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Abstract

We study the evolution of a particle system whose genealogy is given by a supercritical contin-
uous time Galton-Watson tree. The particles move independently according to a Markov process
and when a branching event occurs, the offspring locations depend on the position of the mother
and the number of offspring. We prove a law of large numbers for the empirical measure of indi-
viduals alive at time t. This relies on a probabilistic interpretation of its intensity by mean of an
auxiliary process. The latter has the same generator as the Markov process along the branches
plus additional jumps, associated with branching events of accelerated rate and biased distribution.
This comes from the fact that choosing an individual uniformly at time t favors lineages with more
branching events and larger offspring number. The central limit theorem is considered on a special
case. Several examples are developed, including applications to splitting diffusions, cellular aging,
branching Lévy processes.
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1 Introduction and main results
We consider a continuous time Galton-Watson tree T, i.e. a tree where each branch lives during an
independent exponential time of mean 1/r, then splits into a random number of new branches given by
an independent random variable (r.v.) ν of law (pk, k ∈ N), where N = {0, 1, . . .}. We are interested
in the following process indexed by this tree. Along the edges of the tree, the process evolves as a
càdlàg strong Markov process (Xt)t≥0 with values in a Polish space E and with infinitesimal generator
L of domain D(L). The branching event is nonlocal: the states of the offspring are described by a
function (F (k)

1 (x,Θ), . . . , F (k)
k (x,Θ)), which clearly depends on the state x of the mother just before

the branching event, and of the number ν = k of offspring ; besides, the randomness of these states
are modelled via the random variable Θ, which is uniform on [0, 1]. Finally, the new born branches
evolve independently from each other.

This process is a branching Markov process, for which there has been a vast literature. We refer
to Asmussen and Hering [2], Dawson [15] and Dawson et al. [16] for nonlocal branching processes
similar to those considered here. Whereas the literature often deals with limit theorems that consider
superprocesses limits corresponding to high densities of small and rapidly branching particles (see e.g.
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Dawson [15], Dynkin [19], Evans and Steinsaltz [23]), we stick here with the discrete tree in continuous
time which we aim at characterizing.

Let us also mention some results in the discrete time case. Markov chains indexed by a binary
tree have been studied in the symmetric independent case (see e.g. Athreya and Kang [4], Benjamini
and Peres [8]), where for every x, F (2)

1 (x,Θ) and F
(2)
2 (x,Θ) are i.i.d. A motivation for considering

asymmetric branching comes from models for cell division. For instance, the binary tree can be used
to describe a dividing cell genealogy in discrete time. The Markov chain indexed by this binary tree
then indicates the evolution of some characteristic of the cell, such as its growth rate, its quantity of
proteins or parasites... and depends on division events. Experiments (Stewart et al. [53]) indicate
that the transmission of this characteristic in the two daughter cells may be asymmetric. See Bercu et
al. [9] or Guyon [32] for asymmetric models for cellular aging and Bansaye [6] for parasite infection.
In Delmas and Marsalle [17] a generalization of these models where there might be 0, 1 or 2 daughters
is studied. Indeed under stress conditions, cells may divide less or even die. The branching Markov
chain, which in their case represents the cell’s growth rate, is then restarted for each daughter cell at
a value that depends on the mother’s growth rate and on the total number of daughters.

We investigate the continuous time case and allow both asymmetry and random number of off-
spring. To illustrate this model, let us give two simple examples related to parasite infection problems.
In the first case, the cell divides in two daughter cells after an exponential time and a random fraction
of parasites goes in one of the daughter cell, whereas the rest goes in the second one. In the second
case, the cell divides in k daughter cells and the process X is equally shared between each of the k
daughters: ∀j ∈ {1, . . . , k}, F (k)

j (x,Θ) = x/k. Notice that another similar model has been investigated
in Evans and Steinsaltz [23] where the evolution of damages in a population of dividing cells is studied,
but with a superprocess point of view. The authors assume that the cell’s death rate depends on the
damage of the cell, which evolves as a diffusion between two fissions. When a division occurs, there
is an unbalanced transmission of damaged material that leads to the consideration of nonlocal births.
Further examples are developed in Section 5.

Our main purpose is to characterize the empirical distribution of this process. More precisely, if we
denote by Nt the size of the living population Vt at time t, and if (Xu

t )u∈Vt denotes the values of the
Markov process for the different individuals of Vt, we will focus on the following probability measure
which describes the state of the population

1{Nt>0}
Nt

∑
u∈Vt

δXu
t
(dx), t ∈ R+.

This is linked to the value of the process of an individual chosen uniformly at time t, say U(t), as we
can see from this simple identity:

E
[1{Nt>0}

Nt

∑
u∈Vt

f(Xu
t )
]

= E
[
1{Nt>0}f(XU(t)

t )
]
.

We show that the distribution of the path leading from the ancestor to a uniformly chosen individ-
ual can be approximated by means of an auxiliary Markov process Y with infinitesimal generator
characterized by: ∀f ∈ D(L),

Af(x) = Lf(x) + rm
+∞∑
k=1

pk
m

∫ 1

0

k∑
j=1

(
f(F (k)

j (x, θ))− f(x)
)
dθ (1.1)
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where we recall that r denotes the particle branching rate and where we introduce m =
∑+∞
k=1 kpk the

mean offspring number. In this paper, we will be interested in the super-critical case m > 1, even
if some remarks are made for the critical and sub-critical cases. The auxiliary process has the same
generator L as the Markov process running along the branches, plus jumps due to the branching.
However, we can observe a bias phenomenon: the resulting jump rate rm is equal to the original
rate r times the mean offspring number m and the resulting offspring distribution is the size-biased
distribution (kpk/m, k ∈ N). For m > 1 for instance, this is heuristically explained by the fact that
when one chooses an individual uniformly in the population at time t, an individual belonging to
a lineage with more generations or with prolific ancestors is more likely to be chosen. Such biased
phenomena have already been observed in the field of branching processes (see e.g. Chauvin et al.
[14], Hardy and Harris [33], Harris and Roberts [34]). Here, we allow nonlocal births, prove pathwise
results and establish laws of large numbers when Y is ergodic. Our approach is entirely based on a
probabilistic interpretation, via the auxiliary process Y .

In case Y is ergodic, we prove the laws of large numbers stated in Theorem 1.1 and 1.3, where W
stands for the renormalized asymptotic size of the number of individuals at time t (e.g. Theorems 1
and 2 p. 111 of Athreya and Ney [5]):

W := lim
t→+∞

Nt/E[Nt] a.s. and {W > 0} = {∀t ≥ 0, Nt > 0} a.s.

Theorem 1.1. If the auxiliary process Y is ergodic with invariant measure π, we have for any real
continuous bounded function f on E:

lim
t→∞

1{Nt>0}
Nt

∑
u∈Vt

f
(
Xu
t

)
= 1{W>0}

∫
E
f(x)π(dx) in probability. (1.2)

This result in particular implies that for such function f ,

lim
t→+∞

E
[
f(XU(t)

t ) |Nt > 0
]

=
∫
E
f(x)π(dx), (1.3)

where U(t) stands for a particle taken at random in the set Vt of living particles at time t.
Theorem 1.1 is a consequence of Theorem 4.2 (which gives similar results under weaker hypotheses)

and of Remark 4.1. The convergence is proved using L2 techniques.
Theorem 1.1 also provides a limit theorem for the empirical distribution of the tree indexed Markov

process.

Corollary 1.2. Under the assumption of Theorem 1.1,

lim
t→∞

1{Nt>0}
Nt

∑
u∈Vt

δXu
t
(dx) = 1{W>0} π(dx) in probability, (1.4)

where the spaceMF (E) of finite measures on E is embedded with the weak convergence topology.

We also give in Propositions 6.1 and 6.4 a result on the associated fluctuations. Notice that
contrarily to the discrete case treated in [17], the fluctuation process is a Gaussian process with a
finite variational part.

In addition, we generalize the result of Theorem 1.1 to ancestral paths of particles (Theorem 1.3):
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Theorem 1.3. Suppose that Y is ergodic with invariant measure π and that for any bounded measur-
able function f , limt→+∞ Ex[f(Yt)] =

∫
E f(x)π(dx), then for any real bounded measurable function ϕ

on the Skorohod space D([0, T ], E), we have

lim
t→∞

1{Nt>0}
Nt

∑
u∈Vt

ϕ(Xu
s , t− T ≤ s < t) = Eπ

[
ϕ(Ys, s < T )

]
1{W 6=0} in probability,

where, for simplicity, Xu
s stands for the value of the tree indexed Markov process at time s for the

ancestor of u living at this time.

Biases that are typical to all renewal problems have been known for long time in the literature
(see e.g. Feller [24], Vol. 2 Chap. 1). Size biased trees are linked with the consideration of Palm
measures, themselves related to the problem of building a population around the path of an individual
picked uniformly at random from the population alive at a certain time t. In Chauvin et al. [14] and
in Hardy and Harris [33], a spinal decomposition is obtained for continuous time branching processes.
Their result states that along the chosen line of descent, which constitutes a bridge between the initial
condition and the position of the particle chosen at time t, the birth times of the new branches form
a homogeneous Poisson Point Process of intensity rm while the reproduction law that is seen along
the branches is given by (kpk/m, k ∈ N). Other references for Palm measures, spinal decomposition
and size-biased Galton-Watson can be found in discrete time in Kallenberg [39], Liemant et al. [41],
and for the continuous time we mention Gorostiza et al. [31], Geiger and Kauffmann [29], Geiger [28]
or Olofsson [49]. Notice also that biases for an individual chosen uniformly in a continuous time tree
had previously been observed by Samuels [52] and Biggins [12]. In the same vein, we refer to Nerman
and Jagers [47] for consideration of the pedigree of an individual chosen randomly at time t and to
Lyons et al. [42], Geiger [27] for spinal decomposition for size biased Galton-Watson processes in the
discrete time case.

Other motivating topics for this kind of results come from branching random walks (see e.g. Biggins
[13], Rouault [51]) and homogeneous fragmentation (see Bertoin [10, 11]). We refer to the examples
in Section 5 for more details.

The law of large numbers that we obtain belongs to the family of law of large numbers (LLN)
for branching processes and superprocesses. We mention Benjamini and Peres [8], and Delmas and
Marsalle [17] in discrete time, with spatial motion for the second reference. In continuous time, LLNs
have been obtained by Georgii and Baake [30] for multitype branching processes. Finally, in the
more different setting of superprocesses (obtained by renormalization in large population and where
individuals are lost), Engländer and Turaev [20], Engländer and Winter [21] and Evans and Steinsaltz
[23] have proved similar results. Here, we work in continuous time, discrete population, with spatial
motion, and nonlocal branching. This framework allows to trace individuals, which may be interesting
for statistical applications. Our results are obtained by means of the auxiliary process Y , while the
other approaches involve spectral techniques, and changes of measures via martingales.

In Section 2, we define our Markov process indexed by a continuous time Galton-Watson tree. We
start with the description of the tree and then provide a measure-valued description of the process
of interest. In Section 3, we build an auxiliary process Y and prove that its law is deeply related
to the distribution of the lineage of an individual drawn uniformly in the population. In Section
4, we establish the laws of large numbers mentioned in Theorem 1.1 and 1.3. Several examples are
then investigated in Section 5: splitting diffusions indexed by a Yule tree, a model for cellular aging
generalizing [17] and an application to nonlocal branching random walks. Finally, a central limit
theorem is considered for the case of splitting diffusions in Section 6.

4



2 Tree indexed Markov processes
We first give a description of the continuous time Galton-Watson trees and preliminary estimates in
Section 2.1. Section 2.2 is devoted to the definition of tree indexed Markov processes.

2.1 Galton-Watson trees in continuous time

In a first step, we recall some definitions about discrete trees. In a second step, we introduce continuous
time and finally, in a third step, we give the definition of the Galton-Watson tree in continuous time.
For all this section, we refer mainly to [18, 35, 40].

Discrete trees. Let

U =
+∞⋃
m=0

(N∗)m, (2.1)

where N∗ = {1, 2, . . .} with the convention (N∗)0 = {∅}. For u ∈ (N∗)m, we define |u| = m the gener-
ation of u. If u = (u1, . . . , un) and v = (v1, . . . , vp) belong to U , we write uv = (u1, . . . , un, v1, . . . , vp)
for the concatenation of u and v. We identify both ∅u and u∅ with u. We also introduce the following
order relation: u � v if there exists w ∈ U such that v = uw; if furthermore w 6= ∅, we write u ≺ v.
Finally, for u and v in U we define their most recent common ancestor (MRCA), denoted by u∧ v, as
the element w ∈ U of highest generation such that w � u and w � v.

Definition 2.1. A rooted ordered tree T is a subset of U such that:

(i) ∅ ∈ T ,

(ii) if v ∈ T then u � v implies u ∈ T ,

(iii) for every u ∈ T , there exists a number νu ∈ N such that if νu = 0 then v � u implies v /∈ T ,
otherwise uj ∈ T if and only if 1 ≤ j ≤ νu.

Notice that a rooted ordered tree T is completely defined by the sequence (νu, u ∈ U), which gives the
number of children for every individual. To obtain a continuous time tree, we simply add the sequence
of lifetimes.

Continuous time discrete trees. For a sequence (lu, u ∈ U) of nonnegative real numbers, let us
define:

∀u ∈ U , α(u) =
∑
v≺u

lv and β(u) =
∑
v�u

lv = α(u) + lu, (2.2)

with the convention α(∅) = 0. The variable lu stands for the lifetime of individual u while α(u) and
β(u) are its birth and death times. Let

U = U × [0,+∞). (2.3)

Definition 2.2. A continuous time rooted discrete tree (CT) is a subset T of U such that:

(i) (∅, 0) ∈ T.

(ii) The projection of T on U , T , is a discrete rooted ordered tree,
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(iii) There exists a sequence of nonnegative real numbers (lu, u ∈ U) such that for every u ∈ T ,
(u, s) ∈ T if and only if α(u) ≤ s < β(u), where α(u) and β(u) are defined by (2.2).

Let T be a CT. The set of individuals of T living at time t is denoted by Vt

Vt = {u ∈ U : (u, t) ∈ T} = {u ∈ T : α(u) ≤ t < β(u)}. (2.4)

The number of individuals alive at time t is Nt = Card(Vt). We denote byDt the number of individuals
which have died before time t:

Dt = Card{u ∈ T : β(u) < t}. (2.5)
For (u, s) ∈ T and t ≤ s, we introduce u(t), the ancestor of u living at time t:

u(t) = v if (v � u and (v, t) ∈ T). (2.6)

Eventually, for (u, s) ∈ T, we define the shift of T at (u, s) by θ(u,s)T = {(v, t) ∈ U : (uv, s+ t) ∈ T}.
Note that θ(u,s)T is still a CT.

Continuous time Galton-Watson trees. Henceforth, we work on some probability space denoted
by (Ω,F ,P).

Definition 2.3. We say that a random CT on (Ω,F ,P) is a continuous time Galton-Watson tree with
offspring distribution p = (pk, k ∈ N) and exponential lifetime with mean 1/r if:

(i) The sequence of the number of offspring, (νu, u ∈ U), is a sequence of independent random
variables with common distribution p.

(ii) The sequence of lifetimes (lu, u ∈ U) is a sequence of independent exponential random variables
with mean 1/r.

(iii) The sequences (νu, u ∈ U) and (lu, u ∈ U) are independent.

We suppose that the offspring distribution p has finite second moment. We call

m =
∑
k≥0

k pk and ς2 =
∑
k≥0

(k −m)2 pk, (2.7)

its expectation and variance. The offspring distribution is critical (resp. supercritical, resp. subcrit-
ical) if m = 1 (resp. m > 1, resp. m < 1). In this work, we mainly deal with the supercritical
case.

We end Section 2.1 with some estimates on Nt and Dt. To begin with, the following Lemma gives
an equivalent for Nt.

Lemma 2.4. For t ∈ R+, we have

E[Nt] = er(m−1)t, (2.8)

E[N2
t ] =

{
er(m−1)t +(ς2(m− 1)−1 +m)(e2r(m−1)t− er(m−1)t) if m 6= 1
1 + ς2rt if m = 1. (2.9)

If m > 1 there exists a nonnegative random variable W such that {W > 0} = {∀t > 0, Nt > 0} a.s.,
P(W > 0) > 0 and

lim
t→+∞

Nt

E[Nt]
= W a.s and in L2. (2.10)
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= splitting times
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Figure 1: Continuous time Galton-Watson tree.

Proof. The process (Nt, t ≥ 0) is a continuous time Markov branching process, so that the expectation
and the variance of Nt are well-known, see [5] Chapter III Section 4. Almost sure convergence towards
W is stated again in [5] Theorems 1 and 2 Chapter III Section 7. Finally, since the martingale
(Nt e−r(m−1)t, t ≥ 0) is bounded in L2, we obtain the L2 convergence (e.g. Theorem 1.42 p. 11 of
[37]). �

We also give the asymptotic behaviour of Dt, the number of deaths before t.

Lemma 2.5. If m > 1, we have the following convergence a.s. and in L2:

lim
t→+∞

Dt

E[Dt]
= W, (2.11)

with
E[Dt] = (m− 1)−1(er(m−1)t−1) (2.12)

and W defined by (2.10).

Proof. First remark that (Dt, t ≥ 0) is a counting process with compensator (
∫ t

0 rNs ds, t ≥ 0). We set
∆Nt = Nt − Nt− so that dNt = ∆Nt dDt. To prove (2.11), it is sufficient to prove that e−r(m−1)t It
goes to 0 a.s. and in L2, where It = (m − 1)Dt − Nt. Since I = (It, t ≥ 0) satisfies the following
stochastic equation driven by (Dt, t ≥ 0)

dIt = (m− 1−∆Nt)dDt, (2.13)

we get that I is an L2 martingale. We deduce that d〈I〉t = ς2rNt dt and:

E
[
I2
t

]
= 1 + E

[
〈I〉t

]
= 1 + ς2r

∫ t

0
er(m−1)s ds = 1 + ς2

m− 1
(

er(m−1)t−1
)
, (2.14)

which implies the L2 convergence of e−r(m−1)t It to 0. Besides, (e−r(m−1)t It, t ≥ 0) is a supermartingale
bounded in L2 and hence the convergence also holds almost surely. �

Example 1. Yule tree. The so-called Yule tree is a continuous time Galton-Watson tree with a
deterministic offspring distribution: each individual of the population gives birth to 2 individuals that
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is p2 = 1 (i.e. p = δ2, the Dirac mass at 2). The Yule tree is thus a binary tree, whose edges have
independent exponential lengths with mean 1/r. In that case, W is exponential with mean 1 (see e.g.
[5] p. 112). We deduce from Lemma 2.4 that, for t ∈ R+,

E[Nt] = ert and E[N2
t ] = 2 e2rt− ert . (2.15)

Notice that (2.15) is also a consequence of the well-known fact that Nt is geometric with parameter
e−rt (see e.g. [35] p.105).

2.2 Markov process indexed by the continuous time Galton-Watson tree

In this section, we define the Markov process XT = (Xu
t , (u, t) ∈ T) indexed by the continuous time

Galton-Watson tree T and with initial condition µ. Branching Markov processes have already been
the object of an abundant literature (e.g. [2, 3, 5, 22, 15]). The process that we consider jumps at
branching times (nonlocal branching property) but these jumps may be dependent.

Let (E, E) be a Polish space. We denote by P(E) the set of probability measures on (E, E).

Definition 2.6. Let X = (Xt, t ≥ 0) be a càdlàg E-valued strong Markov process. Let F̃ = (F (k)
j , 1 ≤

j ≤ k, k ∈ N∗) be a family of measurable functions from E× [0, 1] to E. The continuous time branching
Markov (CBM) process XT = (Xu

t , (u, t) ∈ T) with offspring distribution p, exponential lifetimes with
mean 1/r, offspring position F̃ , underlying motion X and starting distribution µ ∈ P(E), is defined
recursively as follows:

(i) T is a continuous time Galton-Watson tree with offspring distribution p and exponential lifetimes
with mean 1/r.

(ii) Conditionally on T, X∅ = (X∅t , t ∈ [0, β(∅))) is distributed as (Xt, t ∈ [0, β(∅))) with X0 dis-
tributed as µ.

(iii) Conditionally on T and X∅, the initial positions of the first generation offspring (Xu
α(u), 1 ≤ u ≤

ν∅) are given by (F (ν∅)
u (X∅β(∅)−,Θ), 1 ≤ u ≤ ν∅) where Θ is a uniform random variable on [0, 1].

(iv) Conditionally on X∅, ν∅, β∅ and (Xu
α(u), 1 ≤ u ≤ ν∅), the tree-indexed Markov processes

(Xuv
α(u)+t, (v, t) ∈ θ(u,α(u))T) for 1 ≤ u ≤ ν∅ are independent and respectively distributed as

XT with starting distribution the Dirac mass at Xu
α(u).

For x ∈ E, we define Px(A) = P(A|X∅0 = x) for all A ∈ F , and denote by Ex the corresponding
expectation. For µ ∈ P(E) we set in a classical manner Pµ(A) =

∫
E Px(A)µ(dx), and write Eµ for the

expectation with respect to Pµ.
For u ∈ T , we extend the definition of Xu

t when t ∈ [0, α(u)) as follows: Xu
t = X

u(t)
t , where u(t),

defined by (2.6), denotes the ancestor of u living at time t.
Notice that for u ∈ T , (Xu

t , t ∈ [0, β(u))) does not encode the information about the genealogy of u.
We remedy this by introducing the following process (Λut , t ≥ 0) for u ∈ U :

Λut =
∑

v≺u(t)
log(νv).

This process provides the birth times of the ancestors of u, as well as their offspring numbers. Notice
that it is well defined for all u ∈ U contrarily to Xu

t . Indeed, the state of u at its birth time, Xu
α(u), is
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Figure 2: Continuous time Markov process indexed by the Galton-Watson tree of Figure 1.

well defined only for u ∈ T , since it depends on the state of the parent and the number of its offspring.
For u ∈ U , the process (Λut , t ∈ [0, β(u))) is a compound Poisson process with rate r for the underlying
Poisson process (Sut , t ≥ 0) and increments distributed as log(ν) with ν distributed as p, stopped at
its (|u|+ 1)-th jump.
In the sequel, we denote by X̃u

t = (Xu
t ,Λut ) the couple containing the information on the position and

genealogy of the particle u.

2.3 Measure-valued description

Let Bb(E,R) be the set of real-valued measurable bounded functions on E andMF (E) the set of finite
measures on E embedded with the topology of weak convergence. For µ ∈ MF (E) and f ∈ Bb(E,R)
we write 〈µ, f〉 =

∫
E f(x)µ(dx).

We introduce the following measures to represent the population at time t:

Z̄t =
∑
u∈Vt

δ(u,Xu
t ), and Zt =

∑
u∈Vt

δXu
t
, (2.16)

where Vt has been defined in (2.4). Note that 〈Zt, f〉 =
∑
u∈Vt f(Xu

t ). Since X is càdlàg, we get that
the process Z = (Zt, t ≥ 0) is a càdlàg measure-valued Markov process of D(R+,MF (E)).

Following the work of Fournier and Méléard [26], we can describe the evolution of Z in terms of
stochastic differential equations (SDE). Let ρ(ds, du, dk, dθ) be a Poisson point measure of intensity
r ds ⊗ n(du) ⊗ p(dk) ⊗ dθ where ds and dθ are Lebesgue measures on R+ and [0, 1] respectively,
n(du) is the counting measure on U and p(dk) =

∑
i∈N piδi(dk) is the offspring distribution. This

measure ρ gives the information on the branching events. Let L be the infinitesimal generator of X. If
C1,0
b (R+×E,R) denotes the space of continuous bounded functions that are C1 in time with bounded

derivatives, then for test functions f : (t, x) 7→ ft(x) in C1,0
b (R+×E,R) such that ∀t ∈ R+, ft ∈ D(L),

we have

〈Zt, ft〉 =f0(X∅0 ) +
∫ t

0

∫
U×N×[0,1]

1{u∈Vs−}

 k∑
j=1

fs(F (k)
j (Xu

s− , θ))− fs(X
u
s−)

 ρ(ds, du, dk, dθ)

+
∫ t

0

∫
R+

(Lf(x) + ∂sf(x))Zs(dx) ds+W f
t , (2.17)
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where W f
t is a martingale. Explicit expressions of this martingale and of the infinitesimal generator

of (Zt, t ≥ 0) can be obtained when the form of the generator L is given.

Example 2. Splitted diffusions. The case when the Markov process X is a real diffusion (E = R)
is an interesting example. Let L be given by:

Lf(x) = b(x)f ′(x) + σ2(x)
2 f ′′(x), (2.18)

where we assume that b and σ are bounded and Lipschitz continuous. In this case, we can consider
the following class of cylindrical functions from MF (R) into R defined by φf (Z) = φ(〈Z, f〉) for
f ∈ C2

b (R,R) and φ ∈ C2
b (R) which is known to be convergence determining on P(MF (R)) (e.g. [15]

Theorem 3.2.6). We can define the infinitesimal generator L of (Zt)t≥0 for these functions:

Lφf (Z) = L1φf (Z) + L2φf (Z), (2.19)

where L1 and L2 correspond to the branching and motion parts. Such decompositions were already
used in Dawson [15] (Section 2.10) and in Roelly and Rouault [50] for instance. The generator L1 is
defined by:

L1φf (Z) =r
∫
E

∫ 1

0

∑
k∈N

φ(〈Z, f〉+
k∑
j=1

f(F (k)
j (x, θ))− f(x)

)
− φf (Z)

 pk dθ Z(dx), (2.20)

with the convention that the sum over j is zero when k = 0. The generator L2 is given by:

L2φf (Z) = 〈Z,Lf〉φ′(〈Z, f〉) + 〈Z, σ(x)f ′2(x)〉φ′′(〈Z, f〉). (2.21)

For a test function f : (t, x) 7→ ft(x) in C1,2
b (R+ × R,R), the evolution of (Zt, t ≥ 0) can then be

described by the following SDE:

〈Zt, ft〉 =f0(X∅0 ) +
∫ t

0

∫
U×N×[0,1]

1{u∈Vs−}

 k∑
j=1

fs(F (k)
j (Xu

s− , θ))− fs(X
u
s−)

 ρ(ds, du, dk, dθ)

+
∫ t

0

∫
R

(Lfs(x) + ∂sfs(x))Zs(dx) ds+
∫ t

0

∑
u∈Vs

√
2σ(Xu

s )∂xfs(Xu
s )dBu

s . (2.22)

where (Bu)u∈U a family of independent standard Brownian motions. In [7], such splitted diffusions
are considered to describe a multi-level population. The cells, which correspond to the individuals in
the present setting, undergo binary divisions, and contain a continuum of parasites that evolves as a
Feller diffusion with drift b(x) = (b− d)x and diffusion σ2(x) = 2σ2x. At the branching time s for the
individual u, each daughter inherits a random fraction of the value of the mother. The daughters u1
and u2 start respectively at F (2)

1 (Xu
s− , θ) = G−1(θ)Xu

s− and F (2)
2 (Xu

s− , θ) = (1 − G−1(θ))Xu
s− , where

G−1 is the generalized inverse of G, the cumulative distribution function of the random fraction. 2

3 The auxiliary Markov process and Many-To-One formulas
In this section, we are interested in the distribution of the path of an individual picked at random
in the population at time t. By choosing uniformly among the individuals present at time t, we give
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a more important weight to branches where there have been more divisions and more children since
the proportion of the corresponding offspring will be higher. Our pathwise approach generalizes [17]
(discrete time) and [7] (continuous time Yule process). As mentioned in the introduction, this size bias
has already been observed by [52, 12] for the tree structure when considering marginal distributions
and by [14, 33] for local branching Markov process.

In Section 3.1, we introduce an auxiliary Markov process which approximates the distribution of
an individual picked at random among all the individuals living at time t. The relation between XT
and the auxiliary process also appears when summing the contributions of all individuals of T (Section
3.2) and of all pairs of individuals (Section 3.3).

3.1 Auxiliary process and Many-To-One formula at fixed time

We focus on the law of an individual picked at random and show that it is obtained from an auxiliary
Markov process. This auxiliary Markov process Ỹ = (Y,Λ) has two components. The component Y
describes the motion on the space E. The second component, Λ, encodes a virtual genealogy and
Y can then be seen as the motion along a random lineage of this genealogy. More precisely, Λ is a
compound Poisson process with rate rm ; its jump times provide the branching events of the chosen
lineage and its jump sizes are related to the offspring number H, whose distribution is the size biased
distribution of p. As for the motion, Y behaves like X between two jumps of Λ. At these jump times,
Y starts from a new position given by F (H)

J (.,Θ) where J is uniform on {1, . . . ,H} and Θ is uniform
on [0, 1].

For the definition of Λ, we shall consider the logarithm of the offspring number as this is the
quantity that is involved in the Girsanov formulas. Notice that we cannot recover all the jump times
from Λ unless there is no offspring number equal to 1, that is p1 = 0. This can however always be
achieved by changing the value of the jump rate r and adding the jumps related to F (1)

1 to the process
X. Henceforth, we assume without loss of generality that:

Assumption 3.1. The offspring distribution satisfies p1 = 0.

By convention for a function f defined on an interval I, we set fζ = (f(t), t ∈ ζ) for any ζ ⊂ I.

Definition 3.2. Let XT be as in Definition 2.6 with starting distribution µ ∈ P(E). The corresponding
auxiliary process Ỹ = (Y,Λ), with Y = (Yt, t ≥ 0) and Λ = (Λt, t ≥ 0), is an E × R-valued càdlàg
Markov process. The process (Y,Λ) and I = (Ik, k ∈ N∗), a sequence of random variables, are defined
as follows:

(i) Λ is a compound Poisson process: Λt =
∑St
k=1 log(Hk), where S = (St, t ≥ 0) is a Poisson

process with intensity rm, and (Hk, k ∈ N∗) are independent random variables independent of S
and with common distribution the size biased distribution of p, (hph/m, h ∈ N∗).

(ii) Conditionally on Λ, (Ik, k ∈ N∗) are independent random variables and Ik is uniform on
{1, . . . ,Hk}.

(iii) Conditionally on (Λ, I), τ1 = inf{t ≥ 0;St 6= S0} is known and the process Y[0,τ1) is distributed
as X[0,τ1).

(iv) Conditionally on (Λ, I, Y[0,τ1)), Yτ1 is distributed as F (H1)
I1

(Yτ1−,Θ), where Θ is an independent
uniform random variable on [0, 1].

11



(v) The distribution of (Yτ1+t, t ≥ 0) conditionally on (Λ, I, Y[0,τ1]) is equal to the distribution of Y
conditionally on (Λτ1+t − Λτ1 , t ≥ 0) and (I1+k, k ∈ N∗), and started at Yτ1.

We write Eµ when we take the expectation with respect to (Y,Λ, I) and the starting measure is µ
for the Y component. We also use the same convention as those described just after Definition 2.6.

The formula (3.1) in the next Proposition is similar to the so-called Many-to-One Theorem of
Hardy and Harris [33] (Section 8.2) that enables expectation of sums over particles in the branching
process to be calculated in terms of an expectation of an auxiliary process. Notice that in our setting
an individual may have no offspring with positive probability (if p0 > 0) which is not the case in [33].

Proposition 3.3 (Many-To-One formula at fixed time). For t ≥ 0 and for any nonnegative measurable
function f ∈ B(D([0, t], E × R),R+) and t ≥ 0, we have:

Eµ
[∑

u∈Vt f(X̃u
[0,t])

]
E[Nt]

= Eµ[f(Ỹ[0,t])]. (3.1)

Remark 3.4. • Asymptotically, Nt and E[Nt] are of same order on {W > 0}, see (2.10). Thus, the
left hand side of (3.1) can be seen as an approximation, for large t, of the law of an individual
picked at random in Vt.

• For m > 1, a typical individual living at time t has prolific ancestors with shorter lives. For
m < 1, a typical individual living at time t has still prolific ancestors but with longer lives.

• If births are local (i.e. for all j ≤ k, F (k)
j (x, θ) = x), then Y is distributed as X.

Proof of Proposition 3.3. Let Λ be a compound Poisson process as in Definition 3.2.(i). Let us show
the following Girsanov formula, for any nonnegative measurable function g:

E[g(Λ[0,t])] = E
[
g(Λ′[0,t]) e−r(m−1)t+Λ′t

]
, (3.2)

where the process Λ′ is a compound process with rate r for the underlying Poisson process and
increments distributed as log(ν) with ν distributed as p. Indeed, g(Λ[0,t]) is a function of t, of the
times τq = inf{t ≥ 0;St = q} − inf{t ≥ 0;St = q − 1} and of jump sizes log(Hq) of Λ:

g(Λ[0,t]) =
+∞∑
q=0

Gq(t, τ1, . . . , τq, H1, . . . ,Hq)1{∑q

i=1 τi≤t<
∑q+1

i=1 τi}
,

for some functions (Gq, q ∈ N). We deduce that:

E[g(Λ[0,t])]

=
+∞∑
q=0

∫
Rq+

∑
h1,...,hq

(rm)q e−rmtGq(t, t1, . . . , tq, h1, . . . , hq)
q∏
i=1

phihi
m

1{∑q

i=1 ti≤t}
dt1 . . . dtq

=
+∞∑
q=0

∫
Rq+

∑
h1,...,hq

rq e−rtGq(t, t1, . . . , tq, h1, . . . , hq) e−r(m−1)t+
∑q

i=1 log(hi)
q∏
i=1

phi 1{∑q

i=1 ti≤t}
dt1 . . . dtq

=E
[
g(Λ′[0,t]) e−r(m−1)t+Λ′t

]
.
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Recall that (St, t ≥ 0) (resp. (Sut , t ≥ 0)) is the underlying Poisson process of Λ (resp. Λu). Notice
that if |u| = q, then {Sut = q} = {α(u) ≤ t < β(u)}. We thus deduce from (3.2) that for q ∈ N, u ∈ U
such that |u| = q,

E[g(Λ[0,t])1{St=q}] = E
[
g(Λu[0,t]) e−r(m−1)t+Λut 1{α(u)≤t<β(u)}

]
. (3.3)

Let q ∈ N∗. By construction, conditionally on {Λ[0,t] = λ[0,t]}, {St = q}, {(I1, . . . , Iq) = u}, Y[0,t] is
distributed as Xu

[0,t] conditionally on {Λu[0,t] = λ[0,t]}. This holds also for q = 0 with the convention
that (I1, . . . , Iq) = ∅. Therefore, we have for any nonnegative measurable functions g and f ,

Eµ[g(Λ[0,t])f(Y[0,t])] =
∑
u∈U

∑
q∈N

1{|u|=q}Eµ[g(Λ[0,t])f(Y[0,t])1{(I1,...,Iq)=u}1{St=q}]

=
∑
u∈U

∑
q∈N

1{|u|=q}Eµ[g(Λ[0,t])Eµ[f(Xu
[0,t])|Λ

u
[0,t]]|Λu[0,t]=Λ[0,t]1{(I1,...,Iq)=u}1{St=q}]

Using the points (i) and (ii) of Definition 3.2, we see that

P
(
I1 = u1, . . . , Iq = uq | Λt, {St = q}

)
=

q∏
k=1

1/Hk = e−Λt if u1 ≤ H1, . . . uq ≤ Hq,

= 0 otherwise.

Hence:

Eµ[g(Λ[0,t])f(Y[0,t])]

=
∑
u∈U

∑
q∈N

1{|u|=q}Eµ[g(Λ[0,t])Eµ[f(Xu
[0,t])|Λ

u
[0,t]]|Λu[0,t]=Λ[0,t] e−Λt 1{u1≤H1,...,uq≤Hq}1{St=q}]

=
∑
u∈U

∑
q∈N

1{|u|=q}Eµ[g(Λu[0,t])Eµ[f(Xu
[0,t])|Λ

u
[0,t]] e−r(m−1)t 1{u1≤ν∅,...,uq≤ν(u1...uq−1)}1{Sut =q}],

thanks to (3.3). Remark that since u = u1 . . . uq, {u1 ≤ ν∅, . . . , uq ≤ ν(u1...uq−1)} = {u ∈ T }, and on
this event, we have {Sut = q} = {u ∈ Vt} as noticed before. As a consequence:

Eµ[g(Λ[0,t])f(Y[0,t])] =
∑
u∈U

Eµ[g(Λu[0,t])f(Xu
[0,t]) e−r(m−1)t 1{u∈Vt}].

Finally, we use a monotone class argument to conclude. �

3.2 Many-to-Ones formulas over the whole tree

In this section, we generalize identity (3.1) on the link between the tree indexed process XT and the
auxiliary Markov process Y by considering sums over the whole tree.

Let us consider the space D of nonnegative measurable functions f ∈ B(R+ × D(R+, E × R),R+)
such that f(t, y) = f(t, z) as soon as y[0,t) = z[0,t). By convention, if y is defined at least on [0, t), we
will write f(t, y[0,t)) for f(t, z) where z is any function such that z[0,t) = y[0,t).

Proposition 3.5 (Many-To-One formula over the whole tree). For all nonnegative measurable func-
tion f of D, we have:

Eµ

[∑
u∈T

f(β(u), X̃u
[0,β(u)))

]
= r

∫ +∞

0
ds er(m−1)s Eµ

[
f(s, Ỹ[0,s))

]
. (3.4)
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Before coming to the proof of Prop. 3.5, we introduce a notation that will be very useful in the
sequel. By convention for two functions f, g defined respectively on two intervals If , Ig, for [a, b) ⊂ If
and [c, d) ⊂ Ig, we define the concatenation [f[a,b); g[c,d)] = hJ where J = [a, b+ (d− c)),

h(t) =
{
f(t) if t ∈ [a, b)
g(c+ (t− b)) if t ∈ [b, d− c+ b).

Proof of Prop. 3.5. We first notice that if τ is an exponential random variable with mean 1/r (r > 0),
then we have, for any nonnegative measurable function g,

E
[
r

∫ τ

0
g(t)dt

]
= E[g(τ)]. (3.5)

Besides, we have

Eµ
[
1{u∈T }f(β(u), X̃u

[0,β(u)))
]

=Eµ
[
1{u∈T }f(β(u), [X̃u

[0,α(u)); X̃[0,β(u)−α(u))])
]
,

where conditionally on X̃u
[0,α(u)), β(u), {u ∈ T }, X̃ = (X, c) with X of distribution PXu

α(u)
and c

the constant process equal to Λuα(u). Notice that we have chosen X̃ independent of β(u). Thus,
conditioning with respect to [X̃u

[0,α(u)); X̃[0,+∞)], {u ∈ T } and using (3.5), we get

Eµ
[
1{u∈T }f(β(u), X̃u

[0,β(u)))
]

= rE
[
1{u∈T }

∫ β(u)−α(u)

0
ds f(α(u) + s, X̃u

[0,α(u)+s))
]
.

We deduce:

Eµ
[
1{u∈T }f(β(u), X̃u

[0,β(u)))
]

= rE
[
1{u∈T }

∫ β(u)

α(u)
ds f(s, X̃u

[0,s))
]

= r

∫ +∞

0
ds E

[
1{u∈Vs}f(s, X̃u

[0,s))
]
.

Using Proposition 3.3, we get

Eµ

[∑
u∈T

f(β(u), X̃u
[0,β(u)))

]
= r

∫ +∞

0
ds Eµ

∑
u∈Vs

f(s, X̃u
[0,s))


= r

∫ +∞

0
ds er(m−1)s Eµ

[
f(s, Ỹ[0,s))

]
.

�

The equality (3.4) means that adding the contributions over all the individuals in the Galton-
Watson tree corresponds (at least for the first moment) to integrating the contribution of the auxiliary
process over time with an exponential weight er(m−1)t which is the average number of living individuals
at time t. Notice the weight is increasing if the Galton-Watson tree is supercritical and decreasing if
it is subcritical.
Remark 3.6. We shall give two alternative formulas for (3.4).
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• We deduce from (3.4) that, for all nonnegative measurable function f ,

Eµ

[∑
u∈T

f(β(u), X̃u
[0,β(u)))

]
= Eµ

[
f(τ, Ỹ[0,τ)) ermτ

]
, (3.6)

where τ is an independent exponential random variable of mean 1/r. Thus, the right hand
side of equation (3.4) can be read as the expectation of a functional of the process Ỹ up to an
independent exponential time τ of mean 1/r, with a weight ermτ .

• Let τq = inf{t ≥ 0;St = q} the time of the q-th jump for the compound Poisson process Λ.
Using (3.5), it is easy to check that, for any nonnegative measurable function g,

1
m

∑
q≥1

Eµ[g(Ỹ[0,τq), τq)] = r

∫ +∞

0
Eµ[g(Ỹ[0,s), s)] ds.

Therefore, we deduce from (3.4) that, for all nonnegative measurable function f ,

Eµ

[∑
u∈T

f(β(u), X̃u
[0,β(u)))

]
= 1
m

∑
q≥1

Eµ
[
f(τq, Ỹ[0,τq)) er(m−1)τq

]
. (3.7)

This formula emphasizes that the jumps of the auxiliary process correspond to death times in
the tree.

3.3 Identities for forks

In order to compute second moments, we shall need the distribution of two individuals picked at
random in the whole population and which are not in the same lineage. As in the Many-To-One
formula, it will involve the auxiliary process.

First, we define the following sets of forks:

FU = {(u, v) ∈ U2 : |u ∧ v| < min(|u|, |v|)} and FT = FU ∩ T 2. (3.8)

Let J̃2 be the operator defined for all nonnegative measurable function f from (E × R)2 to R by:

J̃2f(x, λ) =
∫ 1

0

∑
(a,b)∈(N∗)2

a6=b

∑
k≥max(a,b)

pk f
(
F (k)
a (x, θ), λ+ log(k), F (k)

b (x, θ), λ+ log(k)
)
dθ. (3.9)

Informally, the functional J̃2 describes the starting positions of two siblings. Notice that we have

J̃2f(x, λ) = m

∫ 1

0
E
[
(H − 1)f(F (H)

I (x, θ), λ+ log(H), F (H)
K (x, θ), λ+ log(H))

]
dθ, (3.10)

where H has the size-biased offspring distribution, and conditionally on H, (I,K) is distributed as a
drawing of a couple without replacement among the integers {1, . . . ,H}.

For measurable real functions f and g on E ×R, we denote by f ⊗ g the real measurable function
on (E × R)2 defined by: (f ⊗ g)(x̃, ỹ) = f(x̃)g(ỹ) for x̃, ỹ ∈ E × R.
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Proposition 3.7 (Many-To-One formula for forks over the whole tree). For all nonnegative measurable
functions ϕ,ψ ∈ D, we have:

Eµ
[ ∑

(u,v)∈FT
ϕ(β(u), X̃u

[0,β(u)))ψ(β(v), X̃v
[0,β(v)))

]
= Eµ

[
ermτ J̃2

(
E′.
[
ϕ
(
t+ τ ′, [ỹ[0,t); Ỹ ′[0,τ ′)]

)
ermτ ′

]
|t=τ,ỹ=Ỹ

⊗ E′.
[
ψ
(
t+ τ ′, [ỹ[0,t); Ỹ ′[0,τ ′)] ermτ ′

]
|t=τ,ỹ=Ỹ

)
(Ỹτ−)

]
, (3.11)

where, under Eµ, τ is exponential with mean 1/r independent of Ỹ , and, under E′x,λ, (Ỹ ′, τ ′) is
distributed as ((Y,Λ + λ), τ) under Ex.

Proof. Notice that {(u, v) ∈ FU} is equal to {∃(w, ũ, ṽ) ∈ U3, ∃(a, b) ∈ (N∗)2, a 6= b, u = waũ, v =
wbṽ}. Let A be the l.h.s. of (3.11). We have:

A =
∑
w∈U

∑
a,b∈N∗
a6=b

∑
ũ,ṽ∈U

Eµ
[
ϕ
(
β(w) + (β(waũ)− β(w)), [X̃w

[0,β(w)); X̃
waũ
[β(w),β(waũ))]

)
1{waũ∈T }

× ψ
(
β(w) + (β(wbṽ)− β(w)), [X̃w

[0,β(w)); X̃
wbṽ
[β(w),β(wbṽ))]

)
1{wbṽ∈T }

]
.

Using the strong Markov property at time β(w), the conditional independence between descendants
and Proposition 3.5, we get:

A =
∑
w∈U

∑
a,b∈N∗
a6=b

Eµ
[
E′
X̃wa
α(wa)

[
ϕ
(
t+ τ ′, [x̃[0,t); Ỹ[0,τ ′)]

)
ermτ ′

]
|t=β(w),x̃=X̃w

1{wa∈T }

× E′
X̃wb
α(wb)

[
ψ
(
t+ τ ′, [x̃[0,t); Ỹ[0,τ ′)]

)
ermτ ′

]
|t=β(w),x̃=X̃w

1{wb∈T }
]
, (3.12)

where under E′x,λ, (Ỹ ′, τ ′) is distributed as ((Y,Λ + λ), τ) under Ex. As {wa,wb ∈ T } = {w ∈
T } ∩ {max{a, b} ≤ νw} we have:

A =
∑
w∈U

Eµ
[
1{w∈T }J̃2

(
E′.
[
ϕ
(
t+ τ ′, [x̃[0,t); Ỹ ′[0,τ ′)]

)
ermτ ′

]
|t=β(w),x̃=X̃w

⊗ E′.
[
ψ
(
t+ τ ′, [x̃[0,t); Ỹ ′[0,τ ′)] ermτ ′

]
|t=β(w),x̃=X̃w

)
(X̃w

β(w)−)
]
, (3.13)

with J̃2 defined by (3.9). The function under the expectation in (3.13) depends on β(w) and X̃w
[0,β(w)).

Equality (3.6) then gives the result. �

We shall give a version of Proposition 3.7, when the functions of the path depend only on the
terminal value of the path. We shall define J2 a simpler version of J̃2 (see Definition (3.10)) acting
only on the spatial motion: for all nonnegative measurable functions f from E2 to R,

J2f(x) = m

∫ 1

0
E
[
(H − 1)f(F (H)

I (x, θ), F (H)
K (x, θ))

]
dθ, (3.14)

where (H, I,K) are as in (3.10).
The following Corollary is a direct consequence of Proposition 3.7 and the fact that Y is càdlàg.
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Corollary 3.8 (Many-To-One formula for forks over the whole tree). Let (Qt, t ≥ 0) be the transition
semi-group of Y . For all nonnegative measurable functions f, g ∈ D, we have:

Eµ
[ ∑

(u,v)∈FT
f(β(u), Xu

β(u)−)g(β(v), Xv
β(v)−)

]
= r3

∫
[0,∞)3

er(m−1)(s+t+t′) ds dt dt′ µQs (J2(Qtft+s ⊗Qt′gt′+s)) , (3.15)

where ft(x) = f(t, x) and gt(x) = g(t, x) for t ≥ 0 and x ∈ E.

We can also derive a Many-To-One formula for forks at fixed time.

Proposition 3.9 (Many-To-One formula for forks at fixed time). Let t ∈ R+, and ϕ,ψ two nonneg-
ative measurable functions on D([0, t], E). We have:

Eµ
[ ∑

(u,v)∈V 2
t

u6=v

ϕ
(
X̃u

[0,t]
)
ψ
(
X̃v

[0,t]
)]

= r e2r(m−1)t
∫ t

0
e−r(m−1)a da

Eµ
[
J̃2
(
E′.
[
ϕ
(
[ỹ[0,a); Ỹ ′[0,t−a]]

)]
|ỹ=Ỹ ⊗ E′.

[
ψ
(
[ỹ[0,a); Ỹ ′[0,t−a]]

]
|ỹ=Ỹ

)
(Ỹa)

]
, (3.16)

where, under E′x,λ, Ỹ ′ is distributed as (Y,Λ + λ) under Ex.

The l.h.s. of (3.16) approximates the distribution of a pair of individuals uniformly chosen from
the population at time t. Indeed, we have in the r.h.s. of (3.16) an exponential weight e2r(m−1)t

and thanks to Lemma 2.4, we know that E[Nt(Nt − 1)] ∼ C e2r(m−1)t. The distribution of the paths
associated with a random pair is described by the law of forks constituted of independent portions
of the auxiliary process Ỹ and splitted at a time a ∈ [0, t]. Notice that (3.16) indicates that the fork
splits at an exponential random time with mean 1/r(m− 1), conditioned to be less than t.

Proof of Proposition 3.9. The proof is similar to the proof of Proposition 3.7 except that we use
Proposition 3.3 instead of Proposition 3.5 to obtain an analogue of (3.12). �

4 Law of large numbers
In this section, we are interested in averages over the population living at time t for large t. When
the Galton-Watson tree is not supercritical we have almost sure extinction, and thus we assume here
that m > 1.

4.1 Results and comments

Notice that Nt = 0 implies Zt = 0 and by convention we set Zt/Nt = 0 in this case. For t ∈ R+ and
f a real function defined on E, we derive laws of large numbers for

〈Zt, f〉
Nt

=
∑
u∈Vt f(Xu

t )
Nt

and 〈Zt, f〉
E[Nt]

=
∑
u∈Vt f(Xu

t )
E[Nt]

, (4.1)

provided the auxiliary process introduced in the previous section satisfies some ergodic conditions.
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Let (Qt, t ≥ 0) be the semigroup of the auxiliary process Y from Definition 3.2:

Eµ[f(Yt)] = µQtf (4.2)

for all µ ∈ P(E) and f nonnegative. Recall the operator J2 defined in (3.14).
We shall consider the following ergodicity and integrability assumptions on f , a real measurable

function defined on E, and µ ∈ P(E).

(H1) There exists a nonnegative finite measurable function g such that Qt|f |(x) ≤ g(x) for all t ≥ 0
and x ∈ E.

(H2) There exists π ∈ P(E), such that 〈π, |f |〉 < +∞ and for all x ∈ E, limt→+∞Qtf(x) = 〈π, f〉.

(H3) There exists α < r(m− 1) and c1 > 0 such that µQtf2 ≤ c1 eαt for every t ≥ 0.

(H4) There exists α < r(m − 1) and c2 > 0 such that µQtJ2(g ⊗ g) ≤ c2 eαt for every t ≥ 0, with g
defined in (H1).

Notice that in (H3-4), the constants α, c1 and c2 may depend on f and µ.
Remark 4.1. When the auxiliary process Y is ergodic (i.e. Y converges in distribution to π ∈ P(E)),
the class of continuous bounded functions satisfies (H1-4) with g constant and α = 0. In some
applications, one may have to consider polynomial growing functions. This is why we shall consider
hypotheses (H1-4) instead of the ergodic property in Theorem 4.2 or in Proposition 4.3

The next Theorem states the law of large numbers: the asymptotic empirical measure is distributed
as the stationary distribution π of Y .

Theorem 4.2. For any µ ∈ P(E) and f a real measurable function defined on E satisfying (H1-4),
we have

lim
t→+∞

〈Zt, f〉
E[Nt]

= 〈π, f〉W in L2(Pµ), (4.3)

lim
t→+∞

〈Zt, f〉
Nt

= 〈π, f〉1{W 6=0} in Pµ-probability, (4.4)

with W defined by (2.10) and π defined in (H2).

For the proof which is postponed to Section 4.2, we use ideas developed in [17] in a discrete time
setting. We give an intuition of the result. According to Proposition 3.3, an individual chosen at
random at time t is heuristically distributed as Yt, that is as π for large t thanks to the ergodic
property of Y (see (H2)). Moreover two individuals chosen at random among the living individuals
at time t have a MRCA who died early, which implies that they behave almost independently. Since
Lemma 2.4 implies that the number of individuals alive at time t grows to infinity on {W 6= 0}, this
yields the law of large numbers stated in Theorem 4.2.

Notice that Theorem 1.1 is a direct consequence of Theorem 4.2 and Remark 4.1.
We also present a law of large numbers when summing over the set of all individuals who died

before time t. Recall that Dt =
∑
u∈T 1{β(u)<t} denotes its cardinal.

Recall S in Definition 3.2. Notice that E[St] = rmt. We shall consider a slightly stronger hypothesis
than (H3):

(H5) There exists α < r(m− 1) and c3 > 0 such that Eµ[f2(Yt)St] ≤ c3 eαt for every t ≥ 0.
18



Proposition 4.3. For any µ ∈ P(E) and f a nonnegative measurable function defined on E satisfying
(H1-5), we have

lim
t→+∞

∑
u∈T f

(
Xu
β(u)−

)
1{β(u)<t}

E[Dt]
= 〈π, f〉W in L2(Pµ), (4.5)

lim
t→+∞

1{Nt>0}

∑
u∈T f

(
Xu
β(u)−

)
1{β(u)<t}

Dt
= 〈π, f〉1{W 6=0} in Pµ-probability, (4.6)

with W defined by (2.10) and π defined in (H2).

We can then extend these results to path dependent functions. In particular, the next theorem
describes the asymptotic distribution of the motion and lineage of an individual taken at random in
the tree. In order to avoid a set of complicated hypothesis we shall assume that Y is ergodic with
limit distribution π and consider bounded functions.

Theorem 4.4. We assume that there exists π ∈ P(E) such that for all x ∈ E, and all real-valued
bounded measurable function f defined on E, limt→∞Qtf(x) = 〈π, f〉.

Let T > 0. For any real bounded measurable function ϕ on D([0, T ], E × R+), we have

lim
t→∞

1
E[Nt]

∑
u∈Vt

ϕ(Xu
[t−T,t],Λ

u
[t−T,t] − Λut−T ) = Eπ

[
ϕ(Ỹ[0,T ])

]
W in L2(Pµ),

lim
t→∞

1
Nt

∑
u∈Vt

ϕ(Xu
[t−T,t],Λ

u
[t−T,t] − Λut−T ) = Eπ

[
ϕ(Ỹ[0,T ])

]
1{W 6=0} in Pµ-probability,

with W defined by (2.10).

Let J1 be the following operator associated with the possible jumps of Y : for all nonnegative
measurable function f from E to R,

J1f(x) = m

∫ 1

0
E
[
f(F (H)

I (x, θ))
]
dθ, (4.7)

where H has the size-biased offspring distribution, and conditionally on H, I is uniform on {1, . . . ,H}.

Proposition 4.5. We assume that there exists π ∈ P(E) such that for all x ∈ E, and all real-valued
bounded measurable function f defined on E, limt→∞Qtf(x) = 〈π, f〉.

Let ϕ be a real bounded measurable function defined on E-valued paths. We set, for x ∈ E,
f(x) = Ex[ϕ(Y[0,τ1))], with τ1 from Definition 3.2. We have

lim
t→+∞

∑
u∈T ϕ

(
Xu

[α(u),β(u))
)
1{β(u)<t}

E[Dt]
= 〈π, J1f〉W in L2(Pµ), (4.8)

lim
t→+∞

1{Nt>0}

∑
u∈T ϕ

(
Xu

[α(u),β(u))
)
1{β(u)<t}

Dt
= 〈π, J1f〉1{W 6=0} in Pµ- probability,

with W defined by (2.10).

Remark 4.6. The hypothesis on Y in Theorem 4.4 and Proposition 4.5 is slightly stronger than the
ergodic condition (i.e. Y converges in distribution to π), but it is fulfilled if Y converges to π for the
distance in total variation (i.e. for all x ∈ E, limt→∞ supA∈E |Px(Yt ∈ A)− π(A)| = 0). This property
is very common for ergodic processes.
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4.2 Proofs

Proof of Theorem 4.2. We assume (H1-4). We shall first prove (4.3) for f such that 〈π, f〉 = 0. We
have

Eµ
[〈Zt, f〉2
E[Nt]2

]
= At +Bt

where
At = E[Nt]−2Eµ

[ ∑
u∈Vt

f2(Xu
t )
]

and Bt = E[Nt]−2Eµ
[ ∑

(u,v)∈V 2
t

u6=v

f(Xu
t )f(Xv

t )
]
.

Notice that
At = e−r(m−1)t Eµ

[
f2(Yt)

]
= e−r(m−1)t µQtf

2 −−−→
t→∞

0, (4.9)

thanks to (2.8) and (3.1) for the first equality and (H3) for the convergence. We focus now on Bt.
Notice that Proposition 3.9 and then (H1) and (H4) imply that

E[Nt]−2Eµ
[ ∑

(u,v)∈V 2
t

u6=v

|f(Xu
t )f(Xv

t )|
]

= r

∫ t

0
µQsJ2

(
Qt−s|f | ⊗Qt−s|f |

)
e−r(m−1)s ds

is finite. We thus deduce that

Bt = r

∫ t

0
µQsJ2

(
Qt−sf ⊗Qt−sf

)
e−r(m−1)s ds. (4.10)

Now, since 〈π, f〉 = 0, we deduce from (H2) that for s fixed, and y, z ∈ E, limt→∞(Qt−sf ⊗
Qt−sf)(y, z) = 0. Thanks to (H1), there exists g such that 1{s≤t}|(Qt−sf ⊗ Qt−sf)| ≤ (g ⊗ g) and
(H4) implies that

∫∞
0 ds e−r(m−1)s µQsJ2(g ⊗ g) is finite. Lebesgue Theorem entails that

lim
t→∞

Bt = lim
t→∞

r

∫ t

0
µQsJ2

(
Qt−sf ⊗Qt−sf

)
e−r(m−1)s ds = 0.

This ends the proof of (4.3) when 〈π, f〉 = 0.
In the general case, we have

〈Zt, f〉
E[Nt]

− 〈π, f〉W = 〈Zt, f − 〈π, f〉〉
E[Nt]

+ 〈π, f〉
(

Nt

E[Nt]
−W

)
. (4.11)

Notice that if f and µ satisfy (H1-4) then so do f − 〈π, f〉 and µ. The first term of the sum in the
r.h.s. of (4.11) converges to 0 in L2 thanks to the first part of the proof. The second term converges
to 0 in L2 thanks to Lemma 2.4. Hence we get (4.3) if f and µ satisfy (H1-4).

We deduce (4.4) from (4.3) and (2.10). �

Proof of Proposition 4.3. We assume (H1-5). We shall first prove (4.5) for f such that 〈π, f〉 = 0.
We have:

E[Dt]−2Eµ

(∑
u∈T

f
(
Xu
β(u)−

)
1{β(u)<t}

)2
 = At +Bt + Ct,
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where

At = E[Dt]−2Eµ

[∑
u∈T

f2(Xu
β(u)−

)
1{β(u)<t}

]
,

Bt = E[Dt]−2Eµ

 ∑
(u,v)∈FT

f
(
Xu
β(u)−

)
f
(
Xv
β(v)−

)
1{β(u)<t,β(v)<t}

 ,
Ct = 2E[Dt]−2Eµ

 ∑
u≺v,v∈T

f
(
Xu
β(u)−

)
f
(
Xv
β(v)−

)
1{β(v)<t}

 .
The terms At and Bt will be handled similarly as in the proof of Proposition 4.2. Notice that

At = rE[Dt]−2
∫ t

0
ds er(m−1)s Eµ[f2(Ys−)] = r(m− 1)2

(er(m−1)t−1)2

∫ t

0
ds er(m−1)s µQsf

2 −−−→
t→∞

0, (4.12)

thanks to (3.4) for the first equality, (2.12) for the second and (H3) for the convergence.
Notice that Corollary 3.8 and then (H1) and (H4) imply that

Eµ
[ ∑

(u,v)∈FT
|f
(
Xu
β(u)−

)
||f
(
Xv
β(v)−

)
|1{β(u)<t,β(v)<t}

]
= r3

∫
[0,+∞)3

µQsJ2
(
Qs′ |f | ⊗Qs′′ |f |

)
er(m−1)(s+s′+s′′) 1{s+s′<t,s+s′′<t} dsds′ds′′

is finite. We thus deduce that

Bt = r3(m− 1)2

(er(m−1)t−1)2

∫
[0,+∞)3

µQsJ2
(
Qs′f ⊗Qs′′f

)
er(m−1)(s+s′+s′′) 1{s+s′<t,s+s′′<t} dsds′ds′′

= r3(m− 1)2 e2r(m−1)t

(er(m−1)t−1)2

∫
[0,+∞)3

µQsJ2
(
Qt−t′f ⊗Qt−t′′f

)
er(m−1)(s−t′−t′′) 1{s<t′<t,s<t′′<t} dsdt′dt′′.

Now, since 〈π, f〉 = 0, we deduce from (H2) that for t′, t′′ fixed and y, z ∈ E, limt→∞(Qt−t′f ⊗
Qt−t′′f)(y, z) = 0. Thanks to (H1), there exists g such that |(Qt−t′f ⊗Qt−t′′f)| ≤ (g⊗ g). Then (H4)
implies that

∫
[0,+∞)3 µQsJ2(g ⊗ g) er(m−1)(s−t′−t′′) 1{s<t′,s<t′′} dsdt′dt′′ is finite. Lebesgue Theorem

entails that
lim
t→∞

Bt = 0. (4.13)

Let us now consider Ct. We have Ct ≤ C ′t + C ′′t where

C ′t = E[Dt]−2Eµ

 ∑
u≺v,v∈T

f2(Xv
β(v)−

)
1{β(v)<t}

 and C ′′t = E[Dt]−2Eµ

 ∑
u≺v,v∈T

f2(Xu
β(u)−

)
1{β(v)<t}

 .
We deduce from (3.4) that

C ′t = E[Dt]−2Eµ

[∑
v∈T
|v|f2(Xv

β(v)−
)
1{β(v)<t}

]

= E[Dt]−2r

∫ t

0
ds er(m−1)s Eµ

[
Ss−f

2(Ys−)
]

= r(m− 1)2

(er(m−1)t−1)2

∫ t

0
ds er(m−1)s Eµ

[
Ssf

2(Ys)
]
.
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We deduce from (H5) that
lim
t→∞

C ′t = 0. (4.14)

Using the conditional expectation w.r.t. Xu, (2.12) and (3.4), we get

C ′′t = E[Dt]−2Eµ

[∑
u∈T

f2(Xu
β(u)−

)
1{β(u)<t}mE[

∑
v∈T

1{β(v)<t′}]|t′=t−β(u)

]

= m

m− 1E[Dt]−2Eµ

[∑
u∈T

f2(Xu
β(u)−

)
1{β(u)<t}(er(m−1)(t−β(u))−1)

]

= m

m− 1E[Dt]−2
∫ t

0
ds er(m−1)s Eµ

[
f2(Ys−)(er(m−1)(t−s)−1)

]
≤ m(m− 1) er(m−1)t

(er(m−1)t−1)2

∫ t

0
ds µQsf

2.

We deduce from (H3) (or (H5)) that
lim
t→∞

C ′′t = 0. (4.15)

The proof of (4.5), when 〈π, f〉 = 0, is then a consequence of (4.12), (4.13), (4.14) and (4.15).
In the general case, we have

E[Dt]−1 ∑
u∈T

f
(
Xu
β(u)−

)
1{β(u)<t} − 〈π, f〉W

= E[Dt]−1 ∑
u∈T

(
f
(
Xu
β(u)−

)
− 〈π, f〉

)
1{β(u)<t} + 〈π, f〉

(
Dt

E[Dt]
−W

)
. (4.16)

Notice that if f and µ satisfy (H1-5) then so do f − 〈π, f〉 and µ. The first term of the sum in the
r.h.s. of (4.16) converges to 0 in L2 thanks to the first part of the proof. The second term converges
to 0 in L2 thanks to Lemma 2.5. Hence we get (4.5) if f and µ satisfy (H1-5). The convergence in
probability is thus obtained thanks to (4.5) and (2.10). �

Proof of Theorem 4.4. The proof is similar to the proof of Theorem 4.2. Some arguments are shorter
as we assume that ϕ is bounded.

We shall first consider the case Eπ[ϕ(Ỹ[0,T ])] = 0. We assume that t > T . We have

E[Nt]−2Eµ
[( ∑

u∈Vt
ϕ
(
Xu

[t−T,t],Λ
u
[t−T,t] − Λut−T

))2]
= At +B′t +B′′t ,

where

At = E[Nt]−2Eµ
[ ∑
u∈Vt

ϕ2(Xu
[t−T,t],Λ

u
[t−T,t] − Λut−T

)]
,

B′t = E[Nt]−2Eµ
[ ∑

(u,v)∈V 2
t

u6=v

ϕ
(
Xu

[t−T,t],Λ
u
[t−T,t] − Λut−T

)
ϕ
(
Xv

[t−T,t],Λ
v
[t−T,t] − Λvt−T

)
1{β(u∧v)≥t−T}

]
,

B′′t = E[Nt]−2Eµ
[ ∑

(u,v)∈V 2
t

u6=v

ϕ
(
Xu

[t−T,t],Λ
u
[t−T,t] − Λut−T

)
ϕ
(
Xv

[t−T,t],Λ
v
[t−T,t] − Λvt−T

)
1{β(u∧v)<t−T}

]
.
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We assume that ϕ is bounded by a constant, say c. We have At ≤ c2E[Nt]−1 so that limt→∞At = 0.
We have, using Proposition 3.9,

|B′t| ≤ c2E[Nt]−2Eµ
[ ∑

(u,v)∈V 2
t

u6=v

1{β(u∧v)≥t−T}
]

= c2r

∫ t

0
e−r(m−1)a 1{a≥t−T}da,

so that limt→∞B
′
t = 0.

We set f(x) = Ex[ϕ(Ỹ[0,T ])]. Using Proposition 3.9 once more, we get

B′′t = r

∫ t

0
e−r(m−1)a Eµ

[
J̃2
(
E′.
[
ϕ
(
Y ′[t−a−T,t−a],Λ

′
[t−a−T,t−a] − Λ′t−a−T

)]
⊗ E′.

[
ϕ
(
Y ′[t−a−T,t−a],Λ

′
[t−a−T,t−a] − Λ′t−a−T

)])
(Ỹa)

]
1{a<t−T}da

= r

∫ t−T

0
e−r(m−1)a µQaJ2

(
Qt−a−T f ⊗Qt−a−T f

)
da

By hypothesis on Y , we have that, for fixed a, limt→∞Qt−a−T f = 〈π, f〉 = 0. Using Lebesgue
Theorem, we get limt→∞B

′′
t = 0. This gives the result for the L2(Pµ) convergence when 〈π, f〉 = 0.

We conclude in the general case and for the convergence in probability as in the proof of Theorem
4.2. �

Proof of Proposition 4.5. The proof is similar to the proof of Proposition 4.3. Some arguments are
shorter as we assume that ϕ is bounded.

We shall first prove (4.8) for ϕ such that 〈π, J1f〉 = 0. We have:

E[Dt]−2Eµ

(∑
u∈T

ϕ
(
Xu

[α(u),β(u))
)
1{β(u)<t}

)2
 = At +Bt + Ct,

where

At = E[Dt]−2Eµ

[∑
u∈T

ϕ
(
Xu

[α(u),β(u))
)21{β(u)<t}

]
,

Bt = E[Dt]−2Eµ

 ∑
(u,v)∈FT

ϕ
(
Xu

[α(u),β(u))
)
ϕ
(
Xv

[α(v),β(v))
)
1{β(u)<t,β(v)<t}

 ,
Ct = 2E[Dt]−2Eµ

 ∑
u≺v,v∈T

ϕ
(
Xu

[α(u),β(u))
)
ϕ
(
Xv

[α(v),β(v))
)
1{β(v)<t}

 .
We assume that ϕ is bounded by a constant, say c. We have At ≤ c2/E[Dt] so that limt→∞At = 0.
Thanks to Corollary 3.8, we have

|Ct| ≤ 2c2E[Dt]−2Eµ[
∑
v∈T
|v|1{β(v)<t}]

= 2c2E[Dt]−2
∫ t

0
ds er(m−1)s Eµ[Ss]

= 2c2E[Dt]−2
∫ t

0
ds srm er(m−1)s .
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This implies that limt→∞Ct = 0.
We set ht(x) = Ex[ϕ(X[0,τ))1{τ<t}], where τ is an exponential random variable with mean 1,

independent of X.
Using the conditional expectation w.r.t. Xu′ , where u′ is the ancestor of u, and Xv′ , where v′ is

the ancestor of v, we have, according to u′ = v′ or u′ 6= v′,

Bt = B′t +B′′t ,

where

B′t = E[Dt]−2Eµ

∑
u′∈T

J2(ht−β(u′) ⊗ ht−β(u′))(Xu′

β(u′)−)1{β(u′)<t}

 ,
B′′t = E[Dt]−2Eµ

 ∑
(u′,v′)∈FT

J1(ht−β(u′))(Xu′

β(u′)−)J1(ht−β(v′))(Xv′

β(v′)−)1{β(u′)<t,β(v′)<t}

 .
Using the definition of J2, (3.14), we get |B′t| ≤ c2E[Dt]−1(ς2 +m2 −m) and thus limt→∞B

′
t = 0.

We deduce from Corollary 3.8, that

B′′t = r3(m− 1)2

(er(m−1)t−1)2

∫
[0,+∞)3

dsds′ds′′

µQsJ2
(
Qs′J1ht−s−s′ ⊗Qs′′J1ht−s−s′′

)
er(m−1)(s+s′+s′′) 1{s+s′<t,s+s′′<t}

= r3(m− 1)2 e2r(m−1)t

(er(m−1)t−1)2

∫
[0,+∞)3

dsdv′dv′′

µQsJ2
(
Qt−s−v′J1hv′ ⊗Qt−s−v′′J1hv′′

)
e−r(m−1)(s+v′+v′′) 1{v′<t−s,v′′<t−s}.

By hypothesis on Y , we have that, for fixed s and v, limt→∞Qt−s−vJ1hv = 〈π, J1hv〉. Using Lebesgue
Theorem, we get

lim
t→∞

B′′t = r3(m− 1)2
∫

[0,+∞)3
dsdv′dv′′〈π, J1hv′〉〈π, J1hv′′〉 e−r(m−1)(s+v′+v′′)

Notice that ht(x) = 1
m Ex[ϕ(Y[0,τ1)) er(m−1)τ1 1{τ1<t}] so that

r(m− 1)
∫ +∞

0
dt ht(x) e−r(m−1)t = 1

m
Ex[ϕ(Y[0,τ1))].

Recall f(x) = Ex[ϕ(Y[0,τ1))]. We get limt→∞B
′′
t = 1

(m−1)m2 〈π, J1f〉2 = 0. Therefore, we get that

lim
t→∞

At +Bt + Ct = 0,

which gives the result for the L2(Pµ) convergence when 〈π, J1f〉 = 0. We conclude in the general case
and for the convergence in probability as in the proof of Proposition 4.3. �

5 Examples
We now investigate several examples. In Section 5.1, splitted diffusions are considered as scholar
examples. In subsection 5.2, we give a biological application to “cellular aging” when cells divide in
continuous time, which is one of the motivation of this work. In Section 5.3, we give a central limit
theorem for nonlocal branching Lévy processes.
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5.1 Splitted real diffusions

A first example consists in binary branching: the continuous tree T is a Yule tree. For the Markov
process X, we consider a real diffusion with generator:

Lf(x) = b(x)f ′(x) + σ2(x)
2 f ′′(x). (5.1)

We assume that b and σ are such that there exists a unique strong solution to the corresponding SDE,
see for instance [36] Theorem 3.2 p.182.

When a branching occurs, each daughter inherits a random fraction of the value of the mother:

F (1)(x, θ) = G−1(θ)x, F (2)(x, θ) = (1−G−1(θ))x,

where G is the cumulative distribution function of the random fraction in [0, 1] associated with the
branching event. We assume the distribution of the random fraction is symmetric: G(x) = 1−G(1−x).

The infinitesimal generator of Y is characterized for f ∈ C2
b (R,R) by:

Af(x) =b(x)f ′(x) + σ(x)f ′′(x) + 2r
∫ 1

0

(1
2
(
f(G−1(θ)x)− f(x)

)
+ 1

2
(
f((1−G−1(θ))x)− f(x)

))
dθ

=b(x)f ′(x) + σ(x)f ′′(x) + 2r
∫ 1

0

(
f(qx)− f(x)

)
G(dq). (5.2)

Particular choices for the functions b and σ are the following ones:

(i) If b(x) = 0 and σ(x) = σ, we obtain the splitted Brownian process.

(ii) If b(x) = −β(x− α) and σ(x) = σ, we obtain the splitted Ornstein-Uhlenbeck process.

(iii) If b(x) = 1 and σ(x) = 0, the deterministic process X can represent the linear growth of some
biological content of the cell (nutriments, proteins, parasites...) which is shared randomly in the
two daughter cells when the cell divides. More precisely here, each daughter inherits random
fraction of this biological content.

Let us note that if b(x) = βx and σ(x)2 = σ2x, we obtain the splitted Feller branching diffusion. But
in this case, almost surely, the auxiliary process either becomes extinct or goes to infinity as t→∞.
The assumption (H2) is not satisfied. This process is studied in [7] as a model for parasite infection.

The following results give the asymptotic limit of the splitted diffusion under some condition which
is satisfied by the examples (i-iii). For this we use results due to Meyn and Tweedie [45, 46].

Proposition 5.1. Assume that Y is Feller and irreducible (see [46] p. 520) and that there exists
K ∈ R+, such that for every |x| > K, b(x)/x < r′ with r′ < r. Then, the auxiliary process Y with
generator A is ergodic with stationary probability π. Furthermore

∑
u∈Vt δXu

t
(dx)/Nt converges weakly

to π as t→∞ and this convergence holds in probability.

Proof. Once we check that Y is ergodic, then Corollary 1.2 and the fact that W defined by (2.10) is
a.s. positive readily imply the weak convergence of the Proposition. To prove the ergodicity of Y ,
we use Theorems 4.1 of [45] and 6.1 of [46]. Since Y is Feller and irreducible, the process Y admits
a unique invariant probability measure π and is exponentially ergodic provided the condition (CD3)
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in [46] is satisfied, namely, if there exists a positive measurable function V : x 7→ V (x) such that
limx→±∞ V (x) = +∞ and for which:

∃c > 0, d ∈ R, ∀x ∈ R, AV (x) ≤ −cV (x) + d. (5.3)

For V (x) = |x| regularized on an ε-neighborhood of 0 (0 < ε < 1), we have:

∀|x| > ε, AV (x) =sign(x)b(x) + 2r|x|
∫ 1

0
(q − 1)G(dq) = sign(x)b(x)− r|x|, (5.4)

as the distribution of G is symmetric. By assumption, there exists η > 0 and K > ε, such that (5.4)
implies:

∀x ∈ R, AV (x) ≤ −ηV (x) +
(

sup
|x|≤K

|b(x)|+ rK
)
1{|x|≤K}. (5.5)

This implies (5.3) and finishes the proof ; the geometric ergodicity expresses here as:

∃β > 0, B < +∞, ∀t ∈ R+, ∀x ∈ R, sup
g / |g(u)|≤1+|u|

∣∣Qtg(x)− 〈π, g〉
∣∣ ≤ B(1 + |x|) e−βt . (5.6)

�

Remark 5.2. The examples (i-iii) satisfy the assumptions of Proposition 5.1. If b and σ are bounded
Lipschitz functions, X is Feller (e.g. Theorem 6.3.4 p. 152 of [54]), and thus Y is also Feller. The
Feller property also holds for Ornstein-Uhlenbeck processes. The irreducibility property is well known
for diffusions as (i) and (ii) and trivial for (iii).
Remark 5.3. If there exists K > 0 in Prop. 5.1 such that for every |x| > K, 2b(x)/x+ 6σ(x)/x2 < r′

with r′ < r
∫ 1

0 (1 − q4)2G(dq), then we can use similar arguments as in the proof of Proposition 5.1.
We get that the auxiliary process Y is geometrically ergodic with

∃β > 0, B < +∞, ∀t ∈ R+, ∀x ∈ R, sup
g / |g(u)|≤1+|u|4

∣∣Qtg(x)− 〈π, g〉
∣∣ ≤ B(1 + |x|4) e−βt (5.7)

instead of (5.6). This result will be used for the proof of the central limit theorem.

5.2 Cellular-aging process

We now present a generalization to the continuous time of Guyon [32] and Delmas and Marsalle [17]
about cellular aging. When a rod shaped cell divides, it produces a new end per progeny cell. So each
new cell has a pole (or end) which is new and an other one which was created one or more generations
ago. This number of generations is the age of the cell. Since each cell has a new pole and an older one,
at the next division one of the two daughters will inherit the new pole and the other one will inherit
the older pole. Experiments indicate that the first one has a larger growth rate than the second one
(see Stewart et al. [53] for details), which indicates aging.

To detect this aging effect, [32, 17] used discrete time Markov models by looking at cells of a
given generation. To take into account the asynchrony of cell divisions, it may be useful to consider
a continuous time genealogical tree.

We consider the following model. Cells are characterized by a type η ∈ {0, 1} (type 0 corresponds
to a cell of age 1 and type 1 to cell of greater age) and a quantity ζ (growth rate, quantity of damage
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in the cell) that evolves according to a Markov process depending on the type of the cell. Cells may
die, which leads us to the following model. At rate r, each cell is replaced by one cell of type 0 (resp.
1) with probability p0 ≥ 0 (resp. p1 ≥ 0), by two cells of type 0 and 1 with probability p0,1 ≥ 0, or by
no cell with probability 1− p0− p1− p0,1 ≥ 0. The way the quantity ζ is given to a daughter depends
on its type and on the fact that it has or has not a sister.

This can be stated in the framework of Section 2.2 and Section 3. For the sake of simplicity, we
shall assume that ζ evolves as a real diffusion between two branching times.

Let L0 and L1 be two diffusion generators: for f ∈ C2(R× {0, 1},R):

Lηf(ζ, η) = b(ζ, η)∂ζf(ζ, η) + σ(ζ, η)∂2
ζ,ζf(ζ, η), η ∈ {0, 1}. (5.8)

We assume there exists a unique strong solution to the corresponding two SDE, see for instance [36]
Theorem 3.2 p.182. We consider the underlying process X = ((ζt, ηt), t ≥ 0) with generator

Lf(ζ, η) = 1{η=0}L
0f(ζ, 0) + 1{η=1}L

1f(ζ, 1).

Notice the process (ηt, t ≥ 0) is constant between two branching times. The offspring distribution is

p(dk) = (1− p0 − p1 − p0,1)δ0(dk) + (p0 + p1)δ1(dk) + p0,1δ2(dk). (5.9)

The offspring position is given by:

F
(1)
1 ((ζ, η), θ) =(g0(ζ, η, θ1), 0)1{θ2≤p0/(p0+p1)} + (g1(ζ, η, θ1), 1)1{θ2>p0/(p0+p1)}

F
(2)
i+1((ζ, η), θ) =(g(2)

i (ζ, η, θ), i) for i ∈ {0, 1}, (5.10)

for some functions g0, g1, g
(2)
0 , g

(2)
1 and (θ1, θ2) a function of θ such that if θ is uniform on [0, 1], then θ1

and θ2 are independent and uniform on [0, 1]. The division is asymmetric if g(2)
0 6= g

(2)
1 . One important

issue is, using the law of large number (Section 4) and fluctuation results, to test if the division is
asymmetric, which means aging, or not. Let us mention that a natural question would be to give the
test in a more general model in which the division rate depends on the state of the cell and of the
quantity of interest ζ (which is realistic if for example ζ describe the quantity of damage of the cell).

Let us consider a test function f : (t, ζ, η) 7→ ft(ζ, η) in C1,2
b (R+×(R×{0, 1}),R), and let (Bu)u∈U

be a family of independent standard Brownian motions. The SDE describing the evolution of the
population of cells then becomes with the notations of (5.8), (5.9) and (5.10):

〈Zt, ft〉 = 〈Z0, f0〉+
∫ t

0

∫
U×{0,1,2}×[0,1]

1{u∈Vs−}

 k∑
j=1

fs(F (k)
j ((ζus− , η

u
s−), θ))− fs(ζus−)

 ρ(ds, du, dk, dθ)

+
∫ t

0

∫
R×{0,1}

(Lηf(ζ, η) + ∂sfs(ζ, η))Zs(dζ, dη) ds (5.11)

+
∫ t

0

∑
u∈Vs

√
2σ(ζus , ηus )∂ζf(ζus , ηus )dBu

s . (5.12)

If Y is ergodic, then 1{Nt>0}
∑
u∈Vt δXu

t
(dx)/Nt converges to a deterministic non degenerated mea-

sure on R+ × {0, 1}. Given a particular choice for the parameters g0, g1, g(2)
0 , g(2)

1 , L0, L1, p0, p1 and
p0,1 of the model, one can use arguments similar to the ones used in Proposition 5.1 and Remark 5.2
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to prove the ergodicity of Y . Let us give examples.

The first illustration that can be viewed as a direct generalization of the model of Delmas and
Marsalle [17]. The quantity ζ ∈ R models the cell growth rate, which is assumed constant during the
cell’s life: b(ζ, η) = 0 and σ(ζ, η) = 0. For the functions g0, g1, g(2)

0 , g(2)
1 which describe the daugthers’

growth rates, as functions of their mothers’ characteristics, we set:

g0(ζ, η, θ) = α0ζ + β0 + ε0, g1(ζ, η, θ) = α1ζ + β1 + ε1

g
(2)
0 (ζ, η, θ) = α′0ζ + β′0 + ε′0, g

(2)
1 (ζ, η, θ) = α′1ζ + β′1 + ε′1, (5.13)

where α0, α1, α′0, α′1 ∈ (−1, 1) and where β0, β1, β′0, β′1 ∈ R. The random variables ε0, ε1, ε′0 and ε′1
generated thanks to the uniform variable θ and their distributions is as follows: ε′0 and ε′1 are Gaussian
centered r.v. with variances σ2

0 > 0 and σ2
1 > 0 respectively, while (ε0, ε1) is a vector of Gaussian

centered r.v. with covariance

σ2
(

1 ρ
ρ 1

)
, σ2 > 0, ρ ∈ (−1, 1).

In [17], this model is used to test aging phenomena, for instance, which correspond to (α0, β0) =
(α1, β1). Delmas and Marsalle in discrete time prove that the auxiliary process, which correspond
to the Markov chain associated here to the continuous time pure jump process Y , is ergodic. As a
consequence, Y is recurrent, admits an invariant probability distribution (since the jump rate r(p0 +
p1 + 2p0,1) is a constant) and is hence ergodic (see e.g. Norris [48]).

5.3 Branching Lévy process

We consider particles moving independently on R following a Lévy process X and reproducing with
constant rate r. Each child jumps from the location of the mother when the branching occurs. We
are interested in the rescaled population location at large time.

The generator of the underlying process X is given by:

Lf(x) = bf ′(x) + σ2

2 f
′′(x) +

∫
R\{0}

(
f(x+ y)− f(x)− yf ′(x)1{|y|<1}

)
h(dy) (5.14)

with b ∈ R, σ ∈ R+ and h a measure on R \ {0} such that
∫
R\{0} y

2 h(dy) < +∞. The particles
reproduce at rate r in a random number of offspring distributed as p = (pk, k ∈ N), such that∑
k≥1 kpk > 1 (supercritical case). The offspring position is defined as follows:

F
(k)
j (x, θ) = x+ ∆k

j (θ), j ∈ {1, . . . , k}, (5.15)

where we recall that x is the location just before branching time and k is the number of offspring. We
assume the following second moment condition:

∑
k∈N pk

∑k
j=1 E[∆k

j (Θ)2] < ∞, where Θ is uniform
on [0, 1].

Proposition 5.4. We have the following weak convergence inMF (R):

lim
t→+∞

1
Nt

∑
u∈Vt

δXu
t
−βt
√
t

(dx) = πΣ(dx)1{W>0}, in probability (5.16)
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where πΣ is the centered Gaussian probability measure with variance Σ and

β = b+
∫
R\{0}

y1{|y|≥1} h(dy) + r
+∞∑
k=1

pk

k∑
j=1

E[∆k
j (Θ)], (5.17)

Σ = σ2 +
∫
R\{0}

y2 h(dy) + r
+∞∑
k=1

pk

k∑
j=1

E[∆k
j (Θ)2]. (5.18)

Proof. The auxiliary process Y is a Lévy process with generator:

Af(x) = bf ′(x) + σ2

2 f
′′(x) +

∫
R

(
f(x+ y)− f(x)− yf ′(x)1{|y|<1}

)
h(dy)

+rm
+∞∑
k=1

kpk
m

∫ 1

0

k∑
j=1

1
k

(
f(x+ ∆k

j (θ))− f(x)
)
dθ.

In particular, we have for all x ∈ R:

Ex[Yt] = x+ t
(
b+

∫
R\{0}

y1{|y|≥1} h(dy) + r
+∞∑
k=1

pk

k∑
j=1

E[∆k
j (Θ)]

)
= x+ βt (5.19)

Ex[Y 2
t ]− Ex[Yt]2 = t

(
σ2 +

∫
R\{0}

y2 h(dy) + r
+∞∑
k=1

pk

k∑
j=1

E[∆k
j (Θ)2]

)
= Σt. (5.20)

Then, we deduce from the central limit theorem for Lévy processes or directly from Lévy Khintchine
formula, that ((Yt − βt)/

√
t, t ≥ 0) converges in distribution to πΣ. This implies that for any fixed s,

((Yt−s − βt)/
√
t, t ≥ 0) converges in distribution to πΣ.

Let ϕ be a continuous bounded real function and define

ft(x) := ϕ
(
(x− βt)/

√
t
)

for t ≥ 0, x ∈ R.

Let (Qt, t ≥ 0) be the transition semi-group of Y . We get that for any fixed s and x ∈ R,

lim
t→+∞

Qt−sft(x) = 〈πΣ, ϕ〉. (5.21)

It is then very easy to adapt the proof of Theorem 4.2 with f replaced by ft − 〈πΣ, ϕ〉: (4.9) holds
since ft is uniformly bounded; (4.10) holds using similar arguments with (5.21) instead of (H2) and ft
uniformly bounded instead of (H1) and (H4) arguments. Similar arguments as in the end of the proof
of Theorem 4.2 imply that for any continuous bounded real function ϕ, the following convergence in
probability holds:

lim
t→+∞

1
Nt

∑
u∈Vt

ϕ
(Xu

t − βt√
t

)
= lim

t→+∞

1
Nt
〈Zt, ft〉 = 〈πΣ, ϕ〉 1{W>0}.

This gives (5.16). �
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6 Central limit theorem

6.1 Fluctuation process

In order to study the fluctuations associated to the LLNs, Theorem 4.2, we shall use the martingale
associated to Zt, see (2.17). We focus on the simple case of splitted diffusions developed in Section
5.1. Our main result for this section is stated as Proposition 6.4.

In the sequel, C denotes a constant that may change from line to line. We work in the framework
of Section 5.1.

We consider the following family, indexed by T > 0, of fluctuation processes. For f ∈ Bb(R+,R)
and t ≥ 0

〈ηTt , f〉 =
√
E[Nt+T ]

(〈Zt+T , f〉
E[Nt+T ] −

〈ZT , Qtf〉
E[NT ]

)
(6.1)

where we recall that Nt = Card(Vt) = 〈Zt, 1〉 and Qt has been defined in (4.2). The family Qt is the
transition semigroup of the auxiliary process Y , which is given by:

Yt = X0 +
∫ t

0
b(Ys)ds+

∫ t

0
σ(Ys)dBs −

∫ t

0
(1− q)Ys−ρ(ds, dq) (6.2)

where X0 is an initial condition with distribution µ, where (Bt)t∈R+ is a standard real Brownian
motion and where ρ(ds, dq) is a Poisson point measure with intensity 2r ds⊗ G̃(dq) with G̃ such that∫

[0,1] f(q)G̃(dq) =
∫
[0,1](f(q)/2 +f(1− q)/2)G(dq). As in Section 5.1, we will assume in the sequel that

G is symmetric. In this case, G̃(dq) = G(dq).
The idea in (6.1) is to compare the independent trees that have grown from the particles of ZT between
times T and t+ T , with the positions of independent auxiliary processes at time t and started at the
positions ZT . We recall that L is the generator defined in (5.1), and let J be the operator defined on
the space of locally integrable functions by

Jf(x) = −3r
2 f(x) + r

∫ 1

0

(
f(qx) + f((1− q)x)

)
G(dq) = −3r

2 f(x) + 2r
∫ 1

0
f(qx)G(dq). (6.3)

This operator will naturally appear when computing the equation satisfied by ηT by applying (2.22)
with ft(x) = e−rt/2 f(x):
Proposition 6.1. The fluctuation process (6.1) satisfies the following evolution equation:

〈ηTt , f〉 =
∫ t

0

∫
R

(
Lf(x) + Jf(x)

)
ηTs (dx) ds+MT

t (f), (6.4)

where MT
t (f) is a square integrable martingale with quadratic variation:

〈MT (f)〉t =
∫ t

0
ds

∫
R

Zs+T (dx)
E
[
Ns+T

] [r ∫ 1

0

(
f(qx) + f((1− q)x)− f(x)

)2
G(dq) + 2σ2(x)f ′(x)2

]
. (6.5)

The proof of this proposition is given in Section 6.3. In the following, we are interested in the
behavior of the fluctuation process when T → +∞. The processes ηT take their values in the space
MS(R) of signed measures. Since this space endowed with the topology of weak convergence is
not metrizable, we follow the approach of Métivier [44] and Méléard [43] (see also [25, 55]) and
embed MS(R) in weighted distribution spaces. This is described in the sequel. We then prove the
convergence of the fluctuation processes to a distribution-valued diffusion driven by a Gaussian white
noise (Proposition 6.4).
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6.2 Convergence of the fluctuation process: the Central Limit Theorem

Let us introduce the Sobolev spaces that we will use (see e.g. Adams [1]). We follow in this the steps
of [44, 43]. To obtain estimates of our fluctuation processes, the following additional regularities for b
and σ are required, as well as assumptions on our auxiliary process.
Assumption 6.2. We assume that:
(i) b and σ are in C8(R,R) with bounded derivatives.
(ii) There exists K > 0 such that for every |x| > K, 2b(x)/x + 6σ(x)/x2 < r′ with r′ < r

∫ 1
0 (1 −

q4)2G(dq).
(iii) Y is ergodic with stationary measure π such that 〈π, |x|8〉 < +∞.
(iv) for every initial condition µ such that 〈µ, |x|8〉 < +∞, supt∈R+ Eµ[Y 8

t ] < +∞.

Remark 6.3. (i) Notice that under Assumption 6.2 (i), there exist b̄ and σ̄ > 0 s.t. forall x ∈ R, we
have |b(x)| ≤ b̄(1 + |x|) and |σ(x)| ≤ σ̄(1 + |x|).
(ii) Conditions for the ergodicity of Y have been provided in Proposition 5.1 and Remarks 5.2 and
5.3. Under Assumption 6.2 (ii), Remark 5.3 applies and we have geometrical ergodicity with (5.7).
(iii) The moment hypothesis of Assumption 6.2 (iv) is fulfilled for the examples (i-iii) of Section 5.1
provided the initial condition satisfies 〈µ, |x|8〉 < +∞. This can be seen by using Itô’s formula (e.g.
[36], Th. 5.1 p. 67) and Gronwall’s Lemma. Moreover, for every p ∈ {1, . . . , 8}, Eµ

[
|Yt|p

]
< +∞.

(iv) Assumption 6.2 (iii) and (iv) imply: ∀p ∈ {1, . . . , 7},
∫
R |x|pπ(dx) < +∞ and limt→+∞ Eµ[|Y |p] =∫

R |x|pπ(dx). This is a consequence of the equi-integrability of (|Yt|p)t≥0 for p ∈ {1, . . . , 7}.
For j ∈ N and α ∈ R+, we denote by W j,α the closure of C∞(R,R) with respect to the norm:

‖g‖W j,α :=

∑
k≤j

∫
R

|g(k)(x)|2

1 + |x|2α dx

1/2

, (6.6)

where g(k) is the kth derivative of g. The space W j,α endowed with the norm ‖.‖W j,α defines a Hilbert
space. We denote by W−j,α the dual space. Let Cj,α be the space of functions g with j continuous
derivatives and such that

∀k ≤ j, lim
|x|→+∞

|g(k)(x)|
1 + |x|α = 0.

When endowed with the norm:
‖g‖Cj,α :=

∑
k≤j

sup
x∈R

|g(k)(x)|
1 + |x|α , (6.7)

these spaces are Banach spaces, and their dual spaces are denoted by C−j,α.
In the sequel, we will use the following embeddings (see [1, 43]):

C7,0 ↪→W 7,1 ↪→H.S. W
5,2 ↪→ C4,2 ↪→W 4,3 ↪→ C3,3 ↪→W 3,4 ↪→ C2,4

C−2,4 ↪→W−3,4 ↪→ C−3,3 ↪→W−4,3 ↪→ C−4,2 ↪→W−5,2 ↪→H.S. W
−7,1 ↪→ C−7,0, (6.8)

where H.S. means that the corresponding embedding is Hilbert-Schmidt (see [1] p.173). Let us explain
briefly why we use these embeddings. Following the preliminary estimates of [43] (Proposition 3.4), it
is possible to choose W−3,4 as a reference space for our study. We control the norm of the martingale
part in W−4,3 using the embeddings W 4,3 ↪→ C3,3 ↪→W 3,4. We obtain uniform estimate for the norm
of ηTt in C−4,2. The spaces W−5,2 and W−7,1 are used to apply the tightness criterion in [43] (see our
Lemma 6.8). The space C−7,0 is used for proving uniqueness of the accumulation point of the family
(ηT )T≥0.
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Proposition 6.4. Let Υ > 0. The sequence (ηT )T∈R+ converges in D([0,Υ], C−7,0) when T → +∞
to the unique solution in C([0,Υ], C−7,0) of the following evolution equation:

〈ηt, f〉 =
∫ t

0

∫
R

(
Lf(x) + Jf(x)

)
ηs(dx) ds+

√
WWt(f), (6.9)

where W(f) is a Gaussian martingale independent of W and which bracket is V (f)× t with:

V (f) =
∫
R

(
r

∫ 1

0

(
f(qx) + f((1− q)x)− f(x)

)2
G(dq) + 2σ2(x)f ′(x)2

)
π(dx). (6.10)

Notice that unlike the discrete case treated in [17], our fluctuation process has here a finite varia-
tional part.

6.3 Proofs

We begin by establishing the evolution equation for ηT that are announced in Proposition 6.1.

Proof of Proposition 6.1. From Lemma 2.4 and applying (2.22) with ft(x) = e−rt/2 f(x), we obtain:

〈Zt+T , f〉 e−r(t+T )/2 =〈ZT , f〉 e−rT/2 +MT
t (f)

+
∫ t

0

∫
R

(
Lf(x) + Jf(x)

)
e−r(s+T )/2 Zs+T (dx) ds, (6.11)

where MT
t (f) is a square integrable martingale with quadratic variation:

〈MT (f)〉t =
∫ t+T

T
ds

∫
R

e−rs Zs(dx)
[
r

∫ 1

0

(
f(qx) + f((1− q)x)− f(x)

)2
G(dq) + 2σ2(x)f ′(x)2

]
,

which is the bracket announced in (6.5). Computing in the same way 〈Zt, f〉 e−rt/2 and taking the
expectation gives, with (4.2) and Proposition 3.3:

Qtf(x) ert/2 = f(x) +
∫ t

0
Qs
(
Lf + Jf

)
(x) ers/2 ds.

Integrating with respect to ZT and multiplying by e−rT/2 imply:

〈ZT , Qtf〉 e−r(T−t)/2 = 〈ZT , f〉 e−rT/2 +
∫ t

0
e−r(T−s)/2 ds 〈ZT , Qs(Lf + Jf)〉. (6.12)

We deduce the announced result from (6.1), (6.11) and (6.12). �

We now prove that our fluctuation process ηT can be viewed as a process with values in W−3,4,
by following the preliminary estimates of [43] (Proposition 3.4). This space W−3,4 is then chosen as
reference space and in all the spaces appearing in the second line of (6.8) that contain W−3,4, the
norm of ηTt is finite and well defined.

Lemma 6.5. Let Υ > 0. There exists a finite constant C that does not depend on T nor on Υ such
that

sup
t∈[0,Υ]

Eµ
[
‖ηTt ‖2W−3,4

]
≤ C er(Υ+T ) . (6.13)
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Proof. Let (ϕp)p∈N∗ be a complete orthonormal basis of W 3,4 that are C∞ with compact support. We
have by Riesz representation theorem and Parseval’s identity:

e−r(t+T ) ‖ηTt ‖2W−4,3 = e−r(t+T ) ∑
p≥1
〈ηTt , ϕp〉2

= e−r(t+T ) E[Nt+T ]
∑
p≥1

(〈Zt+T , ϕp〉
E[Nt+T ] −

〈ZT , Qtϕp〉
E[NT ]

)2

≤2
∑
p≥1

(〈Zt+T , ϕp〉2
E[Nt+T ]2 + 〈ZT , Qtϕp〉

2

E[NT ]2
)
. (6.14)

Under the Assumption 6.2 (iii) and thanks to Remark 4.1 and Example 1, we use the same proof as
in Theorem 4.2, especially (4.9) and (4.10):

0 < Eµ
[〈Zt+T , ϕp〉2

E[Nt+T ]2 + 〈ZT , Qtϕp〉
2

E[NT ]2
]

= e−r(t+T ) µQt+Tϕ
2
p + r

∫ t+T

0
µQsJ2

(
Qt+T−sϕp ⊗Qt+T−sϕp

)
e−rs ds

+ e−rT µQT
(
Qtϕp

)2 + r

∫ T

0
µQsJ2

(
QT−sQtϕp ⊗QT−sQtϕp

)
e−rs ds

≤2 e−rT µQt+Tϕ2
p + 4r

∫ t+T

0

∫ 1

0

∫
R
ϕ2
p(qx) e−rs µQt+T (dx) G(dq) ds (6.15)

since by (3.14), Cauchy-Schwarz’ inequality and symmetry of G:

J2
(
Qt+T−s|ϕp| ⊗Qt+T−s|ϕp|

)
(x) =2

∫ 1

0

(
Qt+T−s|ϕp|(qx)Qt+T−s|ϕp|((1− q)x)

)
G(dq)

≤2
∫ 1

0
Qt+T−sϕ

2
p(qx)G(dq).

We deduce from (6.14) and (6.15) that:

e−r(t+T ) Eµ
[
‖ηTt ‖2W−4,3

]
≤4 e−rT

∫
R

∑
p≥1

ϕ2
p(x) µQt+T (dx)

+8r
∫ t+T

0

∫ 1

0

∫
R

∑
p≥1

ϕ2
p(qx) e−rs µQt+T (dx)G(dq) ds. (6.16)

Let us consider the linear forms Dx,F (g) = g(Fx) for F ∈ [0, 1], x ∈ R and g ∈W 3,4 ↪→ C2,4:

|Dx,F (g)| = |g(Fx)| ≤ (1 + |x|4)‖g‖C2,4 ≤ C(1 + |x|4)‖g‖W 3,4

Using Riesz representation theorem and Parseval’s identity, we get:∑
p≥1

Dx,F (ϕp)2 = ‖Dx,F ‖2W−3,4 ≤ C(1 + |x|4). (6.17)

We deduce from (4.2), (6.16) and Assumption 6.2 (iv) that:

e−r(t+T ) Eµ
[
‖ηTt ‖2W−4,3

]
≤CEµ

[
1 + |Yt+T |4

](
e−rT +1− e−r(t+T )

r

)
≤ C, (6.18)

where the constant C is finite and does not depend on Υ nor T . This completes the proof. �
33



We now turn to the proof of the central limit theorem stated in Proposition 6.4. To achieve this
aim, we first prove the next Lemma on moment estimates.

Lemma 6.6. Suppose that Assumption 6.2 is satisfied and let Υ ∈ R+.
(i) We have:

sup
T∈R+

sup
t≤Υ

Eµ
[
‖ηTt ‖2C−4,2

]
< +∞. (6.19)

(ii) Let us denote by MT
t the operator that associates MT

t (f) to f . Then

sup
T∈R+

sup
t≤Υ

Eµ
[
‖MT

t ‖2W−4,3
]
< +∞. (6.20)

Proof. Let us first deal with (6.20). We consider the following linear forms: Dx,σ(g) = σ(x)g′(x) and
Dx,q(g) = g(qx) + g((1− q)x)− g(x). Notice that for g ∈W 4,3 ↪→ C3,3, x ∈ R and q ∈ [0, 1],

|Dx,σ(g)| = |σ(x)g′(x)| ≤ σ̄(1 + |x|)|g′(x)| ≤ C(1 + |x|4)‖g‖C3,3 ≤ C(1 + |x|4)‖g‖W 4,3 ,

|Dx,q(g)| = |g(qx) + g((1− q)x)− g(x)| ≤ 3(1 + |x|3)‖g‖C3,3 ≤ C(1 + |x|3)‖g‖W 4,3 , (6.21)

where C does not dependent on x nor on q. This implies that Dx,σ and Dx,q are continuous from W 4,3

into R, and their norms in W−4,3 are upper bounded by C(1 + |x|4) and C(1 + |x|3) respectively. Let
us consider a sequence of functions (ϕp)p∈N∗ constituting a complete orthonormal basis of W 4,3 and
that are C∞ with compact support. Using Riesz representation Theorem and Parseval’s identity, we
get∑
p≥1

Dx,σ(ϕp)2 = ‖Dx,σ‖2W−4,3 ≤ C(1+|x|8) and
∑
p≥1

Dx,q(ϕp)2 = ‖Dx,q‖2W−4,3 ≤ C(1+|x|6). (6.22)

We have

Eµ
[
sup
t≤Υ
‖MT

t ‖2W−4,3
]
≤ Eµ

[∑
p≥1

sup
t≤Υ

MT
t (ϕp)2

]
≤ 4

∑
p≥1

Eµ
[
〈MT (ϕp)〉Υ

]
= 4

∫ T+Υ

T
ds Eµ

[ ∫
R

Zs(dx)
E[Ns]

(
r

∫ 1

0

∑
p≥1

Dx,q(ϕp)2 G(dq) + 2
∑
p≥1

Dx,σ(ϕp)2
)]

≤ C
∫ T+Υ

T
ds Eµ

[ ∫
R

Zs(dx)
E[Ns]

(1 + |x|8)
]

= C

∫ T+Υ

T
ds Eµ

[
(1 + |Ys|8)

]
, (6.23)

where the first inequality comes from [1] Lemma 6.52, the second is Doob’s inequality, the third line
is a consequence of (6.5), the fourth inequality comes from the bounds (6.22) and the last equality
comes from (3.1). The proof is then finished since by Assumption 6.2 (iv), supt≥0 Eµ[Y 8

t ] <∞.
Let us now consider the proof of (6.19). Recall J defined by (6.3). It is clear that J is a bounded

operator from C4,2 into itself:
‖Jϕ‖C4,2 ≤ C‖ϕ‖C4,2 , (6.24)
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where C does not depend on ϕ ∈ C4,2.
Let us denote by U(t) the semi-group of the diffusion with generator L given by (5.1). Proposition

3.9 in [43] and Assumptions 6.2 yield that for ϕ ∈ C4,2 and ψ ∈ C3,3

sup
t≤Υ
‖U(t)(ϕ)‖C4,2 ≤ C‖ϕ‖C4,2 and sup

t≤Υ
‖U(t)(ψ)‖C3,3 ≤ C‖ψ‖C3,3 (6.25)

where C does not depend on ϕ nor on ψ.
Let us consider the test function ψt : (s, x) 7→ U(t− s)ϕ(x) with ϕ ∈ C4,2. Using Itô’s formula:

〈ηTt , ϕ〉 =
∫ t

0
〈ηTs , JU(t− s)ϕ〉ds+

∫ t

0
〈dMT

s , U(t− s)ϕ〉,

that is ηTt =
∫ t

0
U(t− s)∗J∗ηTs ds+

∫ t

0
U(t− s)∗ dMT

s , where U(t− s)∗ and J∗ stand for the adjoint
operators of U(t− s) and J . We deduce that for t ≤ Υ:

Eµ
[
‖ηTt ‖2C−4,2

]
≤ 2Υ

∫ t

0
Eµ
[
‖U(t− s)∗J∗ηTs ‖2C−4,2

]
ds+ 2Eµ

[
‖
∫ t

0
U(t− s)∗dMT

s ‖2C−4,2

]
. (6.26)

Thanks to (6.24) and (6.25), we have for s ≤ t ≤ Υ,

Eµ
[
‖U(t− s)∗J∗ηTs ‖2C−4,2

]
ds ≤ CEµ

[
‖ηTs ‖2C−4,2

]
ds. (6.27)

The second term of the r.h.s. of (6.26) is upper bounded by considering the norm in W−4,3. To prove
that

sup
T∈R+

sup
t≤Υ

Eµ
[
‖
∫ t

0
U(t− s)∗dMT

s ‖2W−4,3

]
< +∞, (6.28)

we use similar arguments as those used for the proof of (6.20) and (6.25). In the proof below, we
replace the linear forms Dx,σ and Dx,q by D̄x,t−s,σ and D̄x,t−s,q with D̄x,t−s,σ(ϕ) = Dx,σ(U(t − s)ϕ)
and D̄x,t−s,q(ϕ) = Dx,q(U(t− s)ϕ). Notice that by (6.21) for g ∈W 4,3 ↪→ C3,3, x ∈ R and q ∈ [0, 1],

|D̄x,t,σ(g)| = |Dx,σ(U(t)g)| ≤ C(1 + |x|4)‖U(t)g‖C3,3 ≤ C(1 + |x|4)‖g‖C3,3 ≤ C(1 + |x|4)‖g‖W 4,3 ,

|D̄x,t,q(g)| = |Dx,q(U(t)g)| ≤ C(1 + |x|3)‖U(t)g‖C3,3 ≤ C(1 + |x|3)‖g‖W 4,3 ,

where C does not dependent on x. Using again Riesz representation Theorem and Parseval’s identity,
we get∑

p≥1
D̄x,t,σ(ϕp)2 = ‖D̄x‖2W−4,3 ≤ C(1 + |x|8) and

∑
p≥1

D̄x,t,q(ϕp)2 = ‖D̄x,q‖2W−4,3 ≤ C(1 + |x|6),

(6.29)
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where C does not dependent on x nor on q. We have with the same arguments as in (6.23):

Eµ[sup
t≤Υ
‖
∫ t

0
U(t− s)∗dMT

s ‖2W−4,3 ] ≤ Eµ
[∑
p≥1

sup
t≤Υ

∫ t

0
(U(t− s)ϕp)2dMT

s

]
≤ 4

∑
p≥1

Eµ
[ ∫ Υ

0
(U(t− s)ϕp)2d〈MT 〉s

]

= 4
∫ T+Υ

T
ds Eµ

[ ∫
R

r ∫ 1

0

∑
p≥1

D̄x,t−s,q(ϕp)2 G(dq) + 2
∑
p≥1

D̄x,t−s,σ(ϕp)2

 Zs(dx)
E[Ns]

]

≤ C
∫ T+Υ

T
ds Eµ

[ ∫
R

Zs(dx)
E[Ns]

(1 + |x|8)
]

= C

∫ T+Υ

T
ds Eµ

[
(1 + |Ys|8)

]
.

The proof is then done, as supt≥0 Eµ[Y 8
t ] <∞ by Assumption 6.2 (iv).

Thus we get from (6.26), (6.27) and (6.28):

Eµ
[
‖ηTt ‖2C−4,2

]
≤ C

(
1 +

∫ t

0
Eµ
[
‖ηTs ‖2C−4,2

]
ds

)
.

We use Gronwall’s Lemma and the fact that Eµ
[
‖ηTt ‖2C−4,2

]
is locally bounded (see Lemma 6.5) to

conclude. �

We now prove the tightness of the fluctuation process.

Proposition 6.7. Let Υ > 0. The sequence (ηT )T∈R+ is tight in D([0,Υ],W−7,1).

We use a tightness criterion from [38], which we recall (see Lemma C p.217 in [43]).

Lemma 6.8. (see Lemma C p.217 in [43])
A sequence (ΘT )T∈R+ of Hilbert H-valued càdlàg processes is tight in D([0,Υ], H) if the following
conditions are satisfied:
(i) There exists a Hilbert space H0 such that H0 ↪→H.S. H and ∀t ≤ Υ, supT∈R+ E

[
‖ΘT

t ‖2H0

]
< +∞,

(ii) (Aldous condition) For every ε > 0, there exists δ > 0 and T0 ∈ R+ such that for every sequence
of stopping time τT ≤ Υ,

sup
T>T0

sup
ς<δ

P
(
‖ΘT

τT+ς −ΘT
τT
‖H > ε

)
< ε.

Proof of Prop. 6.7. We shall use Lemma 6.8 with H0 = W−5,2 and H = W−7,1. Condition (i) is
a direct consequence of the uniform estimates obtained in (6.19) and of the fact that ‖ηTt ‖2W−5,2 ≤
C‖ηTt ‖2C−4,2 .

Let us now turn to condition (ii). By the Rebolledo criterion (see e.g. [38]), it is sufficient to
show the Aldous condition for the the finite variation part and for the trace of the martingale part
of (6.4). Let (ϕp)p≥1 be a complete orthonormal system of W 7,1 ↪→ C6,1. We recall that the trace of
the martingale part is defined as trW−7,1〈〈MT 〉〉t =

∑
p≥1〈MT (ϕp)〉t (see e.g. Joffe and Métivier [38]).

Let ε > 0 and τT ≤ Υ be a sequence of stopping times. For T0 > 0 and δ > 0, following the steps of
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(6.23), we get:

sup
T>T0

sup
ς<δ

P
(∣∣trW−7,1〈〈MT 〉〉τT+ς − trW−7,1〈〈MT 〉〉τT

∣∣ > ε
)

(6.30)

≤ sup
T>T0

sup
ς<δ

1
ε
E
[ ∫ τT+ς

τT

〈 Zs+T
E[Ns+T ] , r

∫ 1

0

∑
p≥1

Dx,q(ϕp)2G(dq) + 2
∑
p≥1

Dx,σ(ϕp)2〉ds
]

Using the embedding W 7,1 ↪→ C6,1 and computations similar to (6.21), we obtain that:∑
p≥1

Dx,q(ϕp)2 = ‖Dx,q‖2W−7,1 ≤ C(1 + |x|2) and
∑
p≥1

Dx,σ(ϕp)2 = ‖Dx,σ‖2W−7,1 ≤ C(1 + |x|4).

Thus (6.30) gives:

sup
T>T0

sup
ς<δ

Pµ
(∣∣trW−7,1〈〈MT 〉〉τT+ς − trW−7,1〈〈MT 〉〉τT

∣∣ > ε
)

≤C
ε

sup
T>T0

Eµ
[ ∫ τT+δ

τT

〈 Zs+T
E[Ns+T ] , 1 + |x|4〉

]
ds

≤C
ε

sup
T>T0

Eµ
[ ∫ δ

0
〈Zs+τT+T , 1 + |x|4〉 e−r(s+τT+T )

]
ds

≤C
ε

sup
T>T0

∫ δ

0
Eµ
[
EZτT

[
〈Zs+T , 1 + |x|4〉 e−r(s+T )

]]
ds (6.31)

by using the strong Markov property of (Zt)t≥0. Now, using the branching property:

EZτT
[
〈Zs+T , 1 + |x|4〉 e−r(s+T )

]
=
∫
R
Ey
[
〈Zs+T , 1 + |x|4〉 e−r(s+T )

]
ZτT (dy)

=
∫
R
Ey
[
1 + |Ys+T |4

]
ZτT (dy)

≤
∫
R

(
〈π, 1 + |x|4〉+B(1 + |y|4) e−β(s+T )

)
ZτT (dy). (6.32)

for some β and B > 0 given by (5.7) (see Remark 6.3 (ii)). Since we have a Yule tree, E[NτT ] ≤ E[NΥ] =
exp(rΥ). Moreover, using (2.22) where the integrand in the second term of the r.h.s. is negative for
our choice f(x) = |x|4 and noticing that Zs is a positive measure, we obtain with localizing arguments
that for any t ∈ R+:

Eµ
[
〈Zt∧τT , 1 + |x|4〉

]
≤〈µ, 1 + |x|4〉+

∫ t

0
(8b̄+ 24σ̄)Eµ[〈Zs∧τT , 1 + |x|4〉]ds.

We deduce from Gronwall’s lemma that:

Eµ
[
〈ZτT , 1 + |x|4〉

]
≤〈µ, 1 + |x|4〉 e(8b̄+24σ̄)Υ . (6.33)

Then (6.31), (6.32) and (6.33) imply that:

sup
T>T0

sup
ς<δ

Pµ
(∣∣trW−7,1〈〈MT 〉〉τT+ς − trW−7,1〈〈MT 〉〉τT

∣∣ > ε
)
≤ Cδ

ε

(
erΥ + e(8b̄+24σ̄)Υ ) (6.34)

which finishes the proof of the Aldous inequality for the trace of the martingale.
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Remark 6.9. Notice that this also shows that (MT )T≥0 is tight in W−7,1.
For the finite variation part:

sup
T>T0

sup
ς<δ

P
(∥∥ ∫ τT+ς

0
(L+ J)∗ηTs ds−

∫ τT

0
(L+ J)∗ηTs ds

∥∥
W−7,1 > ε

)
≤ sup
T>T0

sup
ς<δ

1
ε2E

[∥∥ ∫ τT+ς

τT

(L+ J)∗ηTs ds
∥∥2
W−7,1

]
≤ sup
T>T0

sup
ς<δ

ς

ε2E
[ ∫ τT+ς

τT

∥∥(L+ J)∗ηTs
∥∥2
W−7,1ds

]
≤ sup
T>T0

Cδ

ε2

∫ Υ+δ

0
E
[∥∥ηTt ∥∥2

C−4,2

]
dt

≤Cδ(Υ + δ)
ε2 sup

T>T0

sup
t≤Υ

E
[∥∥ηTt ∥∥2

C−4,2

]
. (6.35)

We use Cauchy-Schwarz’ inequality for the second inequality. The third inequality is obtained by
noticing that under the Assumption 6.2 and for ϕ ∈W 7,1:

‖Lϕ‖C4,2 ≤ C‖ϕ‖C6,1 ≤ C‖ϕ‖W 7,1 (6.36)

as W 7,1 ↪→ C6,1. We can make the r.h.s. of (6.35) as small as we wish thanks to (6.19), and this ends
the proof of the tightness. �

Then, we identify the limit by showing that the limiting values solve an equation for which unique-
ness holds. This will prove the central limit theorem.

Proof of Proposition 6.4. First of all, by Remark 6.9, the sequence of martingales (MT )T≥0 is tight
in W−7,1 and thus also in C−7,0 by (6.8). Let us prove that in the latter space, it is moreover C-tight
in the sense of Jacod and Shiryaev [37] p.315. Using the Proposition 3.26 (iii) of this reference, it
remains to prove the convergence of supt≤Υ ‖∆MT

t ‖C−7,0 to 0 where ∆MT
t = MT

t −MT
t− . Since the

finite variation part of (6.4) is continuous, ∆MT
t = ∆ηTt , and since in (6.1) t 7→ 〈Zt, Qtf〉 is continuous,

we have for f ∈ C7,0:

sup
t≤Υ
|∆MT

t (f)| = sup
t≤Υ

e−
r(t+T )

2 |f
(
q(ω, t+ T )Xu(ω,t+T )

t+T
)

+ f
(
(1− q(ω, t+ T ))Xu(ω,t+T )

t+T
)
− f

(
X
u(ω,t+T )
t+T

)
|

(6.37)

where u(ω, t+T ) ∈ Vt+T is the label of the particle that undergoes division at t+T , and where q(ω, t+T )
is the fraction which appears in the splitting. By convention, if there is no splitting at t+T , the term in
the supremum of the r.h.s. of (6.37) is 0. Thus supt≤Υ |∆MT

t (f)| ≤ 3 e−rT/2 ‖f‖∞ ≤ 3 e−rT/2 ‖f‖C7,0 .
This proves that:

sup
t≤Υ
‖∆MT

t ‖C−7,0 ≤ 3 e−rT/2, (6.38)

which converges a.s. to 0 when T → +∞. This finishes the proof of the C-tightness of (MT )T≥0 in
C−7,0. The inequality (6.38) also ensures that the sequence supt≤Υ ‖∆MT

t ‖W−7,1 is uniformly inte-
grable. From the LLN of Proposition 4.2, the integrand of (6.5) converges to W × V (f) which does
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not depend on s any more. Since W is ∩ε>0σ(ηε)-measurable, it follows that W and W are indepen-
dent. Thus, using Theorem 3.12 p. 432 in [37], we obtain that (MT )T≥0 converges in distribution in
D([0,Υ], C−7,0) to a Gaussian process W with the announced quadratic variation.

By Proposition 6.7, the sequence (ηT )T≥0 is tight in W−7,1 and hence also in C−7,0 by (6.8).
Let η be an accumulation point in D([0,Υ], C−7,0). Because of (6.4) and (6.38), η is almost surely a
continuous process. Let us call again by (ηT )T≥0, with an abuse of notation, the subsequence that
converges in law to η. Since η is continuous, we get from (6.4) that it solves (6.9). Using Gronwall’s
inequality, we obtain that this equation admits in C([0,Υ], C−7,0) a unique solution for a given Gaussian
white noise W which is in C−7,0. This achieves the proof. �
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