
Limit Theorems for Iterated Random Functions

WEI BIAO WU AND XIAOFENG SHAO 1

November 19, 2003

Department of Statistics, The University of Chicago, Chicago, IL 60637, USA

Abstract

We study geometric-moment contracting properties of nonlinear time series that are

expressed in terms of iterated random functions. Under Dini-continuity condition, a cen-

tral limit theorem for additive functionals of such systems is established. The empirical

processes of sample paths are shown to converge to Gaussian processes in the Skorokhod

space. An exponential inequality is established. We present a bound for joint cumulants,

which ensures the applicability of several asymptotic results in spectral analysis of time se-

ries. Our results provide a vehicle for statistical inferences for fractals and many nonlinear

time series models.
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1 Introduction

Let (X , ρ) be a complete, separable metric space with Borel sets X. An iterated random

function system on the state space X is defined as

Xn = Fθn(Xn−1), n ∈ N, (1)

where θ, θn, n ∈ N, take values in a second measurable space Θ, and are independent

with identical marginal distribution H. Here, Fθ(·) = F (·, θ) is the θ-section of a jointly

measurable function F : X × Θ 7→ X and X0 is independent of (θn)n≥1. The simple

iteration (1) unifies many interesting branches in probability theory, such as Markov chains,

nonlinear time series, queuing etc. The problem of the existence of stationary distributions
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and related convergence issues has received considerable attention recently; see for example,

Barnsley and Elton (1988), Elton (1990), Arnold (1998), Stenflo (1998), Diaconis and

Freedman (1999), Steinsaltz (1999), Alsmeyer and Fuh (2001), Jarner and Tweedie (2001)

among others. Various sufficient conditions are presented in those works to ensure the

weak convergence Xn ⇒ π, where π is the stationary distribution.

In this paper, we shall establish the convergence of Xn to π in the sense of geometric-

moment contraction (to be defined below), and obtain limit theorems for additive func-

tionals and empirical processes for Xn. Unlike strong mixing conditions, the geometric

moment contraction seems easily verifiable and sufficiently mild, and it provides a natural

base from which the limit theorems related to Xn can be systematically derived.

To define geometric moment contraction, let X ′
0 ∼ π be independent of X0 ∼ π and

(θk)k≥1 and define Xn(x) = Fθn ◦ Fθn−1 ◦ . . .◦ Fθ1(x). Thus Xn(X ′
0) can be viewed as a

coupled version of Xn(X0). We say that Xn is geometric-moment contracting if there exist

α > 0, C = C(α) > 0 and 0 < r = r(α) < 1 such that for all n ∈ N,

E{ρα[Xn(X ′
0), Xn(X0)]} ≤ Crn. (2)

The inequality (2) implies that, starting from two independent initial points X0 and X ′
0,

the orbits Xn(X ′
0) and Xn(X0) will be close to each other at an exponential rate. Steinsaltz

(1999) considered rate of convergence with α = 1.

The rest of the paper is organized as follows. Geometric moment contraction is dis-

cussed in Section 2. In Section 3 we present a central limit theorem for Sn,l(g) =
∑n

i=1 g(Yi),

where the functional g is stochastic Dini-continuous and Yi = (Xi−l+1, Xi−l+2, . . . , Xi) (see

Remark 2 for the definition of Xk with negative subscripts k). The convergence of empir-

ical processes towards Gaussian processes is also studied. A bound on joint cumulants is

obtained in Section 3.3.

2 Geometric-moment contraction

We start by imposing regularity conditions on the underlying evolution mechanism Fθ(·).
Our main result regarding stationarity is Theorem 2 which asserts the existence of the

stationary distribution together with a geometric convergence rate in the sense of (2).
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Condition 1. There exist y0 ∈ X and α > 0 such that

I(α, y0) := E{ρα[y0, Fθ(y0)]} =

∫

Θ

ρα[y0, Fθ(y0)]H{dθ} < ∞. (3)

Condition 2. There exist x0 ∈ X , α > 0, r(α) ∈ (0, 1) and C(α) > 0 such that

E{ρα[Xn(x), Xn(x0)]} ≤ C(α)rn(α)ρα(x, x0) (4)

holds for all x ∈ X , n ∈ N.

Condition 1 provides a bound on the intercept of the random transform F ; condition 2

is of Lyapunov type ensuring that the forward iteration Xn is contracting on average.

Unless otherwise specified, we will assume hereafter that 0 < α ≤ 1 in Conditions 1 and 2

since if (3) and (4) are satisfied for some α > 1, then they are valid for all α ≤ 1 by Hölder’s

inequality. Actually, for any β ∈ (0, α), let C(β) = C(α)β/α and r(β) = r(α)β/α ∈ (0, 1).

Then

E{ρβ[Xn(x), Xn(x0)]} ≤ (E{ρα[Xn(x), Xn(x0)]})
β
α

≤ C(α)
β
α [r(α)

β
α ]nρβ(x, x0).

Introduce the backward iteration process Zn(x) = Fθ1◦Fθ2◦ . . .◦Fθn(x). Notice that for all

x ∈ X , Zn(x)
D
= Xn(x). If Zn(x) converges a.s. to a proper random variable, then Xn(x)

converges in distribution. Clearly, Xn(x) = Fθn ◦ Xn−1(x) and Zn(x) = Zn−1◦ Fθn(x). A

typical result for the existence of stationarity of (1) is given in Diaconis and Freedman (cf

Theorem 1). A random variable Y is said to have an algebraic tail if there exist A,B > 0

such that P (|Y | > y) < A/yB for all y > 0. Equivalently, E(|Y |α) < ∞ for some α > 0.

Theorem 1. (Diaconis and Freedman, 1999) Assume (3),

E(log Kθ) =

∫

Θ

log KθH{dθ} < 0, where Kθ = sup
x′ 6=x

ρ[Fθ(x
′), Fθ(x)]

ρ(x′, x)
, (5)

and that Kθ has an algebraic tail. Then there exists a unique stationary distribution π for

(1) and Zn(x) → Z∞ ∼ π at a geometric rate. The limit Z∞ does not depend on x.

Theorem 2. Suppose that Conditions 1 and 2 hold. Then there exists a random variable

Z∞ such that for all x ∈ X , Zn(x) → Z∞ almost surely. The limit Z∞ is σ(θ1, θ2, . . .)-

measurable and does not depend on x. Moreover, for every n ∈ N,

E{ρα[Zn(x), Z∞]} ≤ Crn(α) (6)

where C > 0 depends solely on x, x0, y0 and α, and 0 < r(α) < 1. In addition, (2) holds.
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Remark 1. Condition 2 is slightly weaker than (5). A simple but useful observation

pointed out in Wu and Woodroofe (2000, WW hereafter) is that if Kθ has an algebraic

tail, then (5) implies that E(Kα
θ ) < 1 for sufficiently small α > 0. Hence (4) holds with

C(α) = 1 and r(α) = E(Kα
θ ) by Fatou’s lemma:

1 > E(Kα
θ ) =

∫

Θ

sup
x′ 6=x

ρα[Fθ(x
′), Fθ(x)]

ρα(x′, x)
H{dθ} ≥ sup

x′ 6=x

∫

Θ

ρα[Fθ(x
′), Fθ(x)]

ρα(x′, x)
H{dθ}. (7)

Actually, (7) implies E{ρα[X1(x
′), X1(x)]} ≤ r(α)ρα(x′, x) and consequently (4) by a sim-

ple induction.

The proof of Theorem 2 seems simpler than the one in Diaconis and Freedman (1999).

On the other hand, the geometric-moment contraction (2) asserted by Theorem 2 plays a

key role for central limit theorems and concentration inequalities (cf Section 3.)

Proof of Theorem 2. Let 0 < α ≤ 1 satisfy both Conditions 1 and 2. By (4) and the

triangle inequality, I(α, x0) ≤ ρα(x0, y0) + I(α, y0) + E{ρα[Fθ(x0), Fθ(y0)]} < ∞. By (4),

E{ρα[Zn+1(x0), Zn(x0)]} = E
[
E{ρα[Zn◦ Fθn+1(x0), Zn(x0)]|θn+1}

]

≤ C(α)rn(α)E{ρα[Fθn+1(x0), x0]} = C(α)rn(α)I(α, x0) =: δn.

Then P (ρ[Zn+1(x0), Zn(x0)] ≥ δ
1
2α
n ) ≤ δ

1
2
n , which by the Borel–Cantelli lemma yields

P (ρ[Zn+1(x0), Zn(x0)] ≥ δ
1
2α
n infinitely often) = 0. Since δ

1
2α
n is summable, Zn(x0) → Z∞

a.s. due to the completeness of X . Clearly Z∞ is σ(θ1, θ2, . . .)-measurable. Again by the

triangle inequality,

E{ρα[Zn(x0), Z∞]} ≤ E

{ ∞∑
j=0

ρ[Zn+1+j(x0), Zn+j(x0)]

}α

≤
∞∑

j=0

E{ρα[Zn+1+j(x0), Zn+j(x0)]} ≤ δn

1− r(α)
.

Let C = C(α)[I(α, x0)/(1− r(α)) + ρα(x, x0)]. Then (6) follows from (4) and

E{ρα[Zn(x), Z∞]} ≤ E{ρα[Zn(x0), Z∞]}+ E{ρα[Zn(x), Zn(x0)]}
≤ δn

1− r(α)
+ C(α)rn(α)ρα(x, x0) = Crn(α).

So Zn(x) → Z∞ almost surely. Hence for any x, the limit Vn = limm→∞ Fθ1+n◦ Fθ2+n◦ . . .◦
Fθn+m(x) exists almost surely. Observe that Vn is identically distributed as Z∞ = Zn(Vn) ∼

4



π and Vn is independent of (θi)1≤i≤n. Hence we have

E{ρα[Xn(X ′
0), Xn(X0)]} ≤ E{ρα[Xn(X ′

0), Xn(x0)]}+ E{ρα[Xn(x0), Xn(X0)]}
= 2E{ρα[Zn(Vn), Zn(x0)]} = 2E{ρα[Z∞, Zn(x0)]} ≤ 2δn

1− r(α)
,

which entails (2). ♦

Remark 2. Theorem 2 suggests a simple way to define Xi with negative subscripts i ≤ 0

such that the relation Xi = Fθi
(Xi−1) holds for i ≤ 0 as well. Let (θi)i∈Z be iid random

variables. Then for all x ∈ X , the limit

lim
m→∞

Fθi
◦ Fθi−1

◦ . . .◦ Fθi−m
(x)

exists almost surely and does not depend on x. Denote the limit by Xi = M(. . . , θi−1, θi),

where M is a measurable function. Then Xi = Fθi
(Xi−1) holds for all i ∈ Z.

The following Lemma 1 shows an interesting equivalence between geometric-moment

contraction inequalities.

Lemma 1. Assume E[ρp(X0, x)] < ∞ for some p > 0 and x ∈ X . If (2) holds for an

α ∈ (0, p), then (2) holds for all α ∈ (0, p).

Proof of Lemma 1. It suffice to show that (2) holds for a ∈ (α, p). Let q = 1/(1− a/p),

δn = rn/(2α) and Tn = ρ[Xn(X ′
0), Xn(X0)]. Then

E(T a
n ) = E(T a

n × 1Tn<δn + T a
n × 1Tn≥δn)

≤ δa
n + 21+aE({ρa[Xn(X ′

0), x] + ρa[x, Xn(X0)]} × 1Tn≥δn)

= δa
n + 22+aE{ρa[Xn(X ′

0), x]× 1Tn≥δn}

By Hölder’s and Markov’s inequalities,

E{ρa[Xn(X ′
0), x]× 1Tn≥δn} ≤ {Eρp[Xn(X ′

0), x]}a/p × {E(1Tn≥δn)}1/q

≤ {Eρp(X0, x)}a/p × {δ−α
n E(T α

n )}1/q

= O[(δ−α
n rn)1/q] = O[rn/(2q)].

Therefore (2) holds with r(a) = max[ra/(2α), r1/(2q)]. ♦
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3 Central limit problems

Many nonlinear time series adopt the form Xn = F (Xn−1, θn; ξ), where the parameter

ξ ∈ Ξ ⊂ Rd. For example, the threshold AR(1) (TAR) model is given by Xn = ξ1X
+
n−1 +

ξ2X
−
n−1 + θn (see Tong, 1990). The AR with conditional heteroscedasticity (ARCH, Engle,

1982) model has recursion Xn = θn

√
ξ2
1 + ξ2X2

n−1. Random coefficient model assumes

Xn = (ξ1 + ξ2θn,1)Xn−1 + ξ3θn,2 (Nicholls and Quinn, 1982).

The estimation for unknown parameter ξ often involves additive functionals Sn,l(g) =∑n
i=1 g(Xi−l+1, Xi−l+2, . . . , Xi). For example, the least square estimators of ξ1 and ξ2 in the

TAR model are given by ξ̂1n =
∑n

i=1 XiX
+
i−1/

∑n
i=1(X

+
i−1)

2 and ξ̂2n =
∑n

i=1 XiX
−
i−1/

∑n
i=1(X

−
i−1)

2

respectively. Let θn have mean 0 and variance 1 in an ARCH model Xn = θn

√
ξ2
1 + ξ2

2X
2
n−1.

Then EX2
n = ξ2

1 + ξ2
2EX2

n−1 and E(X2
nX2

n−1) = ξ2
1EX2

n−1 + ξ2
2EX4

n−1. These identi-

ties yield estimators for ξ2
1 and ξ2

2 from the estimated moments ÊX2
n =

∑n
i=1 X2

i /n,

ÊX4
n =

∑n
i=1 X4

i /n and Ê(X2
n−1X

2
n) =

∑n
i=1 X2

i−1X
2
i /n. The limiting behavior of Sn,l(g)

is needed for statistical inference based on estimation equations.

Theorem 3 aims at establishing central limit theorems for Sn,l(g) under mild conditions,

and thus provides an inferential base for nonlinear time series. Some special models have

been discussed earlier; see for example, Petruccelli and Woolford (1984), Nicholls and

Quinn (1982). See WW (2000) and Herkenrath et al (2003) for some recent work. Let the

l-dimensional vector Yi = (Xi−l+1, Xi−l+2, . . . , Xi). For a random variable Z let ‖Z‖r =

[E(|Z|r)]1/r and ‖Z‖ = ‖Z‖2. If l > 1, then g is said to be non-instantaneous. For δ > 0

define

∆g(δ) = sup
{‖[g(Y )− g(Y1)]× 1[ρ(Y,Y1)≤δ]‖ : Y andY1 are identically distributed

}
, (8)

where ρ(·, ·) is the product metric: ρ(z, z′) =
√∑l

i=1 ρ2(zi, z′i) for z = (z1, . . . , zl), z
′ =

(z′1, . . . , z
′
l) ∈ X l.

Theorem 3. Assume (2), X1 ∼ π, E[g(Y1)] = 0, E[|g(Y1)|p] < ∞ for some p > 2, and
∫ 1

0

∆g(t)

t
dt < ∞. (9)

Then there exists σg ≥ 0 such that for almost all x (π), {Sbnuc,l(g)/
√

n, 0 ≤ u ≤ 1} given

X0 = x converges to σgIB, where IB is a standard Brownian motion and bvc = max{k ∈
Z : k ≤ v}.
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Proof. We adopt the argument in Gordin and Lifsic (1978). Suppose the probability space

is rich enough to carry iid random variables θk, k ∈ Z. Let Θn = (. . . , θn−1, θn), n ∈ Z
be the shift process. Clearly Θn is Markovian. Let X ′

0, an independent copy of X0, be

independent of θk, k ∈ Z; let X ′
n = Fθn ◦ . . . Fθ1(X

′
0) and Y ′

n = (X ′
n−l+1, . . . , X

′
n). By

(2), E[ρα(Yn, Y
′
n)] ≤ Crn for some C > 0, 0 < r < 1. Set φ = r

1
2α . For n > l, since

E[g(Y ′
n)|X0] = 0, we have by Cauchy’s inequality,

‖E[g(Yn)|Θ0]‖ ≤ ‖g(Yn)− g(Y ′
n)‖

≤ ‖[g(Yn)− g(Y ′
n)]1ρ(Yn,Y ′n)≤φn‖+ ‖[g(Yn)− g(Y ′

n)]1ρ(Yn,Y ′n)>φn‖
≤ ∆(φn) + {‖[g(Yn)− g(Y ′

n)]2‖q′ × ‖1ρ(Yn,Y ′n)>φn‖q}1/2

≤ ∆(φn) +O{E[ρα(Yn, Y
′
n)]/φnα} 1

2q ≤ ∆(φn) +O(φ
αn
2q ),

where we have applied Hölder’s inequality with q′ = p/2 > 1 and q = q′/(q′ − 1) and

Markov’s inequality P (|Z| > z) ≤ E(|Z|α)/zα with z = φn. Since

∞∑
n=1

∆(φn) ≤ 1

1− φ

∫ 1

0

∆g(t)

t
dt

and
∑∞

n=1 φ
αn
2q < ∞, h(Θ0) =

∑∞
k=0 E[g(Yk)|Θ0] converges in L2 in view of (9). Observe

that g(Y0) = h(Θ0)− E[h(Θ1)|Θ0], we have

n∑

k=1

g(Yk) =
n∑

k=1

Dk + Rn, (10)

where Dk = h(Θk) − E[h(Θk)|Θk−1] and Rn = E[h(Θ1)|Θ0] − E[h(Θn+1)|Θn] = Op(1).

Thus Sn(g)/
√

n ⇒ N(0, ‖D1‖2) by applying the Martingale central limit theorem to the

stationary and ergodic martingale differences Dk, k ∈ Z. The Martingale central limit

theorem also asserts that for almost all x (π), the partial sum process {Sbnuc,l(g)/
√

n, 0 ≤
u ≤ 1} given X0 = x converges to Brownian motion (cf Corollary 2 in WW). ♦

A function f is Dini-continuous if
∫ 1

0
∆f (x)/xdx < ∞, where ∆f (x) = sup{|f(y) −

f(y′)| × 1|y−y′|≤x}. Thus it is natural to say that g is stochastic Dini-continuous with

respect to the distribution of Y1 if (9) holds. Clearly if g is Dini-continuous, then it is

necessarily stochastic Dini-continuous. However the reverse is not true (cf. Corollary 1 by

noticing that the indicator function fλ(x) = 1x≤λ is not Dini-continuous).
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Theorem 3 goes beyond the earlier work by WW in several aspects. In the latter

paper a central limit theorem is derived for instantaneous filters g, namely l = 1. The

non-instantaneous transformation in Theorem 3 facilitates statistical inference for non-

linear time series. Even though the vector process Yi can be viewed as a new iterated

function system defined by Yn = G(Yn−1, θn), where G(y, θ) = (y(2), . . . , y(l), F (y(l), θ))

for y = (y(1), . . . , y(l)), the result in WW is not directly applicable here. To see this, let

L(θ) be the Lipschitz constant for F (·, θ). Then under the Euclidean distance, G has a

non-contracting Lipschitz constant max[1, L(θ)].

Conditions on g in WW are also stronger than the stochastic Dini-continuity. Let l = 1,

π be the uniform(0,1) distribution and g(x) = x−1/3 − EX
−1/3
1 = x−1/3 − 3/2. Then it is

easily verified that K(g, ψ; x) in WW is ∞ for all x ∈ (0, 1). Hence the conditions on g in

the former paper are violated. However (9) is satisfied since ∆g(t) = O(t1/32) as t ↓ 0. To

see this, let X, Y be uniform(0,1) distributed random variables. Then

‖[g(X)− g(Y )]1[|X−Y |≤δ]‖ ≤ ‖[g(X)− g(Y )]1[|X−Y |≤δ] × 1[|X−Y |≤Y 2
√

δ]‖
+ ‖[g(X)− g(Y )]1[|X−Y |≤δ] × 1[|X−Y |>Y 2

√
δ]‖ := A + B.

For the term B observe that necessarily Y 2
√

δ ≤ δ, and hence by Hölder’s inequality

B2 ≤ ‖[g(X) − g(Y )]2‖4/3 × ‖1[Y 2
√

δ≤δ]‖4 = O(δ1/16). On the other hand, by the mean-

value theorem, there exists ξ ∈ (−1, 1) such that under |X −Y | ≤ Y 2
√

δ, |g(X)− g(Y )| ≤
Y 2
√

δ|g′(Y + ξY 2
√

δ)|. Thus A2 = O(δ).

3.1 Empirical processes

Let X = R and ρ(·, ·) be the Euclidean distance; let G(x) = P [X1 ≤ x] and Gn(x) =
1
n

∑n
i=1 1Xi≤x be the distribution and empirical distribution functions of X1 and Pn(x) =

√
n[Gn(x) − G(x)]. Empirical processes play a paramount role in statistics. Corollary 1

asserts the asymptotic normality for Pn(x) for a fixed x and Theorem 4 states a functional

central limit theorem.

Corollary 1. Let τ(x; t) = min[G(x + t)−G(x), G(x)−G(x− t)]. Assume (2) and

∫ 1

0

√
τ(x; t)

t
dt < ∞. (11)
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Then there exists a σ(x) < ∞ such that

Pn(x) ⇒ N [0, σ2(x)]. (12)

Proof. Let gy(u) = 1u≤y −G(y) and X,X1 ∼ π. Then

‖[gy(X1)− gy(X)]1|X−X1|≤δ‖2 = P (X ≤ y,X1 > y, |X −X1| ≤ δ)

+ P (X1 ≤ y,X > y, |X −X1| ≤ δ) ≤ 2P (y < X ≤ y + δ).

So ∆2
g(δ) ≤ 2[G(y + δ) − G(y)]. Similarly, ∆2

g(δ) ≤ 2[G(y) − G(y − δ)]. So (12) follows

from Theorem 3 in view of (11). ♦
Theorem 4. Assume (2) and there exists κ > 5/2 and C > 0 such that for all 0 < δ ≤ 1/2,

sup
x∈R

|G(x + δ)−G(x)| ≤ C log−κ(δ−1). (13)

Then {Pn(y), y ∈ R} converges in D(R) to a Gaussian process W with mean zero and

covariance function

E[W (x)W (y)] =
∑

k∈Z
Cov[1X0≤x, 1Xk≤y].

Proof. Corollary 1 implies the finite dimensional covergence in view of (11) and (13). By

Proposition 2 in Doukhan and Louhichi (1999), for the tightness it suffices to verify that

dn := sup |Cov [g(X−n1)g(X0), g(Xn)g(Xn+n2)]| = O(n−(κ+5/2)/2), (14)

where the sup is taken over all n1, n2 ≥ 0 and g ∈ G = {x 7→ 1s<x≤t : s, t ∈ R}. To this

end, we shall apply the idea of coupling by letting X ′
k = Xk(X

′
0), k ∈ N. Then

|Cov [g(X−n1)g(X0), g(Xn)g(Xn+n2)] |
= |E{g(X−n1)g(X0)[g(Xn)g(Xn+n2)− g(X ′

n)g(X ′
n+n2

)]}|
≤ |E{ξ1[g(Xn)− g(X ′

n)]}|+ |E{ξ2[g(Xn+n2)− g(X ′
n+n2

)]}|
≤ ‖ξ1‖p‖g(Xn)− g(X ′

n)‖q + ‖ξ2‖p‖g(Xn+n2)− g(X ′
n+n2

)‖q

by Hölder’s inequality, where ξ1 = g(X−n1)g(X0)g(Xn+n2), ξ2 = g(X−n1)g(X0)g(X ′
n), q =

(3κ + 5/2)/(2κ + 5) > 1 and p = q/(q − 1). Let β = r1/(2α). Then by (2),

E|1Xn≤s − 1X′
n≤s| ≤ P (|Xn −X ′

n| ≥ βn) + 2P (Xn ≤ s,X ′
n > s, |Xn −X ′

n| < βn)

≤ Crn/βnα + 2C log−κ(β−n) = O(n−κ),

which implies that dn = O(n−κ/q) since |ξ1|, |ξ2| ≤ 1. Thus (14) follows. ♦
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Example 1. Consider the AR(1) model Xn = aXn−1+(1−a)θn, where θn are iid Bernoulli

random variables with success probability 1/2. Then Xn is a Markov chain which is neither

strong mixing nor irreducible (hence it cannot be Harris ergodic although it has stationary

distribution).

In the case a = 1/2 it is a Bernoulli shift model which takes uniform(0,1) as invariant

distribution. Clearly (13) is satisfied for any 0 < x < 1 since π(x) = x, and hence

Pn(x) ⇒ W (x).

Solomyak (1995) showed that for almost all a ∈ (1/2, 1) (Lebesgue), the invariant

measure π is absolutely continuous. Therefore for those a, (13) trivially holds for all

x ∈ (0, 1).

Now consider the case 0 < a < 1/2. Then the invariant distribution π has a compact,

fractal-set support (Hutchinson, 1981), and π is singular with respect to the Lebesgue

measure. If a = 1/3, support(π) is the well-known Cantor set. Consider the 2k points

x1 < x2 < . . . < x2k in the set {∑k
i=1 ai−1(1 − a)zi : zi = 0 or 1}. It is easily seen

that xj − xj−1 ≥ ak−1(1 − a) for j = 2, . . . , 2k and P (xj ≤ X0 ≤ xj + ak) = 2−k. Let

tk = ak−1(1 − a) − ak. Notice that support(π) is a subset of ∪2k

j=1[xj, xj + ak]. For any x,

the interval (x, x + tk] intersects at most one of the 2k intervals. For δ ∈ (0, 1 − 2a) let

k = k(δ) satisfy tk > δ ≥ tk+1. Then

sup
x
|G(x + δ)−G(x)| ≤ sup

x
|G(x + tk)−G(x)| = sup

x
P (x < X0 ≤ x + tk) ≤ 2−k.

Then limδ→0 k−1(log δ) = log a and (13) holds in view of 2−k = O[δ−(log 2)/ log a].

3.2 An Exponential Inequality

Recall Yi = (Xi−l+1, Xi−l+2, . . . , Xi) and Sn(g) =
∑n

i=1 g(Yi). Exponential inequalities

play important roles in stochastic processes; see Chapter 1 in Bosq (1996) for an extensive

treatment, where applications to nonparametric inference are discussed. However, rigid

strong mixing conditions are needed in the latter book, which may fail for many interesting

applications. Here we provide an exponential inequality without strong mixing conditions.

It is unclear whether similar inequality exists without the restriction (15).
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Proposition 1. Let g be a bounded function, E[g(Yn)] = 0 and

C := sup
x∈X

∞∑
n=0

|E[g(Yn)|X0 = x]| < ∞. (15)

Then there exists c1, c2 > 0 which only depend on {Yn} and g such that for all λ > 0,

P (|Sn(g)| ≥ nλ) ≤ c1e
−nλ2c2 . (16)

Proof. Under (15), we have the decomposition (10) and h(Θ0) =
∑∞

k=0 E[g(Yk)|Θ0] exists

and is bounded. Thus Rn and Dn are also bounded. Let |Rn| ≤ r and |Dn| ≤ d; let

I(y) = ey − 1− y. Applying the exponential inequality for bounded martingale differences

(for example Freedman (1975)), we have

E{exp[β(
n∑

i=1

Di + Rn)]} ≤ er+nI(βd)

for β ≥ 0 and similarly E{exp[−βSn(g)]} ≤ er+nI(−βd). So (16) easily follows. ♦

Example 1 (continued). Let Xn = (Xn−1 + θn)/2, where θn are iid Bernoulli random

variables with success probability 1/2 and g has bounded variation on [0, 1]. Then (15)

is satisfied. To see this, assume |g| ≤ 1 and let L = sup{∑I
i=0 |g(ti) − g(ti−1)|, 0 ≤

t0 < . . . < tI ≤ 1} < ∞ be the total variation of g over [0, 1]. For x ∈ (0, 1), since

E[g(Xn)] =
∫ 1

0
g(u)du = 0, (15) follows from

|E[g(Xn)|X0 = x]| = 2−n

∣∣∣∣∣
2n−1∑
i=0

g(
x + i

2n
)

∣∣∣∣∣ ≤
∫ 1

2n

0

2n−1∑
i=0

∣∣∣∣g(
i

2n
+ u)− g(

x + i

2n
)

∣∣∣∣ du ≤ L

2n
.

3.3 Joint Cumulants

Let (U1, . . . , Uk) be a random vector. Then the joint cumulant is defined as

Cum(U1, . . . , Uk) =
∑

(−1)p(p− 1)!E

[∏
j∈V1

Uj

]
. . . E


∏

j∈Vp

Uj


 , (17)

where V1, . . . , Vp is a partition of the set {1, 2, . . . , k} and the sum is taken over all such

partitions. For example, Cum(U1, U2) = E(U1U2) − E(U1)E(U2) = Cov(U1, U2) and

Cum(U1, U1, U1) = E[U1 − E(U1)]
3. It is easily seen in view of Hölder’s inequality that,
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if E(|Ui|k) < ∞ for all i = 1, . . . , k, then Cum(U1, . . . , Uk) is well-defined. Cumulants are

closely related to joint characteristic functions; see Rosenblatt [1984, 1985 (p. 138)] for

more details. Many important asymptotic results in the spectral analysis of time series

require certain summability conditions on joint cumulants. For example, Rosenblatt (1985,

p 138) established a central limit theorem for the spectral density estimator of the strongly

mixing stationary process (Xk)k∈Z under the condition

∑

s1,...,s7∈Z
|Cum(X0, Xs1 , . . . , Xs7)| < ∞. (18)

Conditions of similar nature can be found in Brillinger (1981). To ensure the applicability

of such results, it is critical to have a bound for |Cum(X0, Xs1 , . . . , Xsk
)|. In this section

we show that the geometric-moment contraction (2) does imply an exponential decay

rate of joint cumulants, which consequently guarantees such summability conditions (cf

Proposition 2 and Remark 3).

We formulate our result in a framework slightly more general than (1). Recall the shift

process Θn = (. . . , θn−1, θn). Let M be a measurable function such that Xn = M(Θn) is

a well-defined random variable (cf Remark 2). Then (Xn)n∈Z is a stationary and ergodic

process. Let (θ∗n)n∈Z be an iid copy of (θn)n∈Z, Θ∗
n = (. . . , θ∗n−1, θ

∗
n) and, for m ≥ 0,

X ′
m = M(Θ∗

0, θ1, . . . , θm). Namely X ′
m is a coupled version of Xm with the past Θ0 replaced

by the iid copy Θ∗
0.

Proposition 2. Assume that there exist C1 > 0, 0 < r1 < 1 and integer k ≥ 2 such that

E(|X0|k) < ∞ and E(|Xn−X ′
n|k) ≤ C1r

n
1 for all n ≥ 0. Then for all 0 ≤ m1 ≤ . . . ≤ mk−1,

|Cum(X0, Xm1 , . . . , Xmk−1
)| ≤ Cr

mk−1/[k(k−1)]
1 , (19)

where the constant C > 0 is independent of m1, . . . , mk−1.

Proof of Proposition 2. Let C > 0 be a generic constant which is independent of m1,

. . . , mk−1. In the proof C may vary from line to line and it only depends on C1, r1 and

the moments E(|X0|i), 1 ≤ i ≤ k. Let J = Cum(X0, Xm1 , . . . , Xmk−1
), m0 = 0 and nl =

ml−ml−1, 1 ≤ l ≤ k−1; let the random vector Y0 = Y0,l = (Xm0−ml−1
, . . . , Xml−2−ml−1

, X0).

By the stationarity and the additive property of cumulants,

J = Cum(Y0, Xml−ml−1
, Xml+1−ml−1

, . . . , Xmk−1−ml−1
)
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= Cum(Y0, Xml−ml−1
−X ′

ml−ml−1
, Xml+1−ml−1

, . . . , Xmk−1−ml−1
)

+
k−l−1∑
j=1

Cum(Y0, X
′
ml−ml−1

, · · · , X ′
ml+j−1−ml−1

,

Xml+j−ml−1
−X ′

ml+j−ml−1
, Xml+j+1−ml−1

, . . . , Xmk−1−ml−1
)

+Cum(Y0, X
′
ml−ml−1

, . . . , X ′
mk−1−ml−1

) =: A0 +
k−l−1∑
j=1

Aj + B.

Since Y0 and the random vector (X ′
ml−ml−1

, . . . , X ′
mk−1−ml−1

) are independent, we have

B = 0 [cf Property (ii), Rosenblatt (1985, p 35)]. We shall now use the definition (17) and

show that |A0| ≤ Cr
nl/k
1 . To this end, let Uj = Xmj−ml−1

for 0 ≤ j ≤ k − 1, j 6= l and

Ul = Xnl
−X ′

nl
. Let |V | be the cardinality of the set V . For any subset V ⊂ {0, 1, . . . , k−1}

such that l 6∈ V , by Hölder’s and Jensen’s inequalities, we have |E(
∏

j∈V Uj)| ≤ E(|X0||V |)
and

∣∣∣∣∣E
[
Ul

∏
j∈V

Uj

]∣∣∣∣∣ ≤ ‖Ul‖1+|V |

[
E

∏
j∈V

|Uj|(|V |+1)/|V |
]|V |/(1+|V |)

≤ ‖Ul‖k(E|X0||V |+1)|V |/(1+|V |) ≤ (C1r
nl
1 )1/kC ′

by letting C ′ =
∑k−1

i=0 (E|X0|i+1)i/(1+i). By (17), |A0| ≤ Cr
nl/k
1 for some constant C.

Similarly, for 1 ≤ j ≤ k − l − 1, |Aj| ≤ Cr
(ml+j−ml−1)/k
1 ≤ Cr

nl/k
1 . Hence |J | ≤ Cr

nl/k
1 ,

which implies (19) in view of |J | ≤ C min1≤l≤k−1 r
nl/k
1 and mk−1 =

∑k−1
l=1 nl ≤ (k −

1) max1≤l≤k−1 nl. ♦

Proposition 2 requires the geometric-moment contraction (2) with α = k. If E(|X0|p) <

∞ for some p > k, then by Lemma 1, it suffices to assume (2) with some α > 0.

Remark 3. The inequality (19) implies (18) in view of

∑

s1,...,s7∈Z
|Cum(X0, Xs1 , . . . , Xs7)| ≤ 2

∞∑
s=0

∑

(s1,...,s7)∈L(s)

|Cum(X0, Xs1 , . . . , Xs7)|

=
∞∑

s=0

O(s6rs) < ∞,

where r = r
1/[8(8−1)]
1 = r

1/56
1 and L(s) = {(s1, . . . , s7) ∈ Z7 : max1≤i≤7 |si| = s}.
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Stenflo, Ö., 1998. Ergodic theorems for iterated function systems controlled by stochastic

sequences. Doctoral thesis No 14, Ume̊a University, Sweden.

Tong, H., 1990. Non-linear time series: a dynamical system approach. Oxford University

Press.

Wu, W. B., Woodroofe, M., 2000. A central limit theorem for iterated random functions.

J. Appl. Probab. 37, 748–755.

15


