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LIMIT THEOREMS FOR FUNCTIONALS OF
MIXING PROCESSES WITH APPLICATIONS TO
U-STATISTICS AND DIMENSION ESTIMATION

SVETLANA BOROVKOVA, ROBERT BURTON, AND HEROLD DEHLING

Abstract. In this paper we develop a general approach for investigating the
asymptotic distribution of functionals Xn = f((Zn+k)k∈Z) of absolutely reg-
ular stochastic processes (Zn)n∈Z. Such functionals occur naturally as orbits
of chaotic dynamical systems, and thus our results can be used to study proba-
bilistic aspects of dynamical systems. We first prove some moment inequalities
that are analogous to those for mixing sequences. With their help, several limit
theorems can be proved in a rather straightforward manner. We illustrate this
by re-proving a central limit theorem of Ibragimov and Linnik. Then we apply
our techniques to U -statistics

Un(h) =
1(n
2

) ∑
1≤i<j≤n

h(Xi, Xj)

with symmetric kernel h : R × R → R. We prove a law of large numbers,
extending results of Aaronson, Burton, Dehling, Gilat, Hill and Weiss for ab-
solutely regular processes. We also prove a central limit theorem under a differ-
ent set of conditions than the known results of Denker and Keller. As our main
application, we establish an invariance principle for U -processes (Un(h))h, in-
dexed by some class of functions. We finally apply these results to study the
asymptotic distribution of estimators of the fractal dimension of the attractor

of a dynamical system.

1. Introduction

In this section we provide some motivation for the research presented in this
paper, and present some key examples. We will mainly show how functionals of
mixing processes occur naturally in the study of dynamical systems, and how U -
statistics enter in the context of dimension estimation.

1.1. Examples.

Definition 1.1. Let (Ω,F , P ) be a probability space and let (Zn)n∈Z be a station-
ary stochastic process.

(i) We call a sequence (Xn)n∈Z a two-sided functional (or simply functional) of
(Zn)n∈Z if there is a measurable function f defined on RZ such that

Xn = f((Zn+k)k∈Z).(1.1)

Note that (Xn)n∈Z is necessarily a stationary stochastic process.
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(ii) Similarly, if (Zn)n≥0 is one-sided and if

Xn = f((Zn+k)k≥0)(1.2)

for n ≥ 0 and measurable f , then (Xn)n≥0 is called a one-sided functional of
(Zn)n≥0.

Such functionals arise naturally in statistics and in the theory of stochastic pro-
cesses. For example, an autoregressive process of order p is defined as a solution to
the stochastic difference equation

Xn = a1Xn−1 + a2Xn−2 + . . .+ apXn−p + Zn(1.3)

where a1, . . . , ap are fixed real numbers, and (Zn)n≥0 is an i.i.d. process. Autore-
gressive processes play an important role in the analysis of time series. If all roots
of the characteristic polynomial a(z) = apz

p + ap−1z
p−1 + . . .+ a1z − 1 lie outside

the unit circle, then (1.3) may be iterated backwards to express

Xn = Zn +
∞∑
k=1

bkZn−k(1.4)

so that (Xn)n≥0 is a one-sided functional of the i.i.d. process (Zn)n≥0.
Functionals also arise naturally in the theory of dynamical systems. Thus given

(Xn)n∈Z representing observables on a dynamical system we may often be able to
reverse the process above and find (Zn)n∈Z defined in terms of a partition so that
(Xn)n∈Z is a functional of (Zn)n∈Z.

If (Xn)n∈Z is a stationary process, then there is always a measure-preserving
dynamical system (X ,A, µ, T ) so that (X ,A, µ) is a probability space and T :
X → X is invertible, measurable, and measure-preserving so for all A ∈ A we
have µ(T−1A) = µ(A). Further there is a measurable function φ defined on X so
that Xn = φ ◦ T n. Assume now that (Ω,F , P ) was sufficiently rich and coincides
with (X ,A, µ). If Q = {Qα : α ∈ Λ} is a measurable partition of Ω, then we
get another stationary process (Zn)n≥0 with state space Λ defined by Zn(ω) = α
if and only if ω ∈ Qα. Define Amn = σ(Zn, Zn+1, . . . , Zm) for m ≥ n and AI =
σ(Zj , j ∈ I). Q is a generator for T if AZ = F up to sets of measure 0. In this case,
(Xn)n∈Z is a functional of (Zn)n∈Z, so there is an f such that Xk = f((Zn+k)k∈Z).
The point for any given (Ω,F , P, T ) is to find a process (Zn)n∈Z with as little
dependence as possible and the function f to have continuity properties as strong
as possible. In most cases we will construct the partition Q to be finite or countable.
If (Xn)n∈N is a one-sided process, then the same formalism holds but in that case
the transformation T : X → X is not invertible and the functional is one-sided.

Definition 1.2. A process (Zn)n∈Z is called absolutely regular (also known as
weak Bernoulli) if βk → 0 where

βk = 2 sup
n

{
sup

A∈A∞n+k

(P (A|An1 )− P (A))

}

= sup
n

sup
I∑
i=1

J∑
j=1

|P (Ai ∩Bj)− P (Ai)P (Bj)|


where the last supremum is over all finite An1 -measurable partitions (A1, . . . , AI)
and all finite A∞n+k-measurable partitions (B1, . . . , BJ ).
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The Ornstein isomorphism theorem of ergodic theory tells us that every process
which is a functional of a countable-state weak Bernoulli process is also a func-
tional of a countable state i.i.d. process although the functional may be highly
discontinuous.

Other notions of weak dependence are similarly related to the mixing coefficients

αk = sup
n

sup
A∈An1

sup
B∈A∞n+k

|P (A ∩B)− P (A)P (B)|,

φk = sup
n

sup
A∈An1

sup
B∈A∞n+k

|P (B|A)− P (B)|,

ψk = sup
n

sup
A∈An1

sup
B∈A∞n+k

| P (A ∩B)
P (A)P (B)

− 1|.

A process is called strong mixing (respectively uniformly mixing, and ψ-mixing) if
αk → 0 (respectively φk → 0, ψk → 0). Since ψk ≥ φk ≥ βk ≥ αk, we see that
ψ-mixing implies uniform mixing, which again implies absolute regularity, which
finally implies strong mixing.

In the rest of this section, we provide some key examples illustrating the above
ideas.

Example 1.1. Consider the doubling map T : [0, 1) → [0, 1) defined by T (x) =
2x [mod 1]. Given an initial valueX0 with uniform distribution on [0, 1) we generate
a stationary stochastic process (Xn)n≥0 by Xn = T n(X0). X0 may be expressed in
binary expansion

X0 =
∞∑
n=0

Zn
2n+1

where (Zn)n≥0 are i.i.d. with P (Zn = 0) = P (Zn = 1) = 1/2. The partition
in this case is Q = {Q0 = [0, 1/2);Q1 = [1/2, 1)}. Thus (Xn) is a functional of
(Zn). The map X0 = f(Z0, Z1, . . . ) is Lipschitz in the sense that if a0 = a′0, a1 =
a′1, . . . , an−1 = a′n−1, then |f(a0, a1, . . . )− f(a′0, a

′
1, . . . )| ≤ 2−n.

Definition 1.3. (i) A two-sided functional f : RZ → R is called Lipschitz if there
are constants C > 0 and 0 < α < 1 such that for any two sequences (an)n∈Z and
(a′n)n∈Z satisfying an = a′n for −l ≤ n ≤ l we have

|f((an))− f((a′n))| ≤ Cαl.
(ii) Similarly, a one-sided functional f : RN → R is called Lipschitz if an = a′n for
0 ≤ n ≤ l implies

|f((an))− f((a′n))| ≤ Cαl,
again for some constants C > 0 and 0 < α < 1.

If f is a Lipschitz functional and Xn = f((Zn)n∈Z), then (Xn)n∈Z is called a
Lipschitz functional of (Zn)n∈Z (similarly in the one-sided case). In many examples,
the Lipschitz property is too strong to hold. We thus introduce in the next definition
a weaker form of continuity, the so-called r-approximation condition.

Definition 1.4. Let r ≥ 1 and define the σ-fields Al−l = σ(Z−l, . . . , Zl). Sup-
pose (al)l≥0 are constants with al → 0. We say that (Xn)n∈Z satisfies the r-
approximation condition if

E|X0 − E(X0|Al−l)|r ≤ al.(1.5)
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Alternatively, we say that (Xn)n∈Z is an r-approximating functional with constants
(al)l≥0 of (Zn)n∈Z. We make a similar definition in the one-sided case.

Example 1.2. Let (Zn)n≥0 be i.i.d. with P (Zn = 0) = P (Zn = 1) = P (Zn = 2)
= 1/3, and define

X0 = f((Zn)n≥0) =
∞∑
l=0

ail
2l+1

where i1 = inf{i ≥ 0|Zi 6= 2} and il+1 = inf{i > il|Zi 6= 2}, and Xk =
f((Zn+k)n≥0). Then (Xn)n≥0 is a one-sided functional of an i.i.d. process but
the functional is not Lipschitz as in Example 1.1. We do have for r ≥ 1, and some
C > 0, 0 < α < 1,

E(|X0 − E(X0|An0 )|r) ≤ Cαn.

Example 1.3 (Regular Continued Fractions). Let X = [0, 1) and define the map
T : X → X by T (x) = 1

x − b
1
xc. Gauss measure on X , given by the density

f(x) = 1
log(2)

1
1+x is an invariant distribution for T . Thus if X0 is distributed

according to the Gauss measure, and if Xn = T n(X0), then (Xn)n≥0 is a stationary
stochastic process. Let Z0 = b 1

X0
c and Zn = b 1

Xn
c, so that

X0 = f((Zn)n≥0) =
1

Z0 + 1
Z1+ 1

Z2+...

The partition in this case is Q = {Qi : i ≥ 1} where Qi = [ 1
i+1 ,

1
i ). The functional

is Lipschitz as in Example 1.1, but the process is not i.i.d. It is however ψ-mixing,
and thus also absolutely regular.

Example 1.4 (Piecewise expanding maps of [0, 1]). Suppose T : [0, 1] → [0, 1] is
piecewise smooth and expanding. This means there are closed intervals J1, . . . , JN
such that [0, 1] =

⋃N
j=1 Jj and Ji ∩ Jj is at most one point for i 6= j. Further

T restricted to Jj is monotone, C2 and satisfies |T ′(x)| ≥ λ > 1 for all x in
the interior of Jj , for some uniform constant λ. Then T preserves an absolutely
continuous probability measure. If (Zn)n∈Z is the process associated with the above
partition J1, . . . , JN , and if T is totally ergodic, then (Zn)n∈Z is absolutely regular
(Hofbauer and Keller [31]).

Example 1.5 (Automorphisms of the 2-torus). Let Π2 = S1×S1, A =
(

1 1
1 0

)
,

and define T : Π2 → Π2 by

T

(
x
y

)
= A

(
x
y

)
=
(
x+ y
y

)
[mod 1].

This defines an automorphism of the torus and preserves the Haar measure, which
in this case turns out to be the Lebesgue measure. If X0 has Lebesgue measure as
distribution, then Xn = T n(X0) defines a stationary process. The eigenvalues of
A are 1±

√
5

2 . There is a partition Q = {Q0, Q1} where Q0, Q1 are rectangles with
sides along the eigenvectors. If Zn = α ↔ Xn ∈ Qα, then Zn is a mixing Markov
chain, and hence absolutely regular. Further (Xn)n≥0 is a Lipschitz functional of
(Zn)n≥0. This construction applies to any automorphism of Π2 with an eigenvalue
which is not a root of unity (Adler and Weiss [2]).
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Example 1.6 (Natural extension of the regular continued fraction). On X =
[0, 1)× [0, 1) we define the two-dimensional Gauss measure 1

log 2
1

(1+xy)2 dxdy. Define
T : X → X by

T (x, y) =
(

1
x
− Z0,

1
Z0 + y

)
where Z0(x, y) = b 1

xc. If X0 has Gauss measure as distribution, and ifXn = T n(X0)
for n ∈ Z and Zn = b 1

Xn
c, then (Xn)n∈Z is a functional of (Zn)n∈Z. This is a two-

sided version of Example 1.3 (Nakada, Ito and Tanaka [35]).

Example 1.7 (Nearest integer continued fraction). In computing continued frac-
tions we can round down as in the regular continued fraction or round up. The
nearest integer continued fraction rounds whichever way is closest. In this case T
is naturally defined on [− 1

2 ,
1
2 ). Let

T (x) =
1
|x| −

⌊
1
|x| +

1
2

⌋
so that x = ε0

Z0+T (x) where ε0 = sgn(x) and Z0 = b 1
|x| + 1

2c.
Again we have a natural extension. Let φ be the positive root of φ2 +φ− 1 = 0,

and let X = [− 1
2 , 0)× [0, 1− φ) ∪ [0, 1

2 )× [0, φ). Define T̃ : X → X by

T̃ (x, y) =
(
T (x),

1
Z0 + ε0y

)
.

This preserves the measure C
(1+xy)2dxdy. The natural partition is Q = {Qi : i =

±2,±3, . . .}, Qi = {(x, y) : i = ε0Z0}. The process (εnZn)n∈Z is absolutely regular
and (T n(x, y))n∈Z is a Lipschitz functional of (εnZn)n≥0 (Nakada [34]).

Example 1.8 (Natural extension of Rosen continued fractions). We generalize
Example 1.7. Fix an integer q ≥ 3 and let λq = 2 cos(πq ), and define the map

T (x) =
1
|x| −

⌊
1
|x|λ +

1
2

⌋
λ.

This amounts to approximating 1
|x| by the nearest multiple of λ. (If q = 3 we

get λq = 1, and we are back in the nearest integer case.) Then we can express x
as x = ε0

Z0λ+T (x) , where ε0 = sgn(x) and Z0 = b 1
|x|λ + 1

2c. We can find a finite
union of rectangles X ⊂ [−1, 1] × [0, 1] with probability measure C

(1+xy)2 dxdy so

that the natural extension T̃ (x, y) = (Tx, 1
Z0λ+ε0y

) is measure-preserving. Again
the process (εnZn)n∈Z is known to be absolutely regular (Burton, Kraaikamp and
Schmidt [14]).

Example 1.9. Suppose we have a diffeomorphism T : M →M of a compact Rie-
mannian manifold M . A point x ∈M is non-wandering if there is a neighborhood
U of x so that T nx 6∈ U for n ≥ 1. (M,T ) is called Axiom A if
• M is the closure of the non-wandering points,
• the periodic points are dense,
• T is hyperbolic, i.e. the tangent space of DT splits into expanding and con-

tracting subspaces.
In this case T preserves a natural absolutely continuous measure. A theorem of
Bowen [11] states that any sufficiently fine finite partition with piecewise smooth
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boundaries is a generator and that the resulting sequence (Zn)n∈Z is absolutely
regular. One class of examples is the class of automorphisms of the torus.

Example 1.10. Fix real numbers a, b and define T : R2 → R2 by T (x, y) =
(y, y2 + b−ax). For some a, b this map appears to have a fractal attractor. Little is
known about this map rigorously. However, extensive simulations have been carried
out. Some believe this map to have an ergodic measure and a weak Bernoulli
generator.

An independent iterated function system is a stochastic process obtained by
composing an i.i.d. sequence of transformations (Barnsley [4]).

Definition 1.5. Let (X , d) be a bounded metric space and (Fn)n≥0 an i.i.d. se-
quence of transformations Fn : X → X . Suppose the diameter of X is ≤ 1. Let X0

be an X -valued random variable and define

Xn = Fn ◦ · · · ◦ F1(X0).

The Markov chain (Xn)n≥0 is called an independent iterated function system (ab-
breviated IIFS).

The following definition appears in Burton and Faris [13].

Definition 1.6. An independent iterated function system is called superstable if
1. there is an invariant probability measure µ on X , i.e. if X0 has distribution
µ, then Xn has the same distribution.

2. there are constants K > 0, γ > 0 so that for every pair x, y ∈ X there is a
random variable W = Wx,y <∞ a.s. with

d(Fn ◦ · · · ◦ F1(x), Fn ◦ · · · ◦ F1(y)) ≤ Ke−γ(n−W )

Theorem 1. A superstable IIFS ((Fn)n≥1, X0) has the property that Xn converges
in distribution to the invariant measure.

Proof. Let ν denote the distribution of X0 and let Y be a random variable with
the invariant distribution µ. Let f be bounded and uniformly continuous. Then

|Ef(Xn)− Ef(Y )| = |E[f(Fn ◦ · · · ◦ F1(X0))− f(Fn ◦ · · · ◦ F1(Y ))]→ 0,

since Fn ◦ · · · ◦F1(X0)−Fn ◦ · · · ◦F1(X)→ 0, f is uniformly continuous, and using
the bounded convergence theorem.

Now extend the i.i.d. transformations backwards to get a doubly infinite sequence
(Fn)n∈Z. Suppose (Xn)n∈Z is stationary and satisfies Xn = Fn(Xn−1) for n ∈ Z.
Assume the superstability condition, then (Xn) is a functional of (Fn), in fact this is
a backward one-sided function Xk = F ((Xn+k)n≤0) by the superstability condition.

Theorem 2. Let (Fn)n∈Z and (Xn)n∈Z be as above and superstable. Suppose there
is a random variable W which stochastically dominates Wx,y, for all x, y. Then the
r-approximation property is satisfied with an = Ke−γrn/2 + P (W > n/2).

Proof.

E|X0 −X ′0|r = E|F0 ◦ · · · ◦ F−n+1(X−n)− F0 ◦ · · · ◦ F−n+1(X ′−n)|r

≤ E[min(Ke−γ(n−Wx,y)r, 1)]

= E[min(Ke−γ(n−Wx,y)r, 1)1{Wx,y≤n/2}] + P (Wx,y > n/2)

≤ Ke−γrn/2 + P (W > n/2)
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Example 1.11. Suppose Fn is a.s. a strict contraction of Rn, i.e. there exists
γ > 0 so that |Fn(x) − Fn(y)| ≤ e−γ‖x − y‖. Then we may take W = 0, since
|Fn ◦ · · · ◦ F1(x)− Fn ◦ · · · ◦ F1(y)| ≤ Ce−γn. A special case is

Fn(x) =
{
x/3 with probability 1/2,
2/3 + x/3 with probability 1/2,

and the corresponding invariant measure is Lebesgue measure on the standard
Cantor set.

Example 1.12. Suppose Fn is Lipschitz a.s. on Rn, with Lipschitz constant

‖Fn‖ = sup
x 6=y

‖Fn(x) − Fn(y)‖
‖x− y‖ .

If E‖Fn‖ = 2γ < 1, then (Fn)n∈Z, (Xn)n∈Z is superstable. We get namely

log(‖Fn ◦ · · · ◦ F1‖) ≤
1
n

n∑
i=1

log ‖Fi‖ → 2γ

by the strong law of large numbers. Thus we get

|Fn ◦ · · · ◦ F1(x) − Fn ◦ · · · ◦ F1(y)| ≤ e−γ(n−W )

and W is exponentially dominated, that is P (W > n) ≤ Ke−βn for some K > 0
and β > 0. A special case is

Fn(x) =

 2x with probability 1/3,
x/3 with probability 1/3,
2/3 + x/3 with probability 1/3,

and 2γ = 8/9.

Example 1.13 (Kohonen self-organizing neural networks). Let N > 1 be fixed
and let

X = {A ⊂ [0, 1]d : #(A) = N}.
Define on X the Hausdorff metric

d(A,B) = min[max{|xi − yi| : A = (x1, . . . , xN ), B = (y1, . . . , yN)}].

Let Z1, Z2, . . . be i.i.d. uniform on [0, 1] and 0 < α < 1 be fixed. Let X0 be a
random variable with values in X and define Xn+1 to be the set including αZn+1 +
(1− α)x where x is the point in Xn closest to Zn+1, not including the point x but
including all other points in Xn.

This IIFS is used in vector quantization and other applications (see Ritter, Mar-
tinez and Schulten [40]). It is superstable and W may be taken to be exponentially
dominated (Burton and Faris [13]).

1.2. U-statistics and dimension estimation. Let h : Rk −→ R be a measur-
able function, invariant under permutation of its arguments. Then we define the
U -statistic of degree m corresponding to the kernel h by

Un =
(

n
m

)−1 ∑
1≤i1<···<im≤n

h(Xi1 , ..., Xim),
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where {Xn}n∈N is a stationary sequence of k-dimensional random vectors with
common distribution F . Halmos [27] and Hoeffding [29] introduced U -statistics as
unbiased estimators for functionals of the form

θ(F ) =
∫

Rk×m
h(x1, ..., xm)dF (x1) · · · dF (xm).

Already Hoeffding established asymptotic normality of U -statistics in the case of
i.i.d. observations. The study of U -statistics of dependent observations has at-
tracted attention in the past years. The main motivation for investigations into
the asymptotics of dependent U -statistics has been provided by the problem of
dimension estimation.

Estimation of the fractal dimension of a strange attractor from a chaotic time
series has attracted considerable attention in the past few years and has become
one of the useful tools in the analysis of the underlying dynamics. Though there are
several notions of non-integer dimensions, most attention has been devoted to the
correlation dimension. This is mainly due to the fact that this type of dimension
is relatively easy to estimate, and it provides a good measure of the complexity of
the dynamics, i.e. the number of active degrees of freedom.

Suppose (X ,F , µ, T ) is a dynamical system, where X ⊆ Rp and T : X −→ X is
a measurable transformation with invariant probability measure µ. We define the
correlation integral

Cµ(r) = (µ× µ){(x, y) : ‖x− y‖ ≤ r}
for r ≥ 0. In many examples it turns out that there exists a constant α such that

Cµ(r) ≈ const · rα as r −→ 0.(1.6)

Then the exponent α is called the correlation dimension of µ. More formally, one
defines the correlation dimension by

α := lim
r→0

logC(r)/ log r,(1.7)

provided this limit exists. Since all norms on a finite dimensional Euclidean space
are equivalent, the correlation dimension is independent of the choice of norm in
the definition of C(r). For computational convenience, often the maximum norm
is taken.

In most practical situations the dynamical system, and thus also the invariant
measure µ, are unknown and one has to rely on (partial) observations of a finite
orbit (T kω)0≤k≤n of the system. Most models assume that the actual observations
are functions of the state. More precisely, one postulates existence of a so-called
read-out function f : X → R such that yn = f(T nω) is observed at time n.
Of course, one cannot hope to get much information about the state ω by just
observing f(ω). This, however, changes completely if one replaces f(ω) by the
vector of observations f(T iω) at q consecutive time points, i.e.

Rec(ω) := (f(ω), f(Tω), ..., f(T q−1ω)).

The Takens reconstruction theorem (Takens, [46]) then assures that in generic situ-
ations, Rec : X → Rq defines an embedding, provided q ≥ 2p+1. Consequently we
can obtain information about the state space and the dynamics of T by studying
the process of reconstruction vectors

Xn = Rec(T nω), n ≥ 0.
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Among other things, one can show that the correlation dimension of the invariant
measure µ coincides with that of the marginal distribution F of Xn, again provided
we are in the generic situation and q ≥ 2p+1. For smaller values of q, the correlation
dimension of F will equal the embedding dimension.

It is thus of interest to estimate the correlation dimension of the marginal dis-
tribution of a stationary stochastic process from a finite sample X1, . . . , Xn. A
number of procedures for estimating the correlation dimension has been introduced
in the literature. Grassberger and Proccacia [26] suggested a procedure of esti-
mating α which immediately became widely used by mathematicians and applied
scientists. Their method is based on the observation that the correlation integral
can be written as

C(r) = CF (r) = P (‖X −X ′‖ ≤ r)
where X and X ′ are independent copies of X1. The natural estimator for the
correlation integral from a stationary sequence of reconstruction vectors (Xi)i=1,...,n

is then the sample correlation integral

Cn(r) =
2

n(n− 1)

∑
1≤i<j≤n

1(‖Xi −Xj‖ ≤ r)(1.8)

(note that Cn(r) is the proportion of pairs in the sample X1, ..., Xn no more than
distance r apart). The correlation integral Cn(r) is estimated for a vector of dis-
tances (r1, ..., rl) and the Grassberger-Proccacia estimate for the correlation dimen-
sion α̂GPn is then obtained by fitting least-squares linear regression of logCn(r) vs.
log r.

An alternative approach to dimension estimation was proposed by Takens [47].
Assume for a moment that in a neighborhood of r = 0 an exact scaling law holds
for the correlation integral, i.e. that

C(r) = const ·rα, r ≤ r0,(1.9)

for some r0 > 0. Then Takens first considered estimating α from i.i.d. realizations
Ri = ‖Xi − Yi‖ of the distance ‖X − Y ‖, where Xi and Yi are independent with
distribution µ. If (1.9) holds, the conditional distribution of Ui := Ri/r0 given
Ri ≤ r0 is given by

P(Ui ≤ t|Ui ≤ 1) = tα, for t ∈ [0, 1].

Then the (conditional) distribution of Si = − logUi is exponential with parameter
α, i.e. Si has density

g(s) = αe−αs · 1[0,∞)(s).
Given an i.i.d. sample S1, S2, ..., SN of exponentially distributed random variables,
the Maximum Likelihood estimator (MLE) of the parameter α is given by

α̂ML =
N∑N
i=1 Si

.(1.10)

It turns out that the ML estimator is biased, but that the variant α̂ = N−1∑N
i=1 Si

, is
unbiased, and actually the uniformly minimum variance unbiased (UMVU) estima-
tor. This is a simple consequence of the Lehman-Scheffé lemma, and the fact that∑N
i=1 Si is a complete sufficient statistic.
In general, independent realizations of the distances ‖X−Y ‖ will not be available

and thus a modification of the estimator (1.10) becomes necessary. Given a finite
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segmentX1, ..., Xn of an orbit, we can form n(n−1)/2 pairwise distances ‖Xi−Xj‖.
Motivated by the ML estimator (1.10) Takens proposed to use

α̂T = −

 2
n(n− 1)

∑
1≤i<j≤n

log
‖Xi −Xj‖

r0

−1

(1.11)

as estimator for the correlation dimension.
Note that the sample correlation integral Cn(r) is a U -statistics of degree 2

with the kernel function h(x, y) = 1(‖x − y‖ ≤ r), and the Takens estimator is
the reciprocal of the U -statistics of degree 2 with the kernel function h(x, y) =
log ‖x − y‖. Since the data from dynamical systems is not i.i.d., this gives the
motivation for studying the U -statistics of dependent observations.

2. Basic definitions and inequalities

In this section we present the basic techniques of our approach towards limit
theorems for functionals of absolutely regular processes. Coupling methods for
absolutely regular processes and their functionals play a central role in this. With
their help we can show that an r-approximating functional can be coupled along
blocks to a process of independent blocks. Coupling will also be the key technique
in establishing new correlation inequalities for functionals.

2.1. Basic definitions and coupling lemmas. From now on, we shall assume
that the underlying probability space (Ω,F , P ) is sufficiently rich to accomodate
all new random variables and processes that will be introduced in the course of our
investigations. In this way we avoid the need for later extensions of the original
probability space. This holds e.g. if, in addition to the original random variables,
an independent random variable with a uniform distribution on [0, 1] exists on
(Ω,F ,P). This is the essence of the following lemma of Skorohod [44] (in the
formulation of Dudley and Philipp [25]).

Lemma 2.1. Suppose (Ω,F ,P) is a probability space, S1, S2 are Polish spaces,
and Q is a probability measure on S1 × S2. Suppose, moreover, that on this proba-
bility space there are independent random variables X and U where U is uniformly
distributed on [0, 1], and X : Ω −→ S1 has distribution Q1, the first marginal of Q.
Then there exists a function g : [0, 1] × S1 −→ S2 such that (X, g(U,X)) has the
distribution Q.

First, we shall recall some main coupling results for absolutely regular processes,
which will be useful later. The first lemma, due to Berbee [5], states that with
high probability any absolutely regular process can be perfectly coupled with a
copy whose past is independent of the given process. Here, and in what follows, we
denote by a copy of a process another process with the same distribution.

Lemma 2.2 (Theorem 4.4.7 in Berbee [5]). Let (Zn)n∈Z be a stationary and abso-
lutely regular stochastic process with mixing coefficients (βk)k≥0. Then there exists
a copy (Z ′n)n∈Z of (Zn)n∈Z satisfying:

(i) (Z ′n)n<0 is independent of (Zn)n∈N;
(ii) P(Z ′k = Zk, Z

′
k+1 = Zk+1, . . . ) = 1− βk, for all k ≥ 0.

Definition 2.3. Let M and N be positive integers, (Xn)n∈N a stochastic process,
and assume that M is even. An (M,N)-blocking of (Xn)n∈N is the sequence of
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Figure 2.1. Coupling as established in Lemma 2.5

blocks B1, B2, ... of N consecutive Xi’s, separated by blocks of length M . More
precisely,

Bs = (X(s−1)(M+N)+M
2 +1, ..., Xs(M+N)−M2

)

for s = 1, 2, .... By Is we denote the set of indices in the block Bs, i.e. Is =
{(s− 1)(M +N) + M

2 + 1, ..., s(M +N)− M
2 }.

In what follows, the short blocks of length M will often be discarded. Their only
purpose is to serve as separators between the longer blocks to make them almost
independent. Our definition of the blocks was chosen symmetrically, i.e. such that
the sth long block of length N lies in the center of the segment {(s− 1)(M +N) +
1, ..., s(M + N)}. Given a set if indices I ⊂ N, we also define XI := (Xi, i ∈ I).
With this notation we have Bs = XIs .

Absolute regularity of a process implies that the sequence of (M,N)-blocks can
be perfectly coupled with the sequence of independent long blocks, which have the
same distribution as those of the original process. This result, which is formulated
precisely in the following lemma, was obtained independently by several authors.
One source is Berbee [5], another is Dehling and Philipp [16], together with an
unpublished note by Berger (see Philipp [39]).

Lemma 2.4 (Theorem 3.4 in Philipp [39]). Let (Zn)n∈N be a stationary and ab-
solutely regular process with mixing coefficients (βk)k≥0, and with (M,N)-blocks
(Bs)s≥1, where M,N are positive integers. Then there exists a sequence of inde-
pendent, identically distributed random vectors (B′s)s≥1, with the same marginal
distributions as (Bs)s≥1, such that

P(Bs = B′s) = 1− βM
holds for all s ∈ N.

We shall frequently use another variant of the coupling idea, establishing the
existence of a sequence of independent copies of the process (Zn)n≥1 that are with
high probability perfectly coupled to the original process on precisely one of the
long blocks. (See Figure 2.1.)

Lemma 2.5. Let (Zn)n∈Z be stationary and absolutely regular with mixing coef-
ficients (βk). Then for all integers M,N > 0 there exists a family of processes
(Zsn)n∈Z, s = 1, 2, ..., such that

(i) (Zsn)n∈Z, s = 1, 2, ..., are independent copies of (Zn)n∈Z,
(ii) P(Zn = Zsn, ∀n ∈ Is) = 1− βM for all s = 1, 2, ....
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Proof. By Lemma 2.4 there exist i.i.d. blocks (B′s)s∈N with the same marginal
distributions as the (M,N)-blocks (Bs)s∈N of (Zn)n∈Z satisfying P(Bs = B′s) =
1 − βM . For a fixed s, we want to define (Zsn)n∈Z such that it has B′s as its sth
(M,N)-block. As a consequence of Lemma 2.1 this can be done in such a way that
(i) is satisfied: let (Us)s∈N be an i.i.d. sequence of random variables uniformly
distributed on [0, 1]. Write RZ = RIs ×RZ\Is and let Q denote the distribution
of (Zn)n∈Z. Now the distribution of B′s equals the first marginal of Q, and hence
there is a function g(Us, B′s) such that (B′s, g(Us, B′s)) has the same distribution
as (Zn)n∈Z. Obviously, (Zsn)n∈Z := (B′s, g(Us, B′s)) satisfies the conditions of the
lemma.

Definition 2.6. A stochastic process (Xn)n∈N is called nearly regular if for any
ε, δ > 0 there exists M ∈ N such that for all N ∈ N we can find a sequence (B′s)s≥1

of independent RN -valued random variables satisfying
(i) B′s has the same distribution as Bs, the sth (M,N)-block of (Xn)n.
(ii) P(‖Bs − B′s‖ ≤ δ) ≥ 1 − ε, where ‖·‖ denotes the L1-norm on RN , that is

‖x‖ =
∑N
i=1 |xi|.

The name ‘nearly regular’ refers to the similarity of this property to absolute
regularity, in the sense that an absolutely regular process can be perfectly coupled
with a process consisting of independent blocks (Lemma 2.4), while near regularity
implies closeness to such a process, in an appropriate sense. Such blockwise coupling
of weakly dependent processes to an independent process has been introduced in
the seminal paper by Berkes and Philipp [8] and has since then been a succesful
tool in proving various types of limit theorems.

If (Zn)n∈Z is a stationary and absolutely regular process, and (Xn)n∈Z is a
functional of (Zn)n∈Z, then the process (Xn)n∈Z is also stationary and ergodic.
However, (Xn) will in general not be absolutely regular, since each Xi is a function
of the entire process (Zn)n∈Z. On the other hand, if the Xi’s can be well approxi-
mated by functionals depending on a finite number of Zi’s (and such functionals are
absolutely regular), we can expect all asymptotic results, which hold for absolutely
regular processes, to hold also for (Xn)n∈Z.

In the rest of this section, we want to show that r-approximating functionals
with summable rates are nearly regular. In this and in other applications a differ-
ent formulation of the r-approximation condition is required, namely one assuring
closeness of f((Zn))n∈Z and f((Z ′n))n∈Z in Lr, if (Zn)n∈Z and (Z ′n)n∈Z are two
copies of the same process that coincide on a finite segment of indices m = −l, . . . , l.
The next lemma assures that both definitions are essentially the same.

Lemma 2.7. (i) Let f : R → R be an r-approximating functional with constants
(al)l≥0, and let (Z ′n)n∈Z be a copy of the process (Zn)n∈Z satisfying Zn = Z ′n for
n = −l, . . . , l. If Xn = f((Zn+k)k∈Z) and X ′n = f((Z ′n+k)k∈Z) are functionals of
(Zn)n∈Z and (Z ′n)n∈Z respectively, then

E |X0 −X ′0|r ≤ 2ral,

(ii) Let f : R→ R be a measurable function and suppose that for all copies (Z ′n)n∈Z

of (Zn)n∈Z satisfying Zn = Z ′n for n = −l, . . . , l we have

E |X0 −X ′0|r ≤ bl.
Then f is r-approximating with constants (bl)l.
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Proof. Define u : R2l+1 → R by u(z−l, . . . , zl)) = E(X0|Z−l = z−l, . . . , Zl = zl),
and note that by (1.5) we get E|X0 − u(Z−l, . . . , Zl)|r ≤ al. Thus, using the
cr-inequalities (see Loéve [33]) we find

E |X0 −X ′0|r = E
∣∣X0 − u(Z−l, . . . , Zl)−X ′0 + u(Z ′−l, . . . , Z

′
l)
∣∣r

≤ 2r−1
{

E |X0 − u(Z−l, . . . , Zl)|r + E
∣∣X ′0 − u(Z ′−l, . . . , Z

′
l)
∣∣r}

≤ 2ral,

where we made use of the fact that Zn = Z ′n for −l ≤ n ≤ l.
(ii) We define V = (Zk)−l≤k≤l and W = (Zk)k∈Z\{−l,... ,l}. With these abbre-

viations, our condition states that whenever W ′ = (Z ′k)k∈Z\{−l,... ,l} is such that
(V,W ′) has the same distribution as (V,W ), we have

E |f(V,W )− f(V,W ′)|r ≤ bl
Now let U be a random variable with uniform distribution on [0, 1], and independent
of all the previously defined variables. By Lemma 2.1 there exists a function g such
that (V, g(V, U)) has the same distribution as (V,W ) and hence

E |f(V,W )− f(V, g(V, U))|r ≤ bl.
Moreover E(f(V, g(V, U))|F l−l) =

∫ 1

0 f(V, g(V, u))du and thus

E
∣∣f(V,W )− E(f(V,W )|F l−l)

∣∣r = E
∣∣∣∣f(V,W )−

∫ 1

0

f(V, g(V, u))du
∣∣∣∣r

≤ E
∫ 1

0

|f(V,W )− f(V, g(V, u))|r du

= E |f(V,W )− f(V, g(V, U))|r

≤ bl,

where we have made use of the Jensen inequality.

Corollary 2.8. Let f : R → R be an r-approximating functional with constants
(al)l≥0, and let (Z ′n)n∈Z be a copy of the process (Zn)n∈Z satisfying Zn = Z ′n for
n = −l, . . . , l. If Xn = f((Zn+k)k∈Z) and X ′n = f((Z ′n+k)k∈Z) are functionals of
(Zn)n∈Z and (Z ′n)n∈Z respectively, then

P
(
|X0 −X ′0| ≥ (2al)1/2

)
≤ (2al)1/2.(2.1)

Proof. This is simply an application of Lemma 2.7(i) and the Markov inequality.

Theorem 3. Let (Xn)n∈N be a 1-approximating functional with summable con-
stants (ak)k≥0 of an absolutely regular process with mixing rate (βk)k≥0. Then
(Xn)n∈N is nearly regular. More precisely, given integers K,L,N , we can approx-
imate the sequence of (K + 2L,N)-blocks (Bs)s≥1 by a sequence of independent
blocks (B′s)s≥1 with the same marginal distribution in such a way that

P(‖Bs −B′s‖ ≤ 2αL) ≥ 1− βK − 2αL,(2.2)

where

αL := (2
∞∑
l=L

al)1/2.(2.3)

(See Figure 2.2.)
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Figure 2.2. Coupling ideas in the proof of Theorem 3

Proof. Consider the (K, 2L + N)-blocking of (Zn)n∈Z, and denote the index set
of the sth long block (of length 2L + N) by Js. Let (Zsn)n∈Z, s = 1, 2, ..., be
the independent copies of (Zn)n∈Z, whose existence is given by Lemma 2.5, and
satisfying

P(ZJs = ZsJs) = 1− βK .(2.4)

Consider now the (K + 2L,N)-blocking of (Xn)n∈N, and let Bs denote the sth
block of length N and Is the corresponding index set. Let (Xs

n)n∈N be the process
obtained by applying the functional f to (Zsn)n∈Z, and observe that these are inde-
pendent copies of (Xn)n∈N. Denote by B′s the sth block of the process (Xs

n)n∈N,
that is

B′s = Xs
Is .

One can now directly see that B′s, s = 1, 2, ..., are independent, and that B′s has
the same distribution as Bs, for any fixed s. Hence condition (i) of Definition 2.6
is satisfied.

To verify (2.2) we will approximate Bs (resp. B′s) by a function of ZJs (resp.
ZsJs) using the 1-approximation condition, and then apply (2.4). For i ∈ Is we
define the function ui : RJs −→ R by

ui(zJs) := E(Xi|Zi−l = zi−l, ..., Zi+l = zi+l),

where l is the largest integer such that {i−l, ..., i+l} ⊂ Js. Note that l ≥ L, since i ∈
Is is at least L away from the boundary of Js. Let u : RJs −→ RIs be the function
with coordinates ui. Then, by the 1-approximation condition E |Xi−ui(ZJs)| ≤ al,
and hence

E ‖XIs − u(ZJs)‖ ≤ 2
∞∑
l=L

al.

The same inequality holds with X and Z replaced by Xs and Zs. By Markov’s
inequality this implies

P(‖XIs − u(ZJs)‖ ≥ αL) ≤ αL, P(‖Xs
Is − u(ZsJs)‖ ≥ αL) ≤ αL,

where αL = (2
∑∞
l=L al)

1/2. Hence

P(‖Bs −B′s‖ ≥ 2αL) ≤ P(‖Bs − u(ZJs)‖ ≥ αL) + P(ZJs 6= ZsJs)

+ P(‖B′s − u(ZsJs)‖ ≥ αL)
≤ 2αL + βK ,

thus proving the statement of Theorem 3.
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In what follows, we will often require summability conditions on the sequences
(ak)k and (αk)k. We introduce the following notation.

Definition 2.9. Let (ak)k≥0 be a sequence of non-negative real numbers. Given
p, q > 0, we say that (ak)k satisfies the (p, q)-summability condition if

∞∑
l=0

lpaql <∞.(2.5)

2.2. p-continuity. In many situations, we will have to study functions of a given
process (Xn)n∈Z which itself is again a functional of an absolutely regular pro-
cess. This occurs e.g. when we investigate the U -statistic 1

(n2)
∑

1≤i,j≤n h(Xi, Xj)

or the empirical distribution function Fn(t) = 1
n

∑n
i=1 1{Xi≤t}. Under certain con-

tinuity conditions on these functions, important properties of (Xn)n∈Z, like the
r-approximation property and correlation inequalities are retained.

Definition 2.10. Let g : R −→ R be a measurable function, and let F be some
distribution on R. We say that g is p-continuous with respect to F if there exists
φ : (0,∞)→ (0,∞) with φ(ε) = o(1) as ε→ 0 such that

E
(
|g(X)− g(X ′)|p 1{|X−X′|≤ε}

)
≤ φ(ε)(2.6)

holds for all random variables X and X ′ with distribution F . If the choice of
the underlying distribution F is clearly understood, we simply say that g is p-
continuous.

Example 2.1. (i) Every uniformly continuous function u : R→ R is p-continuous.
In fact, φ(ε) can be chosen to be the modulus of continuity of u.

(ii) Note that also discontinuous functions can be p-continuous. Take the in-
dicator function ut(x) = 1{x≤t} and a continuous distribution function F . Then
condition (2.6) is automatically satisfied for all p. Note namely that t < x− ε and
|x−x′| ≤ ε imply that t < x′ and, in the same way, t > x+ ε and |x−x′| ≤ ε imply
t > x′. Hence

|1{x≤t} − 1{x′≤t}|1{|x−x′|≤ε}} ≤ 1{x−ε≤t≤x+ε}

and thus

E
(
|1{X≤t} − 1{X′≤t}|p1{|X−X′|≤ε}

)
≤ F (t+ ε)− F (t− ε) = φ(ε),

(2.7)

where φ(ε) is some function of ε which tends to 0 as ε −→ 0 (because of continuity
of F ). If F has a bounded density f , then the r.h.s. of (2.7) is bounded by φ(ε) =
2‖f‖∞ε.

The following proposition essentially states that the 1-approximation property
is preserved when instantaneous 1-continuous functionals are applied. This result
will play a major role in our investigations of the empirical process of functionals
of absolutely regular processes.

Proposition 2.11. Let (Xn)n∈Z be a 1-approximating functional of (Zn)n∈Z with
constants (al)l≥0, and let u : R→ R be a function that is 1-continuous with respect
to the distribution of X0. Then (u(Xn))n∈Z is also a 1-approximating functional of
(Zn)n∈Z with constants

a′l = φ(
√

2al) + 2‖u(X0)‖2+δ (2al)
1+δ
4+2δ ,(2.8)
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provided ‖u(X0)‖2+δ < ∞, for some δ > 0. If u is a bounded function, the same
holds with

a′l = φ(
√

2al) + 2‖u(X0)‖∞
√

2al(2.9)

replacing (2.8).

Proof. Let (Z ′n) be a copy of (Zn), satisfying Zn = Z ′n, for −l ≤ n ≤ l, and let
(Xn)n∈Z and (X ′n)n∈Z be the respective functionals. Then the 1-approximation
condition and Lemma 2.7(i) imply that

E |X0 −X ′0| ≤ 2al.

Define the event B = {|X0−X ′0| >
√

2al} and note that by Chebychev’s inequality
we have P (B) ≤

√
2al. Hence

E |u(X0)− u(X ′0)| ≤ E (|u(X0)− u(X ′0)|1Bc) + E (|u(X0)− u(X ′0)|1B)

≤ φ
(√

2al
)

+ 2‖u(X0)‖2+δ (P (B))
1+δ
2+δ

By Lemma 2.7(ii) this implies the 1-approximation condition for (u(Xn))n∈N.

In the context of U -statistics we need a generalization of the p-continuity con-
dition that is suitable for kernels h : R2 → R. Essentially we require h(X,Y ) and
h(X ′, Y ) to be close whenever X and X ′ are in close p-mean with respect to a
restricted class of probability distributions.

Definition 2.12. Let (Xn)n∈Z be a stationary stochastic process and let h : R2 →
R be a measurable, symmetric kernel. Then we say that h is p-continuous if there
exists a function φ : (0,∞)→ (0,∞) with φ(ε) = o(1) as ε→ 0 such that

E|h(X,Y )− h(X ′, Y )|p1{|X−X′|≤ε} ≤ φ(ε),(2.10)

for all random variablesX,X ′, Y with marginal distribution F and such that (X,Y )
either has distribution F × F or PX0,Xk for some k ∈ N.

Example 2.2. In the analysis of the Grassberger-Procaccia dimension estimator,
the kernel ht(x, y) = 1{|x−y|≤t} plays an important role. This kernel is p-continuous
provided

• the distribution functions of |Xi −Xj | are equicontinuous in t,
•
∫ ∫

ht(x, y)dF (x)dF (y) is continuous at t.

Indeed, |X0 −Xk| ≤ t− ε and |X0 −X ′0| ≤ ε imply that |X ′0 −Xk| < t and, in the
same way, |X0 −Xk| > t+ ε and |X0 −X ′0| ≤ ε imply |X ′0 −Xk| > t. Hence∣∣1{|X0−Xk|≤t} − 1{|X′0−Xk|≤t}

∣∣ 1{|X0−X′0|≤ε} ≤ 1{t−ε≤|X0−Xk|≤t+ε}

and thus we get

E
∣∣1{|X0−Xk|≤t} − 1{|X′0−Xk|≤t}

∣∣p 1{|X0−X′0|≤ε} ≤ P (t− ε ≤ |X0 −Xk| ≤ t+ ε)

≤ φ(ε)

where φ(ε) = max(supk P (t− ε ≤ |X0 −Xk| ≤ t+ ε), P (t− ε ≤ |X − Y | ≤ t+ ε)),
with X,Y independent and with distribution function F .

For (not necessarily symmetric) functions g : RI → R we need an extension of
the p-continuity condition that is contained in the following definition.
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Definition 2.13. A measurable function g : RI → R is called p-continuous if there
exists a function φ : (0,∞)→ (0,∞) with φ(ε) = o(1) as ε→ 0 such that

E|g(ξI1 , ξI2)− g(ξI1 , ξ
′
I2)|p1{‖ξI2−ξ′I2‖≤ε} ≤ φ(ε)(2.11)

holds for all disjoint index sets I1 and I2 with I1∪I2 = I and for all random vectors
ξI1 , ξI2 , ξ

′
I2

such that (ξI1 , ξI2 ) has distribution PXI1 ,XI2 or PXI1 ×PXI2 and ξ′I2 has
the same distribution as XI2 .

Lemma 2.14. Let h : R2 → R be a symmetric p-continuous kernel (in the sense
of Definition 2.12) and define

g(xi1 , xi2 , xi3 , xi4) := h(xi1 , xi2)h(xi3 , xi4 )

(i) If h is bounded, g is also p-continuous.
(ii) If E|h(Xi1 , Xi2)|p < ∞, E|h(Xi3 , Xi4)|p < ∞ and EX0EXk |h(X0, Xk)|p <

∞, then g is p/2-continuous.

Proof. We have to verify (2.11) for any partition of I into disjoint sets I1, I2. Take
e.g. I1 = {i1, i3} and I2 = {i2, i4} (other cases are similar, and left to the reader),
and let ξ have the distributional properties stated in Definition 2.13. Then we can
write

h(ξi1 , ξi2)h(ξi3 , ξi4)− h(ξi1 , ξ
′
i2)h(ξi3 , ξ

′
i4) = h(ξi1 , ξi2 )

(
h(ξi3 , ξi4 )− h(ξi3 , ξ

′
i4)
)

+h(ξi3 , ξ
′
i4)
(
h(ξi1 , ξi2)− h(ξi1 , ξ

′
i2 )
)
.

From this we get using Hölder’s inequality and (2.10)

E
{
|h(ξi1 , ξi2 )h(ξi3 , ξi4 )− h(ξi1 , ξ

′
i2)h(ξi3 , ξ

′
i4)|p/21{|ξ′i2−ξi2 |+|ξ′i4−ξi4 |≤ε}

}
≤ E

{
|h(ξi1 , ξi2)|p/2|h(ξi3 , ξi4)− h(ξi3 , ξ

′
i4 )|p/21{|ξ′i4−ξi4 |≤ε}

}
+ E

{
|h(ξi3 , ξ

′
i4)|p/21{|ξ′i4−ξi4 |≤ε}|h(ξi1 , ξi2)− h(ξi1 , ξ

′
i2 )|p/21{|ξ′i2−ξi2 |≤ε}

}
≤ (E |h(ξi1 , ξi2)|p)1/2

(
E|h(ξi3 , ξi4)− h(ξi3 , ξ

′
i4 )|p1{|ξ′i4−ξi4 |≤ε}

)1/2

+
(
E|h(ξi3 , ξ

′
i4 )|p1{|ξ′i4−ξi4 |≤ε}

)1/2 (
E|h(ξi1 , ξi2)− h(ξi1 , ξ

′
i2)|p1{|ξ′i2−ξi2 |≤ε}

)1/2

≤M1/2 · φ1/2(ε) +
(
E|h(ξi3 , ξ

′
i4)|p1{|ξ′i4−ξi4 |≤ε}

)1/2

φ1/2(ε).

Note that both (ξi1 , ξi2)and (ξi3 , ξi4) have one of the distributions for which (2.10)
is in force. To bound the remaining term on the r.h.s., we write h(ξi3 , ξ′i4) =
h(ξi3 , ξi4) + (h(ξi3 , ξ′i4)− h(ξi3 , ξi4 )) so that

E|h(ξi3 , ξ
′
i4)|p1{|ξi4−ξ′i4 |≤ε}

≤ 2p−1(E|h(ξi3 , ξi4)|p + E|h(ξi3 , ξ
′
i4)− h(ξi3 , ξi4 )|p1{|ξi4−ξ′i4 |≤ε}

≤ 2p−1(M + φ(ε))

thus proving (ii) of the lemma. Part (i) is simpler, as we can bound both h(ξi1 , ξi2)
and h(ξi3 , ξ′i4) by the supremum of h.

Lemma 2.15. Let h be a p-continuous kernel and define

h1(x) =
∫

R

h(x, y)dF (y).

Then h1 is also p-continuous.
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Proof. To establish the p-continuity condition (2.6) for the function h1, we take
an F -distributed random variable Y , independent of X,X ′. Applying Jensen’s
inequality we then obtain

E
(
|h1(X)− h1(X ′)|p1|X−X′|≤ε

)
= E

(
|EY (h(X,Y )− h(X ′, Y ))|p1{|X−X′|≤ε}

)
≤ EX,X′ EY

(
|h(X,Y )− h(X ′, Y )|p1{|X−X′|≤ε}

)
≤ φ(ε).

Here we have made use of the fact that (X,Y ) has distribution F ×F so that (2.10)
can be applied.

2.3. Correlation inequalities. Correlation inequalities play a crucial role in all
proofs of limit theorems for weakly dependent processes. A well-known example is
the inequality

|E(ξ · η)− Eξ ·Eη| ≤ 4α1−1/p−1/q
k ‖ξ‖p‖η‖q,(2.12)

valid for strongly mixing processes and random variables ξ and η that are respec-
tively Fn0 - and F∞n+k-measurable. Here ‖ξ‖p denotes the Lp-norm of ξ, and p, q
have to satisfy 1/p+ 1/q ≤ 1. This inequality was proved independently by Davy-
dov [15] and Deo [22]. In this section we prove analogous lemmas for functionals of
absolutely regular processes.

As absolutely regular processes are also strongly mixing with rates αk ≤ βk, the
correlation inequality (2.12) holds trivially also for absolutely regular processes,
with α replaced by β. It is worth noting that in this case a short proof of (2.12)
can be obtained from a coupling argument. We can namely find a copy (ξ′, η′) of
(ξ, η) with the properties
• ξ′ is independent of ξ, η,
• P (η 6= η′) ≤ β.

Then we get from Hölder’s inequality

|E(ξη)− (Eξ)(Eη)| = |E(ξ′η′)− E(ξ′η)|
=

∣∣E {ξ′(η′ − η)1{η 6=η′}
}∣∣

≤ 2‖ξ‖p‖η‖q (P (η 6= η′))1−1/p−1/q
.

A variant of this technique will be used in all the proofs of correlation inequalities
in this section. In the following proposition we construct a suitable coupling.

Proposition 2.16. Let (Xn)n∈Z be a 1-approximating functional with constants
(ak) of an absolutely regular process with mixing coefficients (βk)k≥0. Then, given
k ∈ N, there exist copies (X ′n)n∈Z and (X ′′n)n∈Z of (Xn)n∈Z with the following
properties:

(i) (X ′′n)n∈Z is independent of (Xn)n∈Z.
(ii) There exists a set A with P (A) ≥ 1− βb k3 c such that

E (|Xi −X ′i|1A) ≤ 2ai−b 2k
3 c

for all i ≥ k.
(iii) For all i ≥ 0

E|X ′−i −X ′′−i| ≤ 2ai+b k3 c.
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Proof. According to Lemma 2.2, there exists a copy (Z ′n)n∈Z of the process (Zn)n∈Z,
such that (Z ′n)n<bk/3c is independent of (Zn)n∈Z and

P (Zi = Z ′i, for all i ≥ b2k
3
c) ≥ 1− βbk/3c.

Let (Z ′′n)n∈Z be another copy of (Zn)n∈Z, satisfying Z ′′n = Z ′n for n ≤ k/3 and
such that (Z ′′)n∈Z is independent of (Zn)n∈Z. Let (X ′n)n∈Z and (X ′′n)n∈Z be the
corresponding functionals, and note that (i) is automatically satisfied. In order to
prove (ii), we define for i ≥ k the function

ui(zb 2k
3 c
, . . . , z2i−b 2k

3 c
) := E(Xi|Zb 2k

3 c
= zb 2k

3 c
, . . . , Z2i−b 2k

3 c
= z2i−b 2k

3 c
)

By the 1-approximation property we get that

E|Xi − ui(Zb 2k
3 c
, . . . , Z2i−b 2k

3 c
)| ≤ ai−b 2k

3 c
,(2.13)

E|X ′i − ui(Z ′b 2k
3 c
, . . . , Z ′

2i−b 2k
3 c

)| ≤ ai−b 2k
3 c
.(2.14)

Now define the event A = {Zi = Z ′i for all i ≥ b 2k
3 c}. Then combining (2.13) and

(2.14), we get

E(|Xi −X ′i|1A)

= E
∣∣∣Xi − ui(Zb 2k

3 c
, . . . , Z2i−b 2k

3 c
)
∣∣∣+ E

∣∣∣X ′i − ui(Z ′b 2k
3 c
, . . . , Z ′

2i−b 2k
3 c

)
∣∣∣

≤ 2ai−b 2k
3 c
,

which proves (ii). The proof of (iii) follows along the same lines, but is simpler
because Z ′′n = Z ′n for n ≤ k/3 on the entire probability space.

Corollary 2.17. Let (Xn)n∈Z be a 1-approximating functional of an absolutely
regular process. Then, given k ∈ N, there exist copies (X ′n)n∈Z and (X ′′n)n∈Z of
(Xn)n∈Z with the following properties:

(i) (X ′′n)n∈Z is independent of (Xn)n∈Z.
(ii) P (

∑∞
i=k |Xi −X ′i| ≤ αbk/3c) ≥ 1− βbk/3c − αbk/3c.

(iii) P (
∑∞

i=0 |X ′−i −X ′′−i| ≤ αbk/3c) ≥ 1− αbk/3c,
where (αn)n≥1 is defined as in (2.3).

Proof. We use the same construction as in Proposition 2.16. Then we get from (ii)
that

E

( ∞∑
i=k

|Xi −X ′i|1A

)
≤ 2

∞∑
i=k

ai−b 2k
3 c
≤

∞∑
i=b k3 c

ai.

Now we can apply Markov’s inequality, and get

P

 ∞∑
i=k

|Xi −X ′i| ≥

√√√√2
∞∑

i=b k3 c

ai

 ≤ P
 ∞∑
i=k

|Xi −X ′i|1A ≥

√√√√2
∞∑

i=b k3 c

ai

+ P (Ac)

≤

√√√√2
∞∑

i=b k3 c

ai + βk/3,

thus establishing (ii). The proof of (iii) follows in a similar way from Proposi-
tion 2.16(iii).
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In the proofs of several correlation inequalities the following corollary to Hölder’s
inequality will be useful. We have

E|XY | ≤ (E|X |)
δ

1+δ (‖X‖2+δ)
1

1+δ ‖Y ‖2+δ,(2.15)

for random variables X,Y ∈ L2+δ, and δ > 0. Indeed, (2.15) can be proved by
expressing |XY | as

|XY | = |X | δ1+δ |X | 1
1+δ |Y |

and then applying Hölder’s inequality with exponents p = 1+δ
δ , q = (2 + δ)(1 + δ),

and r = 2 + δ.
For certain fourth moment bounds, we need an analogous inequality for quadru-

ple products, namely

E|XY ZW | ≤ (E|X |)
δ

3+δ (‖X‖4+δ)
3

3+δ ‖Y ‖4+δ‖Z‖4+δ‖W‖4+δ

(2.16)

valid for random variables X,Y, Z,W ∈ L4+δ, where δ > 0. This inequality can
be proved by writing |XY ZW | = |X | δ3+δ |X | 3

3+δ |Y ||Z||W | and using a quintuple
Hölder inquality with exponents p, q, r, s, t given by p = 3+δ

δ , q = (4 + δ)(3 + δ)/3,
and r = s = t = 4 + δ.

Lemma 2.18. Let (Xn)n∈N be a 1-approximating functional with constants (al)l≥0

of an absolutely regular process with mixing coefficients (βk)k≥0. Then
(i) if X0 is a.s. bounded, we have for all i, k ≥ 0

|E(XiXi+k)− (EXi)(EXi+k)| ≤ 4‖X0‖∞ab k3 c + 2‖X0‖2∞βb k3 c.
(2.17)

(ii) if ‖X0‖2+δ <∞ for some δ > 0, we have

|E(XiXi+k)− (EXi)(EXi+k)| ≤ 2‖X0‖22+δ

(
βb k3 c

) δ
2+δ

+ 4
(
ab k3 c

) δ
1+δ ‖X0‖

2+δ
1+δ
2+δ

(2.18)

for all i, k ≥ 0.

Proof. Due to stationarity, it suffices to prove (2.17) and (2.18) for i = 0. Let
(X ′n)n∈Z and (X ′′n)n∈Z be copies of (Xn)n∈Z, as defined in Proposition 2.16. Thus,
the pairs of random variables (X0, Xk), (X ′0, X ′k) and (X ′′0 , X ′′k ) have the same
distribution. Moreover, (X ′′0 , X

′′
k ) is independent of (X0, Xk) and the properties

(ii) and (iii) of Proposition 2.16 hold. Hence

|E(X0Xk)− EX0 EXk| = |E(X ′0X
′
k)− E(X ′′0Xk)|

≤ E |X ′0(X ′k −Xk)|+ E |(X ′0 −X ′′0 )Xk|.(2.19)

The first term on the r.h.s. of (2.19) is bounded by

‖X0‖∞E|X ′k −Xk| ≤ ‖X0‖∞ {E (|X ′k −Xk|1A) + E (|X ′k −Xk|1Ac)}
≤ ‖X0‖∞

{
2ab k3 c + 2‖X0‖∞β k

3

}
.

The second term on the r.h.s. of (2.19) is bounded by

‖Xk‖∞E|X ′0 −X ′′0 | ≤ 2‖X0‖∞ab k3 c,

and these two estimates together yield (2.17).
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For the proof of (2.18) we use again (2.19). Decompose the first term on the r.h.s.
of (2.19) as E|X ′0(X ′k − Xk)1A| + E|X ′0(X ′k − Xk)1Ac | and note that by Hölder’s
inequality

E|X ′0(X ′k −Xk)1Ac | ≤
(
βb k3 c

) δ
2+δ ‖X0‖2+δ‖X ′k −Xk‖2+δ

≤ 2
(
βb k3 c

) δ
2+δ ‖X0‖22+δ

Using (2.15) withX = (X ′k−Xk)1A and Y = X ′0, together with Proposition 2.16(ii),
we get

E|X0(X ′k −Xk)1A| ≤
(

2ab k3 c
) δ

1+δ
(‖X ′k −Xk‖2+δ)

1
1+δ ‖X0‖2+δ

≤ 2
(
ab k3 c

) δ
1+δ ‖X0‖

2+δ
1+δ
2+δ .

To bound the second term on the r.h.s. of (2.19), we again make use of (2.15), now
with X = X ′0 −X ′′0 and Y = Xk. Then we get

E|(X0 −X ′′0 )Xk| ≤
(

2ab k3 c
) δ

1+δ
(‖X0 −X ′′0 ‖2+δ)

1
1+δ ‖Xk‖2+δ

≤ 2
(
ab k3 c

) δ
1+δ ‖X0‖

2+δ
1+δ
2+δ .

Combining the last three estimates, we obtain (2.18).

Lemma 2.19. Let (Zn)n∈Z be an absolutely regular process with mixing coefficients
(βk)k≥0 and let (Xn)n∈N be a 2-approximating functional of (Zn)n∈Z with constants
(ak)k≥0. Then

|E(XiXi+k)− (EXi)(EXi+k)| ≤ 2‖X0‖22+δβ
δ/(2+δ)
bk/3c + 4

(
abk/3c

)1/2 ‖X0‖2.
(2.20)

Proof. Due to stationarity, it suffices to prove (2.20) for i = 0. Let (X ′n)n∈Z and
(X ′′n)n∈Z be copies of (Xn)n∈Z, as defined in Proposition 2.16. Thus, the pairs
of random variables (X0, Xk), (X ′0, X

′
k) and (X ′′0 , X

′′
k ) have the same distribution.

As the 2-approximation condition holds, we may replace (ii) and (iii) of Proposi-
tion 2.16 by

E
(
|Xk −X ′k|21A

)
≤ 4ab k3 c,

E
(
|X ′0 −X ′′0 |2

)
≤ 4ab k3 c.

As (X ′′0 , X
′′
k ) is independent of (X0, Xk), we get

|E(X0Xk)− EX0 EXk| = |E(X ′0X
′
k)− E(X ′′0Xk)|

≤ E |X ′0(X ′k −Xk)|+ E |(X ′0 −X ′′0 )Xk|.(2.21)

The first term on the r.h.s. of (2.21) is bounded by

E|X ′0(X ′k −Xk)| = E(|X ′0||X ′k −Xk|1A) + E(|X ′0||Xk −X ′k|1AC )

≤ 2‖X0‖2
(
ab k3 c

)1/2

+ 2
(
βb k3 c

) δ
2+δ ‖X0‖22+δ.
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The second term on the r.h.s. of (2.21) is bounded by

‖Xk‖2‖X ′0 −X ′′0 ‖2 ≤ 2‖X0‖2
(
ab k3 c

)1/2

Combining these bounds, we obtain (2.20).

Lemma 2.20. Let (Xn)n∈Z be a 1-approximating functional of an absolutely reg-
ular process. Let ξ be a p1-continuous function of (..., X−1, X0) and let η be a
p2-continuous function of (Xk, Xk+1, ...) with corresponding functions ψ1 and ψ2,
where p1, p2 ≥ 1. Then

|E(η · ξ)− E η · E ξ| ≤ 4‖η‖p ‖ξ‖q
(
βb k3 c

+ αb k3 c

)1− 1
p−

1
q

+ψ
1
p1 (αb k3 c)‖η‖q1 + ψ

1
p2 (αb k3 c)‖ξ‖q2 ,(2.22)

whenever ‖η‖max(p,q1) <∞, ‖ξ‖max(q,q2) <∞, where q1, q2 are such that 1
p1

+ 1
q1

=
1, 1

p2
+ 1

q2
= 1, and p−1 + q−1 < 1.

Proof. Let (X ′n)n∈Z and (X ′′n)n∈Z be copies of (Xn)n∈Z, as defined in Proposi-
tion 2.16, and let ξ′, η′ and ξ′′, η′′ be the respective functions of (X ′n)n∈Z and
(X ′′n)n∈Z. Observe that the pairs of random variables (ξ, η), (ξ′, η′) and (ξ′′, η′′)
have the same distribution and that (ξ′′, η′′) is independent of (ξ, η). Hence we
obtain

|E(ξη)− (E ξ)(E η)| = |E(ξ′η′)− E(ξη′′)| ≤ E |(ξ′ − ξ)η′|+ E |ξ(η′ − η′′)|.
Now define the events B =

∑∞
i=0 |X ′−i −X ′′−i| ≤ αbk/3c and D =

∑∞
i=k |Xi −X ′i| ≤

αbk/3c, and note that P(B) ≥ 1 − αbk/3c and P(D) ≥ 1 − βbk/3c − αbk/3c. Then,
by Hölder’s inequality, we obtain E|(ξ′ − ξ)η′1Bc | ≤ 2‖ξ‖p‖η‖q(αbk/3c)1−1/p−1/q.
Moreover, by p-continuity we get

E|(ξ′ − ξ)η′1B| ≤ ‖η′‖q1
(
E
∣∣∣(ξ − ξ′)1{|∑0

i=−∞Xi−
∑0
i=−∞X′i|≤αbk/3c}

∣∣∣p1)1/p1

≤ ‖η‖q1
(
ψ(αbk/3c)

)1/p1
.

In the same way we can bound E |ξ(η′ − η′′)|, and thus obtain (2.22).

In the analysis of empirical processes, we regularly have to estimate fourth mo-
ments of partial sums of functionals of absolutely regular processes. In proofs of
such estimates, bounds on the covariance of Xi and XjXkXl, and of XiXj and
XkXl, (0 ≤ i ≤ j ≤ k ≤ l ≤ n), play a crucial role. Such bounds can in principle be
derived from Lemma 2.20, as both XiXj and XjXkXl are 1-continuous functions,
if Xj ∈ Lp. We obtain namely, using Loéve’s cr-inequalities

E
(∣∣XiXj −X ′iX ′j

∣∣p 1{|Xi−X′i|+|Xj−X′j |≤ε}
)

= E
(∣∣(Xi −X ′i)Xj +X ′i(Xj −X ′j)

∣∣p 1{|Xi−X′i|+|Xj−X′j |≤ε}
)

≤ 2p−1E
({
|Xi|p|Xj −X ′j|p + |Xi −X ′i|p|X ′j |p

}
1{|Xi−X′i|+|Xj−X′j |≤ε}

)
≤ 2pεpE|Xi|p.

On the other hand, because of the special product structure of these functions,
a direct proof of correlation bounds is also possible and moreover yields sharper
results, as the next lemma shows.
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Lemma 2.21. Let (Xn)n∈Z be a 1-approximating functional with constants (ak)k≥0

of an absolutely regular process with mixing coefficients (βk)k≥0. Then, if X0 is a.s.
bounded, we have for all non-negative integers i < j < k < l

|E(XiXjXkXl)− E(Xi)E(XjXkXl)|

≤
{

6
(
βb j−i3 c

) δ
2+δ ‖X0‖22+δ + 8

(
ab j−i3 c

) δ
1+δ ‖X0‖

2+δ
1+δ
2+δ

}
‖X0‖2∞.(2.23)

|E(XiXjXkXl)− E(XiXj)E(XkXl)|

≤
{

4
(
βb k−j3 c

) δ
2+δ ‖X0‖22+δ + 8

(
ab k−j3 c

) δ
1+δ ‖X0‖

2+δ
1+δ
2+δ

}
‖X0‖2∞.(2.24)

Proof. We first prove (2.23). Due to stationarity, we may assume that i = 0
and that 0 ≤ j ≤ k ≤ l. Let (X ′n)n∈Z and (X ′′n)n∈Z be copies of (Xn)n∈Z, as
defined in Proposition 2.16, only with j replacing k as length of the separating
block. Thus, the quadruples of random variables (X0, Xj, Xk, Xl), (X ′0, X

′
j , X

′
k, X

′
l)

and (X ′′0 , X ′′j , X
′′
k , X

′′
l ) have the same distribution. Moreover, (X ′′0 , X ′′j , X

′′
k , X

′′
l ) is

independent of (X0, Xj , Xk, Xl) and the properties (ii) and (iii) of Proposition 2.16
hold. Hence,

|E(X0XjXkXl)− E(X0)E(XjXkXl)| = |E(X ′0X
′
jX
′
kX
′
l)− E(X ′′0XjXkXl)|

≤ E(|X ′0 −X ′′0 ||XjXkXl|)
+E(|X ′j −Xj ||X ′0XkXl|)
+E(|X ′k −Xk||X ′0X ′jXl|)
+E(|X ′l −Xl||X ′0X ′jX ′k|)

=: I1 + I2 + I3 + I4.

Regarding I1, we note that E|X ′0 − X ′′0 | ≤ 2ab j3 c so that by (2.15) we get the
estimate

I1 ≤ ‖X0‖2∞E(|X ′0 −X ′′0 ||Xj |) ≤ 2
(
ab j3 c

) δ
1+δ ‖X0‖2∞‖X0‖

2+δ
1+δ
2+δ .

In order to bound I2, we decompose |(X ′j−Xj)X ′0X
′′
kX
′′
l | = |(X ′j−Xj)X ′0X

′′
kX
′′
l |1A

+ |(X ′j −Xj)X ′0X
′′
kX
′′
l |1Ac . By Hölder’s inequality, we get

E
(
|(X ′j −Xj)X ′0X

′′
kX
′′
l |1Ac

)
≤

(
βb j3 c

) δ
2+δ ‖X0‖2+δ‖Xj −X ′j‖2+δ‖X0‖2∞

≤ 2
(
βb j3 c

) δ
2+δ ‖X0‖22+δ‖X0‖2∞.

Using (2.15) with X = (X ′j−Xj)1A and Y = X ′0, together with Proposition 2.16(ii),
we get

E
(
|(X ′j −Xj)X ′0X

′′
kX
′′
l |1A

)
≤

(
2ab j3 c

) δ
1+δ (‖X ′j −Xj‖2+δ

) 1
1+δ ‖X0‖2+δ‖X0‖2∞

≤ 2
(
ab j3 c

) δ
1+δ ‖X0‖

2+δ
1+δ
2+δ‖X0‖2∞.

Putting the last two inequalities together, we obtain

I2 ≤ 2
(
βb j3 c

) δ
2+δ ‖X0‖22+δ‖X0‖2∞ + 2

(
ab j3 c

) δ
1+δ ‖X0‖

2+δ
1+δ
2+δ‖X0‖2∞.
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For I3 and I4 we obtain identical upper bounds, thus proving (2.23). The proof of
(2.24) is almost the same, except that now we have two terms of the type I1 and
also two terms of the type I2, yielding a slightly different final result.

The last of our correlation inequalities extends the result of Lemma 2.21 to the
case of unbounded variables. The proof is almost identical, except that now (2.16)
is employed to bound the quadruple products.

Lemma 2.22. Let (Xn)n∈Z be a 1-approximating functional with constants (ak)k≥0

of an absolutely regular process with mixing coefficients (βk)k≥0. Then, if ‖X0‖4+δ

is bounded, we have for all non-negative integers i < j < k < l

|E(XiXjXkXl)− E(Xi)E(XjXkXl)|

≤ 6
(
βb j−i3 c

) δ
4+δ ‖X0‖44+δ + 8

(
ab j−i3 c

) δ
3+δ ‖X0‖

12+3δ
3+δ

4+δ ,(2.25)

|E(XiXjXkXl)− E(XiXj)E(XkXl)|

≤ 4
(
βb k−j3 c

) δ
4+δ ‖X0‖44+δ + 8

(
ab k−j3 c

) δ
3+δ ‖X0‖

12+3δ
3+δ

4+δ .(2.26)

Proof. We first prove (2.25), and we start as in the proof of Lemma 2.21, obtaining
the same upper bound for the l.h.s. of (2.25) by a sum of the four terms I1, I2, I3, I4.
Regarding I1, we note that E|X ′0 − X ′′0 | ≤ 2ab j3 c, so that by (2.16) we get the
estimate

I1 ≤ (E |X ′0 −X ′′0 |)
δ

3+δ
(
‖X ′0 −X ′′0 ‖4+δ

) 3
3+δ ‖X0‖34+δ

≤ 2
δ

3+δ

(
ab j3 c

) δ
3+δ

2
3

3+δ ‖X ′0‖
3

3+δ
4+δ‖X0‖34+δ

= 2
(
ab j3 c

) δ
3+δ ‖X0‖

12+3δ
3+δ

4+δ .

In order to bound I2, we decompose |(X ′j−Xj)X ′0X
′′
kX
′′
l | = |(X ′j−Xj)X ′0X

′′
kX
′′
l |1A

+ |(X ′j −Xj)X ′0X
′′
kX
′′
l |1Ac . By Hölder’s inequality, we obtain

E
(∣∣(X ′j −Xj)X ′0X

′′
kX
′′
l

∣∣ 1Ac) ≤
(
βb j3 c

) δ
4+δ ∥∥X ′j −Xj

∥∥
4+δ
‖X0‖34+δ

≤ 2
(
βb j3 c

) δ
4+δ ‖X0‖44+δ .

Using (2.16) with X = (X ′j −Xj)1A, Y = X ′0, Z = X ′′k , W = X ′′l , together with
Proposition 2.16(ii), we get

E
(∣∣(X ′j −Xj)X ′0X

′′
kX
′′
l

∣∣ 1A) ≤
(

2ab j3 c
) δ

3+δ
(∥∥X ′j −Xj

∥∥
4+δ

) 3
3+δ ‖X0‖34+δ

≤
(

2ab j3 c
) δ

3+δ ‖X0‖
12+3δ
3+δ

4+δ .

Putting the last two inequalities together, we get

I2 ≤ 2
(
βb j3 c

) δ
4+δ ‖Xj‖44+δ + 2

(
ab j3 c

) δ
3+δ ‖X0‖

12+3δ
3+δ

4+δ .

For I3 and I4 we obtain identical upper bounds, thus proving (2.25). The proof of
(2.26) is almost the same, except that now we have two terms of the type I1 and
also two terms of the type I2, yielding a slightly different final result.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LIMIT THEOREMS FOR FUNCTIONALS OF MIXING PROCESSES 4285

2.4. Moment inequalities. In this section, we prove some inequalities for sec-
ond and fourth moments of partial sums SN = X1 + ... + XN of 1-approximating
functionals of an absolutely regular process. These inequalities are essential tools
e.g. for estimating the size of various remainder terms in proofs of central limit
theorems.

Lemma 2.23. Let (Xk)k∈Z be a 1-approximating functional with constants (ak)k≥0

of an absolutely regular process with mixing coefficients (βk)k≥0. Suppose moreover
that EXi = 0 and that one of the following two conditions holds :

(i) X0 is bounded a.s. and
∑∞

k=0(ak + βk) <∞.

(ii) E|X0|2+δ <∞ and
∑∞

k=0(a
δ

1+δ
k + β

δ
2+δ
k ) <∞.

Then, as N →∞,

1
N
ES2

N → EX2
0 + 2

∞∑
j=1

E(X0Xj)(2.27)

and the sum on the r.h.s. converges absolutely.

Proof. Assume that (ii) holds. By stationarity of (Xn)n∈Z, we obtain

ES2
N =

∑
1≤i,j≤N

E(XiXj) = NEX2
0 + 2

N∑
k=1

(N − k)E(X0Xk)

= N

(
EX2

0 + 2
N∑
k=1

(1− k

N
)E(X0Xk)

)
.(2.28)

As EXi = 0, we get using Lemma 2.18 (ii) that

|E(X0Xk)| ≤ 2‖X0‖22+δ

(
βk/3

) δ
2+δ + 4

(
ak/3

) δ
1+δ (‖X0‖2+δ)

2+δ
1+δ .

Thus
∑∞
k=0 E(X0Xk) converges absolutely and by the dominated convergence the-

orem for series we obtain

N∑
k=1

(1− k

N
)E(X0Xk)→

∞∑
k=1

E(X0Xk)

as N →∞, proving (2.27) under assumption (ii). The proof under (i) is practically
the same, now using Lemma 2.18 (i).

Lemma 2.24. Let (Xk)k∈Z be a 1-approximating functional with constants (ak)k≥0

of an absolutely regular process with mixing coefficients (βk)k≥0. Suppose moreover
that EXi = 0 and that one of the following two conditions holds :

(i) X0 is bounded a.s. and
∑∞

k=0 k
2(ak + βk) <∞.

(ii) E|X0|4+δ <∞ and
∑∞

k=0 k
2(a

δ
3+δ
k + β

δ
4+δ
k ) <∞.

Then there exists a constant C such that

E(S4
N ) ≤ CN2.
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Proof. Assume that (ii) holds. By stationarity of (Xn)n∈Z we obtain

ES4
N ≤ 4!

∑
1≤i1≤i2≤i3≤i4≤n

|E(Xi1Xi2Xi3Xi4)|

≤ 4!N
∑

i,j,k≥0
i+j+k≤N

|E(X0XiXi+jXi+j+k)|.(2.29)

By Lemma 2.22, and using EX0 = 0, we get the following bounds on the expected
values inside the last sum

|E {X0(XiXi+jXi+j+k)} | ≤ 6β
δ

4+δ

b i3 c
‖X0‖44+δ + 8a

δ
3+δ

b i3 c
‖X0‖

12+3δ
3+δ

4+δ ,

|E {(X0XiXi+j)Xi+j+k} | ≤ 6β
δ

4+δ

b k3 c
‖X0‖44+δ + 8a

δ
3+δ

bk3 c
‖X0‖

12+3δ
3+δ

4+δ .

Alternatively, we can split E(X0XiXi+jXi+j+k) up as E {(X0Xi)(Xi+jXi+j+k)},
and apply (2.26) together with (2.18). Then we get

|E {(X0Xi)(Xi+jXi+j+k)} | ≤ |E(X0Xi)||E(Xi+jXi+j+k)|

+4β
δ

4+δ

b j3 c
‖X0‖44+δ + 8a

δ
3+δ

b j3 c
‖X0‖

12+3δ
3+δ

4+δ

≤
(

2‖X0‖24+δβ
2+δ
4+δ

bi/3c + 2‖X0‖
4+δ
3+δ
4+δa

2+δ
3+δ

bi/3c

)
×
(

2‖X0‖24+δβ
2+δ
4+δ
bk/3c + 2‖X0‖

4+δ
3+δ
4+δa

2+δ
3+δ
bk/3c

)
+4β

δ
4+δ

b j3 c
‖X0‖44+δ + 8a

δ
3+δ

b j3 c
‖X0‖

12+3δ
3+δ

4+δ .

In this way, we have obtained 3 bounds for |E(X0XiXi+jXi+j+k)| that we can use
in getting an upper bound for the r.h.s. of (2.29).

E(S4
N ) ≤ CN

 ∑
0≤j,k≤i≤N

(
β

δ
4+δ

bi/3c + a
δ

3+δ

bi/3c

)
+

∑
0≤i,j≤k

(
β

δ
4+δ

bk/3c + a
δ

3+δ

bk/3c

)

+
∑

0≤i,k≤j≤N

[(
β

2+δ
4+δ
bi/3c + a

2+δ
3+δ
bi/3c

)(
β

2+δ
4+δ
bk/3c + a

2+δ
4+δ
bk/3c

)

+
(
β

δ
4+δ

bj/3c + a
δ

3+δ

bj/3c

)]
≤ CN

3
∑

0≤i,k≤j≤N

(
β

δ
4+δ

bj/3c + a
δ

3+δ

bj/3c

)

+
∑

0≤i,k≤j≤N

(
β

2+δ
4+δ
bi/3c + a

2+δ
3+δ
bi/3c

)(
β

2+δ
4+δ
bk/3c + a

2+δ
3+δ
bk/3c

) .

(2.30)
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Note that ∑
0≤i,k≤j≤N

(
β

δ
4+δ

bj/3c + a
δ

3+δ

bj/3c

)
≤

N∑
j=0

j∑
i,k=0

(
β

δ
4+δ

bj/3c + a
δ

3+δ

bj/3c

)

≤ 3
∞∑
j=1

j2

(
β

δ
4+δ
j + a

δ
3+δ
j

)
<∞,(2.31)

and ∑
0≤i,k≤j≤N

(
β

2+δ
4+δ

bi/3c + a
2+δ
3+δ

bi/3c

)(
β

2+δ
4+δ

bk/3c + a
2+δ
3+δ

bk/3c

)

≤
N∑
j=0

j∑
i,k=0

(
β

2+δ
4+δ

bi/3c + a
2+δ
3+δ

bi/3c

)(
β

2+δ
4+δ

bk/3c + a
2+δ
3+δ

bk/3c

)

≤ N

 ∞∑
j=0

(
β

2+δ
4+δ
j + a

2+δ
3+δ
j

)2

<∞.(2.32)

Combining now (2.31) and (2.32) with (2.30), we have proved the lemma in case
(ii). The proof under (i) is almost the same, now using Lemma 2.21 and (2.17)
instead of Lemma 2.22 and (2.18).

3. Empirical process CLT

In the present section we prove some basic limit theorems for functionals of
absolutely regular processes. The main result will be an invariance principle for
the empirical process, which will later play an important role in our treatment of
U -processes.

3.1. Central limit theorem for partial sums. In this section we shall prove the
central limit theorem for partial sums Sn =

∑n
k=1Xk of functionals of absolutely

regular processes. This result is not new, and was already established by Ibragimov
and Linnik [32] for the broader class of functionals of strong mixing processes. We
provide an independent proof here, mainly as illustration of our general techniques
for handling functionals.

Theorem 4. Let (Xk)k∈Z be a 1-approximating functional with constants (ak)k≥0

of an absolutely regular process with mixing coefficients (βk)k≥0. Suppose moreover
that EXi = 0 , E|X0|4+δ <∞ and that

∞∑
k=0

k2(a
δ

3+δ
k + β

δ
4+δ
k ) <∞,(3.1)

for some δ > 0. Then, as n→∞,

1√
n

n∑
i=1

Xi
d−→ N (0, σ2),

where σ2 = EX2
0 + 2

∑∞
j=1 E(X0Xk). In case σ2 = 0, we adopt the convention that

N (0, 0) denotes the point mass at the origin.
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If X0 is bounded, the CLT continues to hold if (3.1) is replaced by the condition
that

∞∑
k=0

k2 (ak + βk) <∞.(3.2)

Proof. If σ2 = 0, Lemma 2.23 implies that 1√
n

∑n
i=1Xi → 0, thus proving the

theorem in that case. In the rest of the proof we may therefore assume that σ2 >
0. In order to analyze

∑n
i=1 Xi, we will introduce a blocking with block lengths

depending on n. We then use near regularity to approximate the long blocks by
independent blocks, apply the Lyapunov CLT to the sums of the independent blocks
and finally show that the contribution of the small separating blocks is negligible.

Given integers K = Kn, L = Ln and N = Nn (to be chosen later), we introduce
the (K + 2L,N)-blocking (Bs)

pn
s=1 of the random variables X1, . . . , Xn. Here pn

denotes the index of the last block fully contained in X1, . . . , Xn, i.e.

pn =
⌊

n

K + 2L+N

⌋
.

By Theorem 3 there exists a sequence of i.i.d. blocks (B′s)
pn
s=1 with the same block-

wise marginal distribution as (Bs)
pn
s=1 and such that

P (‖Bs −B′s‖ ≥ 2αL) ≤ 2αL + βL.(3.3)

Let Is denote the index set of the sth (K + 2L,N) block and let Js denote the
index set of the sth separating block (of length K + 2L). Denote by in the index
of the last long block fully contained in 1, 2, . . . , n. Define

Us =
∑
i∈Is

Xi and Vs =
∑
i∈Is

X ′i

where B′ = (X ′i)i∈Is . Then we can decompose
∑n
i=1 Xi as follows

n∑
i=1

Xi =
pn∑
s=1

∑
i∈Is

Xi +
pn∑
s=1

∑
i∈Js

Xi +
n∑

i=in+1

Xi

=
pn∑
s=1

Us +
pn∑
s=1

∑
i∈Js

Xi +
n∑

i=in+1

Xi

=
pn∑
s=1

Vs +
pn∑
s=1

(Us − Vs) +
pn∑
s=1

∑
i∈Js

Xi +
n∑

i=in+1

Xi.(3.4)

We will prove that the first term on the r.h.s. is asymptotically normal and that
the remaining terms are negligible.

At this point we choose the block lengths in such a way that the following hold:

Kn, Ln, Nn → ∞,(3.5)
Kn + Ln
Nn

→ 0,(3.6)

Nn
n

→ 0,(3.7)
n

Nn
(βKn + αLn) → 0.(3.8)
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Such a choice is always possible, because βk + αk → 0 as k → ∞. The above
conditions then imply that pn · Nnn → 1 and hence that

pn(Kn + Ln)/n→ 0.

Regarding
∑pn

j=1 Vs, we note that V1, . . . , Vpn are independent identically distributed
random variables with EV1 = 0 and σ2

N = 1
N Var(V1) → σ2 as n → ∞. Moreover,

the Lyapunov condition for the CLT is satisfied with δ = 2 because

1

(
∑pn

s=1 Var(Vs))
2

pn∑
s=1

EV 4
s =

pnE
(∑N

i=1 Xi

)4

p2
nN

2σ4
N

= O

(
1

pnσ4
N

)
and pn → ∞, σN → σ. Hence we get 1√

pn Var(V1)

∑pn
s=1 Vs → N(0, 1), and since

pn Var(V1) = Npnσ
2
N ∼ nσ2 that

1√
n

pn∑
s=1

Vs → N(0, σ2).

To bound the second term on the r.h.s. of (3.4), we note that

|Us − Vs| ≤
∑
i∈Is

|Xi −X ′i| = |Bs −B′s|.

Hence we get from (3.3) that

P

(
1√
n

pn∑
s=1

|Us − Vs| ≥
pnαL√
n

)
= P

(
pn∑
s=1

|Us − Vs| ≥ pnαL

)

≤
pn∑
s=1

P (|Us − Vs| ≥ αL)

≤ pn(βK + 2αL).

Thus by (3.8) we find that 1√
n

∑pn
s=1 |Us − Vs| → 0 in probability.

Regarding the last term, note that there exists a constant C such that

E

(∑
i∈I

Xi

)2

≤ C#I.

This can be proved using similar arguments as in the proof of Lemma 2.23. Hence
we get

E

(
1√
n

pn∑
s=1

∑
i∈Js

Xi +
n∑

i=in+1

Xi

)2

≤ C(pn(K + 2L) +N)/n→ 0.

Now we can apply Slutsky’s lemma to obtain the CLT.

3.2. Empirical process indexed by functions. Let (Xn)n≥1 be a stationary
ergodic process of R-valued random variables with marginal distribution function
F (t) := P (X1 ≤ t). We define the empirical distribution function (e.d.f.) Fn : R→
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R by

Fn(t) =
1
n

#{1 ≤ i ≤ n : Xi ≤ t}

=
1
n

n∑
i=1

1(−∞,t](Xi).

The e.d.f. gives the fraction of observations in the sample that is ≤ t and can hence
be considered as the sample analogue and natural estimator of the true distribution
function F (t).

By the ergodic theorem Fn(t) converges to F (t) almost surely, and this even
holds uniformly over all t ∈ R (Glivenko-Cantelli lemma). Hence it is natural to
study asymptotic properties of the normalized differences

Wn(t) =
√
n(Fn(t)− F (t)),

also called empirical process. Donsker (1953) proved the invariance principle for
the empirical process in the case of i.i.d. observations, showing weak convergence
of Wn(t) towards a Gaussian process W (t) and thereby confirming an earlier con-
jecture of Doob [24]. This result was extended to functionals of uniformly mixing
processes by Billingsley [9], and to strongly mixing processes by Deo [22]. Berkes
and Philipp [7] and Philipp [39] obtained further results for the empirical distribu-
tion function of strong mixing sequences, such as almost sure invariance principle
and law of iterated logarithm.

Note that Fn(t) is the distribution function of the distribution placing mass 1
n

in each of the points Xi, 1 ≤ i ≤ n. Thus we can write Fn(t) =
∫

1(−∞,t](s)dFn(s),
and hence

Wn(t) =
√
n

(∫
1(−∞,t](s)dFn(s)−

∫
1(−∞,t](s)dF (s)

)
.

This representation motivates the study of the (generalized) empirical process

Wn(t) =
√
n

∫
ut(s)d(Fn(s)− F (s))

=
√
n

(
1
n

n∑
i=1

ut(Xi)−
∫
ut(x)dF (x)

)
(3.9)

where U = {ut, t ∈ [0, t0]} is some one-parameter class of functions. We will later
specifically be interested in the functions ut(x) = P (|Y − x| ≤ t), but at this point
we will consider a general class U , satisfying the following two properties

0 ≤ ut(x) ≤ 1, for all t ∈ [0, t0],(3.10)
us(x) ≤ ut(x), for 0 ≤ s ≤ t ≤ t0,(3.11)

both for all x ∈ R.
Without loss of generality we shall assume that t0 = 1 and define

G(t) = Eut(X0) and gt(x) = ut(x)−G(t).

We assume that G is Lipschitz continuous on [0, 1], i.e. that there exists a constant
C such that for all t, s ∈ [0, 1]

|G(t)−G(s)| ≤ C|t− s|(3.12)
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We view {Wn(t), 0 ≤ t ≤ 1} as a random element of D[0, 1], the space of right-
continuous functions on [0, 1] with left limits, equipped with the Skorohod topology.

Theorem 5. Let (Xn)n∈N be a 1-approximating functional with constants (ak)k≥0

of an absolutely regular process with mixing coefficients (βk)k≥0 satisfying
∞∑
k=0

k2β
δ/(2+δ)
k <∞,(3.13)

for some 0 < δ < 1. Let U be a class of functions satisfying (3.10) and (3.11), and
assume that ut, t ∈ [0, 1], are 1-continuous in the sense of (2.6), with the same φ
for all t. Assume moreover that

∞∑
k=0

k2a
δ

2+2δ
k <∞ and

∞∑
k=0

k2
(
φ(
√

2ak)
)δ/(1+δ)

<∞.(3.14)

Assume moreover that the function G(t) satisfies the condition (3.12).
Then the empirical process {Wn(t), t ∈ [0, 1]}n∈N, defined in (3.9), converges

weakly in D[0, 1] to the mean-zero Gaussian process {W (t), t ∈ [0, 1]} with covari-
ance structure

Cov(W (s),W (t)) = Cov(us(X1), ut(X1))
(3.15)

+
∞∑
k=1

Cov(us(X1), ut(Xk+1)) +
∞∑
k=1

Cov(us(Xk+1), ut(X1)).

Moreover, the series on the r.h.s. of (3.15) converges absolutely, and the limiting
process W has continuous sample paths with probability 1.

The key tool in the proof of Theorem 5 is the following lemma bounding fourth
moments of partial sums Sn =

∑n
i=1 Yi of functionals of an absolutely regular

process. This lemma sharpens the statement of Lemma 2.24 by providing explicit
bounds in terms of moments of the Yi’s. In turn, we have to require boundedness
of the Yi’s.

Lemma 3.1. Let (Yk)k∈Z be a 1-approximating functional with constants (ak)k≥0

of an absolutely regular process with mixing coefficients (βk)k≥0. Suppose moreover
that |Yk| ≤ 1, EYk = 0 and

∞∑
k=0

k2

(
a

δ
1+δ
k + β

δ
2+δ
k

)
<∞.

Then for Sn = Y1 + ...+ Yn we have

ES4
n ≤ C

(
n‖Y0‖

2+δ
1+δ
2+δ + n2‖Y0‖

4+2δ
1+δ

2+δ

)
,

for some constant C depending only on (ak)k≥0 and (βk)k≥0.

Proof. We proceed in the same way as in the proof of Lemma 2.24. By stationarity
of (Yn)n∈Z we obtain

ES4
n ≤ 4!n

∑
i,j,k≥0
i+j+k≤n

E(Y0YiYi+jYi+j+k).
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By Lemma 2.21 and using EY0 = 0, we get the following bounds on the expected
values inside the last sum:

|E {Y0(YiYi+jYi+j+k)} | ≤ 6
(
βb i3 c

) δ
2+δ ‖Y0‖22+δ + 8

(
ab i3 c

) δ
1+δ ‖Y0‖

2+δ
1+δ
2+δ ,

|E {(Y0YiYi+jYi+j+k)} | ≤ 6
(
βb k3 c

) δ
2+δ ‖Y0‖22+δ + 8

(
ab k3 c

) δ
1+δ ‖Y0‖

2+δ
1+δ
2+δ .

Alternatively, we can split E(Y0YiYi+jYi+j+k) up as E{(Y0Yi)(Yi+jYi+j+k)} and
apply (2.24) together with (2.18) to get the bound

|E {Y0YiYi+jYi+j+k}| ≤ E(Y0Yi)E(Yi+jYi+j+k)

+4
(
βb j3 c

) δ
2+δ ‖Y0‖22+δ + 8

(
ab j3 c

) δ
1+δ ‖Y0‖

2+δ
1+δ
2+δ

≤
(

2‖Y0‖22+δ

(
βb i3 c

) δ
2+δ

+ 4
(
ab i3 c

) δ
1+δ ‖Y0‖

2+δ
1+δ
2+δ

)
×
(

2‖Y0‖22+δ

(
βb k3 c

) δ
2+δ

+ 4
(
ab k3 c

) δ
1+δ ‖Y0‖

2+δ
1+δ
2+δ

)
+4
(
βb j3 c

) δ
2+δ ‖Y0‖22+δ + 8

(
ab j3 c

) δ
1+δ ‖Y0‖

2+δ
1+δ
2+δ .

Any of the 3 bounds on E(Y0YiYi+jYi+j+k) thus obtained can be used in getting
an upper bound on the terms in the expansion of ES4

n. In the same way as in the
proof of Lemma 2.24 we get then

ES4
n ≤ Cn

{ ∑
0≤j,k≤i≤n

(
β

δ
2+δ

b i3 c
‖Y0‖22+δ + a

δ
1+δ

b i3 c
‖Y0‖

2+δ
1+δ
2+δ

)

+
∑

0≤i,k≤j≤n

(
β

δ
2+δ

b i3 c
‖Y0‖22+δ + a

δ
1+δ

b i3 c
‖Y0‖

2+δ
1+δ
2+δ

)

×
(
β

δ
2+δ

b i3 c
‖Y0‖22+δ + a

δ
1+δ

b i3 c
‖Y0‖

2+δ
1+δ
2+δ

)}
,(3.16)

where C is some universal constant. Now we note that

∑
0≤j,k≤i≤n

β
δ

2+δ

b i3 c
≤

n∑
i=1

i2β
δ

2+δ

b i3 c
<∞,

∑
0≤j,k≤i≤n

a
δ

1+δ

b i3 c
≤

n∑
i=1

i2a
δ

1+δ

b i3 c
<∞,

by the assumptions of the lemma. Hence

∑
0≤j,k≤i≤n

(
β

δ
2+δ

b i3 c
‖Y0‖22+δ + a

δ
1+δ

b i3 c
‖Y0‖

2+δ
1+δ
2+δ

)
≤ ‖Y0‖

2+δ
1+δ
2+δ

∑
0≤j,k≤i≤n

(
β

δ
2+δ

b i3 c
+ a

δ
1+δ

b i3 c

)
≤ C‖Y0‖

2+δ
1+δ
2+δ ,(3.17)
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as (2 + δ)/(1 + δ) ≤ 2 and ‖Y0‖2+δ ≤ 1. Concerning the second term on the r.h.s.
of (3.16) we obtain∑

0≤i,k≤j≤n

(
β

δ
2+δ

b i3 c
‖Y0‖22+δ + a

δ
1+δ

b i3 c
‖Y0‖

2+δ
1+δ
2+δ

)
×
(
β

δ
2+δ

b k3 c
‖Y0‖22+δ + a

δ
1+δ

b k3 c
‖Y0‖

2+δ
1+δ
2+δ

)

≤ n
{ ∞∑
i=1

(
β

δ
2+δ

b i3 c
‖Y0‖22+δ + a

δ
1+δ

b k3 c
‖Y0‖

2+δ
1+δ
2+δ

)}2

≤ Cn‖Y0‖
4+2δ
1+δ

2+δ ,

where again we have used the fact that (2 + δ)/(1 + δ) ≤ 2 and ‖Y0‖2+δ ≤ 1.
The last inequality, together with (3.16) and (3.17) proves the statement of the
lemma.

Proof of Theorem 5. First consider, for t ∈ [0, 1] fixed, Wn(t) = 1√
n

∑n
i=1 gt(Xi).

The random variables gt(Xi) are centered and bounded, and themselves again func-
tionals of an absolutely regular process (Zn)n∈Z satisfying, according to Propo-
sition 2.11, the 1-approximation condition. Moreover, the summability condition
(3.14) on the corresponding sequence (φ(αl)) is that required by Theorem 4. Hence,
Theorem 4 yields that for fixed t, Wn(t) is asymptotically normal with mean 0 and
variance

σ2 = E (gt(X0))2 + 2
∞∑
k=1

Cov (gt(X0), gt(Xk)) .

Furthermore, an application of the Cramer-Wold device yields that for any (t1, ..., tk)
the vector (Wn(t1), ...,Wn(tk)) approaches a k-dimensional normal distribution cen-
tered at the origin, and the covariances of these limit distributions are those given
by (3.16).

It remains to show that the sequence of processes {Wn(t), t ∈ [0, 1]}n∈N is tight.
According to Theorem 15.5 in Billingsley [9], tightness follows if we can show that
for all ε, η > 0 there exists a τ ∈ (0, 1) such that

P( sup
s≤t≤s+τ

|Wn(t)−Wn(s)| ≥ ε) ≤ ητ.(3.18)

In order to prove (3.18), we fix ε and η and consider the difference

Wn(t)−Wn(s) =
1√
n

n∑
i=1

(gt(Xi)− gs(Xi)) .

First we bound the fourth moment of the sum on the r.h.s. with the help of the
previous lemma. For this, note that since |gt(x) − gs(x)| ≤ 1, we have for p ≥ 1

E|gt(X0)− gs(X0)|p ≤ E|gt(X0)− gs(X0)| ≤ 2(G(t)−G(s)).

Hence, for any δ > 0,

‖gt(X0)− gs(X0)‖2+δ ≤ C(G(t) −G(s))
1

2+δ .

For 0 < δ < 2, we thus get

(‖gt(X0)− gs(X0)‖2+δ)
4 ≤ C(G(t) −G(s))

4
2+δ

= C(G(t) −G(s))1+δ1
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for some δ1 > 0. Now we can apply Lemma 3.1 to get

E

{
n∑
i=1

(gt(Xi)− gs(Xi))

}4

≤ C0

(
n2(G(t)−G(s))1+δ1 + n(G(t) −G(s))

1+δ1
2

)
and

E {Wn(t)−Wn(s)}4 ≤ C1(G(t) −G(s))1+δ1 +
1
n

(G(t) −G(s))
1+δ1

2 ).

(3.19)

Now fix r ∈ [0, 1], choose some number h ≥ ε/n
2

1+δ1 and consider m consecutive
intervals [r + (i− 1)h, r + ih] of length h in [0, 1]. By condition (3.12) on G(t) we
have that

max
i≤m

(G(s + ih)−G(s+ (i− 1)h)) ≤ Ch.

From (3.19) we get the following bound on the fourth moment of the increments of
Wn on the interval [r + ih, r + (i+ k)h]:

E (Wn(s+ (i + k)h)−Wn(s+ ih))4 ≤ K1

(
(kh)1+δ1 +

1
n

(kh)
1+δ1

2

)
≤ 2K1

ε
(kh)1+δ1 ,(3.20)

because k ≥ 1, and h was taken in such a way that h(1+δ1)/2 > ε(1+δ1)/2

n > ε
n (we

assume that ε < 1). By (3.20) and Theorem 12.2 in Billingsley [9] we have the
following maximal inequality

P

(
max
i≤m
|Wn(r + ih)−Wn(r)| ≥ λ

)
≤ K2(mh)1+δ1

ελ4
,(3.21)

where the constant K2 depends only on the ak’s and the βk’s. Denote Gn(t) =
1
n

∑n
i=1 ut(Xi) and take s, t ∈ [0, 1] with s ≤ t < s + h. Then by monotonicity of

Gn and G we have

Wn(t)−Wn(s) =
√
n(Gn(t)−G(t)−Gn(s) +G(s))

≤
√
n(Gn(s+ h)−Gn(s)−G(s+ h) +G(s)

+ G(s+ h)−G(t))
≤
√
n|Gn(s+ h)−G(s+ h)−Gn(s) +G(s)|

+
√
n|G(s+ h)−G(t)|

≤ |Wn(s+ h)−Wn(s)|+ Ch
√
n(3.22)

and similarly

Wn(s)−Wn(t) =
√
n(Gn(s)−Gn(t) +G(t)−G(s))

≤
√
n(G(t)−G(s))

≤ Ch
√
n ≤ Ch

√
n+ |Wn(s+ h)−Wn(s)|.(3.23)

Together, from (3.22) and (3.23) we obtain

|Wn(t)−Wn(s)| ≤ |Wn(s+ h)−Wn(s)|+ Ch
√
n.(3.24)

From (3.24) it follows that

sup
r≤t≤r+mh

|Wn(t)−Wn(r)| ≤ 3 max
i≤m
|Wn(r + ih)−Wn(r)| + Ch

√
n.
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Now let h be such that h < ε/C
√
n. Then by the last inequality and (3.21) we get

P

(
sup

r≤t≤r+mh
|Wn(t)−Wn(r)| ≥ 4ε

)
≤ K2(mh)1+δ1

ε5
.

Now let τ < (ηε
5

K2
)1/δ1 be given and choose h satisfying ε/n

2
1+δ1 ≤ h < ε/(Cn1/2)

and an integer m such that τ = mh. Then

P

(
sup

r≤t≤r+τ
|Wn(t)−Wn(r)| ≥ 4ε

)
< ητ.

The existence of m and h satisfying τ = mh as well as the above restrictions follows
if we can find an integer m satisfying

Cτ
√
n

ε
< m ≤ τn2/(1+δ1)

ε
,(3.25)

which is indeed true for sufficiently large n. This completes the proof of the theorem.

4. U-statistics limit theorems

In this section we will study the asymptotic behavior of U -statistics when the
underlying process (Xn)n≥1 is a functional of an absolutely regular process. For
notational brevity, we shall restrict the attention to bivariate U -statistics, i.e. to

Un(h) =
2

n(n− 1)

∑
1≤i<j≤n

h(Xi, Xj),

where h : Rk ×Rk −→ R is a measurable function, symmetric in the sense that
h(x, y) = h(y, x). The extension to the case m > 2 is however straightforward.
Moreover, and also without loss of generality, we will assume that the underlying
process is real-valued. The results that we obtain here are a weak law of large
numbers and a central limit theorem, both for p-continuous kernels.

4.1. Law of large numbers. The history of the law of large numbers for U -
statistics dates back to Hoeffding [30] and Berk [6] who proved for i.i.d. observations
(Xn)n≥1 with marginal distribution F that

Un
a.s.−→

∫ ∫
h(x, y)dF (x)dF (y)(4.1)

provided h ∈ L1(F × F ). Aaronson, Burton, Dehling, Gilat, Hill and Weiss [1]
investigated whether (4.1) would continue to hold for ergodic processes (Xn)n≥1. By
means of counterexamples, they could show that this is false, unless extra conditions
are imposed. Specfically, (4.1) holds if one of the following conditions is satisfied
• h(x, y) is bounded and F × F -almost everywhere continuous,
• h(x, y) is bounded and the process (Xn)n≥1 is absolutely regular.

Under the same conditions, but with boundedness of h(x, y) replaced by uniform
integrability of the set {h(Xi, Xj) : i, j ≥ 1}, Borovkova, Burton and Dehling [12]
established a weak law of large numbers, i.e. convergence in (4.1) in probability.

The conditions in Aaronson et al. are quite restrictive because one either needs
a.e. continuity of the kernel or absolute regularity of the underlying process. In
this section, we will prove a U -statistic weak law of large numbers under conditions
that are in between the two sets of conditions mentioned above, and that can be
verified for examples arising in dynamical systems.
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Theorem 6. Let (Xn)n∈N be a 1-approximating functional of a stationary and
absolutely regular process with summable constants (al)l≥0. Let F denote the dis-
tribution of X1. Suppose, moreover, that h : R2 −→ R is a measurable symmetric
function satisfying the 1-Lipschitz condition (2.10), and that the family of random
variables {h(Xi, Xj) : i, j ≥ 1} is uniformly integrable. Then

Un(h) =
1

n(n− 1)

∑
1≤i6=j≤n

h(Xi, Xj) −→
∫

R2
h(x, y)dF (x)dF (y)

in probability, as n −→∞.

Proof. Let ε > 0 be given. Then uniform integrability of {h(Xi, Xj) : i, j ≥ 1}
implies that there exists δ > 0 such that

E|h(Xi, Xj)1B| ≤ ε(4.2)

holds for all measurable sets B with P (B) < δ. Choose moreover δ so small that
φ(δ) < ε, where φ is the function arising in the formulation of the 1-continuity
condition (2.10). According to Theorem 3 the process (Xn)n∈N is nearly regular,
i.e. there exists an integer m such that the (m,N)-blocks (Bs)s≥1 can be coupled
to an i.i.d. sequence of blocks (B′s)s≥1 with the same marginals and in such a way
that

P (‖Bs −B′s‖ ≥ δ) ≤ δ/2.(4.3)

Now take N so big that m
m+N < ε. Note that, if n is the sample size, the number

of full (m,N)-blocks in the sample is p = b n
m+N c.

In the rest of the proof we will show that the random variables in the small
separating blocks of length m can be neglected and that the error introduced
by replacing Bs by B′s is negligible. The main term will then be a U -statistic
with independent vector valued inputs (B′s)s≥1 that can be treated by Hoeffding’s
classical U -statistic law of large numbers. To this end we define a new kernel
H : RN ×RN → R by

H(ξ, η) :=
1
N2

∑
1≤i,j≤N

h(xi, yj)

where ξ = (x1, . . . , xN ) and η = (y1, . . . , yN). From (4.2) we can infer that, for
k 6= l,

E|H(Bk, Bl)|1B ≤ ε(4.4)

for all sets B with P (B) < δ.
Independence of B′k and B′l implies that EH(B′k, B

′
l) =

∫ ∫
h(x, y)dF (x)dF (y)

=: θ(F ) for all k 6= l. Thus by the U -statistics law of large numbers for independent
observations

1
p(p− 1)

∑
1≤k 6=l≤p

H(B′k, B
′
l)→ θ(F )(4.5)

almost surely and in L1.
We denote by Is the set of indices in the block Bs, and by Js the set of indices

between the blocks Bs and Bs+1. To estimate the difference between
∑
H(Bk, Bl)
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and
∑
H(B′k, B

′
l), we write

|H(Bk, Bl)−H(B′k, B
′
l)| =

1
N2

∑
i∈Ik

∑
j∈Il

|h(Xi, Xj)− h(X ′i, X
′
j)|

≤ 1
N2

∑
i∈Ik

∑
j∈Il

|h(Xi, Xj)− h(X ′i, Xj)|

+
1
N2

∑
i∈Ik

∑
j∈Il

|h(X ′i, Xj)− h(X ′i, X
′
j)|.(4.6)

Note that |Xi−X ′i| ≤ ‖Bk−B′k‖ holds for i ∈ Ik. Hence by the 1-continuity property
(2.10) of h(x, y) we get E|h(Xi, Xj) − h(X ′i, Xj)|1{‖Bk−B′k‖≤δ,‖Bl−B′l‖≤δ} ≤ φ(δ),
for all i ∈ Ik, j ∈ Il. Similarly, E|h(X ′i, Xj)− h(X ′i, X

′
j)|1{‖Bk−B′k‖≤δ,‖Bl−B′l‖≤δ} ≤

φ(δ), again for all i ∈ Ik, j ∈ Il. Note that in both cases, (2.10) may be applied—in
the first case because the joint distribution of (Xi, Xj) is a 2-dimensional marginal
of the underlying process and in the second case, because X ′i is independent of X ′j.
These inequalities together with (4.6) imply

E |H(Bk, Bl)−H(B′k, B
′
l)| 1{‖Bk−B′k‖≤δ,‖Bl−B′l‖≤δ} ≤ 2φ(δ) ≤ 2ε.

By (4.3) we have P(‖Bk −B′k‖ ≥ δ or ‖Bk −B′k‖ ≥ δ) ≤ δ, and thus (4.4) implies

E
(
|H(Bk, Bl)−H(B′k, B

′
l)|1{ ‖Bk−B′k‖≥δ or ‖Bk−B′k‖≥δ}

)
≤ ε.

Taking the last two inequalities together and averaging over all indices (k, l) with
1 ≤ k 6= l ≤ p, we obtain the following estimate for the difference between the
U -statistic based on (Bk)k and the one based on (B′k)k:

E

∣∣∣∣∣∣ 1
p(p− 1)

∑
1≤k 6=l≤p

H(Bk, Bl)−
1

p(p− 1)

∑
1≤k 6=l≤p

H(B′k, B
′
l)

∣∣∣∣∣∣ ≤ 3ε.(4.7)

Moreover | 1
p(p−1) −

N2

n(n−1) | ≤
2ε

p(p−1) for p large enough, and thus

E

∣∣∣∣∣∣ 1
p(p− 1)

∑
1≤k 6=l≤p

H(Bk, Bl)−
N2

n(n− 1)

∑
1≤k 6=l≤p

H(Bk, Bl)

∣∣∣∣∣∣ ≤ 2C0ε,

where C0 = supk,l E|H(Bk, Bl)| ≤ supi,j E|h(Xi, Xj)| < ∞. This last estimate
together with (4.7) and L1-convergence in (4.5) shows that for n large enough we
get

E

∣∣∣∣∣∣ N2

n(n− 1)

∑
1≤k 6=l≤p

H(Bk, Bl)− θ(F )

∣∣∣∣∣∣ ≤ Cε.(4.8)

It remains to show that the original U -statistic Un(h) is close to the block U -statistic
N2

n(n−1)

∑
1≤k 6=l≤pH(Bk, Bl). Let ip denote the last index in the block Bp. Then
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we can decompose Un(h) as follows:

∑
1≤i6=j≤n

h(Xi, Xj) =
∑

1≤k 6=l≤p

∑
i∈Ik,j∈Il

h(Xi, Xj) +
p∑
k=1

∑
i,j∈Ik,i6=j

h(Xi, Xj)

+2
∑

i∈Jk,j∈Il

nl+N∑
j=nl+1

h(Xi, Xj) +
∑

1≤k 6=l≤p

∑
i∈Jk,j∈Jl

h(Xi, Xj)

+
p∑
k=1

∑
i,j∈Jk,i6=j

h(Xi, Xj) +
n∑

i=ip+1

n∑
j=1

h(Xi, Xj)

+
ip∑
i=1

n∑
j=ip+1

h(Xi, Xj)

Note that the first term on the r.h.s. equals N2
∑

1≤k 6=l≤pH(Bk, Bl). A careful
study of the index set now shows that

E

∣∣∣∣∣∣
∑

1≤i6=j≤n
h(Xi, Xj)−

∑
1≤k 6=l≤p

∑
i∈Ik,j∈Il

h(Xi, Xj)

∣∣∣∣∣∣
≤ C0(pN2 + 2p2mN + p2mN + p2m2 + 2n(m+N))

where C0 = supi,j E|h(Xi, Xj)|. As p ≤ n/N and m ≤ εN , the r.h.s. of the above
inequality is bounded by C(ε+N/n)n2 and hence

E

∣∣∣∣∣∣ 1
n(n− 1)

∑
1≤i6=j≤n

h(Xi, Xj)−
1

n(n− 1)

∑
1≤k 6=l≤p

N2H(Bk, Bl)

∣∣∣∣∣∣ ≤ Cε
for n large enough. This, together with (4.8), proves the theorem.

4.2. Central limit theorem. The central limit theorem for U -statistics was
first established by Hoeffding [29], in the case where the underlying observations
(Xn)n∈N are independent and identically distributed. Yoshihara [49] proved the
CLT in the absolutely regular case, and Denker and Keller [20], [21] extended this
to functionals of absolutely regular processes. Here we shall apply our techniques to
the latter case, and prove a CLT for U -statistics of functionals of absolutely regular
processes under a set of conditions different from those in Denker and Keller [21].

A crucial tool in our analysis are estimates that bound the difference between
integrals with respect to the joint distribution and the product distribution of dis-
joint sets of random variables, Xi1 , . . . , Xij and Xij+1 , . . . , Xil . Such a bound was
first established by Yoshihara [49] for absolutely regular processes (Xn)n≥1, and
we quote his result here for later reference. Let i1 < i2 < . . . < il be integers
and let g : Rl → R be a measurable function. For j ∈ {1, . . . , l − 1} we denote
by EXi1 ,... ,Xij g(Xi1 , . . . , Xij , . . . , Xil) the expectation of g(Xi1 , . . . , Xij , . . . , Xil)
taken with respect to the random variables Xi1 , . . . , Xij , with the remaining vari-
ables kept fixed.

Lemma 4.1 (Yoshihara). Let (Xn)n≥1 be an absolutely regular process with mixing
coefficients (βn)n≥0, let 1 ≤ i1 < i2 < . . . < il be integers and j ∈ {1, . . . , l − 1}.
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Let g : Rl → R be a measurable function satisfying(
EXi1 ,... ,Xil |g(Xi1 , . . . , Xil)|

r
)1/r

≤ M,(
EXi1 ,... ,XijEXij+1 ,... ,Xil

|g(Xi1 , . . . , Xil)|
r
)1/r

≤ M,

for some M > 0, r > 1. Then∣∣∣EXi1 ,... ,Xil g(Xi1 , . . . , Xil)− EXi1 ,... ,XijEXij+1 ,... ,Xil
g(Xi1 , . . . , Xil)

∣∣∣ ≤ 4Mβ
1/s
d ,

where d = |ij+1 − ij | and 1
r + 1

s = 1.

Lemma 4.2. Let (Xn)n∈N be a 1-approximating functional with constants (ak)k≥1

of an absolutely regular process with mixing coefficients (βk)k≥1, and let h(x, y) be
1-continuous in the sense of (2.10). Assume that for some constants r > 1 and
M <∞ we have

(EX0,Xk |h(X0, Xk)|r)1/r ≤ M,(4.9)

(EX0EXk |h(X0, Xk)|r)1/r ≤ M,(4.10)

for all k ∈ N. Then

|Eh(X0, Xk)− EX0EXkh(X0, Xk)| ≤ 4M(βbk/3c + αbk/3c)1/s + 2φ(αbk/3c),
(4.11)

where s is such that 1
r + 1

s = 1.

Proof. Let (X ′n)n∈Z and (X ′′n)n∈Z be copies of (Xn)n∈Z, as defined in Corollary 2.17.
Thus, the pairs of random variables (X0, Xk), (X ′0, X

′
k) and (X ′′0 , X

′′
k ) have the same

distribution. Moreover, (X0, Xk) is independent of (X ′′0 , X ′′k ) and the properties (ii)
and (iii) of Corollary 2.17 hold. Then we can write the l.h.s. of (4.11) as follows

|E [h(X ′′0 , Xk)− h(X ′0, X
′
k)]| ≤ E |h(X ′′0 , Xk)− h(X ′′0 , X

′
k)|

+ E |h(X ′′0 , X
′
k)− h(X ′0, X

′
k)|.

Define the events B = {|Xk −X ′k| ≤ αbk/3c} and D = {|X ′0 −X ′′0 | ≤ αbk/3c}, and
note that P(B) ≥ 1− βbk/3c − αbk/3c and P(D) ≥ 1− αbk/3c. Then

E |h(X ′′0 , Xk)− h(X ′′0 , X
′
k)|1B ≤ φ(αbk/3c)

by the 1-continuity property of h. Here we have made use of the fact that X ′′0 is
independent of Xk so that (2.10) holds. By Hölder’s inequality we get

E |h(X ′′0 , Xk)− h(X ′′0 , X
′
k)|1Bc ≤ 2M (P (Bc))1/s ≤ 2M

(
βbk/3c + αbk/3c

)1/s
.

Moreover,
E |h(X ′′0 , X

′
k)− h(X ′0, X

′
k)|1D ≤ φ(αbk/3c)

where we have used (2.10) which holds here because (X ′n)n∈N is a copy of (Xn)n∈Z.
Again, by Hölder’s inequality we get

E |h(X ′′0 , Xk)− h(X ′′0 , X
′
k)|1Dc ≤ 2M (P (Dc))1/s ≤ 2M

(
αbk/3c

)1/s
.

The last four inequalities together prove the assertion of the lemma.

The next lemma generalizes (4.11) to functions g : Rl → R. Note that symmetry
is not required in this case.
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Lemma 4.3. Let (Xn)n∈Z be a 1-approximating functional with constants (ak)k≥0

of an absolutely regular process with mixing coefficients (βk), and let g : Rl → R
be 1-continuous in the sense of (2.11). Moreover, let i1 < i2 < . . . < il be integers
and assume that for some M <∞ and j ∈ {1, . . . , l − 1}

(E |g(Xi1 , ..., Xil)|
r)1/r ≤ M,(4.12) (

EXi1 ,... ,Xij EXij+1 ,... ,Xil
|g(Xi1 , ..., Xil)|

r
)1/r

≤ M,(4.13)

then

|E g(Xi1 , ..., Xil) − EXi1 ,... ,Xij EXij+1 ,... ,Xil
g(Xi1 , ..., Xil)|

≤ 4M(βbk/3c + αbk/3c)1/s + 2φ(αbk/3c),(4.14)

where k = |ij+1 − ij| and 1
r + 1

s = 1.

Proof. Without loss of generality we may assume that ij = 0 and ij+1 = k. Let
(X ′n)n∈Z and (X ′′n)n∈Z be copies of (Xn)n∈Z as defined in Corollary 2.17. Thus, the
l-tuples (Xi1 , . . . , Xil), (X ′i1 , . . . , X

′
il

), (X ′′i1 , . . . , X
′′
il

) have the same distributions,
and (Xi1 , . . . , Xil) is independent of (X ′′i1 , . . . , X

′′
il

). Moreover, properties (ii) and
(iii) of Corollary 2.17 hold. Then we can rewrite and bound the l.h.s. of (4.14) as∣∣∣Eg(X ′′i1 , . . . , X

′′
ij , Xij+1 , . . . , Xil)− Eg(X ′i1 , . . . , X

′
il

)
∣∣∣

≤
∣∣∣Eg(X ′′i1 , . . . , X

′′
ij , Xij+1 , . . . , Xil)− Eg(X ′′i1 , . . . , X

′′
ij , X

′
ij+1

, . . . , X ′il)
∣∣∣

+
∣∣∣Eg(X ′′i1 , . . . , X

′′
ij , X

′
ij+1

, . . . , X ′il)− Eg(X ′i1 , . . . , X
′
il)
∣∣∣ .

Define the events B = {
∑l
ν=j+1 |Xiν −X ′iν | ≤ αb k3 c} and D = {

∑j
ν=1 |X ′iν −X

′′
iν | ≤

αb k3 c
} and note that P (B) ≥ 1− βb k3 c − αb k3 c and P (D) ≥ 1− αb k3 c. Now,

E
∣∣∣g(X ′′i1 , . . . , X

′′
ij , Xij+1 , . . . , Xil)− g(X ′′i1 , . . . , X

′′
ij , X

′
ij+1

, . . . , X ′il)
∣∣∣ 1B ≤ φ(αb k3 c),

by the 1-continuity property of g. Here we have made use of the fact that X ′′i1 ,
. . . , X ′′ij is independent of Xij+1 , . . . , Xil so that (2.11) may be applied. By Hölder’s
inequality we get

E
∣∣∣g(X ′′i1 , . . . , X

′′
ij , Xij+1 , . . . , Xil)− g(X ′′i1 , . . . , X

′′
ij , X

′
ij+1

, . . . , X ′il)
∣∣∣ 1Bc

≤ 2M (P (Bc))1/s ≤ 2M
(
βb k3 c

+ αb k3 c

)1/s

.

In the same way, we find by the 1-continuity property of g

E
∣∣∣g(X ′′i1 , . . . , X

′′
ij , X

′
ij+1

, . . . , X ′il)− g(X ′i1 , . . . , X
′
ij , X

′
ij+1

, . . . , X ′il)
∣∣∣ 1D ≤ φ(αb k3 c),

In this case we may apply (2.11) because X ′i1 , . . . , X
′
ij , X

′
ij+1

, . . .X ′il is a copy of
Xi1 , . . . , Xil . Again, using Hölder’s inequality, we obtain

E
∣∣∣g(X ′′i1 , . . . , X

′′
ij , Xij+1 , . . . , Xil)− g(X ′′i1 , . . . , X

′′
ij , X

′
ij+1

, . . . , X ′il)
∣∣∣ 1Dc

≤ 2M
(
αb k3 c

)1/s

.

Putting all inequalities together, we finally obtain (4.14).
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Theorem 7. Let (Xn)n∈N be a 1-approximating functional of an absolutely regular
process with mixing coefficients (βk), and let h be a bounded 1-continuous kernel.
Suppose that the sequences (βk)k≥1, (αk)k≥1 and (φ(αk))k≥1, satisfy the following
summability condition:

∞∑
k=1

k2(βk + αk + φ(αk)) <∞.(4.15)

Then the series

σ2 = Var (h1(X0))2 + 2
∞∑
k=1

Cov (h1(X0), h1(Xk))(4.16)

converges absolutely and, as n→∞,

√
n(Un − θ) d−→ N (0, 4σ2).

Proof. We make use of the Hoeffding decomposition for U -statistics,

Un = θ(F ) +
2
n

n∑
i=1

(h1(Xi)− θ(F )) +
2

n(n− 1)

∑
1≤i<j≤n

J(Xi, Xj)

where θ(F ) =
∫
h(x, y)dF (x)dF (y), h1(x) =

∫
h(x, y)dF (y) and J(x, y) = h(x, y)−

h1(x)−h1(y)+θ (see Hoeffding [29]). The random variables g(Xi) = h1(Xi)−θ(F )
are bounded and have mean zero. As h is 1-continuous, Proposition 2.11 states
that (g(Xn))n≥1 is itself a 1-approximating functional of (Zn)n≥1. Moreover, the
summability condition (4.15) on the corresponding sequence (φ(αl)) is that required
by Theorem 4. Hence, from Theorem 4 it follows that

2√
n

n∑
i=1

(h1(Xi)− θ(F )) −→ N (0, 4σ2),

where σ2 is given by (4.16). Then the statement of the theorem will follow, if we
can prove that

√
nRn −→ 0 in probability, where Rn is defined by

Rn =
2

n(n− 1)

∑
1≤i<j≤n

J(Xi, Xj).

That this is indeed the case is established in the following lemma.

Lemma 4.4. Under the conditions of Theorem 7,

sup
n

E

 1
n

∑
1≤i<j≤n

J(Xi, Xj)


2

<∞,(4.17)

and hence
√
nRn −→ 0 in probability, as n→∞.
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Proof. We can write

E

 ∑
1≤i<j≤n

J(Xi, Xj)

2

=
∑

1≤i1<j1≤n

∑
1≤i2<j2≤n

E (J(Xi1 , Xj1)J(Xi2 , Xj2))

=
∑

1≤i1<j1, i2<j2≤n
i1 6=i2 or j1 6=j2

E (J(Xi1 , Xj1)J(Xi2 , Xj2))(4.18)

+
∑

1≤i1<j1, i2<j2≤n
i1=i2 and j1=j2

E (J(Xi1 , Xj1)J(Xi2 , Xj2)) .

Note that J(x, y) is a degenerate kernel, i.e. that
∫
J(x, y)dF (x) = 0 for all y ∈ R.

Hence

EXj2 (J(Xi1 , Xi2)J(Xj1 , Xj2)) =
∫

R

J(Xi1 , Xj1)J(Xi2 , y)dF (y) = 0,

and similarly for EXi1 , EXi2 , EXj1 . As both h and h1 are bounded and 1-continuous,
this also holds for g(x1, x2, x3, x4) = J(x1, x2)J(x3, x4). Thus may apply Lemma 4.3
with r =∞ and get for i1 ≤ i2 ≤ j1 < j2∣∣E (J(Xi1 , Xj1)J(Xi2 , Xj2))− EXi1 ,Xi2 ,Xj1 EXj2 (J(Xi1 , Xj1)J(Xi2 , Xj2))

∣∣
≤ 16(βk + αk) + 2φ(αk),

where k = b|j2 − j1|/3c.
In the elements of the first sum on the r.h.s of (4.18) at least one index is different

from all others, say, j2, and suppose i1 ≤ i2 ≤ j1 < j2. Let di be the ith largest
difference between consecutive indices. If d1 = j2 − j1 then

|E(J(Xi1 , Xj1)J(Xi2 , Xj2))| ≤ 16(βbd1/3c + αbd1/3c) + 2φ(αbd1/3c).

Then ∑
1≤i1≤i2≤j1<j2≤n

d1=j2−j1

|E(J(Xi1 , Xj1)J(Xi2 , Xj2))|

≤ 16
∑

1≤i1≤i2≤j1<j2≤n
d1=j2−j1

(βbd1/3c + αbd1/3c + φ(αbd1/3c))

≤ 16n
n∑
k=1

k2(βk + αk + φ(αk)).

If d1 is not j2 − j1 we apply Lemma 4.3 twice to obtain

E[J(Xi1 , Xj1) J(Xi1 , Xj2)] ≤ 16(βbd1/3c + αbd1/3c) + 2φ(αbd1/3c)
+ 16(βbd2/3c + αbd2/3c) + 2φ(αbd2/3c)
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and then ∑
1≤i1≤i2≤j1<j2≤n

d1 6=j2−j1

E[J(Xi1 , Xj1) J(Xi2 , Xj2)]

≤ 16
∑

1≤i1≤i2≤j1<j2≤n
d1 6=j2−j1

(βbd1/3c + αbd1/3c + φ(αbd1/3c))

+ (βbd2/3c + αbd2/3c + φbd2/3c)

≤ 32n2
n∑
k=1

k(βk + αk + φ(αk)).

Estimating the sums in the other cases in the same way we get that the first sum
is bounded by∑

1≤i1<j1, i2<j2≤n
i1 6=i2 or j1 6=j2

E[J(Xi1 , Xj1)J(Xi2 , Xj2)] ≤ Cn2
n∑
k=1

k(βk + αk + φ(αk)).

In the second sum there are at most n2 terms, all are bounded, hence∑
1≤i1 6=j1≤n

E[J(Xi1 , Xj1)J(Xi1 , Xj1)] ≤ Cn2.

Combining all the estimates above with the summability conditions on βk, αk and
φk, we get that ∑

1≤i1<j1≤n

∑
1≤i2<j2≤n

E[J(Xi1 , Xj1) J(Xi2 , Xj2)] ≤ Cn2.

From here, we obtain directly (4.17), which again implies weak convergence of√
nRn to 0.

5. U-processes

This section is devoted to the study of the empirical distribution function of data
sets of the type {h(Xi, Xj), 1 ≤ i < j ≤ n}, for some symmetric kernel h : R2 → R.
Our main result will be an invariance principle for the empirical process when the
underlying observations are functionals of an absolutely regular process.

5.1. Motivation and examples. One of the main motivations for our study of
U -statistics of absolutely regular processes was the empirical correlation integral

Cn(r) =
2

n(n− 1)

∑
1≤i<j≤n

1{‖Xi−Xj‖≤r}.

So far we have always viewed r as a fixed parameter, in which case Cn(r) is an
ordinary U -statistic. However, already the Grassberger-Procaccia estimator for the
dimension estimation involves the sample correlation integral evaluated at several
points r1, . . . , rm. Therefore, in this section we will view Cn(r) as a stochastic
process, indexed by r ∈ [0, r0], for some r0 > 0 and we will study the asymptotic
properties of this stochastic process.
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Definition 5.1. Let (Xn)n≥1 be a stationary stochastic process and let h : Rm →
R be a measurable symmetric function. Then

Un(t) :=
1(
n
m

) ∑
1≤i1<...<im≤n

1{h(Xi1 ,... ,Xim )≤t}, t ∈ R,

is called a U -statistic empirical distribution function or an empirical distribution
function of U -statistic type.

Observe that Un(t) is the distribution function of the empirical U -statistic distri-
bution 1

(nm)
∑
δh(Xi1 ,... ,Xim ), obtained by placing equal mass at each of the points

h(Xi1 , . . . , Xim), 1 ≤ i1 < . . . < im ≤ n. Also note that for fixed t, Un(t) is simply
a U -statistic with kernel 1{h(Xi1 ,... ,Xim )≤t}.

Example 5.1. (i) For m = 1 and h(x) = x, the corresponding U -statistic empirical
distribution function is just the ordinary empirical distribution function

Fn(t) =
1
n

n∑
i=1

1{Xi≤t}

of the data X1, . . . , Xn.
(ii) The sample correlation integral is a U -statistic empirical distribution function

with kernel h(x, y) = ‖x− y‖.
(iii) This occurs also in many other applications, for instance, in the analysis

of the archaeological data, so-called “ley hunting”. Suppose X1, ..., Xn are obser-
vations from an unknown distribution G on R2, and we are interested in testing
randomness against presence of some collinearities in the data. For this Broad-
bent and Heaton (see Silverman and Brown [43]) suggested the following approach:
denote α(x, y, z)=“the largest angle of the triangle xyz”, and study the statistics

Tn(ε) =
(
n

3

)−1 ∑
(i,j,k)

1≤i<j<k≤n

1(α(Xi, Xj , Xk) > π − ε)

which is a U -statistic of degree 3 estimating

θG(ε) = P(α(X,Y, Z) > π − ε),

where X,Y, Z are chosen independently according to the distribution G. In this
case we are also interested in the behaviour of Tn(ε) not for a fixed ε, but for ε on
some interval (0, ε0].

The U -statistic empirical distribution function is the natural estimator for

U(t) = P (h(Y1, . . . , Ym) ≤ t)

where Y1, . . . , Ym are independent random variables, with the same marginal dis-
tribution function as the process (Xn)n≥1. In the case of independent observations,
Un(t) has many nice properties. Among other things, Un(t) is unbiased, moreover
the minimum variance unbiased estimator of U(t) and also consistent. The next
theorem shows that consistency also holds in the stationary, ergodic case. In the
formulation of this and of following theorems, we will restrict ourselves to bivariate
U -statistics, i.e. to the case m = 2.
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Theorem 8. Let (Xn)n∈Z be a stationary ergodic process, and let h : R2 → R be
a kernel satisfying

∫ ∫
1{h(x,y)=t}dF (x)dF (y) = 0 for all t. Then

sup
t∈R
|Un(t)− U(t)| → 0

as n→∞.

Proof. This result can be established in the same way as the Glivenko-Cantelli
lemma for the ordinary empirical distribution function. The only difference is that
the U -statistic ergodic theorem of Aaronson et al. [1] has to be employed to get
pointwise convergence of Un(t) towards U(t).

In many statistical applications, approximations for the distribution of the pro-
cess {Un(t) − U(t); t ∈ R} are required. This is e.g. the case if one wants to
determine confidence bands for {U(t); t ∈ R}. This motivates the study of the
empirical process of U -statistics structure {Wn(t); t ∈ R}, defined by

Wn(t) =
√
n(Un(t)− U(t)).

Alternatively, Wn(t) is also called a U -process. Weak convergence of the empirical
processes of U -statistics structure to a Gaussian process was shown by Silverman
[42] and Serfling [41] for the case of i.i.d. random variables. Further properties
of U -processes were investigated by Dehling, Denker and Philipp [17], Helmers,
Janssen and Serfling [28], Nolan and Pollard [36], and others. For weakly dependent
observations, weak convergence of U -processes has been established by Arcones and
Yu [3] and Borovkova [10]. Their results hold for absolutely regular processes. In
this section we will establish an invariance principle for functionals of an absolutely
regular process.

As noted above, for fixed t, Un(t) is simply a U -statistic, with kernel given by

h(x, y; t) = 1{h(x,y)≤t}.(5.1)

More generally, one can study U -processes indexed by any class of kernels H. In
what follows we will consider 1-dimensional classes of kernels that can be parame-
trized by a real parameter t ∈ [0, 1]. We will denote the kernels by h(x, y; t), but
these are not necessarily of the form (5.1).

Let
H = {h(x, y; t) : t ∈ [0, 1]}

denote a class of kernel functions, and let (Xn)n∈Z be a stationary stochastic pro-
cess. We then define the processes ({Un(t), t ∈ [0, 1]})n≥1, {U(t), t ∈ [0, 1]} and
({Wn(t), t ∈ [0, 1]})n≥1 by

Un(t) =
2

n(n− 1)

∑
1≤i<j≤n

h(Xi, Xj, t),

U(t) =
∫
h(x, y, t)dF (x)dF (y),

Wn(t) =
√
n(Un(t)− U(t)).

In our analysis, we need several assumptions on the class of kernels. We first assume
that for all x, y ∈ R and t ∈ [0, 1] we have

(A1) 0 ≤ h(x, y, t) ≤ 1, h(x, y, 0) = 0,
(A2) h(x, y, t) is increasing in t, for fixed x, y ∈ R.
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Define

h1(x, t) =
∫

Rk

h(x, y, t)dF (y).

Note that, if the kernel function h satisfies the conditions (A1) and (A2), then the
function h1 satisfies analogous conditions, namely 0 ≤ h1(x, t) ≤ 1, h1(x, 0) = 0
and it is increasing in t.

Moreover, we have to impose uniform Lipschitz conditions on EX0,Xkh(X0, Xk, t)
and EX0EXkh(X0, Xt, t). We assume that there exists a constant C > 0 such that

|U(t)− U(s)| ≤ C|t− s|,(5.2)
|(Eh(X0, Xk, t)− Eh(X0, Xk, s))| ≤ C|t− s|(5.3)

hold for all s, t ∈ [0, 1] and k ≥ 1.
In this section we want to study the behaviour of the U -process called

({Wn(t), 0 ≤ t ≤ 1})n≥1 when the underlying sequence is absolutely regular, resp.
a functional of an absolutely regular process. Under some regularity conditions, we
prove weak convergence of the U -process to a Gaussian process with mean 0 and
covariance structure

E (W (s)W (t)) = 4 Cov (h1(X1, s)h1(X1, t))

+4

{ ∞∑
k=1

Cov (h1(X1, s)h1(Xk+1, t)) + Cov (h1(X1, t)h1(Xk+1, s))

}
.(5.4)

We can now formulate our main result.

Theorem 9. Let (Xn)n∈Z be a 1-approximating functional with constants (ak)k≥0

of an absolutely regular process with mixing rate (βk)k≥0. Suppose that the class
of kernels H satisfies (A1) and (A2), that ht is uniformly 1-continuous (i.e. that
(2.10) holds with the same φ-function for all t ∈ [0, 1]) and that (5.2) and (5.3)
hold. Moreover assume that the following summability conditions hold:

∞∑
k=0

k2(αk + βk)1/2 < ∞,(5.5)

∞∑
k=0

k5φ(
√
αk) < ∞,(5.6)

in addition to (3.13) and (3.14). Then the process (Wn =
√
n(Un(t) − U(t)),

t ∈ [0, 1])n∈N converges weakly in D[0, 1] to the mean-zero Gaussian process (W (t),
t ∈ [0, 1]) with covariance structure given by (5.4). Moreover, the series (5.4)
converges absolutely, and the limit process W has continuous sample paths on [0, 1]
with probability 1.

Proof. According to Hoeffding’s projection method, Un(t) can be decomposed as

Un(t) = U(t) +
2
n

n∑
i=1

(h1(Xi, t)− U(t)) +Rn(t),

where

Rn(t) =
2

n(n− 1)

∑
1≤i<j≤n

(h(Xi, Xj, t)− h1(Xi, t)− h1(Xj , t) + U(t))
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is the remainder of Un(t). Then the process Wn(t) can be written as

Wn(t) =
2√
n

n∑
i=1

(h1(Xi, t)− U(t)) +
√
nRn(t) = W ′n(t) +

√
nRn(t),

where

W ′n(t) =
2√
n

n∑
i=1

(h1(Xi, t)− U(t)).(5.7)

Note that the process {W ′n(t), 0 ≤ t ≤ 1} has the form of an empirical process
indexed by the functions h1(x, t). Thus, Theorem 5 implies that W ′n converges
weakly in D[0, 1] to the mean-zero Gaussian process W with covariance structure
given by (5.4).

By Slutsky’s theorem, this establishes weak convergence of (Wn)n≥1 to the same
limit, provided we can show that the remainder terms {

√
nRn(t); 0 ≤ t ≤ 1} con-

verge in probability to 0. This convergence of the remainder term to 0 is the
essential part of the proof of weak convergence of U -processes. We present the
proof of it in the rest of this section.

5.2. U-process chaining lemma. The first lemma establishes conditions under
which an arbitrary sequence of processes converges to zero in probability uniformly
over an interval. Since it does not specify the form of the process or any dependence
structure, this lemma can be applied in a more general context and may be of
independent interest.

In this lemma we shall use the ordinary Lipschitz-continuity condition, so we
shall first remind the reader of the definition of a Lipschitz-continuous function on
[0, 1]. A function f on [0, 1] is called Lipschitz-continuous if for all s, t ∈ [0, 1] there
is a constant C such that

|f(t)− f(s)| ≤ C|t− s|.

In what follows C,C1, C2, ... denote some positive constants.

Lemma 5.2. Let {Xn(t), t ∈ [0, 1]}n∈N be a sequence of R-valued stochastic pro-
cesses with Xn(0) = 0 a.s. Suppose that for some positive constants α, β, γ with
α ≤ 1 and γ < 1 the following two conditions hold

(i) There exists a Lipschitz-continuous function f on [0, 1] such that

E |Xn(t)−Xn(s)|2 ≤ |f(t)− f(s)|γ
nβ

, ∀s, t ∈ [0, 1].(5.8)

(ii) There exist a Lipschitz-continuous function g, a monotone Lipschitz-continu-
ous function Λ and stochastic processes {Yn(t), t ∈ [0, 1]}n≥1 satisfying

E |Yn(t)− Yn(s)|r ≤ C1[(g(t)− g(s))1+h +
1
n

(g(t)− g(s))
1+h

2 ], ∀s, t ∈ [0, 1]

(5.9)

for some r > 0, 0 < h < 1, such that for all s, t, δ with 0 ≤ s ≤ t < s+ δ ≤ 1:

|Xn(t)−Xn(s)| ≤ |Xn(s+ δ)−Xn(s)|+ |Yn(s+ δ)− Yn(s)|
+ |Λ(s+ δ)− Λ(s)| · nα.

(5.10)
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Then

sup
0≤t≤1

|Xn(t)| −→ 0 in probability,

whenever α(1 − γ) < β.

Proof. For k = 0, 1, 2, ...,K (we shall specify K later) we introduce refining parti-
tions of [0, 1] into 2k subintervals, 0 = s

(k)
0 < s

(k)
1 < · · · < s

(k)

2k
= 1, in such a way

that for any i = 1, 2, ..., 2k

|s(k)
i − s

(k)
i−1| ≤ 2−k.(5.11)

Then we get, due to Lipschitz-continuity of Λ that

|Λ(s(k)
i )− Λ(s(k)

i−1)| ≤ C · 2−k.(5.12)

For t ∈ [0, 1] we denote by ik(t) the index of that point of the kth partition that
is closest to t from the left, i.e. such that s(k)

ik(t) ≤ t < s
(k)
ik(t)+1. Note that s(k)

ik(t) ≤
s

(k+1)
ik+1(t), as the (k + 1)th partition is a refinement of the kth. In this way we have

obtained a chain

0 = s
(0)
i0(t) ≤ s

(1)
i1(t) ≤ · · · ≤ s

(K)
iK(t) ≤ t < s

(K)
iK(t)+1,

and we can write

Xn(t) =
K∑
k=1

(
Xn(s(k)

ik(t))−Xn(s(k−1)
ik−1(t))

)
+
(
Xn(t)−Xn(s(K)

iK(t))
)
.

Then

sup
0≤t≤1

|Xn(t)| ≤ max
i1(t)
|Xn(s(1)

i1(t))−Xn(s(0)
i0(t))|

+ max
i1(t),i2(t)

|Xn(s(2)
i2(t))−Xn(s(1)

i1(t))|+ ...

+ max
iK−1(t),iK(t)

|Xn(s(K)
iK(t))−Xn(s(K−1)

iK−1(t))|

+ sup
s
(K)
iK (t)≤t<s

(K)
iK (t)+1

|Xn(t)−Xn(s(K)
iK(t))|.

By (5.10) and (5.12)

sup
s
(K)
iK (t)≤t<s

(K)
iK(t)+1

|Xn(t)−Xn(s(K)
iK(t))| ≤ max

iK(t)
|Xn(s(K)

iK(t)+1)−Xn(s(K)
iK(t))|

+ max
iK(t)

|Yn(s(K)
iK(t)+1)− Yn(s(K)

iK(t))|

+C · 2−Knα.

Now, let ε > 0 be given and take K = [α log2 n+log2
2C
ε ]+1, so that C ·2−Knα < ε

2 .
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Then, as
∑∞

k=1
1

(k+2)2 <
1
2 ,

P
(

sup
0≤t≤1

|Xn(t)| > ε

)

≤
K∑
k=1

P
(

max
ik−1(t),ik(t)

|Xn(s(k)
ik(t))−Xn(s(k−1)

ik−1(t))| >
ε

(k + 2)2

)
+ P

(
max
iK(t)

|Xn(s(K)
iK(t)+1)−Xn(s(K)

iK(t))| >
ε

(K + 3)2

)

+ P
(

max
iK(t)

|Yn(s(K)
iK(t)+1)− Yn(s(K)

iK(t))| >
ε

(K + 4)2

)
.

(5.13)

As the partitions are nested, we have that either s(k−1)
ik−1(t) = s

(k)
ik(t) or s(k−1)

ik−1(t) =

s
(k)
ik(t)+1. Hence by Chebyshev’s inequality, (5.8) and (5.11)

P
(

max
ik−1(t),ik(t)

|Xn(s(k)
ik(t))−Xn(s(k−1)

ik−1(t))| >
ε

(k + 2)2

)
(5.14)

≤
2k∑
i=1

P
(
|Xn(s(k)

i )−Xn(s(k)
i−1)| > ε

(k + 2)2

)

≤
2k∑
i=1

|f(s(k)
i )− f(s(k)

i−1)|γ(k + 2)4

nβε2

≤ C1(k + 2)4

nβε2

2k∑
i=1

|s(k)
i − s

(k)
i−1|γ ≤

C2(k + 2)4

nβε2
· 2k(1−γ).

In the same way we get

P
(

max
iK(t)

|Xn(s(K)
iK(t)+1)−Xn(s(K)

iK(t))| >
ε

(K + 3)2

)
≤ C3(K + 3)4

nβε2
· 2K(1−γ).

(5.15)

Similarly, by Markov’s inequality and (5.9) we have

P
(

max
iK(t)

|Yn(s(K)
iK+1(t))− Yn(s(K)

iK(t))| >
ε

(K + 4)2

)
(5.16)

≤
2K∑
i=1

P
(
|Yn(s(K)

i )− Yn(s(K)
i−1)| > ε

(K + 4)2

)

≤ (K + 4)2r

εr

2K∑
i=1

E
∣∣∣Yn(s(K)

i )− Yn(s(K)
i−1)

∣∣∣r
≤ C (K + 4)2r

εr
2K
((

1
2K

)1+h

+
1
n

(
1

2K

) 1+h
2
)

≤ C(K + 4)2r

εr
· 2−Kh,
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as 1
n ≤ C

(
1

2K

) 1+h
2 by our choice of K and the conditions imposed on h and α.

Finally, combining (5.14), (5.15) and (5.16) with conditions on α, β, γ we obtain

P
(

sup
0≤t≤1

|Xn(t)| > ε

)
≤ C5K(K + 3)4

nβε2
· 2K(1−γ) +

C4(K + 4)2r

εr
· 2−Kh

≤ C6(K + 3)5

ε2
· nα(1−γ)−β +

C7(K + 4)2r

εr
· n−αh −→ 0,

because (K + 3)p = (α log2 n+ log2
2C
ε + 4)p = o(nτ ) for any τ, p > 0.

Chaining techniques as explored in the proof of Lemma 5.2 are well-known and
widely applied in the theory of empirical processes. In distinction to known results,
Lemma 5.2 allows for an extra random term Yn in the bound (5.10). This makes
Lemma 5.2 applicable to U -processes where Yn will be the first order term in the
Hoeffding expansion. The second distinctive feature is the fact that only second
moment bounds are required, thus avoiding technically involved higher moment
caculations. This is made possible by the extra n−β term in (5.8), an idea exploited
earlier by Dehling and Taqqu [18] in their proof of the invariance principle for the
empirical process of long-range dependent sequences.

5.3. U-processes for functionals. In this section we will finish the proof of The-
orem 9. What remains to be done is to establish the following result.

Lemma 5.3. Let the condition of Theorem 9 be satisfied. Then

sup
t∈[0,1]

√
n|Rn(t)| −→ 0 in probability, as n −→∞.

In the proof of Lemma 5.3 we will make use of Lemma 5.2, which requires a
bound on the increments of Rn. We formulate this bound as a separate lemma.

Lemma 5.4. Under the conditions of Theorem 9, there exists a positive constant
C such that

E (Rn(t)−Rn(s))2 ≤ C|t− s|1/2
n2

(5.17)

for all s, t ∈ [0, 1].

Proof. Note that Rn(t)− Rn(s) can be written as

Rn(t)−Rn(s) =
2

n(n− 1)

∑
1≤i<j≤n

J(Xi, Xj)

where J(x, y) = Js,t(x, y) = (h(x, y, t)−h(x, y, s))−(h1(x, t)−h1(x, s))−(h1(y, t)−
h1(y, s)) + (U(t)−U(s)) (in what follows we will drop the index on J(x, y) hoping
that this will not give rise to confusion). Then the l.h.s. of (5.17) becomes

E(Rn(t)−Rn(s))2 =
4

n2(n− 1)2

∑
1≤i1<j1≤n
1≤i2<j2≤n

E (J(Xi1 , Xj1)J(Xi2 , Xj2)) .

Note that J is a degenerate kernel and that hence EXj2J(Xi1 , Xj1)J(Xi2 , Xj2) = 0
provided j2 is different from the other three indices, and likewise for any other index
occurring only once in {i1, j2, i2, j2}.

We now order the indices i1, j1, i2, j2 and denote by di, i = 1, 2, 3, the ith
largest difference between two consecutive indices. Suppose for a moment that
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i1 ≤ i2 ≤ j1 ≤ j2—other orderings may be treated in a similar way. Then we have
to distinguish between two cases, namely (i) d1 = j2 − j1 (or d1 = i2 − i1) and (ii)
d1 = j1 − i2. We begin with case (i), assuming specifically that d1 = j2 − j1. Let
d0 = d0(n, s, t) denote an integer whose specific value will be chosen later. Then if
d1 ≥ d0, we apply Lemma 4.3 with s = t = 1

2 to obtain

|E (J(Xi1 , Xj1)J(Xi2 , Xj2)) ≤Ms,t

(
αb d1

3 c
+ βb d1

3 c

) 1
2

+ φ(α1/2

b d1
3 c

)

where

Ms,t = max
{

(E|J(Xi1 , Xj1)J(Xi2 , Xj2)|2)1/2;

(EXj2EXi1Xj1Xi2 |J(Xi1 , Xj1)J(Xi2 , Xj2)|2)1/2
}
.

Recall that h(x, y, t), h1(x, t) and U(t) are all increasing functions of t, with values
between 0 and 1 and that Eh1(X, t) = U(t). Thus

E(J(Xi1 , Xj1))2 ≤ 42 {E (h(Xi1 , Xj1 , t)− h(Xi1 , Xj1 , s))
+2 E (h(Xi1 , t)− h(Xi1 , s)) + (U(t)− U(s))}

≤ 42 {E (h(Xi1 , Xj1 , t)− h(Xi1 , Xj1 , s))

+3 (U(t)− U(s))2}

and similarly
EXi1Xj1 (J(Xi1 , Xj1))2 ≤ 43(U(t)− U(s)).

Thus by the conditions imposed on h and U , we get that

Ms,t ≤ C|t− s|1/2.

If d1 ≤ d0, we use the fact that |J(x, y)| ≤ 2 to get the bound

E|J(Xi1 , Xj1)J(Xi2 , Xj2)| ≤ 2E|J(Xi1 , Xj1)| ≤ C|t− s|.(5.18)

Putting these together, we obtain∑
1≤i1≤i2≤j1≤j2≤n

d1=j2−j1

E |J(Xi1 , Xj1)J(Xi2 , Xj2)|

=
∑

1≤i1≤i2≤j1≤j2≤n
d1=j2−j1;d1≤d0

E |J(Xi1 , Xj1)J(Xi2 , Xj2)|

+
∑

1≤i1≤i2≤j1≤j2≤n
d1=j2−j1;d1>d0

E |J(Xi1 , Xj1)J(Xi2 , Xj2)|

≤ C
∑

1≤i1≤i2≤j1≤j2≤n
d1=j2−j1;d1≤d0

|t− s|

+C
∑

1≤i1≤i2≤j1≤j2≤n
d1=j2−j1;d1>d0

((
αb d1

3 c
+ βb d1

3 c

)1/2

|s− t|1/2 + φ(α1/2

b d1
3 c

)
)

≤ Cn
{
d3

0|t− s|+
n∑
d=1

d2
(
αb d3 c

+ βb d3 c

)1/2

|s− t|1/2 +
n∑

d=d0

d2φ(α1/2

b d3 c
)

}
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Note that (5.6) implies that

∞∑
d=d0

d2φ(α1/2
bd/3c) ≤ C

∞∑
d=d0

d2φ(α1/2
d )

≤ C

d3
0

∞∑
d=d0

d5φ(α1/2
d ) ≤ C/d3

0.

Thus, choosing d0 = |t− s|−1/6, we may conclude that∑
1≤i1≤i2≤j1≤j2≤n

d1=j2−j1

E |J(Xi1 , Xj1)J(Xi2 , Xj2)| ≤ Cn|t− s|1/2.(5.19)

We now turn to case (ii), i.e. d1 = j1 − i2. Again, let d0 = d0(n, s, t) denote an
integer whose value will be chosen later. Then, if d1 > d0, we apply Lemma 4.3
again to get

|EJ(Xi1 , Xj1)J(Xi2 , Xj2)| ≤ |EXi1 ,Xi2 EXj1 ,Xj2 J(Xi1 , Xj1)J(Xi2 , Xj2)|

+Ms,t

(
αb d1

3 c
+ βb d1

3 c

)1/2

+ φ(α1/2

b d1
3 c

)

where again as above we find that Ms,t ≤ |t− s|1/2. If d1 < d0, we use the estimate
(5.18). Then we obtain as in case (i) the estimate∑

1≤i1≤i2≤j1≤j2≤n
d1=j1−i1

|EJ(Xi1 , Xj1)J(Xi2 , Xj2)|

≤
∑

1≤i1≤i2≤j1≤j2≤n
d1=j1−i1

|EXi1 ,Xi2 EXj1 ,Xj2 J(Xi1 , Xj1)J(Xi2 , Xj2)|+ Cn|t− s|1/2

In treating the sum on the r.h.s., we have to distinguish the cases where d2 = i2−i1
and where d2 = j2 − j1. As both yield the same result, we may assume that
d2 = j2 − j1. Then again, if d2 ≥ d0, we apply Lemma 4.3 to find

|EXi1 ,Xi2 EXj1 ,Xj2 J(Xi1 , Xj1)J(Xi2 , Xj2)| ≤Ms,t

(
αb d2

3 c
+ βb d2

3 c

)1/2

+ φ(α1/2

b d2
3 c

).

If d2 < d0, we apply again (5.18). Put together, we find∑
1≤i1≤i2≤j1≤j2≤n
d1=j1−i1;d2=j2−j1

|EXi1 ,Xi2 EXj1 ,Xj2 J(Xi1 , Xj1)J(Xi2 , Xj2)|

≤ C
∑

1≤i1≤i2≤j1≤j2≤n
d1=j1−i1;d2=j2−j1;d2≥d0

(
Ms,t

(
αb d2

3 c
+ βb d2

3 c

)1/2

+ φ(α1/2

b d2
3 c

)
)

+
∑

1≤i1≤i2≤j1≤j2≤n
d1=j1−i1;d2=j2−j1;d2<d0

(C|t− s|) + Cn|t− s|1/2

where again Ms,t ≤ |t− s|1/2. The first of the three terms on the r.h.s. is bounded
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by

C

n∑
d=1

n2d
(
αb d3 c

+ βb d3 c

)1/2

|t− s|1/2 ≤ Cn2|t− s|1/2.

We now choose d0 = |t− s|−1/4, and get the following upper bound on the second
term:

∑
1≤i1≤i2≤j1≤j2≤n

d1=j1−i1;d2=j2−j1;d2≥d0

φ(α1/2

b d2
3 c

) ≤
n∑

d=d0

n2dφ(α1/2

b d3 c
)

= n2
n∑

d=d0

dφ(α1/2

b d3 c
) ≤ 1

d2
0

= n2|t− s|1/2.

Finally, we obtain ∑
1≤i1≤i2≤j1≤j2≤n

d1=j1−i1;d2=j2−j1;d2<d0

(C|t− s|) ≤ n2d2
0|t− s| ≤ Cn2|t− s|1/2.

All these estimates together prove the statement of the lemma.

Proof of Lemma 5.3. In our proof, we want to employ Lemma 5.2 with Xn(t) =√
nRn(t). Observe that, according to (5.17), condition (5.8) of Lemma 5.2 holds

with γ = 1
2 and β = 1. Moreover, we get for any s, t, δ > 0 with 0 ≤ s ≤ t ≤ s+δ ≤ 1

we have

Rn(t)−Rn(s) =
1

n(n− 1)

∑
1≤i6=j≤n

[(h(Xi, Xj , t)− h(Xi, Xj , s))

− (h1(Xi, t)− h1(Xi, s))− (h1(Xj , t)− h1(Xj , s))
+ (U(t)− U(s))]

≤ 1
n(n− 1)

∑
1≤i6=j≤n

[(h(Xi, Xj , s+ δ)− h(Xi, Xj , s))

− (h1(Xi, s+ δ)− h1(Xi, s))− (h1(Xj , s+ δ)− h1(Xj , s))
+ (U(s+ δ)− U(s))]

+
1

n(n− 1)

∑
1≤i6=j≤n

[(h1(Xi, s+ δ)− h1(Xi, s))

+ (h1(Xj , s+ δ)− h1(Xj , s))]

≤ |Rn(s+ δ)−Rn(s)|+ 2
n
|
n∑
i=1

[(h1(Xi, s+ δ)− U(s+ δ))

− (h1(Xi, s)− U(s))]|+ 2|U(s+ δ)− U(s)|

≤ |Rn(s+ δ)−Rn(s)|+ 1√
n
|W ′n(s+ δ)−W ′n(s)|

+ 2|U(s+ δ)− U(s)|
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and

Rn(s)−Rn(t) =
1

n(n− 1)

∑
1≤i6=j≤n

[(h(Xi, Xj , s)− h(Xi, Xj, t))

− (h1(Xi, s)− h1(Xi, t))− (h1(Xj , s)− h1(Xj , t))
+ (U(s)− U(t))]

≤ |Rn(s+ δ)−Rn(s)|

+
1

n(n− 1)

∑
1≤i6=j≤n

[(h1(Xi, t)− h1(Xi, s))

+ (h1(Xj , t)− h1(Xj , s)) + (h1(Xj , s+ δ)− h1(Xj , s))
+ (h1(Xi, s+ δ)− h1(Xi, s))]

≤ 4
n

n∑
i=1

[(h1(Xi, s+ δ)− U(s+ δ))− (h1(Xi, s)− U(s))]

+ 4|U(s+ h)− U(s)|

≤ |Rn(s+ δ)−Rn(s)|+ 2√
n
|W ′n(s+ δ)−W ′n(s)|

+ 4|U(s+ h)− U(s)|,
from which it follows that

√
n|Rn(t)−Rn(s)| ≤

√
n|Rn(s+ δ)−Rn(s)|+ 2|W ′n(s+ δ)−W ′n(s)|

+ 4
√
n|U(s+ δ)− U(s)|.(5.20)

where

W ′n(t) =
2√
n

n∑
i=1

[h1(Xi, t)− U(t)],

as in (5.7). Note that (5.20) is the representation (5.10) of Lemma 5.2 for the
process

√
nRn(t).

Finally, condition (5.9) of Lemma 5.2 holds for W ′n(t) with r = 4 by an appli-
cation of the fourth moment bound (3.19). Thus, by applying Lemma 5.2 to the
process

√
nRn(t), the statement of the lemma follows.

6. Applications to dimension estimation

In this section we shall study applications of Theorem 9 to dimension estimation.
This involves verification of the conditions on the kernel function as well as on the
mixing behavior of the process.

We assume that the data sequence (Xn)n≥0 is generated by a weak Bernoulli dy-
namical system. We assume that the conditions regarding the mixing rate (βk)k≥0

and the 1-approximation rate (ak) are satisfied (see e.g. Section 1). We denote by
F the marginal distribution of the sequence and we assume that F has compact
support. In this section we will drop the assumption that the Xn’s are real-valued,
noting that the results of the previous sections are then still valid.

When estimating correlation dimensions by the Grassberger-Procaccia method,
we have to study the sample correlation integrals

Un(t) =
2

n(n− 1)

∑
1≤i,j≤n

1{‖Xi−Xj‖≤t}
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which is a U -process with kernels h(x, y, t), 0 ≤ t ≤ r0, given by

h(x, y, t) = 1{‖x−y‖≤t}.

Without loss of generality we will and may assume that r0 = 1. The terms of the
Hoeffding decomposition are given by

h1(x, t) =
∫

1{‖x−y‖≤t}dF (y) = P (‖x− Y ‖ ≤ t),

U(t) =
∫ ∫

1{‖x−y‖≤t}dF (x)dF (y) = P (‖X − Y ‖ ≤ t),

where X and Y are independent random variables with distribution F .
As the monotonicity and boundedness conditions (A1) and (A2) on the class of

kernels {1{‖x−y‖≤t}, 0 ≤ t ≤ 1} are automatically satisfied, it remains to verify (5.2)
and (5.3) as well as the uniform 1-approximation condition. Using the arguments
of Example 2.2, the kernels h(x, y, t), 0 ≤ t ≤ 1, are uniformly 1-continuous with
modulus of continuity φ(ε) if

P (t− ε ≤ ‖X0 −Xk‖ ≤ t+ ε) ≤ φ(ε),
P (t− ε ≤ ‖X − Y ‖ ≤ t+ ε) ≤ φ(ε)

holds for all 0 ≤ t ≤ 1, ε > 0, k ≥ 1, where X and Y are independent with
distribution F . These inequalities again follow, with φ(ε) = 2Cε, if we can show
that

P (s ≤ ‖X0 −Xk‖ ≤ t) ≤ 2C|t− s|,(6.1)
P (s ≤ ‖X − Y ‖ ≤ t) ≤ 2C|t− s|(6.2)

holds for all s, t ∈ [0, 1], s ≤ t. As (6.1) and (6.2) also imply (5.2) and (5.3), it
suffices to establish (6.1) and (6.2).

In general, (6.2) will be easier to verify as it only involves the product distribution
F ×F . If F has a bounded density with respect to Lebesgue measure, ‖X−y‖ also
has a bounded density and thus

P (s ≤ ‖X − Y ‖ ≤ t) ≤M |t− s|

where M is an upper bound on the density of ‖X − Y ‖.
Alternatively, (6.2) holds if the correlation integral obeys an exact scaling law,

i.e. if
U(t) = ctα, 0 ≤ t ≤ t0,

where the exponent α satisfies α ≥ 1. Then, according to the mean value theorem,
we have for 0 ≤ s ≤ t ≤ t0

U(t)− U(s) = tα − sα = (t− s)αξα−1,

where ξ ∈ (s, t). Note that αξα−1 is bounded as α ≥ 1 so that (6.2) holds.
In general, (6.1) will be much harder to verify as it involves the joint distribution

of X0 and Xk. If the pairs (X0, Xk) have joint densities that are uniformly bounded
by some constant M , then (6.1) holds.

For many dynamical systems joint densities will not exist and we have to verify
(6.1) in some different way. One example where this is possible is the doubling map
tx = 2x [mod 1] on the unit interval [0, 1]. The invariant measure in this case is
Lebesgue measure on [0, 1].
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Expressing X0 in the dyadic expansion as X0 = 0.a1a2 . . . =
∑∞

i=1
ai
2i , we obtain

X1 = 0.a2a3 . . . , and thus X0 = X1
2 + a1

2 . Hence

X1 −X0 =
X1

2
− a1

2
.

Now, conditionally given a1 = 0, the difference X1−X0 has a uniform distribution
on [0, 1

2 ]. Conditionally given a1 = 1, the corresponding distribution is uniform on
[− 1

2 , 0]. Put together, we see that X1 −X0 has a uniform distribution on [− 1
2 ,

1
2 ]

so that P (s ≤ |X1 −X0| ≤ t) = 2|t− s| for 0 ≤ s ≤ t ≤ 1
2 .

In a similar way we can treat the general distance Xk −X0. In this case X0 =
Xk
2k

+
∑k
i=1

ai
2i and hence

Xk −X0 = Xk(1− 1
2k

)−
k∑
i=1

ai
2i
.

Now, the first term on the r.h.s. has a uniform distribution on [0, 1 − 1
2k

]. Condi-
tionally given fixed values of a1, . . . , ak, the difference Xk −X0 is thus uniformly
distributed on [−

∑k
i=1

ai
2i ,−

∑k
i=1

ai
2i + 1 − 1

2k
]. For k ≥ 2, these intervals over-

lap. A short analysis shows that the interval [ j−1
2k
, j

2k
] is covered by 2k − j inter-

vals of the type [−
∑k
i=1

ai
2i ,−

∑k
i=1

ai
2i + 1 − 1

2k
] for various values of a1, . . . , ak.

Hence the difference Xk −X0 has density (1− j
2k

)/(1− 1
2k

) = 2k−j
2k−1

on the interval
[ j−1

2k
, j

2k
], j = 1, 2, . . . , 2k, and symmetrically on the negative half-line. This density

is bounded by 1 and thus P (s ≤ |Xk −X0| ≤ t) ≤ 2|t− s|, for any 0 ≤ s ≤ t ≤ 1.
A more complicated example for which the condition (6.1) can also be verified

directly, is the torus automorphism on the 2-dimensional torus τ2 = S1×S1, given
by

Tx = Ax mod 1, x =
(
x1

x2

)
with A =

(
1 1
1 0

)
.

Let X0 =
(X1

0
X2

0

)
be uniformly distributed on τ2, i.e. X1,2

0 ∼ U [0, 1]. Then

Xk = AkX0 mod 1 =
(

fk fk−1

fk−1 fk−2

)
×
(
X1

0

X2
0

)
mod 1,

where fi are Fibonacci numbers, and

Xk −X0 = (Ak − I)X0 mod 1 =
(
fk − 1 fk−1

fk−1 fk−2 − 1

)
×
(
X1

0

X2
0

)
mod 1

=
(

(fk − 1)X1
0 + fk−1X

2
0

fk−1X1
0 + (fk−2 − 1)X2

0

)
mod 1.(6.3)

Both X1
0 and X2

0 are distributed uniformly on [0, 1], and, since all entries of the
matrix in (6.3) are integers and everything is taken modulo 1, both coordinates of
the vector Xk −X0 are also distributed uniformly on [0, 1]. Suppose for norm in
R2 is taken maximum norm (which is the usual choice in these applications), or
either of the coordinates. Then, for all t, s ∈ [0, 1]

P(s ≤ ‖Xk −X0‖ ≤ t) = |t− s|

and the condition (6.1) is satisfied in this example as well with equality and C = 1.
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40. Ritter, H., T. Martinez, and K. Schulten (1992). Neural Computation and Self-Organizing
Maps. Addison-Wesley Reading, MA.

41. Serfling, R. (1984). Generalized L-, M - and R-statistics. Ann. Statist. 12, 76-86. MR
85i:62018

42. Silverman, B. (1983). Convergence of a class of empirical distribution functions of dependent
random variables. Ann. Prob. 11, 745-751 MR 84m:60033

43. Silverman, B., Brown, T. (1978). Short distances, flat triangles and Poisson limits. J. Appl.
Prob. 15, 815-825. MR 80c:60042

44. Skorohod, A.V. (1956). Limit theorems for stochastic processes. Theor. Probab. Appl. 21,
628-632.

45. Strassen, V., Dudley, R.M. (1969). The central limit theorem and ε-entropy. In: Lecture Notes
in Mathematics 89, 224-231, Springer-Verlag, Berlin.

46. Takens, F. (1981). Detecting strange attractors in turbulence. In: Dynamical systems and
turbulence. Lecture Notes in Mathematics 898, 336-381. Springer-Verlag. MR 83i:58065

47. Takens, F. (1985). On the numerical determination of the dimension of the attractor. In:
Dynamical Systems and Bifurcations. Lecture Notes in Mathematics 1125, 99-106. Springer-
Verlag. MR 86f:58043

48. Withers, C.S. (1975). Convergence of empirical processes of mixing random variables. Ann.
Statist. 3, 1101-1108. MR 52:15593

49. Yoshihara K. (1976). Limiting behaviour of U -statistics for stationary, absolutely regular
processes. Z. Wahr. Verw. Geb. 35, 237-252. MR 54:6221

ITS-SSOR, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Nether-

lands

E-mail address: S.A.Borovkova@its.tudelft.nl

Department of Mathematics, Oregon State University, Kidder Hall 368, Corvallis

Oregon 97331

E-mail address: burton@math.orst.edu

Fakultät für Mathematik, Ruhr-Universität Bochum, Universitätsstraße 150, D-
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