞)

xγ µ(dx) =
1

B(1− γ, 1 + γ)

∫
(0,1)

(
1− x

x
Sµ(x− 1)

)−γ

dx

for γ ∈ (−1, 1) as an equality in [0,∞], where B(p, q) is the Beta function. Note that

1

B(1− γ, 1 + γ)
=

sinπγ

πγ
.

Theorem 4.9. Suppose that either (a) r ≥ 0 and s = 1, or (b) r ≥ 1 and s > 1. Then

Dtr

(
(π(r, s)�t)1/t

)
w→ DHr as t ↓ 0.

Proof. The proof is based on the moment method. The latter case r ≥ 1, s > 1 is
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Limit theorems for free Lévy processes

considered firstly. For γ > 0, t > 0 and 0 < ξ < 1/γ, we get∫
(0,∞)

xγ Dtr

(
(π(r, s)�t)ξ

)
(dx)

= trγ
∫
(0,∞)

xγξ π(r, s)�t(dx)

=
trγ

B(1− γξ, 1 + γξ)

∫
(0,1)

(
1− x

x
Sπ(r,s)(x− 1)t

)−γξ

dx

=
trγ

B(1− γξ, 1 + γξ)

∫ 1

0

xγξ(1+t(r−1))(1− x)−γξ(x+ s− 1)γξtdx

= trγ(s− 1)γξt
Γ(γξ + γξt(r − 1) + 1)

Γ(2 + γξt(r − 1))Γ(1 + γξ)
×

2F1(−γξt, γξ + γξt(r − 1) + 1; γξt(r − 1) + 2;−(s− 1)−1),

(4.11)

where Lemma 4.8 was used on the second equality. Note that this equality is valid only
for 0 < ξ < 1/γ at this moment.

As a function of ξ, the last hypergeometric and gamma functions extend real analyti-
cally from (0, 1/γ) to (0,∞). On the other hand, the function

ξ 7→
∫
[0,∞)

xγξ Dtr

(
π(r, s)�t

)
(dx)

is real analytic in (0,∞) since the measure Dtr
(
π(r, s)�t

)
is compactly supported. By

the identity theorem, the first and last formulas in (4.11) are equal for all ξ ∈ (0,∞).
Now we may put ξ = 1/t and obtain∫

(0,∞)

xγ Dtr

(
(π(r, s)�t)1/t

)
(dx)

=
ξ−rγ(s− 1)γ

Γ(2 + γ(r − 1))

Γ(γξ + γ(r − 1) + 1)

Γ(γξ + 1)
×

2F1(−γ, γξ + γ(r − 1) + 1; γ(r − 1) + 2;−(s− 1)−1).

(4.12)

Suppose moreover that s > 2. By [AS70, 6.1.47] and [AS70, 15.7.2], we respectively
obtain the asymptotic form

Γ(γξ + γ(r − 1) + 1)

Γ(γξ + 1)
∼ (γξ)γ(r−1), ξ → ∞, (4.13)

2F1(−γ, γξ + γ(r − 1) + 1; γ(r − 1) + 2;−(s− 1)−1)

∼ Γ(γ(r − 1) + 2)

Γ(γr + 2)

(
γξ

s− 1

)γ

, ξ → ∞. (4.14)

The case s ∈ (1, 2] can also be covered if we use the formula [AS70, 15.3.4] and the
asymptotic behavior (4.14) turn out to be the same. Eventually we obtain for every γ > 0,∫

(0,∞)

xγ Dtr

(
(π(r, s)�t)1/t

)
(dx) → γrγ

Γ(rγ + 2)
=

∫
[0,∞)

xγDHr(dx) (4.15)

as t ↓ 0. This implies the convergence of moments, and since the limit measure is
compactly supported, this implies the weak convergence.

If s = 1, then the proof is easier since (4.11) is reduced to∫
(0,∞)

xγ Dtr

(
(π(r, 1)�t)ξ

)
(dx) =

trγ

B(1− γξ, 1 + γξ)

∫ 1

0

xγξ(1+tr)(1− x)−γξdx

= trγ
Γ(γξ(1 + tr) + 1)

Γ(γξtr + 2)Γ(1 + γξ)
.
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Limit theorems for free Lévy processes

This formula is valid for all ξ ∈ (0,∞) by analytic continuation. Then one may put
ξ = 1/t and use the asymptotic form of gamma functions [AS70, 6.1.47] to obtain the
convergence of moments (when γ ∈ N).

4.3 Log free stable distributions with index greater than 1

We find more log free stable distributions in the limit theorem. Suppose that α ∈ (1, 2].

As an initial probability measure, we take να defined by

Sνα
(z) = e(−z)α−1

,

which exists and is �-ID on (0,∞) by Theorem 2.2. The measure ν2 is compactly
supported and has the moment sequence (n

n

n! )
∞
n=0 (with convention 00 = 1 as before).

This measure already appeared in Młotkowski [Mło10] and in a certain limit theorem
proved by Sakuma and Yoshida [SY13].

Theorem 4.10. For α ∈ (1, 2], the convergence

(ν�t
α )t

−1/α w→ L(eFα) as t ↓ 0

holds, where Fα is a random variable following the law fα. The limiting distribution is
called a log free α-stable law, and in particular, log semicircle distribution if α = 2.

Proof. The proof is based on the moment method. For γ > 0 and ξ ∈ (0, 1/γ), using
Lemma 4.8 we get∫

(0,∞)

x−γ (ν�t
α )ξ(dx) =

∫
(0,∞)

x−γξ ν�t
α (dx)

=
1

B(1− γξ, 1 + γξ)

∫
(0,1)

(
1− x

x
Sνα(x− 1)t

)γξ

dx

=
1

B(1− γξ, 1 + γξ)

∫
(0,1)

x−γξ(1− x)γξeγξt(1−x)α−1

dx

=
1

B(1− γξ, 1 + γξ)

∞∑
n=0

(γξt)n

n!

∫
(0,1)

x−γξ(1− x)n(α−1)+γξ dx

=

∞∑
n=0

(γξt)n

n!

Γ(1 + n(α− 1) + γξ)

Γ(1 + γξ)Γ(2 + n(α− 1))
.

(4.16)

where the exchange of limits is justified by a standard application of Lebesgue’s conver-
gence theorem (see [AH] for further details). By analytic continuation, this formula is
valid for any ξ ∈ (0,∞).

Now fix γ ∈ N. The Stirling approximation [AS70, 6.1.37] shows that, for each fixed
n ∈ N,

(γξt)nΓ(1 + n(α− 1) + γξ)

Γ(1 + γξ)
∼ ((γξ)αt)n, as ξ → ∞, (4.17)

and hence, putting ξ = t−1/α and letting t ↓ 0 imply the convergence∫
(0,∞)

x−γ (ν�t
α )t

−1/α

(dx) →
∞∑

n=0

γαn

n!Γ(2 + n(α− 1))
= E[e−γFα ] (4.18)

where the last inequality follows from [HK14, Theorem 3]. Thus we conclude that all
moments of (ν�t

α )−t−1/α

converge to those of L(e−Fα). Since fα has a support bounded

from below, the L(e−Fα) is compactly supported and hence (ν�t
α )−t−1/α w→ L(e−Fα).

Taking the inverse we obtain the result.
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Limit theorems for free Lévy processes

The above method can be generalized to a larger class of initial distributions µ. The
proof is similar to Theorem 4.10 with necessary changes (see [AH] for further details).

Theorem 4.11. Suppose that k ∈ N, 2 ≥ α1 > · · · > αk > 1 and p1, . . . , pk > 0, and
define

ν(α,p) := ν�p1
α1

� · · ·� ν�pk
αk

,

where α = (α1, . . . , αk) and p = (p1, . . . , pk). Then

(ν(α,p)�t)t
−1/α1 w→ L(ep

1/α1
1 Fα1 ) as t ↓ 0.

4.4 Further examples

We find more examples of convergence to log free stable distributions by taking the
multiplicative free convolution with Boolean stable distributions. We exploit several
identities obtained in [AH16]. We start from an obvious property which shows that the
dilation and power of limit distributions are also limit distributions.

Proposition 4.12. Let µ be a �-ID measure on (0,∞) and ν be a probability measure
on (0,∞). Let a, b : (0,∞) → (0,∞) be functions such that Db(t)

(
(µ�t)a(t)

) w→ ν as t ↓ 0.
Then for any r ∈ R and s > 0,

Dsb(t)r

(
(µ�t)a(t)r

)
w→ Ds(ν

r) as t ↓ 0.

Now we find more nontrivial examples of limit theorems using Boolean stable laws
and some identities obtained in [AH16].

Theorem 4.13. Assume that µ, ν are probability measures on (0,∞) and µ is �-ID. Let
α ∈ (0, 1), β ∈ [−1,∞), γ ∈ R and a, b : (0,∞) → (0,∞) be measurable functions such
that

(1) Db(t)

(
(µ�t)a(t)

) w→ ν as t ↓ 0,

(2) a(t) = tβ
(
1 + o(| log t|−1)

)
as t ↓ 0,

(3) b(t) = tγ
(
1 + o(| log t|−1)

)
as t ↓ 0.

Then as t ↓ 0,

Db(t)

(
(bα � µ)�t

)a(t) w→

{
L(eC0,(1−α)π/α)~ ν, if β = −1,

ν, if β ∈ (−1,∞).

Proof. Let f be a function defined by

f(t) :=
(α+ t(1− α))a(t)

αa
(

αt
α+(1−α)t

) . (4.19)

From the formula (bα)
�t = b α

α+(1−α)t
in [AH16, Proposition 3.7], we have

D
b
(

αt
α+(1−α)t

)f(t)

(
(bα � µ)�t

)a(t)
= D

b
(

αt
α+(1−α)t

)f(t)

(
b α

α+(1−α)t
� (µ� αt

α+(1−α)t )�
α+(1−α)t

α

)a(t)
= D

b
(

αt
α+(1−α)t

)f(t)

(
b α

α+(1−α)t
~
(
µ� αt

α+(1−α)t

)α+(1−α)t
α

)a(t)

=
(
b�t
α

)a(t)
~

(
D

b
(

αt
α+(1−α)t

) (µ� αt
α+(1−α)t

)a( αt
α+(1−α)t

))f(t)
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Limit theorems for free Lévy processes

where [AH16, Theorem 4.5] was used on the second equality. We know that
(
b�t
α

)1/t w→
L(eC0,(1−α)π/α) from Example 4.3, and therefore we obtain by Lemma 2.11,

lim
t↓0

(
b�t
α

)a(t)
=

{
L(eC0,(1−α)π/α), if β = −1,

δ1, if β ∈ (−1,∞).
(4.20)

In view of Lemma 2.11 it suffices to show that

f(t) → 1 and
b
(

αt
α+(1−α)t

)f(t)
b(t)

→ 1 as t ↓ 0, (4.21)

which can be proved by calculus.

We can then find more examples of probability measures which yield log free stable
distributions.

Corollary 4.14. Let β ∈ (0, 1). Following the notations in Theorem 4.11, we have

((bβ � ν(α,p))�t)t
−1/α1 w→ L(ep

1/α1
1 Fα1 ) as t ↓ 0.

We deduce another corollary of Theorem 4.13. In [HM13] Haagerup and Möller
considered the probability measures µα,β defined by

Sµα,β
(z) =

(−z)α

(1 + z)β
, α, β ≥ 0. (4.22)

Its probability density function has an implicit expression. Computing the S-transform
shows that

µα,β =

{
b 1

1+α
� π�(β−α), α ≤ β,

b 1
1+β

� f 1
1+α−β

, α ≥ β,
(4.23)

and in particular µα,β is �-ID for any α, β ≥ 0. We may restrict to the case α ≤ β since
for α > β the identity

(µα,β)
−1 = µβ,α (4.24)

holds, which can be verified by S-transform and the formula

Sµ−1(z) =
1

Sµ(−1− z)
(4.25)

for a probability measure µ on (0,∞) (see [HS07, Proposition 3.13]). Recall from

Theorem 4.9 that Dtβ−α

((
µ�t
)1/t) w→ DHβ−α, t ↓ 0 for µ = π�(β−α). Now Theorem 4.13

implies the following result.

Corollary 4.15. For 0 ≤ α ≤ β, we have the convergence

Dtβ−α

((
µ�t
α,β

)1/t) w→ L(eC0,απ )~DHβ−α as t ↓ 0.

Using Proposition 4.4 shows that

L(eCβ,γ )~ (DH1)
a = L(eCβ,γ+aF1), β ∈ R, γ ≥ 0, a ∈ R, (4.26)

where the random variables Cβ,γ and F1 are assumed to be independent. Moreover,
assuming free independence of Cβ,γ and F1 gives the same distribution, thanks to fact
that cβ,γ ∗ µ = cβ,γ � µ. Since L(Cβ,γ + aF1) covers all free 1-stable laws, we have
obtained a certain class of possible limit distributions.
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Theorem 4.16. Any probability measure in the family

{L(euFα+v) | α ∈ (1, 2], u, v ∈ R} ∪ {Log free 1-stable distributions}

appears in the limit theorem of the form (4.1).

Note that the above probability measures are all log free stable with index ≥ 1.

Problem 4.17. Determine all the possible limit distributions of (4.1). In particular,
determine whether the following distributions can appear in the limit theorem:

• log free stable laws with index > 1 and with an arbitrary asymmetry parameter ρ;

• log free stable laws with index < 1;

• probability measures which are not log free stable laws.

Problem 4.18 (Domain of attraction). Characterize initial probability measures µ such
that (4.1) converges to a given non-degenerate distribution (e.g. probability measures in
Theorem 4.16) for some functions a, b : (0,∞) → (0,∞). Does a transfer principle (like in
Theorem 3.3) hold between free and classical limit theorems?

5 Positive multiplicative Boolean Lévy processes at small times

As mentioned in Section 2.9, the Boolean power µ∪×t is well defined for 0 ≤ t ≤ 1 and
for any probability measure µ on [0,∞). Therefore, one may discuss the convergence of

Db(t)(µ
∪×t)a(t), t ↓ 0, (5.1)

where a, b : (0, 1] → (0,∞) are functions. We can give a more solid solution to this
problem than the free case since the analysis is easier.

The defining relation (2.23) for the Boolean convolution power, combined with

ηµ(z) = 1− zFµ(1/z) = 1− z

Gµ(1/z)
, (5.2)

yields that

Gµ∪×t(z) =
1

z − (zηµ(1/z))t
=

1

z − (z − Fµ(z))t
. (5.3)

We consider the following assumption on µ:

(AS) There exists an open interval I ⊂ (0,∞) such that 1 ∈ I and the limit

Fµ(x) := Fµ(x+ i0) := lim
y↓0

Fµ(x+ iy) ∈ C+ ∪R

exists for each x ∈ I, and the map Fµ : I → C+ ∪R is continuous at 1.

A sufficient condition for (AS) is the existence of a Hölder continuous density around
x = 1; see Example 5.3. The assumption (AS), equation (5.3) and Stieltjes inversion
imply that, for 0 < t < 1, µ∪×t is Lebesgue absolutely continuous on Jt = {x ∈ I :

(x− Fµ(x+ i0))t − x 6= 0} and

dµ∪×t

dx
=

1

π
Im

(
1

(x− Fµ(x+ i0))t − x

)
. (5.4)

Moreover, for 0 < t < 1 and s > 0, the probability measure (µ∪×t)1/s is Lebesgue

absolutely continuous on J
1/s
t := {x ∈ (0,∞) : xs ∈ J} with density

d(µ∪×t)1/s

dx
=

s

πx
Im

(
1

x−s(xs − Fµ(xs + i0))t − 1

)
. (5.5)
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5.1 Log Cauchy distribution

We first consider the log Cauchy distributions.

Theorem 5.1. Let µ be a probability measure on [0,∞) satisfying (AS) and Fµ(1) ∈
C+ ∪ (1,∞), and so we may write log(1− Fµ(1)− i0) = β − iγ, where (β, γ) ∈ R× (0, π].
Then the convergence

d(µ∪×t)1/t

dx
→ γ

πx[(log x− β)2 + γ2]
as t ↓ 0

holds uniformly on each compact set of (0,∞). In particular, (µ∪×t)1/t converges to
L(eCβ,γ ) weakly.

Remark 5.2. It is notable that the parameter γ is less than or equal to π, while it was
an arbitrary positive number in the free case in Theorem 4.1.

Proof. Take any compact set K of (0,∞). Then xt ∈ I for sufficiently small t ∈ (0, 1) and
any x ∈ K, and hence the density formula (5.5) is valid on K when the denominator is
non-zero. Note that xt = 1 + t log x+ o(t) as t ↓ 0 by calculus and Fµ(x

t + i0) = w + o(1)

as t ↓ 0 uniformly on x ∈ K by (AS). Then

d(µ∪×t)1/t

dx
=

t

πx
Im

(
1

(1− t log x+ o(t))(1− w − i0 + o(1))t − 1

)
=

t

πx
Im

(
1

(1− t log x+ o(t))(1− w − i0)t(1 + o(1))t − 1

)
=

t

πx
Im

(
1

(1− t log x+ o(t))(1 + t log(1− w − i0) + o(t))(1 + o(t))− 1

)
=

1

πx
Im

(
1

log(1− w − i0)− log x+ o(1)

)
→ 1

πx
Im

(
−1

log x− β + iγ

)
as t ↓ 0.

(5.6)

This convergence is uniform on K. From this computation we can also see that K ⊂ J
1/t
t

for sufficiently small t > 0 and hence the formula (5.5) is valid. The weak convergence
follows from Lemma 2.14 with B = (0,∞).

Example 5.3. Suppose that µ is Lebesgue absolutely continuous in a bounded open
interval I containing the point 1, and dµ/dx is strictly positive and locally ρ-Hölder
continuous on I for some 0 < ρ < 1. Then the assumption (AS) is satisfied and Fµ(1) ∈ C+.
Therefore, γ ∈ (0, π) and the convergence of Theorem 5.1 holds.

The proof is as follows. In the decomposition

Gµ(z) =

∫
I

1

z − u
µ(du) +

∫
Ic

1

z − u
µ(du) =: G1(z) +G2(z),

the second part G2 extends continuously to C+ ∪ I, taking real-values on I. Considering

G1(x+ iy) =

∫
I

x− u

(x− u)2 + y2
µ(du)− i

∫
I

y

(x− u)2 + y2
µ(du)

and [Tit26, Lemmas α, β, δ] (with some modification of proofs because we only assume
the local Hölder continuity, not the global one), the Cauchy transform G1 extends to a
continuous function on C+ ∪ I and

G1(x) = p.v.

∫
I

1

x− u
µ(du)− iπ

dµ

dx
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on I. The real part is locally ρ-Hölder continuous [Tit26, 3.36] in I, and so G1(x) is
continuous in I. Since Im(G1(1)) = −π dµ

dx

∣∣
x=1

< 0, it follows that Fµ(1) ∈ C+.

Example 5.4. Let µ = 1
2 (δ2 + δp) for p ∈ (0,∞). Then

Fµ(z) =
(z − 2)(z − p)

z − 1− p/2
.

Hence Fµ satisfies (AS). The condition Fµ(1) = 2(1− p)/p > 1 is satisfied if and only if
0 < p < 2/3. If this condition is satisfied then β − iγ = log 2−3p

p − iπ, and hence

(µ∪×t)1/t
w→ 1

x[(log px
2−3p )

2 + π2]
as t ↓ 0.

5.2 Log Boolean stable distributions with index smaller than 1

The distribution L(eBα,ρ,r ) is called the log Boolean stable law, where Bα,ρ,r is a
random variable following the law bα,ρ,r. The convergence to log Boolean stable distri-
butions is shown below.

Theorem 5.5. Let µ be a probability measure on [0,∞) satisfying (AS), and for some
α ∈ (0, 1), ρ ∈ [0, 1] and r > 0,

Fµ(x) = reiαρπ(x− 1 + i0)1−α + o(|x− 1|1−α) as x → 1. (5.7)

Then the convergence

d(µ∪×t)t
−1/α

dx
→ r sinαρπ

πx
· (log x)α−1

(log x)2α + 2r(cosαρπ)(log x)α + r2
as t ↓ 0

holds uniformly on each compact set of (1,∞), and

d(µ∪×t)t
−1/α

dx
→ r sinα(1− ρ)π

πx
· (− log x)α−1

(− log x)2α + 2r(cosα(1− ρ)π)(− log x)α + r2
as t ↓ 0

holds uniformly on each compact set of (0, 1). In particular, (µ∪×t)t
−1/α

converges to
L(eBα,ρ,r ) weakly.

Remark 5.6. (1) The asymptotics (5.7) is equivalent to Gµ(x) = (1/r)e−iαρπ(x − 1 +

i0)α−1 + o(|x− 1|α−1). By Stieltjes inversion, we obtain that

dµ

dx
=


sinαρπ

πr
(x− 1)α−1 + o((x− 1)α−1), x ↓ 1,

sinα(1− ρ)π

πr
(1− x)α−1 + o((1− x)α−1), x ↑ 1.

(5.8)

Hence the triplet (α, ρ, r) can be determined from a local behavior of dµ/dx at 1.
Conversely, it is not known if the asymptotic behavior (5.8) of dµ/dx implies the
asymptotic behavior (5.7) of Fµ (or Gµ). When dµ/dx satisfies an analytic property
then the converse is true, see Example 5.7.

(2) While the Cauchy distribution is a Boolean 1-stable law, we cannot unify Theorems
5.1 and 5.5. This is because the estimate (5.10) below fails to hold for α = 1.

Proof. We define θ := αρπ. Take any compact setK1 of (1,∞). Then xt ∈ I for sufficiently
small t < 1 and any x ∈ K1, and hence the density formula (5.5) is valid on K1 when the
denominator is non-zero. Note that

xt1/α − Fµ(x
t1/α + i0) = 1 + t1/α log x+ o(t1/α)− reiθ(t1/α log x+ o(t1/α) + i0)1−α

= 1− reiθt(1−α)/α(log x)1−α + o(t(1−α)/α)
(5.9)
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as t ↓ 0 uniformly for x ∈ K1. By further calculus we obtain

(xt1/α − Fµ(x
t1/α + i0))t = 1− reiθt1/α(log x)1−α + o(t1/α). (5.10)

Therefore,

d(µ∪×t)t
−1/α

dx
=

t1/α

πx
Im

(
1

[1− t1/α log x+ o(t1/α)][1− reiθt1/α(log x)1−α + o(t1/α)]− 1

)
=

1

πx
Im

(
1

− log x− reiθ(log x)1−α + o(1)

)
→ 1

πx
Im

(
−1

log x+ reiθ(log x)1−α

)
as t ↓ 0

=
r sin θ

πx
· (log x)α−1

(log x)2α + 2r(cos θ)(log x)α + r2
.

(5.11)

The convergence is uniform on K1. From this computation we can also confirm that
(µ∪×t)t

−1/α

is Lebesgue absolutely continuous on K1 for sufficiently small t > 0 and hence
the formula (5.5) is valid.

Take a compact set K2 ⊂ (0, 1). Note that for x < 1,

Fµ(x) = rei(θ+π(1−α))(1− x)1−α + o((1− x)1−α).

Hence, (5.10) holds true if we replace eiθ by ei(θ+π(1−α)) and log x by − log x:

(xt1/α − Fµ(x
t1/α + i0))t = 1 + rei(θ−απ)t1/α(− log x)1−α + o(t1/α) (5.12)

uniformly on K2. Hence

d(µ∪×t)t
−1/α

dx

=
t1/α

πx
Im

(
1

[1− t1/α log x+ o(t1/α)][1 + rei(θ−απ)t1/α(− log x)1−α + o(t1/α)]− 1

)
→ 1

πx
Im

(
1

− log x+ rei(θ−απ)(− log x)1−α

)
as t ↓ 0

=
r sin(απ − θ)

πx
· (− log x)α−1

(− log x)2α + 2r cos(απ − θ)(− log x)α + r2

uniformly on K2. The limiting function is the probability density function of L(eBα,ρ,r ).
The weak convergence follows from Lemma 2.14 with B = (0,∞) \ {1}.

Example 5.7. Suppose that α ∈ (0, 1), c1, c2 ≥ 0, c1 + c2 > 0, δ > 0 and µ is a Borel
probability measure such that µ|(1−δ,1+δ) has a local density function p(x) of the form

p(x) =

{
c1(x− 1)α−1(1 + f1(x)), 1 < x < 1 + δ,

c2(1− x)α−1(1 + f2(x)), 1− δ < x < 1,
(5.13)

where fk is analytic in a neighborhood of 1 and fk(1) = 0, k = 1, 2 (the assumption of
analyticity of fk can be weakened slightly). From the proof of [Has14, Theorem 5.1,
(5.6)], for some β1 ≥ 0∫

(1,1+δ)

1

z − x
p(x) dx = −β1(1− z)α−1 + o(|1− z|α−1) as z → 1, (5.14)
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uniformly for z ∈ C+. Considering the symmetry, we obtain for some β2 ≥ 0,∫
(1−δ,1)

1

z − x
p(x) dx = β2(z − 1)α−1 + o(|1− z|α−1) as z → 1. (5.15)

Combining these two asymptotic behaviors gives

Gµ(z) = (β1e
−απi + β2)(z − 1)α−1 + o(|1− z|α−1) as z → 1, (5.16)

and hence the assumption (5.7) of Theorem 5.5 is satisfied. Since c1+c2 > 0, the Stieltjes
inversion implies that β1 + β2 > 0 too.

So far we have obtained limit theorems converging to log Boolean stable laws
(including the log Cauchy as index 1), and described their domains of attraction. An
unsolved problem is:

Problem 5.8. Are there non-degenerate limit distributions (5.1) except log Boolean
stable laws with index ≤ 1?

6 Proof of Theorem 4.1

The convergence in distribution of positive MFLPs to the log Cauchy distribution can
be reduced to the easier problem of MBLPs, the latter of which was discussed in Section
5.1. However, we need a framework of free and Boolean convolutions beyond convolu-
tions of probability measures. This framework is developed below, and in particular, we
generalize concepts and results introduced in [AH13, BB05]. Some proofs below are not
fully given, but are explained more in [AH].

6.1 Convolutions of maps on the negative half-line

Definition 6.1. Let E be the set of maps η : (−∞, 0) → (−∞, 0) of the form

η(x) = x exp[−u(x)], (6.1)

where u : (−∞, 0) → R is a continuous non-increasing function.

This class generalizes the class of η-transforms of non-trivial probability measures on
[0,∞).

Proposition 6.2. If µ 6= δ0 is a probability measure on [0,∞) then ηµ|(−∞,0) ∈ E .

Proof. The Pick-Nevanlinna representation (2.6) of Fµ shows that

z 7→ ηµ(z)

z
=

1

z
− Fµ

(
1

z

)
is an analytic map from C \ [0,∞) into C, and maps C− into C+ ∪ (0,∞). Its principal
logarithm can therefore be defined as an analytic map from C− to C+ ∪R, and hence
has the Pick-Nevanlinna representation

u(z) := log
ηµ(z)

z
= −az + b+

∫
[0,∞)

1 + zt

z − t
σ(dt)

for some a ≥ 0, b ∈ R and a nonnegative finite measure σ on [0,∞). By calculus we see
that u′(x) ≤ 0 for x < 0.

Definition 6.3. Given η ∈ E and s ≥ 0, we define a multiplicative Boolean convolution
power η∪×s ∈ E by

η∪×s(x) := x

(
η(x)

x

)s

= x exp(−su(x)).
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Then we generalize multiplicative free convolution to the class E . For t ≥ 1, define a
map Φt : (−∞, 0) → (−∞, 0) by

Φt(x) = x

(
x

η(x)

)t−1

= x exp[(t− 1)u(x)], (6.2)

which is continuous and strictly increasing. Since u is non-increasing, u(−∞) ∈ R ∪ {∞}
and u(−0) = R ∪ {−∞}, and hence Φt(−∞) = −∞ and Φt(−0) = 0.

Therefore, Φt is a homeomorphism of (−∞, 0). Denote by ωt its inverse map. We
define a map η�t ∈ E by

η�t(x) := η(ωt(x)). (6.3)

It is not obvious if η�t belongs to E , but it does. Since

η�t(x) = x exp

(
log

ωt(x)

x
− u(ωt(x))

)
,

it suffices to check that ut(x) := − log ωt(x)
x + u(ωt(x)) is continuous and non-increasing,

which is the case since ut(Φt(x)) = − log x
Φt(x)

+ u(x) = tu(x) is continuous and non-
increasing.

Definition 6.4. Suppose that η ∈ E and t ≥ 1.

(1) The map η�t ∈ E defined by (6.3) is called the multiplicative free convolution power
of η.

(2) The map ωt := Φ−1
t is called the subordination function of η�t with respect to η.

A formula for ωt is given. The proof of [BB05, Theorem 2.6(3)] is available without a
change.

Proposition 6.5. For t ≥ 1, η ∈ E and x < 0,

ωt(x) = η�t(x)

(
x

η�t(x)

)1/t

.

Proof. The formula follows just by substituting ωt(x) into (6.2) and using the identities
Φt(ωt(x)) = x and η(ωt(x)) = η�t(x).

From the above expression, the subordination function ωt, t ≥ 1 belongs to E since
ωt = (η�t)∪×

t−1
t . Note that Φt, t > 1 does not belong to E by definition unless u is constant.

Proposition 6.6. (1) Suppose that s, t ≥ 0 and η ∈ E . Then

(η∪×s)∪×t = η∪×st, η∪×1 = η.

(2) Suppose that s, t ≥ 1 and η ∈ E . Then

(η�s)�t = η�st, η�1 = η.

Proof. (1) follows by definition. For (2), let

Φs,t := x

(
x

η�s(x)

)t−1

(6.4)
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and ωs,t be its inverse. Then (η�s)�t = η�s ◦ ωs,t = η ◦ ωs ◦ ωs,t. Thus the claim is
equivalent to ωst = ωs ◦ ωs,t, which is also equivalent to Φs,t = Φst ◦ ωs. This identity
follows from the calculation

Φst(ωs(x)) = ωs(x)

(
ωs(x)

η(ωs(x))

)st−1

= ωs(x)

(
ωs(x)

η�s(x)

)st−1

= η�s(x)

(
x

η�s(x)

) 1
s
(

x

η�s(x)

) st−1
s

= x

(
x

η�s(x)

)t−1

= Φs,t(x),

(6.5)

where Proposition 6.5 was used on the third equality.

The following result extends [AH13, Proposition 4.13] with a slightly different formu-
lation. The same proof also works for our case.

Proposition 6.7. For η ∈ E and p ≥ 0, q ≥ 1, the commutation relation

(η∪×p)�q = (η�q′)∪×p′

holds, where p′ := pq/(1− p+ pq) and q′ := 1− p+ pq. Note that p′ ≥ 0 and q′ ≥ 1.

Definition 6.8. (1) A family {ηt}t≥0 ⊂ E is called a �-convolution semigroup if η0 = id

and η�s
t = ηst for all s ≥ 1, t ≥ 0.

(2) Let η ∈ E . We say that η embeds into a �-convolution semigroup if there exists a
�-convolution semigroup {ηt}t≥0 ⊂ E such that η1 = η. Note that ηt = η�t for all
t ≥ 1.

Proposition 6.9. If η ∈ E embeds into a �-convolution semigroup {ηt}t≥0, then {ηt}t≥0

is completely determined by η and, hence, unique.

Proof. For clarity we denote by ωη,t, t ≥ 1 the subordination function of η�t with respect
to η.

Suppose that {ηt}t≥0 ⊂ E is a �-convolution semigroup into which η embeds. For

0 < t ≥ 1, the map ηt is given by η�t and hence is unique. For t < 1, we have η
�1/t
t = η

by definition, and so
ηt ◦ ωηt,1/t = η,

where

ωηt,1/t(x) = η
�1/t
t (x)

(
x

η
�1/t
t (x)

)t

= η(x)

(
x

η(x)

)t

= η∪×(1−t)

by Proposition 6.5 and η
�1/t
t = η. This implies that ηt = η ◦ ω−1

ηt,1/t
only depends on η,

showing the uniqueness of ηt for 0 < t < 1.

Thanks to the uniqueness, we may write ηt = η�t for t ≥ 0 without ambiguity, when η

embeds into a �-convolution semigroup {ηt}t≥0 ⊂ E .

Definition 6.10. We define a mapM : E → E by

M(η) := (η�2)∪×
1
2 .

This map is called the multiplicative Boolean-to-free Bercovoci-Pata map, which general-
izes the injective map (but not surjective) defined in [AH13] from the class of probability
measures on [0,∞) to the class of �-ID measures.

Proposition 6.11. For any η ∈ E , the mapM(η) embeds into a �-convolution semigroup
and

(M(η)�t)∪×1/t = (η�(1+t))∪×
1

1+t , t > 0.
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Proof. Define
ξt := (η�(1+t))∪×

t
1+t , t ≥ 0.

Then ξ0 = id, ξ1 =M(η) and for s ≥ 1, t > 0,

ξ�s
t = ((η�(1+t))∪×

t
1+t )�s = ((η�(1+t))�

1+st
1+t )∪×

st
1+st = ξst,

where Proposition 6.7 was used for p = t
1+t and q = s. Again Proposition 6.7 for p = 1/2

and q = t yields that, for t ≥ 1

M(η)�t = ((η�2)∪×
1
2 )�t = ((η�2)�

1+t
2 )∪×

t
1+t = ξt,

and hence M(η) embeds into the �-convolution semigroup {ξt}t≥0. We therefore may
write ξt =M(η)�t for t ≥ 0, and then

(M(η)�t)∪×1/t = ξ
∪×1/t
t = (η�(1+t))∪×

1
1+t , t > 0,

the conclusion.

From now on we assume the analyticity of η ∈ E for a later application to the limit
theorem. Let A(S) be the set of analytic functions in an open set S ⊂ C.
Lemma 6.12. Let Ω := (iC+) ∪ C− and 0 < κ < 1 < λ < ∞. Suppose that u ∈
C(Ω ∪ [κ, λ]) ∩ A(Ω) such that u([κ, λ]) ⊂ C+ and u|(−∞,0) is a non-increasing map
from (−∞, 0) into itself. Let η ∈ E be the map associated to u|(−∞,0). Then for every

ε ∈ (0, (λ − κ)/2) there exists δ > 0 such that for every t ∈ (0, δ) the map (η�(1+t))∪×
1

1+t

extends to a function in C(Ωε) ∩A(Ωε), where

Ωε := {z ∈ Ω : dist(z,Ωc) > ε, |z| < ε−1} ∪ {z ∈ Ω : Re(z) ∈ (κ+ ε, λ− ε), |z| < ε−1}

and Ωε is its closure. Moreover, (η�(1+t))∪×
1

1+t (z) = η(z)(1 + O(t)) as t ↓ 0 uniformly on
Ωε.

Proof. The functions η,Φ1+t extend to A(Ω) ∩ C(Ω ∪ [κ, λ]) by

η(z) = z exp[−u(z)], Φ1+t(z) = z exp[tu(z)].

Since u is bounded on Ωε/2, then

Φ1+t(z) = z(1 +O(t)) (6.6)

uniformly for z ∈ Ωε/2. The assumption inf Im(u([κ, λ])) > 0 implies that

Im(Φ1+t(x)) = x exp[tRe(u(x))] sin[tIm(u(x))] > 0 (6.7)

for all 0 < t < π[sup Im(u([κ, λ]))]−1 and all x ∈ [κ, λ]. By (6.6) and (6.7), for sufficiently
small t > 0 the curve Φ1+t|∂Ωε/2

surrounds every point of an open neighborhood Nt of

Ωε exactly once. Hence its right inverse ω1+t (i.e. Φ1+t ◦ ω1+t = id) can be defined as an
injective analytic map from Nt into Ωε/2. Thus the map

η�(1+t) = η ◦ ω1+t ∈ A(Ωε) ∩ C(Ωε)

can be defined, which equals the original map η�(1+t) ∈ E on the negative half-line.
Moreover, plugging ω1+t(z) into (6.6) shows that ω1+t(z) = z(1 +O(t)) uniformly on Ωε,
and hence

η�(1+t)(z) = η(ω1+t(z)) = η(z) +O(t)

uniformly on Ωε. Note that the last estimate may be expressed in the form η(z)(1 +O(t))

since there exists a number c > 0 such that c−1 ≤ |η(z)| ≤ c on Ωε. Finally, some calculus
shows

(η�(1+t))∪×
1

1+t (z) = z

[
η(z)

z
(1 +O(t))

] 1
1+t

= η(z)(1 +O(t))

uniformly on Ωε.
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6.2 Proof of Theorem 4.1

In this section we apply the general framework of convolutions to the limit theorem.
Suppose that µ is �-ID on (0,∞) whose Σ-transform has the expression (2.17). Then
define

η(x) :=
x

Σµ(x)
= x exp(−vµ(x)), x < 0. (6.8)

The correspondence µ 7→ η is a generalization of the multiplicative Bercovici-Pata map
from Boolean to free [AH13] which is not surjective. We can show that η ∈ E , but η
may not be the η-transform of a probability measure. Moreover, the map η is not even
injective on (−∞, 0) in general, so it seems not easy to define a Σ- or S-transform of η.
This is why the previous section has investigated convolution operations for maps on
(−∞, 0) without using Σ-transforms.

The following result shows that the mapM is a generalization of the multiplicative
Bercovici-Pata map from Boolean to free (denoted byM1 in [AH13]).

Lemma 6.13. Under the above notation, the identityM(η) = ηµ holds.

Proof. Recall that ηµ is a homeomorphism of (−∞, 0) since µ({0}) = 0. Since η(x) =
x2

η−1
µ (x)

, we obtain

Φ2(x) =
x2

η(x)
= η−1

µ (x),

and hence ω2 = ηµ. Therefore,

η�2(x) = η(ω2(x)) =
ηµ(x)

2

x
,

and so

(η�2)∪×
1
2 (x) = x

(
η�2(x)

x

) 1
2

= x

(
[−ηµ(x)]

2

(−x)2

) 1
2

= ηµ(x).

Under the setting of (6.8), since µ embeds into the convolution semigroup {µ�t}t≥0

of probability measures on (0,∞), the map ηµ embeds into the �-convolution semi-
group ηµ�t . This convolution semigroup may be written as (ηµ)�t and it coincides with

(η�(1+t))∪×
t

1+t by Proposition 6.11. Now, we have the identity

ηµ�t = ((η�(1+t))∪×
1

1+t )∪×t. (6.9)

We have shown that the function (η�(1+t))∪×
1

1+t is close to η up to O(t) when t is small.
This estimate and (6.9) enable us to reduce the convergence problem of a MFLP to the
Boolean case.

Proof of Theorem 4.1. By assumption, there exist 0 < κ < 1 < λ < ∞ such that vµ
extends to a continuous function on Ω ∪ [κ, λ] and such that vµ([κ, λ]) ⊂ C+ as required
in Lemma 6.12. Fixing ε > 0 such that λ + ε < 1 < κ − ε, Lemma 6.12 shows that the
map ηt := (η�(1+t))∪×

1
1+t continuously extends to Ωε for small t > 0. Therefore, Eq. (6.9)

implies that, for 1/z ∈ Ωε,

Gµ�t(z) =
1

z − zηµ�t(1/z)
=

1

z − zη∪×t
t (1/z)

=
1

z − (zηt(1/z))t
=

1

z − exp[−tvµ(1/z)](1 +O(t))t
,

(6.10)

where the asymptotic behavior of Lemma 6.12 was used on the last equality. Notice
that the map z 7→ (zηt(1/z))

t may not be the principal value in C−, but is defined as the
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(unique) continuous extension of the real-valued map on (−∞, 0). Therefore, the density
of µ�t is given by

dµ�t

dx
= − 1

π
Im[Gµ�t(x+ i0)]

= − 1

π
Im

(
1

x− exp[−tvµ(1/x− i0)](1 + o(t))

) (6.11)

in a neighborhood of 1 when the denominator is non-zero.
Take a compact subset K of (0,∞). The density of (µ�t)1/t is given by

d(µ�t)1/t

dx
= − t

πx
Im

(
1

1− x−t exp[−tvµ(x−t − i0)](1 + o(t))

)
= − t

πx
Im

(
1

1− (1− t log x+ o(t))(1− tvµ(1) + o(t))(1 + o(t))

)
= − 1

πx
Im

(
1

log x+ vµ(1) + o(1)

) (6.12)

as t ↓ 0 uniformly on K. This computation shows that d(µ�t)1/t/dx exists on K if t is
small enough (since the denominator is not zero), and converges to

1

πx
· γ

(log x− β)2 + γ2
as t ↓ 0

uniformly on K.

7 Unitary multiplicative Lévy processes at small times

In this section we will find limit distributions for unitary MFLPs and MCLPs at small
times1. That is, we consider the convergence in law of the unitary process

b(t)(Ut)
a(t), as t ↓ 0, (7.1)

where {Ut}t≥0 is a unitary MFLP and a : (0,∞) → N and b : (0,∞) → T are functions.
Note that the function a is assumed to be N-valued, or at least Z-valued, because
non-integral powers zp cannot be continuously defined on T. In terms of probability
measures, our aim is to obtain weak limits of

Rb(t)(µ
�t)a(t), as t ↓ 0, (7.2)

where {µ�t}t≥0 is a weakly continuous �-convolution semigroup on T such that µ0 = δ1.

Remark 7.1. In order to formulate a limit theorem for unitary MFLPs at large times
we need to consider the situation where a(t) → 0 as t → ∞, but this is impossible for
N-valued functions.

Before going to the general case let us analyze the important example of unitary free
Brownian motion for which we have an explicit description in terms of moments.

Example 7.2. Let {Ut}t≥0 be a standard unitary free BM. The m-th moment of Ut is
calculated by Biane [Bia97]:

E[Um
t ] = e−

mt
2

m−1∑
k=0

(−1)k
tk

k!
mk−1

(
m

k + 1

)
, m ≥ 1.

1 We do not discuss unitary MBLPs because of some technical difficulty.
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If we take m = n[1/
√
t] for a fixed n ∈ N then as t tends to 0 we have

E
[(

U
[1/

√
t]

t

)n]
∼ e−

n
√

t
2

n[1/
√
t]−1∑

k=0

(−1)ktk
(nt−1/2)2k

k!(k + 1)!
→

∞∑
k=0

(−1)k
n2k

k!(k + 1)!
=

J1(2n)

n
,

where J1 is the Bessel function of the 1st kind. Let S be a semicircular random variable
with mean 0 and variance 1. Then, it is well known that the characteristic function is
given by

E[eiγS ] =
J1(2γ)

γ
, γ ∈ R.

So we have proved that (Ut)
[1/

√
t] law−→ eiS as t ↓ 0.

In order to discuss the general case, it is instructive to understand the classical
version of (7.2) in which {µ�t}t≥0 is replaced by {µ~t}t≥0. Let {Xt}t≥0 be an ACLP on R
such that X0 = 0, and let Ut = eiXt . Then {Ut}t≥0 is a unitary MCLP and the identity

b(t)(Ut)
a(t) = ei[a(t)Xt+arg b(t)] (7.3)

holds, where arg b(t) is defined modulo 2π. If we take the ACLP {Xt} and functions a and
b in such a way that a(t)Xt + arg b(t) converges in law to a stable random variable X,
then the law of (7.3) converges in law to eiX . For example we may trivially take {Xt}t≥0

to be a stable process! This argument shows that the set of possible limit distributions
contains all the laws of eiX , where X is a stable random variable. Moreover, it is easy to
see that the Haar measure can appear in the limit. The authors do not know whether
other distributions appear in the limit.

A similar idea works for unitary MFLPs. The wrapping map W is useful to establish a
transfer principle from additive convolutions to multiplicative ones, provided that we
restrict to the class L (see Section 2.10).

Theorem 7.3. Let µ be an �-ID distribution on T with free generating pair (γ, σ) and
define

σ+(x) =

∫
(x,π)

θ−2 dσ(θ), σ−(x) =

∫
(−π,−x)

θ−2 dσ(θ),

σ(x) = σ+(x) + σ−(x), 0 < x < π,

where a measure σ on T is identified with the measure on [−π, π).

(1) If the function x 7→ σ((−x, x)) is slowly varying as x ↓ 0 then there exist functions
a : (0,∞) → N and b : (0,∞) → T such that (7.2) weakly converges to W (f2,1/2).

(2) Let (α, ρ) ∈ A, α 6= 2. If the function σ(x) is regularly varying with index −α as x ↓ 0

and if

lim
x↓0

σ+(x)

σ(x)
=

{
1
2

(
1 +

tan(ρ− 1
2 )απ

tan απ
2

)
, if α 6= 1,

ρ, if α = 1,

then there exist functions a : (0,∞) → N and b : (0,∞) → T such that (7.2) weakly
converges to W (fα,ρ).

Similar statements hold for the classical case.

Proof. Let (ξ, τ) be a pair defined by (2.29) and (2.30), and let µ̃ := µξ,τ
� . Then µ̃ is

a pre-image of µ by the map W |L from Proposition 2.9. The measure τ satisfies the
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assumption of Theorem 3.4, which implies that there exist functions A(t), B(t) > 0 such
that A(t) → ∞ and DA(t)(µ̃

�t)� δB(t)
w→ fα,ρ. Since

D[A(t)](µ̃
�t)� δB(t)[A(t)]/A(t) = D[A(t)]/A(t)

[
DA(t)(µ̃

�t)� δB(t)

]
w→ fα,ρ, (7.4)

we may a priori assume that A(t) is N-valued. Then, by Proposition 2.6 we have

W (DA(t)(µ̃
�t)� δB(t)) = Re−iB(t)

[
(W (µ̃)�t)A(t)

]
= Re−iB(t)

[
(µ�t)A(t)

]
, (7.5)

which weakly converges to W (fα,ρ). This shows that we can take a(t) = A(t) and
b(t) = e−iB(t) such that (7.2) converges to W (fα,ρ).

The proof for the classical case is similar; one only needs to use Proposition 2.5
instead of Proposition 2.9, and replace free objects by the corresponding classical
ones.

Remark 7.4. Note that the measure DA(t)(µ̃
�t) above may not belong to L, since the

class L is not closed under dilation. Due to this, the converse statement of Theorem 7.3
cannot be proved.

Corollary 7.5. The set of possible limit distributions of (7.2) contains the set {W (µ) :

µ is free stable}. A similar statement holds for the classical case.

Example 7.6. Let λα,ρ be the �-ID distribution with the Voiculescu transform

ϕλα,ρ(z) = ϕfα,ρ(tan z) =

{
−eiαρπ (tan z)

1−α
, α 6= 1,

−iρπ − (1− 2ρ) log tan z, α = 1,
(7.6)

where (α, ρ) is admissible. Since tan z maps C+ into itself, and tan(iy) → i as y → ∞,
those functions have Pick–Nevanlinna representations of the form (2.3) and hence by
Theorem 2.1 such a �-ID distribution λα,ρ exists. Furthermore, ϕλα,ρ

is a periodic
function with respect to 2π shifts, and hence λα,ρ ∈ L. If we let µt = Da(t)(λ

�t
α,ρ) then, for

α 6= 1 and a(t) = [t−1/α],

ϕµt
(z) = ta(t)ϕλα,ρ

(z/a(t)) = −ta(t)eiαρπ
(
tan

z

a(t)

)1−α

→ −eiαρπz1−α, (7.7)

as t → 0. This implies that µt → fα,ρ and hence

(W (λα,ρ)
�t)[t

−1/α] = W (Da(t)(λ
�t
α,ρ))

w→ W (fα,ρ). (7.8)

Similarly, for α = 1 setting µ̃t = Dã(t)(λ
�t
1,ρ)� δb̃(t) where ã(t) = [1/t] and b̃(t) = log(t1−2ρ),

we see that ϕµ̃t(z) → −iρπ− (1−2ρ) log z, which yields the convergence ϕµ̃t(z) → ϕf1,ρ(z)

and hence

Rt−i(1−2ρ)(W (λ1,ρ)
�t)[1/t]

w→ W (f1,ρ). (7.9)

In the unitary case, the Haar measure can appear as a limit distribution. For example,
if the measure µ itself is the Haar measure, then the measure (7.2) is the Haar measure
at any time.

Problem 7.7. Is the set {W (µ) | µ is free stable}∪{Haar measure, delta measures} the
only possible limits of (7.2)?
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