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Abstract. We show that the general stable convergence results proved in Peccati
and Taqqu (2007) for generalized adapted stochastic integrals can be used to ob-
tain limit theorems for multiple stochastic integrals with respect to independently
scattered random measures. Several applications are developed in a companion pa-
per (see Peccati and Taqqu, 2008a), where we prove central limit results involving
single and double Poisson integrals, as well as quadratic functionals associated with
moving average Lévy processes.

1. Introduction

Let {M (B) : B ∈ Z} be a square-integrable independently scattered random
measure (see Section 4 below) on some measurable space (Z,Z), and fix an integer
d ≥ 2. The aim of this note is to show that one can use the stable convergence
results proved in Peccati and Taqqu (2007) to study the asymptotic behavior of
sequences of the type

I (n) = IM
d (fn) , n ≥ 1, (1.1)

where {fn} is a collection of suitably regular (deterministic) functions on Zd, and
IM
d (fn) is the multiple Wiener-Itô integral (of order d) of fn with respect to M —

see Section 4 below for precise definitions.

Our purpose is twofold. We shall show, firstly, that the random variables I (n)
appearing in (1.1) are indeed generalized adapted stochastic integrals of the type
defined and studied in Peccati and Taqqu (2007). This entails that their stable con-
vergence can be characterized by means of the convergence of well-chosen random
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characteristic functions (see Theorem 7 in Peccati and Taqqu, 2007, and Section 6
below). Secondly, we will prove that the convergence of these transforms is equiva-
lent to the convergence in probability of special random Lévy-Khintchine exponents.
In particular, we will see that the analytic expressions of such exponents can be ob-
tained by a suitable extension of the techniques developed by Rajput and Rosinski
(1989) and Kwapień and Woyczyński (1991).

This paper serves as a bridge between the abstract theory developed in Peccati
and Taqqu (2007), and the applications developed in de Blasi et al. (2008), Peccati
and Prünster and Peccati and Taqqu (2008a) (see also Peccati and Taqqu, 2008b).
In the latter references, special attention is devoted to CLTs involving single and
double integrals with respect to a Poisson random measure. These weak conver-
gence results are then applied to obtain CLTs for quadratic functionals associated
with random processes having the special form of moving averages of generalized
Volterra processes. In particular (see de Blasi et al., 2008; Peccati and Prünster)
this kind of limit theorems can be used in order to characterize the asymptotic
properties of random hazard rates used in Bayesian survival analysis. To further
justify our study, some applications will be sketched at the end of the paper. We
also stress that the applications of our techniques are by no means exhausted by
those presented in Peccati and Taqqu (2008a), de Blasi et al. (2008) and Peccati
and Prünster. For instance, we expect that Theorem 6 and Corollaries 7 and 8
below can be used to obtain CLTs involving vectors of multiple stochastic integrals
of order greater than 2.

The paper is organized as follows. In Section 2 we delineate our general set-
ting. In Section 3 we present a brief summary of the results obtained in Peccati
and Taqqu (2007), with special attention to the stable convergence of generalized
adapted stochastic integrals. In Section 4, the notions of independently scattered

random measure and of multiple stochastic integral are presented in the context of
infinitely divisible laws. Section 5 is devoted to the representation of multiple sto-
chastic integrals using the adapted integrals studied in Peccati and Taqqu (2007).
In Section 6 we obtain our main stable convergence results, involving multiple in-
tegrals of any finite order with respect to general independently scattered random
measures. Examples and concluding remarks are collected in Section 7.

2. General setting

To obtain our main convergence results we shall rely heavily on the theory devel-
oped in Peccati and Taqqu (2007). In that paper we used a decoupling technique,
known as principle of conditioning, to investigate the stable convergence of gener-
alized adapted stochastic integrals with respect to real-valued random fields “with
independent increments”. This is a framework in which the definition of increment
is quite abstract, involving in particular increasing families of projection operators,
called resolutions of the identity.

We shall see in Section 5 that multiple integrals with respect to independently
scattered random measures are indeed generalized adapted integrals of the kind
described above. This will allow us to apply the techniques developed in Peccati
and Taqqu (2007) to study their stable convergence. Stable convergence entails
convergence in law.
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In what follows, we present a brief review of the main notions introduced in
Peccati and Taqqu (2007), that will be needed in the subsequent sections. The
reader is referred to Peccati and Taqqu (2007, Sections 2 and 3) for further details,
proofs and examples. Throughout the following, H denotes a real separable Hilbert
space, with inner product (·, ·)

H
and norm ‖·‖

H
. All random objects are defined on

an adequate probability space (Ω,F ,P).

(i) (Resolutions of the identity; see e.g. Brodskii, 1971 and Yoshida,
1980): A continuous resolution of the identity over H is a collection π =
{πt : t ∈ [0, 1]} of orthogonal projections satisfying:
(a) π0 = 0, and π1 = id.;
(b) ∀0 ≤ s < t ≤ 1, πsH ⊆ πtH;
(c) ∀0 ≤ t0 ≤ 1, ∀h ∈ H, limt→t0 ‖πth− πt0h‖H

= 0.
A subset F of H is π-reproducing if the linear span of the class {πtf : f ∈
F, t ∈ [0, 1]} is dense in H. The rank of π is the smallest of the dimensions
of all the closed subspaces generated by the π-reproducing subsets of H.
The class of all continuous resolutions of the identity is denoted R (H).

(ii) (Isometric random fields): In the following,

X = X (H) = {X (f) : f ∈ H} (2.1)

denotes a collection of centered real-valued random variables, indexed by
the elements of H and satisfying the isometric relation

E [X (h)X (h′)] = (h, h′)
H

,

for every h, h′ ∈ H.
(iii) (π-Independent increments): We define RX (H) to be the subset of

R (H) containing those π such that the vector
(
X ((πt1 − πt0)h1) , X ((πt2 − πt1) h2) ..., X

((
πtm

− πtm−1

)
hm

))

is composed of jointly independent random variables, for any choice of
m ≥ 2, h1, ..., hm ∈ H and 0 ≤ t0 < t1 < ... < tm ≤ 1. The set RX (H)
depends in general of X and may of course be empty. If X (H) is Gaussian,
then RX (H) = R (H). When RX (H) 6= ∅ and π ∈ RX (H), we say that X
has independent increments with respect to π, or π-independent increments.

(iv) (Filtrations): To every π ∈ RX (H) is associated the filtration

Fπ
t (X) = σ {X (πtf) : f ∈ H} , t ∈ [0, 1] . (2.2)

(v) (Infinite divisibility and Lévy-Khintchine exponents): If RX (H) is
not empty, for every h ∈ H, the law of X (h) is infinitely divisible. As a
consequence (see e.g. Sato, 1999), for every h ∈ H, there exists a unique pair(
c2 (h) , νh

)
such that c2 (h) ∈ [0,+∞) and νh is a measure on R satisfying

νh ({0}) = 0 and

∫

R

x2νh (dx) < +∞; (2.3)

moreover, for every λ ∈ R,

E [exp (iλX (h))] = exp

[
−c

2 (h)λ2

2
+

∫

R

(exp (iλx) − 1 − iλx) νh (dx)

]
(2.4)

, exp [ψH (h;λ)] ; (2.5)
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ψH (h;λ) is known as the Lévy-Khintchine exponent associated to X (h).

Relation (2.3) ensures that EX (h)2 < +∞.
(vi) (Adapted H-valued random elements): By L2 (P,H, X) = L2 (H, X)

we denote the space of σ (X)-measurable and H-valued random variables

Y satisfying E

[
‖Y ‖2

H

]
< +∞ (L2 (H, X) is a Hilbert space, with inner

product (Y, Z)L2(H,X) = E
[
(Y, Z)

H

]
). We associate to every π ∈ RX (H)

the subspace L2
π (H, X) of the π-adapted elements of L2 (H, X), that is:

Y ∈ L2
π (H, X) if, and only if, Y ∈ L2 (H, X) and, for every t ∈ [0, 1] and

every h ∈ H,

(Y, πth)H
∈ Fπ

t (X) . (2.6)

For any π ∈ RX (H), L2
π (H, X) is a closed subspace of L2 (H, X).

(vii) (Elementary adapted random elements): For every π ∈ RX (H),
Eπ (H, X) is the space of the elementary elements of L2

π (H, X), i.e., Eπ(H, X)
is the set of those elements of L2

π (H, X) that are linear combinations of H-
valued random variables of the type

h = Φ (t1) (πt2 − πt1) f , (2.7)

where t2 > t1, f ∈ H and Φ (t1) is a random variable which is square-
integrable and Fπ

t1
(X) - measurable. We recall that, according to Peccati

and Taqqu (2007, Lemma 3), ∀π ∈ RX (H), the span of the set Eπ (H, X)
is dense in L2

π (H, X).
(viii) (Integrals of elementary random elements): Fix π ∈ RX (H) and

consider simple integrands of the form h =
∑n

i=1 λihi ∈ Eπ (H, X), where
λi ∈ R, n ≥ 1, and hi is as in (2.7), i.e.

hi = Φi

(
t
(i)
1

)(
π

t
(i)
2

− π
t
(i)
1

)
fi, fi ∈ H, i = 1, ..., n, (2.8)

with t
(i)
2 > t

(i)
1 , and Φi

(
t
(i)
1

)
∈ Fπ

t
(i)
1

(X) and square integrable. Then, the

(generalized) stochastic integral of such a h with respect to X and π, is
defined as

Jπ
X (h) =

n∑

i=1

λiJ
π
X (hi) =

n∑

i=1

λiΦi

(
t
(i)
1

)
X
((
π

t
(i)
2

− π
t
(i)
1

)
fi

)
. (2.9)

(ix) (Extension of Jπ
X ; see Peccati and Taqqu, 2007, Proposition 4): Fix

π∈RX (H). Then, there exists a unique linear extensions of Jπ
X to L2

π (H, X)
satisfying the following three conditions: (a) Jπ

X (h) equals the RHS of (2.9),
for every h =

∑n
i=1 λihi defined according to (2.7), (b) Jπ

X is a continuous
operator, from L2

π (H, X) to L2 (P), and (c) for every h, h′ ∈ L2
π (H, X),

E [Jπ
X (h)Jπ

X (h′)] = (h, h′)L2
π(H) . (2.10)

The random variable Jπ
X (h) is the (generalized) stochastic integral of h

with respect to X and π.

3. Stable convergence criteria

The convergence results for stochastic integrals obtained in Section 6 hold in the
sense of the stable convergence towards mixtures of random probability measures.
The notions of random probability, random characteristic functions, mixtures and
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stable convergence are recalled in the next definitions. The reader is referred e.g. to
Jacod and Shiryaev (1987, Chapter 4), Peccati and Taqqu (2007) and the references
therein for a more detailed characterization of stable convergence.

Definition I – Let B (R) denote the Borel σ-field on R.

(a) A map m (·, ·), from B (R) × Ω to R is called a random probability (on R)
if, for every C ∈ B (R), m (C, ·) is a random variable and, for P-a.e. ω, the
map C 7→ m (C, ω), C ∈ B (R), defines a probability measure on R. The
class of all random probabilities is noted M, and, for m ∈ M, we write
Em (·) to indicate the (deterministic) probability measure

Em (C) , E [m (C, ·)] , C ∈ B (R) ; (3.1)

Em is called a mixture.
(b) For a measurable map φ (·, ·), from R × Ω to C, we write φ ∈ M̂ whenever

there exists m ∈ M such that

φ (λ, ω) = m̂ (λ) (ω) , ∀λ ∈ R, for P-a.e. ω, (3.2)

where m̂ (·) is defined as

bm (λ) (ω) =

 R
R

exp (iλx)m (dx, ω) if m (·, ω) is a probability measure
1 otherwise.

, λ ∈ R;

(3.3)

m̂ is a random characteristic function.

(c) For a given φ ∈ M̂, we write φ ∈ M̂0 whenever

P {ω : φ (λ, ω) 6= 0 ∀λ ∈ R} = 1

.

Definition II (see e.g. Jacod and Shiryaev, 1987, Chapter 4 or Xue, 1991) – Let
F∗ ⊆ F be a σ-field, and let m ∈ M. A sequence of real valued r.v.’s {Xn : n ≥ 1}
is said to converge F∗-stably to m (·), written Xn →(s,F∗) m (·), if, for every λ ∈ R

and every bounded F∗-measurable r.v. Z,

lim
n→+∞

E [Z × exp (iλXn)] = E [Z × m̂ (λ)] , (3.4)

where the notation is the same as in (3.3).

IfXn converges F∗-stably, then the conditional distributions L (Xn | A) converge
for any A ∈ F∗ such that P (A) > 0 (see again Jacod and Shiryaev (1987, Section
5, §5c)). By setting Z = 1 in (3.4), we obtain that if Xn →(s,F∗) m (·), then the
law of the Xn’s converges weakly to Em (·).

We shall now state the main result of Peccati and Taqqu (2007). The notation
is the same as that introduced in Section 2. In particular, Hn, n ≥ 1, is a sequence
of real separable Hilbert spaces, and, for each n ≥ 1,

Xn = Xn (Hn) = {Xn (g) : g ∈ Hn} , (3.5)

is a centered, real-valued stochastic process, indexed by the elements of Hn and
such that E [Xn (f)Xn (g)] = (f, g)

Hn
.



398 Giovanni Peccati and Murad S. Taqqu

Theorem 1 (Peccati and Taqqu, 2007, Theorem 7). For every n ≥ 1, let π(n) ∈
RXn

(Hn) (we implicitly assume that RXn
(Hn) is not empty) and un ∈ L2

π(n)(Hn, Xn).
Suppose also there exists a sequence {tn : n ≥ 1} ⊂ [0, 1] and a collection of σ-fields
{Un : n ≥ 1}, such that

lim
n→+∞

E

[∥∥∥π(n)
tn
un

∥∥∥
2

Hn

]
= 0 (3.6)

and

Un ⊆ Un+1 ∩ Fπ(n)

tn
(Xn) . (3.7)

If

exp [ψHn
(un;λ)]

P→ φ (λ) = φ (λ, ω) , ∀λ ∈ R, (3.8)

where ψHn
(un;λ) is defined according to (2.5), φ ∈ M̂0 and, ∀λ ∈ R,

φ (λ) ∈ ∨nUn , U∗,

then, as n→ +∞,

E

[
exp

(
iλJπ(n)

Xn
(un)

)
| Fπ(n)

tn
(Xn)

]
P→ φ (λ) , ∀λ ∈ R, (3.9)

and

Jπ(n)

Xn
(un) →(s,U∗) m (·) , (3.10)

where m ∈ M verifies (3.2).

Roughly speaking, Theorem 1 considers sequences of random integrands un ∈
L2

π(n) (Hn, Xn) and states that, under the negligeability condition (3.6), the stable

convergence of the sequence {Jπ(n)

Xn
(un) : n ≥ 1} (which, in general, is composed

of random variables whose law is not infinitely divisible) can be deduced from the
convergence of the random Lévy-Khintchine exponents ψHn

(un;λ), n ≥ 1, which
are indeed deterministic transforms of the random integrands un. It is shown in
Peccati and Taqqu (2007) that the quantity exp [ψHn

(un;λ)] can be represented as

the conditional characteristic function of a “decoupled” version of Jπ(n)

Xn
(un).

4. Independently scattered random measures and multiple integrals

We are now ready to focus on multiple integrals with respect to general inde-
pendently scattered random measures (not necessarily Poisson, nor Gaussian) and
corresponding limit theorems. We will show in Proposition 5 below that these mul-
tiple integrals are generalized stochastic integrals in the sense of Points (viii) and
(ix) of Section 2. We will then use Theorem 1 to obtain new central and non-central
limit theorems for these multiple integrals, extending some of the results proved in
Nualart and Peccati (2005) and Peccati and Tudor (2004), which were established in
the framework of multiple Wiener-Itô integrals with respect to Gaussian processes.
The limits will be mixtures of infinitely divisible distributions.

Several applications are developed in the companion paper Peccati and Taqqu
(2008a), where we study sequences of double integrals with respect to Poisson
random measures, as well as quadratic functionals of generalized moving average
processes. For a general discussion concerning multiple integrals with respect to
random measures, see Engel (1982), Kwapień and Woyczyński (1992) and Rota and
Wallstrom (1997). For limit theorems involving multiple stochastic integrals (and
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other related classes of random variables), see the two surveys by Surgailis Surgailis
(2000a) and Surgailis (2000b), and the references therein.

From now on (Z,Z, µ) stands for a standard Borel space, with µ a positive,
non-atomic and σ-finite measure on (Z,Z). We denote by Zµ the subset of Z
composed of sets of finite µ-measure. Observe that the σ-finiteness of µ implies
that Z = σ (Zµ).

Definition III – An independently scattered random measure M on (Z,Z), with
control measure µ, is a collection of random variables

M = {M (B) : B ∈ Zµ} ,
indexed by the elements of Zµ, and such that: (i) for every B ∈ Zµ M (B) ∈
L2 (P), (ii) for every finite collection of disjoint sets B1, ..., Bm ∈ Zµ, the vector
(M (B1) , ...,M (Bd)) is composed of mutually independent random variables; (iii)
for every B,C ∈ Zµ,

E [M (B)M (C)] = µ (C ∩B) . (4.1)

Let Hµ = L2 (Z,Z, µ) be the Hilbert space of real-valued and square-integrable
functions on (Z,Z) (with respect to µ). Since relation (4.1) holds, it is easily
seen that there exists a unique collection of centered and square-integrable random
variables

XM = XM (Hµ) = {XM (h) : h ∈ Hµ} , (4.2)

such that the following two properties are verified: (a) for every elementary function
h ∈ Hµ with the form h (z) =

∑
i=1,...,n ci1Bi

(z), where n = 1, 2, ..., ci ∈ R and

Bi ∈ Zµ are disjoint, XM (h) =
∑

i=1,...,n ciM (Bi), and (b) for every h, h′ ∈ Hµ

E [XM (h)XM (h′)] = (h, h′)
Hµ

,

∫

Z

h (z)h′ (z)µ (dz) . (4.3)

Property (a) implies in particular that, ∀B ∈ Zµ, M (B) = XM (1B). Note that
XM (Hµ) is a collection of random variables of the kind defined in formula (2.1)
of Section 2. Since M is independently scattered, for every h ∈ Hµ, the random
variable XM (h) has an infinitely divisible law. It follows that, for every h ∈ Hµ,
there exists a unique pair

(
c2 (h) , νh

)
such that c2 (h) ∈ [0,+∞) and νh is a (Lévy)

measure on R satisfying the three properties in (2.3), so that, for every λ ∈ R,

E [exp (iλXM (h))] = exp
[
ψHµ

(h;λ)
]
, (4.4)

where the Lévy-Khinchine exponent ψHµ
(h;λ) is defined by (2.5).

The random variable XM (h) is thus infinitely divisible with Lévy-Khintchine
exponent ψHµ

(h;λ). While the random measure M is defined on Z, the following
characterization of ψHµ

(h;λ) (and hence XM (h)) involves the space Z × R. Al-
though in the same spirit as that of Rajput and Rosinski (1989), it involves the
control measure µ directly (see e.g. (4.8)). The proof is based on techniques de-
veloped in Rajput and Rosinski (1989) (see also Kwapień and Woyczyński, 1991,
Section 5) and is presented for the sake of completeness.
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Proposition 2. For every B ∈ Zµ, let
(
c2 (B) , νB

)
denote the pair such that

c2 (B) ∈ [0,+∞), νB verifies (2.3) and

ψHµ
(1B;λ) = −λ

2

2
c2 (B) +

∫

R

(exp (iλx) − 1 − iλx) νB (dx) . (4.5)

Then,

(1) The application B 7→ c2 (B), from Zµ to [0,+∞), extends to a unique σ-
finite measure c2 (dz) on (Z,Z), such that c2 (dz) ≪ µ (dz) .

(2) There exists a unique measure ν on (Z × R,Z × B (R)) such that ν(B×C)=
νB (C), for every B ∈ Zµ and C ∈ B (R).

(3) There exists a function ρµ : Z × B (R) 7→ [0,+∞] such that (i) for every
z ∈ Z, ρµ (z, ·) is a Lévy measure1 on (R,B (R)) satisfying

∫
Z
x2ρµ (z, dx) <

+∞, (ii) for every C ∈ B (R), ρµ (·, C) is a Borel measurable function, (iii)
for every positive function g (z, x) ∈ Z ⊗ B (R),

∫

Z

∫

R

g (z, x) ρµ (z, dx)µ (dz) =

∫

Z

∫

R

g (z, x) ν (dz, dx) . (4.6)

(4) For every (λ, z) ∈ R × Z, define

Kµ (λ, z) = −λ
2

2
σ2

µ (z) +

∫

R

(
eiλx − 1 − iλx

)
ρµ (z, dx) , (4.7)

where

σ2
µ (z) =

dc2

dµ
(z)

, then, for every h ∈ Hµ = L2 (Z,Z, µ),
∫

Z
|Kµ (λh (z) , z)|µ (dz) < +∞

and the exponent ψHµ
in (4.4) is given by

ψHµ
(h;λ) =

∫

Z

Kµ (λh (z) , z)µ (dz) (4.8)

= −λ
2

2

∫

Z

h2 (z)σ2
µ (z)µ (dz) (4.9)

+

∫

Z

∫

R

(
eiλh(z)x − 1 − iλh (z)x

)
ρµ (z, dx)µ (dz) .

Proof. The proof follows from results contained in Rajput and Rosinski (1989,
Section II). Point 1 is indeed a direct consequence of Rajput and Rosinski (1989,
Proposition 2.1 (a)). In particular, whenever B ∈ Z is such that µ (B) = 0, then
M (B) = 0, a.s.-P (by applying (4.1) with B = C), and therefore c2 (B) = 0, thus
implying c2 ≪ µ. Point 2 follows from the first part of the statement of Rajput
and Rosinski (1989, Lemma 2.3). To establish Point 3 define, as in Rajput and
Rosinski (1989, p. 456),

γ (A) = c2 (A) +

∫

R

min
(
1, x2

)
νA (dx) ,

whenever A ∈ Zµ, and observe (see Rajput and Rosinski, 1989, Definition 2.2)
that γ (·) can be canonically extended to a σ-finite and positive measure on (Z,Z).
Moreover, since µ (B) = 0 implies M (B) = 0 a.s.-P, the uniqueness of the Lévy-
Khinchine characteristics implies as before γ (A) = 0, and therefore γ (dz) ≪ µ (dz).
Observe also that, by standard arguments, one can select a version of the density

1That is, ρµ (z, {0}) = 0 and
R

R
min

`

1, x2
´

ρµ (z, dx) < +∞
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(dγ/dµ) (z) such that (dγ/dµ) (z) < +∞ for every z ∈ Z. According to Rajput
and Rosinski (1989, Lemma 2.3), there exists a function ρ : Z × B (R) 7→ [0,+∞],
such that: (a) ρ (z, ·) is a Lévy measure on B (R) for every z ∈ Z, (b) ρ (·, C) is
a Borel measurable function for every C ∈ B (R), (c) for every positive function
g (z, x) ∈ Z ⊗ B (R),

∫

Z

∫

R

g (z, x) ρ (z, dx) γ (dz) =

∫

Z

∫

R

g (z, x) ν (dz, dx) . (4.10)

In particular, by using (4.10) in the case g (z, x) = 1A (z)x2 for A ∈ Zµ,
∫

A

∫

R

x2ρ (z, dx) γ (dz) =

∫

R

x2νA (dx) < +∞,

since M (A) ∈ L2 (P), and we deduce that ρ can be chosen in such a way that, for
every z ∈ Z,

∫
R
x2ρ (z, dx) < +∞. Now define, for every z ∈ Z and C ∈ B (R),

ρµ (z, C) =
dγ

dµ
(z)ρ (z, C) ,

and observe that, due to the previous discussion, the application ρµ : Z ×B (R) 7→
[0,+∞] trivially satisfies properties (i)-(iii) in the statement of Point 3, which is
therefore proved.
To Prove point 4, first define a function h ∈ Hµ to be simple if h(z) =

∑n
i=1 ai1Ai

(z),
where ai ∈ R, and (A1, ..., An) is a finite collection of disjoints elements of Zµ. Of
course, the class of simple functions (which is a linear space) is dense in Hµ, and
therefore for every h ∈ Hµ there exists a sequence hn, n ≥ 1, of simple functions

such that
∫

Z
(hn (z) − h (z))

2
µ (dz) → 0. As a consequence, since µ is σ-finite

there exists a subsequence nk such that hnk
(z) → h (z) for µ-a.e. z ∈ Z (and

therefore for γ-a.e. z ∈ Z) and moreover, for every A ∈ Z, the random sequence
XM (1Ahn) (where we use the notation (4.2)) is a Cauchy sequence in L2 (P),
and hence it converges in probability. In the terminology of Rajput and Rosinski
(1989, p. 460), this implies that every h ∈ Hµ is M -integrable, and that, for every
A ∈ Z, the random variable XM (h1A), defined according to (4.2), coincides with∫

A
h (z)M (dz), i.e. the integral of h with respect to the restriction of M (·) to A,

as defined in Rajput and Rosinski (1989, p. 460). As a consequence, by using a
slight modification of Rajput and Rosinski (1989, Proposition 2.6)2, the function
K0 on R × Z given by

K0 (λ, z) = −λ
2

2
σ2

0 (z) +

∫

R

(
eiλx − 1 − iλx

)
ρ (z, dx) ,

where σ2
0 (z) =

(
dc2/dγ

)
(z), is such that

∫
Z
|K0 (λh (z) , z)| γ (dz) < +∞ for every

h ∈ Hµ, and also

E [exp (iλXM (h))] =

∫

Z

K0 (λh (z) , z)γ (dz) .

Relation (4.4) and the fact that, by definition,

Kµ (λh (z) , z) = K0 (λh (z) , z)
dγ

dµ
(z) , ∀z ∈ Z, ∀h ∈ Hµ, ∀λ ∈ R,

yield (4.8).

2The difference lies in the choice of the truncation.
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Examples – (a) If M is a centered Gaussian measure with control µ, then ν = 0
and, for h ∈ Hµ,

ψHµ
(h;λ) = −λ

2

2

∫

Z

h2 (z)µ (dz) .

(b) If M is a centered Poisson measure with control µ, then c2 (·) = 0 and
ρµ (z, dx) = δ1 (dx) for all z ∈ Z, where δ1 is the Dirac mass at x = 1, and
therefore, for h ∈ Hµ,

ψHµ
(h;λ) =

∫

Z

(
eiλh(z) − 1 − iλh (z)

)
µ (dz) ;

exp
(
ψHµ

(h;λ)
)

is then the characteristic function of
∫

Z
h (z) dM (z). One can take

e.g. Z = R×R, and µ (dx, du) = dxν (du), where ν (du) is a measure on R satisfying∫
u2ν (du) < +∞. In this case, by considering a function h : R → R with support

in [0,+∞) and such that
∫
h (x)

2
dx < +∞, we can associate to M the following

(centered and square integrable) stationary moving average process :

Y h
t =

∫ t

−∞

∫

R

uh (t− x)M (du, dx) , t ≥ 0. (4.11)

For instance, if h (x) =
√

2λ exp (−λx) 1x>0 for some λ > 0, Y h is called a Ornstein-

Uhlenbeck Lévy process of parameter λ; when h (x) = λκ−1
√

2λ
Γ(κ)x

κ−1 exp (−λx) 1x>0

for λ > 0 and κ > 1/2, Y h is called fractional Ornstein-Uhlenbeck Lévy process of
parameters λ and κ. The reader is referred to Peccati and Taqqu (2008a) for
asymptotic results involving moving average processes, and to Wolpert and Taqqu
(2005) for several applications of such processes to network modeling.

We now want to define multiple integrals, of functions vanishing on diagonals,
with respect to the random measure M . To this end, fix d ≥ 2 and set µd to
be the canonical product measure on

(
Zd,Zd

)
induced by µ. We introduce the

following standard notation: (i) L2
(
µd
)

, L2
(
Zd,Zd, µd

)
is the class of real-valued

and square-integrable functions on
(
Zd,Zd

)
; (ii) L2

s

(
µd
)

is the subset of L2
(
µd
)

composed of square integrable and symmetric functions; (iii) L2
s,0

(
µd
)

is the subset

of L2
s

(
µd
)

composed of square integrable and symmetric functions vanishing on
diagonals.

Now define Ss,0

(
µd
)

to be subset of L2
s,0

(
µd
)

composed of functions with the
form

f (z1, ..., zd) =
∑

σ∈Sd

1B1

(
zσ(1)

)
· · · 1Bd

(
zσ(d)

)
, (4.12)

where B1, ..., Bd ∈ Zµ are pairwise disjoint sets, and Sd is the group of all permu-
tations of {1, ..., d}. Recall (see e.g. Rota and Wallstrom, 1997, Proposition 3) that
Ss,0

(
µd
)

is total in L2
s,0

(
µd
)
. For f ∈ L2

s,0

(
µd
)

as in (4.12), we set

IM
d (f) = d!M (B1) ×M (B2) × · · · ×M (Bd) (4.13)

to be the multiple integral, of order d, of f with respect to M . It is well known
(see for instance Rota and Wallstrom, 1997, Theorem 5) that there exists a unique
linear extension of IM

d , from Ss,0

(
µd
)

to L2
s,0

(
µd
)
, satisfying the following: (a) for
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every f ∈ L2
s,0

(
µd
)
, IM

d (f) is a centered and square-integrable random variable,

and (b) for every f, g ∈ L2
s,0

(
µd
)

E
[
IM
d (f) IM

d (g)
]

= d! (f, g)L2(µd) , d!

∫

Zd

f (zd) g (zd)µ
d (dzd) , (4.14)

where zd = (z1, ..., zd) stands for a generic element of Zd. Note that, by con-
struction, if d 6= d′, E

[
IM
d (f) IM

d′ (g)
]

= 0 for every f ∈ L2
s,0

(
µd
)

and every

g ∈ L2
s,0

(
µd′

)
. Again, for f ∈ L2

s,0

(
µd
)
, IM

d (f) is called the multiple integral,

of order d, of f with respect to M . When f ∈ L2
s

(
µd
)

(hence, f does not necessar-
ily vanish on diagonals) we define

IM
d (f) , IM

d

(
f1Zd

0

)
, (4.15)

where
Zd

0 ,
{
(z1, ..., zd) ∈ Zd : the zj’s are all different

}
, (4.16)

so that (since µ is non atomic, and therefore the product measures do not charge
diagonals), for every f, g ∈ L2

(
µd
)
, E
[
IM
d (f) IM

d (g)
]

= d!
∫

Zd
0
f (zd) g (zd)µ

d (dzd)

= d! (f, g)L2(µd). Note that, for d = 1, one usually sets L2
s,0

(
µ1
)

= L2
s

(
µ1
)

=

L2
(
µ1
)

= Hµ, and IM
1 (f) = XM (f), f ∈ Hµ.

In what follows, we shall show that, for some well chosen resolutions π ∈
RXM

(Hµ), every multiple integral of the type IM
d (f), f ∈ L2

s,0

(
µd
)
, can be rep-

resented in the form of a generalized adapted integral of the kind introduced in
Section 3. As a consequence, the asymptotic behavior of IM

d (f) can be studied by
means of Theorem 1.

5. Representation of multiple integrals

Under the notation and assumptions of the previous section, consider a “con-
tinuous” increasing family {Zt : t ∈ [0, 1]} of elements of Z, such that Z0 = ∅,
Z1 = Z, Zs ⊆ Zt for s < t, and, for every g ∈ L1 (µ) and every t ∈ [0, 1],

lim
s→t

∫

Zs

g (x)µ (dx) =

∫

Zt

g (x)µ (dx) . (5.1)

For example, for Z = [0, 1]
2
, one can take Z0 = {∅} and Zt = [0, t]

2
or Zt =

[(1 − t) /2, (1 + t) /2]
2

for t ∈ (0, 1]. For Z = R2, one can take Z0 = {∅} and

Zt = [log (1 − t) ,− log (1 − t)]2 for t ∈ (0, 1]. The dominated convergence theorem
ensures that (5.1) is satisfied for all these choices.

To each t ∈ [0, 1], we associate the following projection operator πt : Hµ 7→ Hµ:
∀f ∈ Hµ,

πtf (z) = 1Zt
(z) f (z) , z ∈ Z, (5.2)

so that, sinceM is independently scattered, the continuous resolution of the identity
π = {πt : t ∈ [0, 1]} is such that, π ∈ RXM

(Hµ) (note that specifying Zt, t ∈ [0, 1],
is equivalent to specifying πt, t ∈ [0, 1]). Note also that, thanks to (5.1) and
by uniform continuity, for every f ∈ Hµ, every t ∈ (0, 1] and every sequence of
partitions of [0, t],

t(n) =
{

0 = t
(n)
0 < t

(n)
1 < ... < t(n)

rn
= t
}

, n ≥ 1, (5.3)
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such that mesh
(
t(n)
)

, maxi=0,...,rn−1

(
t
(n)
i+1 − t

(n)
i

)
→ 0,

max
i=0,...,rn−1

∥∥∥
(
π

t
(n)
i+1

− π
t
(n)
i

)
f
∥∥∥

2

Hµ

→ 0, (5.4)

and in particular, for every B ∈ Zµ,

max
i=0,...,rn−1

µ
(
B ∩

(
Z

t
(n)
i

\Z
t
(n)
i−1

))
→ 0. (5.5)

The following result contains the key of the subsequent discussion.

Proposition 3. For every d ≥ 2, every random variable of the form IM
d

(
f1Zd

t

)
=

IM
d

(
f1⊗d

Zt

)
, for some f ∈ L2

s,0

(
µd
)

and t ∈ (0, 1], can be approximated in L2 (P) by
linear combinations of random variables of the type

M (B1 ∩ Zt1) ×M (B2 ∩ (Zt2\Zt1)) × · · · ×M
(
Bd ∩

(
Ztd

\Ztd−1

))
, (5.6)

where the t1, ..., td are rational, 0 ≤ t1 < t2 < · · · < td ≤ t and B1, ..., Bd ∈ Zµ

are disjoint. In particular, IM
d

(
f1Zd

t

)
∈ Fπ

t , where the filtration Fπ
t , t ∈ [0, 1], is

defined as in (2.2).

Remark – Observe that, if f ∈ Ss,0

(
µd
)

is such that

f (z1, ..., zd) =
∑

σ∈Sd

1B1∩Zt1

(
zσ(1)

)
· · · 1

Bd∩(Ztd
\Ztd−1)

(
zσ(d)

)
, (5.7)

then, by (4.13),

d!M (B1 ∩ Zt1)×M (B2 ∩ (Zt2\Zt1))×···×M
(
Bd ∩

(
Ztd

\Ztd−1

))
= IM

d (f) . (5.8)

Proof. Observe first that, for every f ∈ L2
s,0

(
µd
)
, every t ∈ (0, 1] and every

sequence of rational numbers tn → t, IM
d

(
f1Zd

tn

)
→ IM

d

(
f1Zd

t

)
in L2 (P). By

density, it is therefore sufficient to prove the statement for multiple integrals of the

type IM
d

(
f1Zd

t

)
, where t ∈ Q∩ (0, 1] and f ∈ Ss,0

(
µd
)

is as in (5.7). Start with

d = 2. In this case,

1

2
IM
2

(
f1Z2

t

)
= M (B1 ∩ Zt)M (B2 ∩ Zt)

with B1, B2 disjoints, and also, for every partition {0 = t0 < t1 < ... < tr = t} (with
r ≥ 1) of [0, t],

1

2
IM
2 (f) =

r∑

i=1

M
(
B1 ∩

(
Zti

\Zti−1

)) r∑

j=1

M
(
B2 ∩

(
Ztj

\Ztj−1

))

=
∑

1≤i6=j≤r

M
(
B1 ∩

(
Zti

\Zti−1

))
M
(
B2 ∩

(
Ztj

\Ztj−1

))
+

+
r∑

i=1

M
(
B1 ∩

(
Zti

\Zti−1

))
M
(
B2 ∩

(
Zti

\Zti−1

))
, Σ1 + Σ2.



Limit theorems for multiple stochastic integrals 405

The summands in the first sum Σ1 have the desired form (5.6). It is therefore
sufficient to prove that for every sequence of partitions t(n), n ≥ 1, as in (5.3) and

such that mesh
(
t(n)
)
→ 0 and the t

(n)
1 , ..., t

(n)
rn are rational,

lim
n→∞

E



(

rn∑

i=1

M
(
B1 ∩

(
Z

t
(n)
i

\Z
t
(n)
i−1

))
M
(
B2 ∩

(
Z

t
(n)
i

\Z
t
(n)
i−1

)))2

 = 0. (5.9)

Since B1 and B2 are disjoint, and thanks to the isometric properties of M ,

E



(

rn∑

i=1

M
(
B1 ∩

(
Z

t
(n)
i

\Z
t
(n)
i−1

))
M
(
B2 ∩

(
Z

t
(n)
i

\Z
t
(n)
i−1

)))2



=

rn∑

i=1

µ
(
B1 ∩

(
Z

t
(n)
i

\Z
t
(n)
i−1

))
µ
(
B2 ∩

(
Z

t
(n)
i

\Z
t
(n)
i−1

))

≤ µ (B1) max
i=1,...,rn

µ
(
B2 ∩

(
Z

t
(n)
i

\Z
t
(n)
i−1

))
→ 0,

thanks to (5.5). Now fix d ≥ 3, and consider a random variable of the type

F = M (B1 ∩ Zt) × · · · ×M (Bd−1 ∩ Zt) ×M (Bd ∩ Zt) , (5.10)

where B1, ..., Bd ∈ Zµ are disjoint. The above discussion yields that F can be
approximated by linear combinations of random variables of the type

M (B1 ∩ Zt) × · · · ×M (Bd−3 ∩ Zt) (5.11)

× [M (Bd−2 ∩ Zt) ×M (Bd−1 ∩ (Zs\Zr)) ×M (Bd ∩ (Zv\Zu))] ,

where r < s < u < v ≤ t are rational. We will proceed by induction focusing first
on the terms in the brackets in (5.11). Express Zt as the union of five disjoint sets
Zt = (Zt\Zv) ∪ (Zv\Zu) ∪ (Zu\Zs) ∪ (Zs\Zr) ∪Zr, and decompose M (Bd−2 ∩ Zt)
accordingly. One gets

M (Bd−2 ∩ Zt)M (Bd−1 ∩ (Zs\Zr))M (Bd ∩ (Zv\Zu)) (5.12)

= M (Bd−2 ∩ (Zs\Zr))M (Bd−1 ∩ Zs\Zr)M (Bd ∩ (Zv\Zu))

+M (Bd−2 ∩ (Zv\Zu))M (Bd−1 ∩ Zs\Zr)M (Bd ∩ (Zv\Zu))

+M (Bd−2 ∩ (Zu\Zs))M (Bd−1 ∩ Zs\Zr)M (Bd ∩ (Zv\Zu))

+M (Bd−2 ∩ (Zt\Zv))M (Bd−1 ∩ Zs\Zr)M (Bd ∩ (Zv\Zu))

+M (Bd−2 ∩ (Zr\Z0))M (Bd−1 ∩ Zs\Zr)M (Bd ∩ (Zv\Zu)) .

Observe that the last three summands involve disjoint subsets of Z and hence are of
the form (5.6). Since each of the first two summands involve two identical subsets
of Z (e.g. (Zs\Zr)) and a disjoint subset (e.g. (Zv\Zu)), they can be dealt with in
the same way as (5.9) above. Thus, linear combinations of the five summands on
the RHS of (5.12) can be approximated by linear combinations of random variables
of the type

M (C1 ∩ (Zt2\Zt1))M (C2 ∩ (Zt3\Zt2))M (C3 ∩ (Zt4\Zt3)) ,

where C1, C2, C3 ∈ Zµ are disjoints, and t1 < t2 < t3 < t4 ≤ t are rational. The
general result is obtained by induction on d.

Proposition 3 will be used to prove that, whenever there exists π ∈ RXM
(Hµ)

defined as in formula (5.2), multiple integrals can be represented as generalized
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adapted integrals of the kind described in Section 2. To do this, we introduce a
partial ordering on Z as follows: for every z′, z ∈ Z,

z′ ≺π z (5.13)

if, and only if, there exists t ∈ Q∩ (0, 1) such that z′ ∈ Zt and z ∈ Zc
t , where Zc

t

stands for the complement of Zt (we take t ∈ Q for measurability purposes). For

instance, suppose that Z = [0, 1]
2

and Zt = [0, t]
2
, t ∈ [0, 1]; then, for every z =(

z(1), z(2)
)
∈ [0, 1]2, z′ ≺π z if, and only if, z′ ∈ [0, z)2, where z , max

(
z(1), z(2)

)

(please draw a picture).

For a fixed d ≥ 2, we define the π-purely non-diagonal subset of Zd as

Zd
π,0 =

{
(z1, ..., zd) ∈ Zd : zσ(1) ≺π zσ(2) ≺π · · · ≺π zσ(d), for some σ ∈ Sd

}
.

Note that Zd
π,0 ∈ Zd, and also that not every pair of distinct points of Z can

be ordered, that is, in general, Zd
π,0 6= Zd

0 , where d ≥ 2 and Zd
0 is defined in

(4.16) (for illustration, think again of Z = [0, 1]2, Zt = [0, t]2, t ∈ [0, 1]; indeed
((1/8, 1/4) , (1/4, 1/4)) ∈ Z2

0 , but (1/4, 1/4) and (1/8, 1/4) cannot be ordered).
However, because of the continuity condition (5.1) and for every d ≥ 2, the class of
the elements of Zd

0 whose components cannot be ordered has measure µd equal to
zero, as indicated by the following corollary.

Corollary 4. For every d ≥ 2 and every f ∈ L2
s,0

(
µd
)
,

IM
d (f) = IM

d

(
f1Zd

π,0

)
.

As a consequence, µd
(
Zd

0\Zd
π,0

)
= 0, where Z0 is defined in (4.16).

Proof. First observe that the class of r.v.’s of the type IM
d

(
f1Zd

π,0

)
, f ∈

L2
s,0

(
µd
)

is a closed vector space. Plainly, every f ∈ Ss,0

(
µd
)

with the form (5.7)

is such that f (zd) = f (zd)1Zd
π,0

(zd) for every zd ∈ Zd. Since, by Proposition 3

and relation (5.8), the class of functions of the type (5.7) are total in L2
s,0

(
µd
)
, the

result is obtained by a density argument. The last assertion follows from the facts
that ∀f ∈ L2

s,0

(
µd
)

one has f = f1Zd
π,0

, a.e.-µd, and IM
d (f) = IM

d (g) if and only

if f = g, a.e.-µd.

For π ∈ RXM
(Hµ) as in formula (5.2), the vector spaces L2

π (Hµ, XM ) and
Eπ (Hµ, XM ), composed respectively of adapted and elementary adapted elements
of L2 (Hµ, XM ), are defined as in Section 2 (in particular, via formulae (2.6) and
(2.7)). Recall that, according to Point (vii) in Section 2, the closure of Eπ (Hµ, XM )
coincides with L2

π (Hµ, XM ). For every h ∈ L2
π (Hµ, XM ), the random variable

Jπ
XM

(h) is defined as in Point (ix) in Section 2 and formula (2.9). The following
result states that every multiple integral with respect to M is indeed a generalized
adapted integral of the form Jπ

XM
(h), for some h ∈ L2

π (Hµ, XM ).

In what follows, for every d ≥ 1, every f ∈ L2
s,0

(
µd
)

and every fixed z ∈ Z, the

symbol f (z, ·)1 (· ≺π z) stands for the element of L2
s,0

(
µd−1

)
, given by

(z1, ..., zd−1) 7→ f (z, z1, ..., zd−1)

d−1∏

j=1

1(zj≺πz). (5.14)
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For instance, when Z = [0, 1]
2

and Zt = [0, t]
2
, t ∈ [0, 1], for every fixed z =(

z(1), z(2)
)
∈ Z the kernel f (z, ·)1 (· ≺π z) is given by the application

(z1, ..., zd−1) 7→ f (z, z1, ..., zd−1)1∩d−1
j=1 {zj<max(z(1),z(2))}.

Theorem 5. Fix d ≥ 2, and let f ∈ L2
s,0

(
µd
)
. Then,

(1) The random function

z 7→ hπ (f) (z) = d× IM
d−1 (f (z, ·)1 (· ≺π z)) , z ∈ Z, (5.15)

is an element of L2
π (Hµ, XM );

(2) One has

Id
M (f) = Jπ

XM
(hπ (f)) ,

where hπ (f) is defined as in (5.15).

Moreover, if a random variable F ∈ L2 (P) has the form F =
∑∞

d=1 I
d
M

(
f (d)

)
,

where f (d) ∈ L2
s,0

(
µd
)

for d ≥ 1 and the series is convergent in L2 (P), then

F = Jπ
XM

(hπ (F )) , (5.16)

where

hπ (F ) (z) =

∞∑

d=1

hπ

(
f (d)

)
(z) , z ∈ Z, (5.17)

and the series in (5.17) is convergent in L2
π (Hµ, XM ).

Proof. It is clear that hπ (f) ∈ L2 (Hµ, XM ) (the class of square integrable, but
not necessarily adapted processes). To prove that hπ (f) ∈ L2

π (Hµ, XM ), and hence
adaptedness, observe that, thanks to Proposition 3, if g ∈ L2

s,0

(
µd
)

has support in

Zd
t for some t ∈ (0, 1], then Id

M (g) ∈ Fπ
t . Now, for any fixed z ∈ Zt, t ∈ (0, 1], the

symmetric function (on Zd−1) f (z, ·)1 (· ≺π z) has support in Zd
t by definition of

the order relation ≺π. Then, for every b ∈ Hµ and t ∈ (0, 1],

(hπ (f) , πtb)Hµ
=

Z

Zt

hπ (f) (z) b (z) µ (dz)=d

Z

Zt

b (z) I
M
d−1 (f (z, ·)1 (· ≺π z))µ (dz) ∈ Fπ

t ,

and therefore hπ (f) ∈ L2
π (Hµ, XM ). This proves Point 1. By density, it is sufficient

to prove Point 2 for random variables of the type Id
M (f), where f ∈ Ss,0

(
µd
)

is as

in (5.7). Indeed, for such an f and for every (z, z1, ..., zd−1) ∈ Zd

f (z, z1, ..., zd−1)

d−1∏

j=1

1(zj≺πz)

=
∑

σ∈Sd−1

1B1∩Zt1

(
zσ(1)

)
· · · 1

Bd−1∩(Ztd−1
\Ztd−2)

(
zσ(d−1)

)
1

Bd∩(Ztd
\Ztd−1)

(z) ,

so that

d×hπ (f) (z)=d (d − 1)!M(B1 ∩ Zt1)×· · ·×M
`
Bd−1 ∩

`
Ztd−1\Ztd−2

´́
1

Bd∩
“

Ztd
\Ztd−1

”(z) ,

and finally, thanks to (2.9) and (5.8),

Jπ
XM

(hπ (f)) = d!M (B1 ∩ Zt1) × · · · ×M
(
Bd ∩

(
Ztd

\Ztd−1

))
= Id

M (f) .

The last assertion in the statement is an immediate consequence of the orthog-
onality relations between multiple integrals of different orders.
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Remarks – (1) The function hπ (f) in (5.15) is random for d ≥ 2 and equal to
f when d = 1.

(2) Formula (5.15) implies that, for t ∈ [0, 1] and f ∈ L2
s,0

(
µd
)
,

Id
M

(
f1Zd

t

)
= Jπ

XM
(πthπ (f)) , (5.18)

and therefore, since t 7→ Jπ
XM

(πthπ (f)) is a Fπ
t -martingale (see Peccati and Taqqu,

2007),

E
[
Id
M (f) | Fπ

t

]
= Id

M

(
f1Zd

t

)
, t ∈ [0, 1] . (5.19)

(3) The random process

z 7→ dIM
d−1 (f (z, ·)) , DzI

M
d (f)

is a “formal” Malliavin-Shikegawa derivative of the random variable IM
d (f), whereas

z 7→ dIM
d−1 (f (z, ·)1 (· ≺π z)) is the projection of DzI

M
d (f) on the space of adapted

integrands L2
π (Hµ, XM ). In this sense, formula (5.16) can be interpreted as a “gen-

eralized Clark-Ocone formula”, in the same spirit of the results proved by L. Wu
in Wu (1990) in the framework of abstract Wiener spaces.

6. Stable and weak convergence of multiple integrals

We now state the announced convergence results, which are consequences of
Theorem 1 and Theorem 5. In what follows, (Zn,Zn, µn), n ≥ 1, is a sequence
of measurable spaces and, for each n, Mn is an independently scattered random
measures on (Zn,Zn) with control µn (the Mn’s are defined on the same prob-
ability space); also Hµn

= L2 (Zn,Zn, µn) . The collection of random variables
XMn

= XMn
(Hµn

) is defined through formula (4.2), with Lévy-Khinchine exponent
ψHµn

(h, λ), h ∈ Hµn
, λ ∈ R, given by (4.4). Moreover, for every n ≥ 1, we choose

the continuous resolution of the identity π(n) =
{
π

(n)
t : t ∈ [0, 1]

}
∈ RXMn

(Hµn
)

as

π
(n)
t h (z) = 1Zn,t

(z)h (z) , z ∈ Z, h ∈ Hµn
, (6.1)

where Zn,t, t ∈ [0, 1] is an increasing collection of measurable sets such that Zn,0 =
∅, Zn,1 = Zn and verifying the continuity condition (5.1).

Theorem 6. Under the previous notation and assumptions, let dn, n ≥ 1, be a
sequence of natural numbers such that dn ≥ 1, and let π(n) ∈ RXMn

(Hµn
) be as

in (6.1). Let also f
(n)
dn

∈ L2
s,0

(
µdn

n

)
, n ≥ 1, and suppose there exists a sequence

{tn : n ≥ 1} ⊂ [0, 1] and σ-fields {Un : n ≥ 1}, such that

lim
n→+∞

dn!
∥∥∥f (n)

dn
1

Z
dn
n,tn

∥∥∥
2

L2(µ
dn
n )

= 0 (6.2)

and

Un ⊆ Un+1 ∩ Fπ(n)

tn
(XMn

) . (6.3)

Define also hπ(n)

(
f

(n)
dn

)
∈ L2

π(n) (Hµn
, XMn

) via formula (5.15) when dn ≥ 2, and

set hπ(n)

(
f

(n)
dn

)
= f

(n)
dn

when dn = 1. If

exp

[∫

Zn

Kµn

(
λhπ(n)

(
f

(n)
dn

)
(z) , z

)
µn (dz)

]
P→ φ (λ, ω) , ∀λ ∈ R, (6.4)
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where Kµn
(t, z), (t, z) ∈ R×Z, is given by (4.7), φ ∈ M̂0 and φ (λ) ∈ ∨nUn , U∗,

then, as n→ +∞,

E

[
exp

(
iλIMn

dn

(
f

(n)
dn

))
| Fπ(n)

tn
(XMn

)
]

P→ φ (λ) , ∀λ ∈ R, (6.5)

and

IMn

dn

(
f

(n)
dn

)
→(s,U∗) m (·) , (6.6)

where m ∈ M is as in (3.2).

Proof. It is sufficient to observe that, thanks to (5.18) and the isometries

properties of IMn

dn
(see (4.14)) and Jπ(n)

XMn
(see (2.10)),

dn!
∥∥∥f (n)

dn
1

Z
dn
n,tn

∥∥∥
2

L2(µ
dn
n )

= E

[
IMn

dn

(
f

(n)
dn

1
Z

dn
n,tn

)2
]

= E

[
Jπ(n)

XMn

(
π

(n)
tn
hπ(n)

(
f

(n)
dn

))2
]

=
∥∥∥π(n)

tn
hπ(n)

(
f

(n)
dn

)∥∥∥
2

L2

π(n)
(Hµn ,XMn )

.

Moreover, according to Proposition 2,
∫

Zn

Kµn

(
λhπ(n)

(
f

(n)
dn

)
(z) , z

)
µn (dz) = ψHµn

(
hπ(n)

(
f

(n)
dn

)
, λ
)
.

The conclusion is now a direct consequence of Theorem 1.

Remark – Theorem 6 can be immediately extended to sequences of random

variables of the type Fn =
∑

d I
d
Mn

(
f

(d)
n

)
, n ≥ 1, by using the last part of Theorem

5 (just replace hπ(n)

(
f

(n)
dn

)
with hπ(n) (Fn)).

When φ (λ) is deterministic the statement of Theorem 6 can be simplified. In-
deed, in this case, one can take tn = 0 and Un = {Ω,∅} for every n, so that
conditions (6.2) and (6.3) become immaterial. Note also that, when φ (λ) is de-
terministic, formulae (6.5) and (6.6) are both equivalent to the weak convergence

of the law of IMn

dn

(
f

(n)
dn

)
towards the deterministic probability measure m. In the

following Corollary, φ is deterministic but hπ(n)

(
f

(n)
dn

)
(defined in (5.15)) is random

if dn ≥ 2.

Corollary 7. Let the notation and assumptions of Theorem 6 prevail, and suppose
moreover that φ (λ) is the Fourier transform of a deterministic probability measure
m. If

exp

[∫

Zn

Kµn

(
λhπ(n)

(
f

(n)
dn

)
(z) , z

)
µn (dz)

]
P→ φ (λ) , ∀λ ∈ R, (6.7)

then, as n→ +∞, the law of IMn

dn

(
f

(n)
dn

)
converges weakly to m.
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Remark – The exponential appearing in the RHS of (6.7) is the random
characteristic function of a decoupled version of the generalized adapted integral

Jπ(n)

XMn

(
hπ(n)

(
f

(n)
dn

))
. Indeed, for every n ≥ 1 and every λ ∈ R, one has that

exp

»Z

Zn

Kµn

“
λhπ(n)

“
f

(n)
dn

”
(z) , z

”
µn (dz)

–
=E

»
exp

„
iλ

Z

Zn

hπ(n)

“
f

(n)
dn

”
(z)fMn (dz)

«
|Mn

–
,

where M̃n is an independent copy of Mn.

To conclude the section, we specialize Corollary 7 to the case where π(n), µn,
Zn,t and Zn do depend on n, the stochastic integration is performed with respect
to a Poisson random measure, and the limit in (6.7) is Gaussian. This means that:
(i) φ (λ) = exp

(
−λ2/2

)
, (ii) dn = d ≥ 2, (iii) (Zn,Zn, µn) = (Z,Z, µ) is a σ-finite

measure space, (iv) π(n) = π is the resolution of the identity given by (6.1) for some

increasing sequence {Zn,t} = {Zt}, and (v) Mn = N̂ is a random centered Poisson
measure with control µ. Under (i)-(v), the expression on the RHS of (6.7) becomes

Z

Z

Kµ

“
λhπ

“
f

(n)
d

”
(z) , z

”
µ (dz) =

Z

Z

„
e

iλhπ

“

f
(n)
d

”

(z)
− 1 − iλhπ

“
f

(n)
d

”
(z)

«
µ (dz) ,

where hπ(f
(n)
d ) is once again given by hπ(f

(n)
d ) = d × IN̂

d−1 (f (z, ·)1 (· ≺π z)) (see
(5.15)).

The next results conclude the section, and are the starting point of Peccati and
Taqqu (2008a). The first provides sufficient conditions for the multiple integral

IN̂
d

(
f

(n)
d

)
to converge in law to a N (0, 1) random variables.

Corollary 8. Under the above notation, let assumptions (i)-(v) be satisfied. If
∫

Z

(
e

iλhπ

“

f
(n)
d

”

(z) − 1 − iλhπ

(
f

(n)
d

)
(z)

)
µ (dz)

P→ −λ2/2, ∀λ ∈ R,

then, the sequence IN̂
d

(
f (n)

)
converges in law to a standard Gaussian random vari-

able.

Observe that when d = 2, the random function hπ (f) (z), z ∈ Z, becomes

hπ (f) (z) = 2IN̂
1 (f (z, ·)1 (· ≺π z))

= 2N̂ (f (z, ·)1 (· ≺π z)) =

∫

Z

f (z, x)1 (x ≺π z) N̂ (dx) . (6.8)

The following result, involving the case d = 2, is obtained by combining relation
(6.8) with Corollary 8.

Corollary 9. Consider a sequence of the type

Fn = IN̂
2 (fn) , n ≥ 1,

where fn ∈ L2
s,0

(
µ2
)

and, for every fixed z ∈ Z, define (as above) fn1 (· ≺π z) ∈
L2 (µ) to be the application y 7→ fn (y, z)1(y≺πz). Suppose that, for every λ ∈ R,
∫

Z

exp
(
iλ2N̂(fn1 (· ≺π z)) − 1 − iλ2N̂(fn1 (· ≺π z))

)
µ (dz)

P→
n→+∞

−λ
2

2
. (6.9)

Then, Fn
law→ N (0, 1), where N (0, 1) is a standard Gaussian random variable.
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7. Applications

To conclude the paper, we shall briefly describe some of the contents of the com-
panion paper Peccati and Taqqu (2008a), where the results of Section 6 (especially
Corollary 9) are applied to obtain CLTs for vectors of single and double integrals
with respect to a centered Poisson measure. These results involve moving average
Lévy processes of the type

Y h
t =

∫ t

−∞

∫

R

uh (t− x)M (du, dx) , t ≥ 0,

where:

(i) M (·) is a centered Poisson measure on R × R, with control ν (du)dx (dx is
Lebesgue measure),

(ii) ν is a positive measure satisfying such that
∫

R
ujν (du) < +∞, j = 2, 4, 6,

(iii) h has support in [0,+∞) and is such that
∫

R
[h (x)

2
+ h (x)

4
]dx < +∞.

We obtain CLTs involving the following classes of random variables:

– Quadratic forms. We will establish conditions on M and h to have that
quadratic forms of the type

β (n)
∑

1≤t,s≤n

a (t, s)Y h
t Y

h
s and γ (T )

∫ T

0

∫ T

0

c (s, t)Y h
t Y

h
s dsdt, (7.1)

where a (·, ·) and c (·, ·) are real kernels and β (·) and γ (·) are appropri-
ate normalizations, converge in law to a Gaussian random variable (see
Bhansali et al., 2007 for general results about quadratic forms);

– Quadratic functionals and path variances. We will obtain CLTs (as
T → +∞) for the quadratic functional

∫ T

0

(
Y h

t

)2
dt, (7.2)

and for the path-variance of Y h
t , that is defined as

1

T

∫ T

0

(
Y h

t − 1

T

∫ T

0

Y h
u du

)2

dt. (7.3)

The asymptotic behavior of the functionals in (7.1), (7.2) and (7.3) will be char-
acterized by means of limit theorems for single and double stochastic integrals with
respect to M . In particular, the following multiplication formula (see Peccati and
Taqqu, 2008a and the references therein for general statements) will be used: for
every s, t ≥ 0

Y h
t Y

h
s = EY h

t Y
h
s +

∫ t∧s

−∞

∫

R

u2h (t− x)
2
M (du, dx) + IM

2 (H) ,

where the symmetric kernel H , on (R × R)
2
, is given by

H (u, t; v, s) = uvh (t− x) h (s− y) .

Finally, we stress that the papers de Blasi et al. (2008) and Peccati and Prünster
contain several applications of the asymptotic properties of objects such as (7.2)
and (7.3) to prior specification in Bayesian non parametric statistics. In particular,
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we use the fact that non centered versions of random processes such Y h
t are used

to model the evolution of random hazard rates (see e.g. Ibrahim et al., 2001).

Acknowledgements. We wish to thank an anonymous referee for useful sug-
gestions.
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