Proc. R. Soc. Lond. A 407, 171-182 (1986)
Printed in Great Britain

Limit theorems for fuzzy random variables

By E. P. KLeMENT'Y, M. L. Purt® axp D. A. RaLEscu!?

! Department of Mathematics, University of Cincinnati,
Cincinnati, Ohio 45221, U.S.A.
? Department of Mathematics, Indiana University, Bloomington,
Indiana 47405, U.S.A.

(Communicated by I. N. Sneddon, F.R.S. — Received T November 1985)

A strong law of large numbers and a central limit theorem are proved
for independent and identically distributed fuzzy random variables,
whose values are fuzzy sets with compact levels. The proofs are based on
embedding theorems as well as on probability techniques in Banach
space.

1. INTRODUCTION

The concept of fuzzy set was introduced by Zadeh (1965). Subsequent developments
focused on applications of this concept to pattern recognition and system analysis,
among other areas (see Negoita & Ralescu 1975). Puri & Ralescu (1986) studied
fuzzy random variables as a generalization of random sets. The purpose of this
generalization was the introduction of statistical techniques (such as estimation)
for pattern recognition. Consider, for example, the problem of recognition of a
handwritten character. A random sample is taken from that character. How can
the expected character (or a prototype) be defined, and how can it be estimated ?
The data here are represented by fuzzy sets rather than numbers. The strong law
of large numbers (SLLN) and the central limit theorem (cLr) for fuzzy random
variables are first steps in the direction of the estimation of vague parameters.
After some preliminaries on random sets introduced in §2, we introduce various
spaces of fuzzy sets and distances on these spaces in §3. We prove, with respect
to one of these distances, that the space of fuzzy sets with compact levels is
separable. We also extend the Radstrom (1952) embedding theorem to the space
of fuzzy sets with compact convex levels. In §4 we recall some facts about fuzzy
random variables and their expected value. These concepts were defined by Puri
& Ralescu (1986). We prove the Lebesgue dominated convergence type theorem.
The result concerning SLLN for fuzzy random variables is given in § 5. This result
generalizes the corresponding result for random sets due to Artstein & Vitale
(1975). In §6, we prove an embedding theorem for the space of fuzzy sets with
compact convex levels satisfying a Lipschitz condition. This embedding is a key
tool in proving our crr for fuzzy random variables in § 7. Our results extends the
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cur for random sets (cf. Weil 1982; Giné et al. 1982). Finally, in §8, we comment
on some spaces of fuzzy sets where the cLT can be applied.

Our approach relies heavily on probability techniques in Banach space. As with
random sets, our SLLN is not an immediate application of those techniques, since
the spaces of fuzzy sets are not Banach spaces. In fact, they are not even vector
spaces, so we rely on embedding theorems as mentioned in §§3 and 6. Our
framework is more complex than that of random sets: on the one hand, separability
and therefore measurability problems arise; on the other hand, since an integral
similar to that of Debreu (1967) is not available for fuzzy random variables, our
proof of the SLLN uses a truncation argument and a Lebesgue dominated
convergence type theorem. Also, due to the complexity of spaces of fuzzy sets (as
compared to spaces of sets), our cLT has a more complicated form than the cLr for
random sets.

2. PRELIMINARIES ON RANDOM SETS

Let 2" (R?) denote the collection of non-empty compact subsets of the Euclidean
space RP, and let %" ,(R?) denote the non-empty compact convex subsets of R?.
The space X (R?) has a linear structure induced by the (Minkowski) addition and
scalar multiplication:

A+B={a+blacA,beB}, AA={Aa|acAd}

for 4, Be X (R?), A€ R. However, X' (R?) is not a vector space (it is not a group
with respect to addition).
The space X" (RP) is metrizable by the Hausdorff distance

d(A4, B) = max {sup inf |[a—b|], sup inf |la—b|},
acA beB beBaeAd

where || | denotes the euclidean norm and 4, Be X (RP). It is well known that
(X (RP?),d) is a complete separable metric space (Debreu (1967)). If 4 € ¥ (R?), we
write || 4| = d(4,{0}).

Let (22,97, P) be a probability space. A random set is a Borel measurable
function f: Q- X (RP).

The expected value Ef of a random set was defined by Aumann (1965) as:

Bf ={E¢|pe LR, 4, P), ¢(w)ef(w)ae.]

where ¢: 2> RP is a selection of f and E¢ denotes the expectation of the random
vector ¢. If f is " (RP)-valued and if E|f|| < oo, then Efe A ,(RP).

Various properties related to the calculus of set-valued functions (including the
Lebesgue dominated convergence type theorems) are discussed in Aumann (1965)
and Debreu (1967). A comprehensive theory of random sets is given in Matheron
(1975).
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3. SPACES OF FUZZY SETS

A fuzzy subset of R? ( fuzzy set) is a function of w: R? [0, 1]. For each such fuzzy
set u, we denote by L, u = {xeR?|u(x) > a},0 < a < 1, its a-level set. By suppu
we denote the support of u, i.e. the closure of the set {x € R?|u(x) > 0.

We consider the collection % (R?) of those fuzzy sets w: R? [0, 1] with the
following properties.

(1) w is upper semicontinuous; (2) supp u is compact; (3) {xe R? |u(x) = 1} # .

The space #(R?) extends X (R?) in the sense that for each 4e X (R?), its
characteristic function y , € # (R?).

A linear structure in % (RP?) is defined via the following operations:

(w+v) (x) = sup min [u(y), v(z)],
Yt+z=x

w(A='z) if A#0

fau)fon= { Xo(@) if A=0

for u,ve # (R?),AeR.

By using simple topological arguments and properties of upper semicontinuous
functions, it is easy to see that u+v, Aue # (R?). The following properties will be
needed later:

L,u+v)= L,u+L,v and L,(Au)=AL,u

forevery 0 <a < 1.
There is no unique metric in % (R?) which extends the Hausdorff distance.
In this paper we will mainly be concerned with the metric defined as

1
d,(u,v) = fo d(L,u, L,v)de.

We will also use the metric

d(u,v) =supd(L,u,L,v)
a>0
which was studied in Puri & Ralescu (19835)
Clearly, if A, Be X (R?), then

dy(X4: XB) = do(X4: XB) = d(4, B).

ProrosiTioN 3.1. (# (R?),d,) is a metric space.

Proof: Obviously d,(u,v) < oo since supp % and supp v are bounded.

The function ¢(a) = d(L, u, L, v) is measurable: if &, < a, < ... with lima,, = a,
then Lyu=2,L, v, L,v=2, L,,v. Thus d(L,,u, L,u)>0, d(L, v,
L,v)—>0 and, from the continuity of the Hausdorff distance, we conclude that
¢ is left-continuous and therefore measurable.

The triangle inequality and symmetry property of d, are clear. It remains to
show that d,(u,v) = 0 implies u = v.

Ifd,(u,v) = 0, it follows that L, u = L,v a.e., therefore u and » have equal levels
for €0, 1]\ 4 where A(4) = 0 (A denotes the Lebesgue measure).

It is well known that [0, 1]\ 4 is dense in [0, 1]. If & € 4, &, > 0, there exists an
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increasing sequence a,, €[0, 1\ 4, &, >a,. Then
— o0 — o o] -
Ly u=( |p=1 Loy @ = [ |n=1 L,,v=1L,v.

So L,u = L,v for each €0, 1], which implies u = v.

A crucial property in connection with the strong law of large numbers is that
of separability (see, e.g. Taylor 1978). It turns out that the space (#(R?),d,) is
separable. The space (# (R?),d ), on the other hand, is not separable, which means
that the distance d, is preferable to d,. These statements are proved in the
following.

ProPOSITION 3.2. The metric space (¥ (RP),d,) is separable.

Proof. Suppose that ue # (R?) and ¢ > 0 are given.

1. Since suppu is compact, there exist p-dimensional cubes S; = [1£, [a;, b;).
i=1,...,r such that a,,b,€Q,0 < by—ay;<(2)/vp, and suppu € Ji-, ;.
Consider the corner point T, = (@, ...,a;,) of S; and define the fuzzy set ¢:
R? —>[O, l] by

(suppu(:::) if e=T,i=1,...,r,
B(z) =1z S
10 otherwise.

Obviously we have ¢eF(R?). Putting a; = ¢(7;), we relabel §,,...,S, and
T, ..., T, (if necessary) such that 0 = oy <, <, < ... <a, = 1.

2. We claim that d(u,¢)<3e. To this end we choose an a > 0. Since
a,, <a<a for some 1 <i,<r we get L,u2L, u and L,p=L, ¢=
i Tyy1s - I}, As x€L,u implies xe8; for some i, =i, it follows that
ming, &<, le— Tl < & =T, | < .

On the other hand, for any i 2 ¢, we have ¢(7;) = supp, . s, u() > a. Since u
is upper semicontinuous, it attains its supremum at some point x,€S; N L, u. This

ives
g inf T2l < IT—2,] > 6.
Therefore AL

dy(u,¢) =supd(L,u,L,¢) =supd(L,ui{T,....T,}) < ie.
>0

a>0 a

3. If necessary, we relabel a,,...,a, to obtain 0 < a, < a, < ... <a, = 1 with
s<r. If o ¢Q, we choose £, €Q such that max(a;_,,a,—€e/M) < B, < o with
M > 2(r—1)diam(suppu), while if a2, €Q, we set g, =a,(k=1,...,s). Here
diam(supp u) stands for the diameter of supp u.

Defining iy € # (R?) by

(B i J@) =0y,
V(@) _'{O otherwise
yields

1 8— .
dy(¢, ) = f o d(La¢,La¢)da=‘Z: f #‘ d(L, ¢, L,y)da
p i
=

8
< dism(suppu) I (a~4) < k.
=1
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4. By the triangle inequality, we get

dy(u, ) < dy(u, @) +d\ (P, ¥) < d(u, ) +d,(d,¥) <e.

Since the set of functions ¥ is countable, separability of (# (R?),d,) follows.
ProrosiTiON 3.3 (F(R?),d_) is not separable.
Proof. Put a = (0,0, ...,0)eR? and b= (1,0,0,...,0)€R?. For each a€(0,1),
define ¢, € # (RP) by

1 if =0
Po(x) = {a if xzecoia,b}\{b}
0 otherwise,

where co {a, b} is the convex hull of {a, b}.

It is easy to check that d(@,,¢,) = 1 for a # f.

Denote by & ,(RP?) the space of fuzzy sets u € # (R?) such that L, u is convex for
each a > 0. Alternatively, ue # (R?) if ue #(R?) and u is fuzzy convex (i.e.
w(Az+ (1 —A)y) = min[u(x), u(y)] for all z,ye R?, A€[0, 1]; see Zadeh (1965)).

The space # .(R?) plays an important role since it can be embedded isometrically
into a Banach space. Actually thisembedding generalizes the Rddstrom embedding
theorem (Radstrom 1952) of ) ,(R?) into a Banach space.

Such an embedding for fuzzy sets is given in Puri & Ralescu (1983), in a more
general framework. For completeness we state this result here and sketch its proof.

ProrosiTiON 3.4. There exists a normed space y and a function j: F (RP)->y
with properties:

(a) j is an isometry (i.e. |[jw)—j()]| = d\(u,v)),

(b) j(u+v) = ju)+3(v),

() j(Au) = Aj(w), A > 0.

Proof. Define an equivalence relation in # (R?) x # (R?) by

(u,v) ~ (', v)>u+v =u' +v.

A general theorem of Radstrom (1952) can be used; the necessary hypotheses are
verified as in Puri & Ralescu (1983 b). Ths space of equivalence classes [u, v] of pairs
(w,v) is denoted by y. The norm in y is defined by |[u,v]| = d,(u,v). It is easy
to check that j: # (R?)—>y defined by j(u)=[u,¥,] is an isometry, i.e.
| j(w)—j(»)|| = d,(u,v), and properties (b), (c) follow from the definitions.

4. FuzzYy RANDOM VARIABLES

The concept of a random set was generalized by Puri & Ralescu (1986). A fuzzy
random variable (FRV) is a Borel measurable function X: Q2 >(# (R?),d_). Note
that we use d_, here and not d,; the reason for this will soon become clear.

If X is a fuzzy random variable such that E|supp X|| < oo, then the expected
value EX is the (unique) fuzzy set satisfying the property

L,(EX)=EL,X)0<a<1
(Puri & Ralescu 1986, Theorem 3.1).
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It follows that EX: R? |0, 1] is upper semicontinuous and L,(EX) # .

Also supp EX is compact; to see this, note that it suffices to show L,(EX) = K
for every a > 0 and for some compact set K. But L, (EX) = E(L, X) < E(supp X).
Since E|jsupp X|| < co, it follows that E(supp X) is a non-empty compact set, so
we can take K = E(supp X).

In the discussion above, it is implicit that supp X is measurable, i.e. it is a
random set. This fact follows from the following.

ProrosrTioN 4.1. If X is a fuzzy random variable, then supp X is a random set.

Proof. It is enough to show that the function ¢:(#(R?),d, )~
(A (RP),d), p(u) = suppu is Borel measurable. Note that d(L,,, »,suppu)—>0 as
n—>o0. So, if we define ¢,(u) = L,,,u, then ¢ = lim, ¢, pointwise. Now ¢,
are obviously continuous functions, so ¢ is measurable.

Note. A similar argument will not hold if d_, is replaced by d,.

From the above result, it follows that if X is a fuzzy random variable, then
EXeZ (RP).

An important property of the expected value, which will be needed later, is the
Lebesgue dominated convergence type theorem. Such a result is contained in Puri
& Ralescu (1986), but for the metric d .

We state and prove the new version here, in the form that we need in the next
section. By {0} we denote the one point set containing 0 (identified with its
characteristic function ).

TueoreM 4.1. Let { X |k > 1}, X be fuzzy random variables with values in Z ,(R?)
and such that E|supp X, | < co, E||supp X| < co. Suppose that X,,—~ X a.e. in the
metric d,, and that d,(X,(w),{0}) < k(w) for all k > 1, where h: Q>R is integrable.
Then EX,;— EX in the metric d,.

Proof.
1
d,(EX,,EX) = j d(L,(EX,), L,(EX)]da
0

1
= f d[E(L, X,), B(L, X)]da < J' : E[d(L, X,, L, X)]da
0 0

by using an inequality of Debreu (1967, p. 366-367). From the Fubini theorem
we conclude that

d\(EXy, EX) < E[dy(X,, X)].
From the hypothesis, d,(X,,, X) >0 a.e. Also,
d\(Xy, X) < d,(X,, {0}) +4,({0}, X) < h+4,({0}, X).

From the classical Lebesgue dominated convergence theorem, it follows that
d\(EXy, EX)~0, concluding the proof.

5. LAW OF LARGE NUMBERS

The strong law of large numbers (SLLN) for random sets was derived by Artstein

& Vitale (1975). This was extended to random convex sets in a Banach space by
Puri & Ralescu (19834, 1985).
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Here we generalize the Artstein—Vitale result to fuzzy random variables. Note
that such a SLLN was stated by Féron (1979) by using a different metric, but no
proof was provided.

We will consider fuzzy random variables with values in % (R?). Note that it
makes sense to talk about independent and identically distributed Frvs, since
(# (R?),d ) is a metric space (see Billingsley 1968).

We will also need the concept of a convex hull of a fuzzy set (see Lowen 1980).

If ue #(RP?), then coue F (RP), the convex hull of u is defined by

cou = inf.{vefc(IR”)Iv = u}.
It is possible to show that
L,(cou) =co(L,u),0 <a<1.

If X: Q->%(RP?) is a fuzzy random variable, then co X: Q> % (R?) is defined
by (co X) (w) = co X(w).

Our main result is as follows.

TrHEOREM 5.1. Let {X, |k = 1] be independent and identically distributed fuzzy
random variables such that E|supp X, || < oo. Then

(X, +X,+...+X,)/n—>E(co X,) a.e.,

the convergence being in the metric d,.

Proof. (1) Consider first X,: Q> % (R?) and let j: # (R?)— y be the isometry
provided by Proposition 3.4.

Since (# .(R?),d,) is separable, it is easy to show that y is separable. Then
{joX,|k > 1} are 11D y-valued random elements. By a standard sLL~ in Banach
space, it follows that 1/222_, (jo X,) > E(jo X,) a.e.

The main point now is to show that E(jo X,) = j(EX,) if E||supp X, | < .

Assume first that X, is a simple function, ie. X, =3l ux,,.
u; € F (RP), A;e /. 1t is easy to check that E(jo X,) = j(EX,) in this case.

Since X, is measurable, there exists a sequence of simple functions (Frvs) s,
with s, > X, a.e. in the metric d, (note that we can not assert the existence of such
a sequence which converges in d_, unless X, is separably valued).

Alsod,(8y,10}) >d,(X,,{0}) a.e. from the continuity of d,. Consider the truncated
FRVS t,, as follows:

o [ta) e (0), 0) < 24X, (0), O)
"'(w)'—{{O}, otherwise.

Note that t,, are simple functions. It is easy to see that d,(t,,, X,) >0 a.e. and that
dl(tm(w)v{o}) < 2d1(X1(w)’{0})

The hypotheses of Theorem 4.1 are satisfied, so d,(Et,,, EX,)->0. Therefore
J(Bty)—>j(EX,) in x. It is easy to see that jot,, >jo X, and, from properties of
the Bochner integral, that E(jot,,) > E(jo X,). Since j(Et,,) = E(jot,,) it follows
that j(EX,) = E(jo X,).

Therefore |[1/n X}, (jo X;)—j(EX,)| -0 a.e.

From the properties of j, it follows that d,(1/2X7_, X,, EX,)>0a.e. (2)
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Consider now the general case, i.e. X;: 2> (RP). Since {co X, |k > 1} are mp,
and E|supp(co X,)|| < E|supp X, || < o0, it follows from part (1) that

( él co Xk) / ni’;E(co xl).

The Shapley—Folkman lemma (see Arrow & Hahn 1971) gives;

n ) L y
d[La(l 3 Xk), La(— 2 co X,c)] Sﬁ max || L, X[,
N ey N k=1 " igk<n
for every a > 0. This implies immediately
n 1 2
% (1 $ gl coxk)sﬂ max [supp X,
B gy Mryvas N 1<k<n

Since (1/n) max, <<, [supp X;| -0 a.e. (see, for example, Chow & Teicher 1978,
p. 122), it follows that d,((1/n) X}, X, (1/n) X}, co X;) >0 a.e. Finally, from the
triangle inequality, it follows that d,[(1/n) X}, X, E(co X,)] >0 a.e. and the
proof is complete.

Note. From the above proof it seems that we could prove the SLLN with respect
tod,, at least for # (R?)-valued fuzzy random variables. This is not the case since
(# .(RP),d ) is not separable. This follows from Proposition 3.3 (the same example
works).

6. THE EMBEDDING THEOREM

Let 8?71 = {x e R?| ||z|| = 1} denote the unit sphere in R?. It is well known that
A (RP) can be embedded isometrically into C(SP~') (the Banach space of
continuous functions on S?7'). This result goes back to Minkowski (see, for
example, Artstein & Vitale 1975).

Such an embedding is realized via the support function of a compact convex set.
More precisely, it Ke X (R?), its support function is defined by

8x(x) = su}l)( {x,a), ze8P1,
ace

In the case of fuzzy sets, more restrictions should be imposed in order to achieve
a similar embedding.

“onsider the space # | (RP) of fuzzy sets u e # (R?) such that the map a—> L, u
is Lipschitz. More specifically, ue # ; (RP) if there exists a constant M > 0, such
that

d(L,u, Lﬂ u) < Mla—pf|

for every a, f€(0, 1.

Define the space # ., (R?) = #,(R?) n # ,(RP). The next theorem gives the
desired embedding.

TueOREM 6.1 There exists a function

J: F o (RP) > C([0, 1] x 8P71)
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such that:
(@) j is an isometry (i.c. |[j(w)—j(@)], = do(,0)),
(b) j(u+v) = j(u)+j(v),
() j(Au) = Aj(u),A > 0.
Proof. Define j(u) = s,, where
Sp,u(®@), if a>0

Syla, x) ={'9smpp J@), if a=0.
The function s, is Lipschitz on [0, 1] x §77:

I'su(a1 2!)—8“(,3, y)l < I'SL“ u(x) _‘gl,ﬂ u(x)l -t I'sl,ﬂ u(x)""ng u(y)l

< 8z, u =2, ullo + 1 Lpul ll2—yll
< Jlull (o=l + lz—ylD), (6.1)
where ||, = su M+su | L, ul
L P | P a
a#f a_ﬂl x>0

and we have used the fact that Ke X (R?) > sy is an isometry, as well as the fact
that s, satisfies a Lipschitz condition with constant | K.
Since any two norms in R?*! are equivalent, inequality (6.1) becomes

I, (e, @) =3, (B, )| < qllwll p(le— B2+ [z —yl*), (6.2)

where ¢ is a constant.
Thus s, = j(u)€C([0, 1] x §771).
It is now easy to show that j is an isometry, i.e.

lb(u)_J(v)"m = Su-}: |3u(a!x)_sv(av x)l = da;.(us l’)

as well as properties (b) and (c), and the proof is completed.

7. CENTRAL LIMIT THEOREM

The oLt for random sets was first given, in a particular case, by Cressie (1979).
The general theorem first appeared in Weil (1982) and, independently, in Giné et
al. (1982); Vitale (1981); Trader & Eddy (1981); and Puri & Ralescu (1983).
Lyashenko (1979) even considered the non 11p case, although in a metric different
from the Hausdorff metric.

We will consider here fuzzy random variables with values in the space
(# L(RP),d_). Our main result is as follows.

TueoreM 7.1. X, X,,...: Q>F | (R?) be independent and identically distributed
Sfuzzy random variables, satisfying:

(@) EIISHPI;&II’ < oo,

(Ly Xy, LgXl)]’
0 & sup 27T < o

Then there exists a Gaussian random element Z in C(]0, 1] x 8771 such that
vnd (X, +X,+...+ X, /n, E(co X,)) > || Z||,, weakly.
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Proof. (1) Consider first the convex case, i.e. X, :Q->F . (RP).

Let j: F o, (RP)—>C([0,1]x 877") be the isometry given by Theorem 6.1, and
consider Y, = j(X,) as random elements in C([0, 1] x I L )

Observe that inequality (6.2) in the proof of Theorem 6.1 can be rewritten as

| Yy(s)— Yi(0)] < qll Xl s —¢l (7.1)

for s,t€[0, 1] x 8771, Also note that hypotheses (a) and (b) imply E[ X, |7, < oo.
Next, note that the minimal number of closed balls of radius < e which cover
SP-1 s of the order ce'~? for some constant c.
Then, the minimal number of such balls which cover the cylinder [0, 1] x SP~!
is N(e)=ce®. If H(e)=1gN(e) denotes the metric entropy of [0,1]x 8?1
(corresponding to the Euclidean distance), it is easy to check that

Il Hi(e) de < 0. (7.2)
0

Conditions (7.1) and (7.2) show that the central limit theorem of Jain & Marcus
(1975) can be applied. Thus,

\/n[‘z’l]lj(xi)/n—Ej(Xl)]ez weakly, (7.3)

where Z is Gaussian in C([0, 1] x SP71),

Since E(s;) = sg, for any random set f: -4 (R?), it is not difficult to show
that Ej(X,) = j(EX,).

This fact, together with (7.3), the continuous mapping theorem, and the fact
that j is an isometry, implies

n
\/ndw(tz X;/n, EXl)—> 1Z||, weakly.
=1

(2) Assume now that X, : Q% (R?), and consider the fuzzy random variables
co X, (see §5). The Shapley—Folkman lemma (see Arrow & Hahn 1971) gives

n n
d, (Z X,,co X X,-) < v/p max |supp X;|. (7.4)
f=1 i=1 1<i<n

Therefore, we can write:
n

vnd, (Z X, /n, E(coXl))
i=1

< Vnd, (ti Xf/n,ii coX,/n)+ vnd,, (i co X;/n, E'(coXl)).
=1 -1

=1

Note that if ue # | (RP), then |cou|, < |u|,, so Eco X, |2 < oo and the second
term of the above inequality converges weakly to | Z|,, by part (1) of the proof.
For the first term, we use (7.4), so that

n n
\/ndw(z X;/n, 2 coX,/n), < +v/p max |[supp X;|/+v/n.
i=1 1<i<n

i=1
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But E|supp X,||* < co implies that max, .;, [[supp X;||/v/n—>0 weakly (see,
for example, Breiman 1968, p. 188). It follows, finally, that

vn dw( i X;/n, E(co Xl)) - 2]l .
i=1

weakly, concluding the proof.

8. CONCLUDING REMARKS

One of the main difficulties in proving the sLLN for fuzzy random variables was
the fact that the space (% (RP),d_) is not separable. It would be possible to
overcome this, by assuming that {X, |k > 1} are 1ip fuzzy random variables which
are separably-valued a.e. Such a hypothesis, however, does not seem to be natural
in the context of the sLLN.

We also mention that it is possible to define a metric in % (R?), more general
than d,, by the formula

1 1/r
d (u,v) = U.o d"(L,u, L, v)da] Yo o g P

The sLLN holds with respect to d, as well but for the clarity of the exposition
we have chosen the metric d,.

The central limit theorem proved in §7 works for fuzzy random variables with
values in # ;(R?). From the practical point of view, it might be difficult to check
the Lipschitz condition for the function a— L u.

In the following, we state some sufficient conditions which imply this Lipschitz
condition.

(1) Let we #(RP). If there exists a constant M > 0 such that |u(x)—u(y)| =
M||x—y| for x, y esuppu, then ue F ;(RP).

This statement can be proved by using properties of the Hausdorff distance and
compactness arguments. It gives examples of fuzzy sets in # ;(R?) but it is quite
restrictive, since u satisfying the above condition must be a one-to-one function.

(2) Let ue #(R?). If
min inf{

1sj<p

a_u
ax,

(x)|: xesuppu\L, u} >0

then we # ;(RP). Here the infimum is taken over all points in supp «\ L, u where
the derivatives of u exist.
In the one dimensional case (i.e. #(R)), this condition states that if the

derivative of u (where it exists) is bounded away from zero on supp u\ L, u, then
ueF [ (R).

M.L.P. and D.A.R. were supported by the National Science Foundation Grant
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