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LIMIT THEOREMS FOR PARTIALLY HYPERBOLIC SYSTEMS

DMITRY DOLGOPYAT

Abstract. We consider a large class of partially hyperbolic systems contain-
ing, among others, affine maps, frame flows on negatively curved manifolds,
and mostly contracting diffeomorphisms. If the rate of mixing is sufficiently
high, the system satisfies many classical limit theorems of probability theory.

1. Introduction

The study of the statistical properties of deterministic systems constitutes an
important branch of smooth ergodic theory. According to a modern view, a chaotic
behavior of deterministic systems is caused by the exponential instability of nearby
trajectories. The best illustration of this statement is provided by Axiom A diffeo-
morphisms, where the expansion of some directions and the contraction of comple-
mentary ones are uniform. Both qualitative [2, 3, 8] and quantitative [64, 88, 91]
properties of such systems are well understood.

Much less is known in other cases, in spite of significant advances in the recent
years. There are two main ways of weakening the uniform hyperbolicity conditions
[68]. The first one is the theory of nonuniformly hyperbolic systems of Pesin [66, 67].
(Some refinements of this theory are given in [48, 74, 18, 63].) Now the qualitative
behavior of such systems is quite well understood. Interesting results concerning
the quantitative theory are obtained in [17, 58, 91, 92].

The second direction of research is the theory of partially hyperbolic systems.
Here hyperbolicity should be uniform, but only in some directions. The attraction of
this theory is that the question about ergodic properties of a single diffeomorphism
is reduced to understanding the ergodic behavior of a usually large holonomy group
[13], and the larger the group, the fewer invariant sets it has. Even though currently
there are significant technical difficulties in justifying this reduction, the conditions
of the theorems obtained this way are relatively easy to check (see [75, 76, 90, 46,
14, 15]) without the formidable analytic work common in nonuniformly hyperbolic
theory.

In any case, the results of [35, 75, 76, 7] show that there is a non-trivial theory
applicable to a large class of partially hyperbolic systems. Our paper concerns
limit theorems for partially hyperbolic systems. More precisely, similarly to the
nonuniformly hyperbolic situation, we study the relation between mixing properties
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of the system and the limit theorems it satisfies. The paper [58] shows that it is
more convenient to work with a qualitative version of the K-property.

Central to this approach is a notion of an almost Markov family. This is a
slight generalization of a Markov family, but its construction is much simpler. An
example of an almost Markov family is given by the set of all domains with bounded
geometry of the boundary.

Following [58], we assume that for some almost Markov family the images of
all elements under the iterations of our system become uniformly distributed. The
rate of convergence is essentially independent of the choice of the almost Markov
family, and so it is a natural measure of the speed of K–mixing.

Remark. We note that almost sure convergence suffices for the K–property; we
require uniform convergence, so there are K–systems with zero convergence rate
[45]. In principal, in many places it should be possible to replace uniform estimates
by L1−bounds, but the proofs would become much more complicated. Also there
are many simple systems enjoying the K–property yet not satisfying the central
limit theorem and other limit theorems of probability theory. Thus in this paper
we restrict ourselves to uniform convergence.

The result of our study is the generalization of many limit theorems which were
previously known in the Anosov or Axiom A context ([78, 23, 70, 40, 55]) to a
large class of partially hyperbolic systems. Some of our results were known before
(see Section 6). However, our results seem to be the most general ones currently
available for partially hyperbolic systems, implying all that was known before and
presenting a unified proof for many seemingly different systems.

In the next section we define the class of the systems we consider. We also
recall the notion of u-Gibbs state introduced in [69] and playing a central role in
our analysis. Section 3 describes some simple properties of systems with unique
u-Gibbs state. The statements of our main results are given in Sections 4 and
5. They are based on the assumption that the system under consideration has a
unique u-Gibbs state with good mixing properties (mixing is understood in the
sense described above). Section 4 contains various versions of the central limit
theorem, and Section 5 presents various other results. In Section 6 we apply our
results to classical partially hyperbolic systems. The proofs of the statements of
Section 3 are given in Sections 7 and 8. The statements of Section 4 are proved in
Sections 9-15. The statements of Section 5 are proved in Sections 16-18.

The appendix collects various results related to the absolute continuity of the
unstable foliations for which the author could not find convenient references.

To conclude this section, let us briefly describe possible extensions of our results.
First there are some natural classes of non-uniformly partially hyperbolic systems
or partially hyperbolic systems with singularities (e.g., some weakly interacting
particle systems) where our methods seem to be useful. However, specific features
of each particular example seem to be very important in the proofs, so we do not
pursue this subject here. Second, a pleasant feature of our approach is that in
most cases it is not required that the initial distribution is invariant with respect to
dynamics; we only ask that it has smooth conditional measures on unstable leaves.
Since we do not assume stationarity, our methods seem to be useful in the study
of the time-dependent ([4, 5]) and, in particular, random case (cf. [29]). Third,
probably, most of out results are valid for flows with assumption of K-mixing for
the flow being replaced by a weaker condition of K-mixing for a suitable Poincaré
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map as in [78, 23, 50, 51], etc. Also some of our results admit generalizations to the
case where instead of one diffeomorphism a family of partially hyperbolic systems
is considered.

2. Partial hyperbolicity

Let M be a compact Riemannian manifold and f : M → M a C2– diffeomor-
phism. f is called partially hyperbolic if there are an f–invariant splitting

TxM = Eu ⊕ Ec ⊕ Es
and constants λ1 ≤ λ2 < λ3 ≤ λ4 < λ5 ≤ λ6, λ2 < 1, λ5 > 1, such that

∀v ∈ Es λ1||v|| ≤ ||df(v)|| ≤ λ2||v||,
∀v ∈ Ec λ3||v|| ≤ ||df(v)|| ≤ λ4||v||,
∀v ∈ Eu λ5||v|| ≤ ||df(v)|| ≤ λ6||v||.

We assume that Eu 6= 0. On the other hand, the reader can assume in what follows
that Es = 0, replacing Ec by Ec ⊕ Es. We denote by Wu the foliation tangent
to Eu. We say that F is a u-set if F belongs to a single leaf of Wu. By volume,
diameter and so on of a u-set we mean the volume, diameter, etc. induced by the
Riemann structure on Wu.

The important property of Wu is its absolute continuity. Call a set A u-negligible
if it intersects each Wu-leaf at a set of zero leaf volume. We say that some prop-
erty holds u-almost surely if it fails on a u-negligible set. A measure ν is called
u-absolutely continuous if it assigns zero measure to u-negligible sets. Absolute
continuity of Wu means that the Lebesgue measure is u-absolutely continuous.
Absolute continuity is the most basic property for the study of statistical proper-
ties of Lebesgue–almost every point. Thus it is useful to consider all u-absolutely
continuous measures. (Since in this paper we are dealing with u-absolutely continu-
ous measures only, we consider two sets equal if they differ by a u-negligible set. In
particular, we do not distinguish between two u-sets if their difference has zero leaf
measure.) Among the absolutely continuous measures, the special role belongs to
f -invariant ones. u-absolutely continuous f -invariant measures are called u-Gibbs
states. u-Gibbs states were studied in [69]. Among other things, they show that if
F is a nice u-set and µ is the normalized Lebesgue measure on F , then any limit
point of 1

n

∑n−1
j=0 f

j
∗µ is a u-Gibbs state. In this paper we study partially hyperbolic

systems satisfying two requirements. First, they have the unique u-Gibbs state ν.
Second, not only the Birkhoff averages of µ but f j∗µ itself converges to ν. To give
the precise formulation we need to define a collection of nice u-sets.

A collection P of u-sets is called an almost Markov family if there are constants
r1, r2, v, C, γ such that ∀P ∈ P

(a) diam(P ) ≤ r1;
(b) Vol(P ) ≥ v;
(c) P = Int(P ), and Vol{p : d(p, ∂P ) ≤ ε} ≤ Cεγ ;
(d) for any u-set F there are disjoint sets Pi ∈ P such that

⋃
i Pi ⊂ F and

F\
⋃
i Pi ⊂ {p : d(p, ∂F ) ≤ r2};

(e)
⋃
P P = M.

An almost Markov family is called Markov if
(f) for any P ∈ P there are Pi ∈ P such that fP =

⋃
i Pi.

Proposition 1. Any f has a Markov family.
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(In [81] a family of sets satisfying (f) but not (a)–(e) was constructed. The family
satisfying (a)–(e) as well is obtained in [82]. Formally, [82] proves the existence of
Markov partitions for Anosov diffeomorphisms (i.e. when Ec = 0). However, this is
done by constructing the Markov families for f and f−1 and showing that they can
be fitted together nicely. It can be seen that the construction of the Markov family
for f never uses the assumption that Ec = 0, so it is valid for arbitrary partially
hyperbolic f.)

Examples of almost Markov families.
(I) If r1and C are large and v is small, then the collection of all sets satisfying

(a)–(c) is an almost Markov family.
(II) If dimEu = 1, then the set of all curves of length between 1 and 2 is a

Markov family.
(III) If P is an almost Markov family and F is a domain in some leaf of Wu with

piecewise smooth boundary, then P ∪ {F} is an almost Markov family.
We can associate to each u-set F a probability density as follows. For x1, x2 ∈ F

let

ρ(x1, x2) =
∞∏
j=0

det(df−1|Eu)(f−jx1)
det(df−1|Eu)(f−jx2)

.

Choose x0 ∈ F and let ρF (x) = Cρ(x, x0), where C =
(∫
F ρ(x, x0)dx

)−1
. (Here

‘
∫
F
dx’ means the integration over the leaf of Wu containing F with the induced

volume form.) Since ρ(x, x′0) = ρ(x, x0)ρ(x0, x
′
0), this definition does not depend

on the choice of x0. If A ∈ C(X), then
∫
F
A(fx)ρF (x)dx =

∫
A(y)ρF (y)dy.

Let P be an almost Markov family, P a u-set satisfying (a)–(c), and n a natural
number. By (d) ∃Pj ∈ P such that

(1) fnP = (
⋃
j

Pj) ∪ Z,

where Z ⊂ {x : d(x, ∂fnP ) ≤ r2}. We call (1) an almost Markov decomposition of
fnP (with respect to P). Let cj =

∫
f−nPj

ρP (x)dx, c =
∫
f−nZ

ρP (x)dx. Then

c ≤ C1 meas(f−nZ) ≤ C1 meas({x : d(x, ∂P ) ≤ r2

λn5
}) ≤ C2(

r2

λn5
)γ ≤ C3ζ

n

for some ζ < 1.
Now let us introduce the measures we consider. Choose an almost Markov family

P . Fix some constants R,α. Let E1(P , R, α) be the set of the measures given by
the following expression: for A ∈ C(M)

`(A) =
∫
P

A(x)eG(x)ρP (x)dx,

where P ∈ P , |G(x1) − G(x2)| ≤ Rd(x1, x2)α and `(1) = 1. We will refer to the
above functional as `(P,G) and write `(P ) for `(P, 0). Let E2(P , R, α) be the convex
hall of E1(P , R, α) and E(P , R, α) = E2(P , R, α). Usually we will drop some of the
parameters P , R, α if it does not cause confusion.

Examples of admissible measures.
(a) Probably the most important example is the following.

Proposition 2. Let P be a maximal family from Example I of Section 2. If R is
large enough and α is small enough, then the Lebesgue measure belongs to E(R,α).
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This follows from the Hölder continuity of Eu and the Hölder continuity of the
unstable holonomy Jacobian. See Appendix A.

(b) It is not difficult to see by a standard Kukutani-Markov argument that there
is always a u-Gibbs state in E(0, 0). Conversely, [69] show that any u-Gibbs state
belongs to E(0, 0). Below we prove that several sets have full `-measure for any
` ∈ E. The following statement is useful.

Proposition 3. The set Y ⊂ X has zero `-measure for any ` ∈ E if and only if it
is u-negligible.

See Appendix A for more details.

3. Formulation of results.

uunique ergodicity and strong u-transitivity

Our first assumption throughout this paper is that f has unique u-Gibbs state.
We will call such systems uuniquely ergodic, and write f ∈ UuEe . By [69] any limit
point of the measures of the form

(2) µn(A) =
1
n

n−1∑
j=0

`(n)(A ◦ f j),

where `(n) ∈ E, is a u-Gibbs state. Conversely, any u-Gibbs state ν is a limit point
of measures µn as above with `n ≡ ν. Thus an equivalent way to define uunique
ergodicity is the following.

Definition. f is uuniquely ergodic if ∀A ∈ C(M), uniformly in ` ∈ E,

1
n

n−1∑
j=0

`(A ◦ f j)→ ν(A).

If f ∈ UuEe, we have a bound on the rate of convergence for Hölder functions.

Given A ∈ C(M), let Sn(A)(x) =
n−1∑
j=0

A(f jx). Sometimes we will write simply

S if A is clear.

Theorem 1. If f ∈ UuEe, then ∀A ∈ Cγ(M) with ν(A) = 0, ∀ε ∃Cε, cε such that
∀` ∈ E

`(|Sn(A)| > εn) ≤ Cεe−ncε .

The proof is given in Section 7. Since Cγ(M) is dense in C(M), we get

Corollary 1 (Law of Large Numbers). ∀A ∈ C(M) Snn → ν(A) u-almost surely.

In dynamical systems language this statement can be reformulated as follows.
Let µ be an f -invariant measure. Define the basin of µ, B(µ), to be the set of
forward µ-regular points

B(µ) = {x : ∀A ∈ C(X)
1
n
Sn(A)→ ν(A)}.

µ is called an SRB measure if its basin has positive Lebesgue measure. Thus the
previous corollary can be restated as follows.

Corollary 2. If f has a unique u-Gibbs state ν, then ν is also an SRB measure
and B(ν) has whole Lebesgue measure.
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In order to get quantitative results about the behavior of Sn, we need to impose
stronger restrictions on f. We say that f is strongly u-transitive if, for some almost
Markov collection P , ∀A ∈ C(M) ∀P ∈ P

(3)
∫
P

A(fnx)ρP (x)dx→ ν(A),

where ν is some probability measure on M. (The argument below shows that this
definition is independent of the choice of P .)

Starting from this point, we will assume that f is strongly u-transitive. We need
a qualitative bound for the rate of convergence in (3). To formulate this more
precisely, let us discuss the space of observables we consider. Let B be a Banach
function algebra such that there is a continuous embedding i : B → Cγ(M). We
assume that there exists a measure ν such that ∀` ∈ E ∀A ∈ B

(4) |`(A ◦ fn)− ν(A)| ≤ a(n)||A||B,

where a(n)→ 0 as n→∞.
a(n) is essentially independent of the choice of a Markov family. More precisely,

we have

Proposition 4. If P ′ is another almost Markov family, then ∀` ∈ P ′

|`(A ◦ fn)− ν(A)| ≤ a′(n)||A||B,

where a′(n) ≤ C1a( n
C2

) + C3θ
n.

Remark. The reader can check that the conditions of all theorems we formulate are
stable with respect to replacing a(n) by C1a( n

C2
) + C3θ

n.

Proof. Here and below, θ denotes a constant less than 1 which can change from
entry to entry.

Take any Q ∈ P ′. Let f
n
2 Q = (

⋃
j Pj) ∪ Z be its almost Markov decomposition

with respect to P . Take A ∈ B with ||A||B ≤ 1. We have

I =
∫
Q

eG(x)ρQ(x)A(fnx)dx =
∑
j

cj

∫
Pj

eG(f−
n
2 y)ρPj (y)A(f

n
2 y)dy + O(θ

n
2 ).

Choose yj ∈ f−
n
2 Pj . Then

I =
∑
j

cje
G(f−

n
2 yj)

∫
Pj

ρPj (y)A(f
n
2 y)dy +O(θ

n
2 )

=
∑
j

cje
G(f−

n
2 yj)

[
ν(A) +O(a(

n

2
))
]

+O(θ
n
2 ).

In particular, letting A ≡ 1, we get

1 =
∫
Q

eG(x)ρQ(x)dx =
∑
j

cje
G(f−

n
2 yj) +O(θ

n
2 ).

The last two identities prove the proposition. �

Plugging ` = Aν into (3), we see that (f, ν) is mixing. In fact it is also mixing
of all orders, as the next statement shows.
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Theorem 2 (Multiple mixing). Fix k. There are constants C1 and C2 such that
∀A1, A2 . . . Ak ∈ B ∀` ∈ E∣∣∣∣∣∣`

 k∏
j=1

A(fnjx)

− k∏
j=1

ν(Aj)

∣∣∣∣∣∣ ≤ C1

[
a

(
m

C2

)
+ θm

] k∏
j=1

||Aj ||B,

where m = min(nj − nj−1), n0 = 0.

The proof is given in Section 8.

4. Formulation of results. Central limit theorem

Here we formulate various versions of the central limit theorems for the systems
under consideration. Most of the proofs use methods of moments [44].

Throughout this section we assume that
∑
n a(n) <∞.

Theorem 3 (Invariance Principle). There is a constant s > 0 such that the follow-

ing holds. Let A ∈ B be a function such that ν(A) = 0, σ(A) =
∞∑

j=−∞
ν(A(A◦f j)) 6=

0. Let P be a Markov family and let P ∈ P . Then there are a probability space (Ω, µ),
and a Brownian motion w(t) and a sequence ξn, both defined on Ω, such that

(a) the distribution of ξn is the same as the distribution of Sn(x) with respect to
`(P ), and

(b) ∃σn such that σn
n → σ(A) and |ξn − w(σn)| ≤ C(ω)n

1
2−s.

Corollary 3 (Law of the Iterated Logarithm).

lim sup
Sn(x)√

2σ(A)n ln lnn
= 1, lim inf

Sn(x)√
2σ(A)n ln lnn

= −1

u-almost surely.

Corollary 4 (Central Limit Theorem). ∀P , R, α ∀` ∈ E(P , R, α) the random pro-

cess Xn(t) =
∑
j≤nt A(fjx)
√
n

converges weakly to the Brownian motion with average
zero and variance σ(A).

Let Bd denote the space of functions M → Rd such that each coordinate belongs
to B. Consider the sequence zn ∈ Rd given by

(5) zn+1 − zn = εA(zn, fnx), z0 = a,

where the function A(z, x) is three times differentiable with respect to z and the
norms ||∂

αA(z,·)
∂αz ||Bd are uniformly bounded for 0 ≤ |α| ≤ 3. Let qn be the solution

of the averaged equation

qn+1 − qn = εĀ(qn), q0 = a,

where

Ā(q) =
∫
A(q, x)dν(x).

Let DA(z, x) denote the partial derivative of A with respect to z. Let ∆n = zn−qn.
Denote ∆ε

t =
∆[ t

ε
]√
ε
.
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Theorem 4 (Short time fluctuations in averaging). If a(n) ≤ Const
n2 , then ∀P , R, α

∀` ∈ E(P , R, α), as ε→ 0 the function ∆ε
t converges weakly to the solution of

d∆(t) = DĀ(q(t))∆dt + dB,

where B is a Gaussian process with independent increments, zero mean and covari-
ance matrix

(6) 〈B,B〉(t) =
∫ t

0

σ(A(q(s), ·))ds.

Theorem 5 (Long time fluctuations in averaging). Suppose that A in (5) has zero
mean,

Ā(z) =
∫
A(z, x)dν(x) ≡ 0,

and that a(n)n2 → 0 as n → ∞. Let Zεt = Z[ t
ε2

]. Then, as ε → 0, Zεt converges
weakly to the diffusion process Z(t) with drift

a(z) =
∞∑
n=1

∫
DA(z, fnx)A(z, x)dν(x)

and diffusion matrix σ(A(z, ·)).

Remark. As usual, after Theorem 5 is proved for smooth bounded functions, the
stopping time argument can be used to extend it to the more general framework
where the limiting diffusion process has no explosions.

The proofs of the results of this section are given in Sections 9–15. Sections 9 and
10 contain some auxiliary estimates. Theorem 3 is proven in Section 11, Theorem
4 in Sections 12–13 and Theorem 5 in Section 15.

Note. Surveys on central limit theorems for dynamical systems can be found in
[21, 30, 17].

5. Formulation of results. Other limit theorems

Theorem 6 (Three Series Theorem). If
∑
n
a(n) ≤ ∞, An ∈ B, ||An||B ≤ 1 and cn

is a sequence such that
∑
n
cnν(An) <∞,

∑
n
c2n <∞, then

∑
n
cnAn(fnx) converges

u-almost surely.

The proof is given in Section 16.
To formulate our next results, we suppose that ν has a smooth density. We

assume also that for any ball B of radius r, and for any ` ∈ E,

|`(1B(fnx))− ν(B)| ≤ Const r−α
(

1
n

)k
,

where 1B(x) stands for the indicator function of B. Denote d = dim(X), du =
dimEu.

Theorem 7 (Borel-Cantelli Lemma). Assume that k
α+1 >

d
du
. If {Bn} is a sequence

of balls, then
∑

n 1Bn(fnx) converges ν–almost surely ⇔
∑

n r(Bn)d < ∞, and∑
n 1Bn(fnx) diverges ν–almost surely ⇔

∑
n r(Bn)d =∞.

The proof is given in Section 17.
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Theorem 8 (Poisson Law). Assume that k
α+1 > 1

du
. Let x0 be a non-periodic

point and Bn = B(x0, r). Denote Xn(∆) =
∑

jν(Bn)∈∆

1Bn(f j(x)). Then, ∀` ∈ E, as

n→∞, Xn(∆) converges to a Poisson process with density 1.

The proof is given in Section 18.

6. Applications

Here we give some examples to which our theorems apply. The main examples
of strongly transitive systems belong to the class of Anosov actions. (See [73, 12,
31, 47] for general discussions of the Anosov actions.) In this case Ec is the tangent
space to the orbits of some Lie group G and f(x) = gfx, g ∈ G. We hope, however,
that more examples of systems satisfying our assumptions will appear with the
further development of the theory of partially hyperbolic systems (cf. [1, 7, 80, 27]).

Throughout this section, we say that f is strongly u-transitive with exponential
rate if (4) is satisfied with B = Cγ(M) and a(n) = Cθn for some θ < 1. We say that
f is strongly u-transitive with superpolynomial rate if for each r there is k = k(r)
such that (4) is satisfied with B = Ck(M), and a(n) = Crn

−r.
(a) Anosov diffeomorphisms. These are defined by the condition that Ec = 0.

This is perhaps the most studied class of partially hyperbolic systems (see [2, 3, 8]),
and most of our results are well known for Anosov diffeomorphisms.

Proposition 5 (see e.g. [8]). Topologically transitive Anosov diffeomorphisms are
strongly u-transitive with exponential rate.

Corollary 5. All theorems of Sections 4 and 5 hold true for topologically transitive
Anosov diffeomorphisms.

(b) Time one maps of Anosov flows. These are Anosov actions with G = R.

Proposition 6. (a) ([24, 25]) Suppose that f is a time one map of a topologi-
cally transitive Anosov flow whose stable and unstable foliations are jointly non-
integrable. Then f is strongly u-transitive with superpolynomial rate. If in addition
Eu and Es are C1 then f is strongly u-transitive with exponential rate.

(b) ([59]) Time one maps of contact Anosov flows are strongly u-transitive with
exponential rate.

Corollary 6. Time one maps of topologically transitive Anosov flows with jointly
non-integrable stable and unstable foliations satisfy the conclusions of Theorems 3–
6 and their corollaries. If in addition Eu and Es are C1 or the flow preserves a
contact structure, then all the results of Sections 4 and 5 apply.

Remark. It is easy to see that strong u-transitivity with exponential rate implies
exponential convergence in (4) for piecewise Hölder functions such as indicators of
balls. On the other hand, strong u-transitivity with superpolynomial rate gives
only power decay for indicators. For this reason it is unclear if Theorems 7 and 8
hold for time one maps of arbitrary Anosov flows.

(c) Compact skew extensions of Anosov diffeomorphisms. Let h : N →
N be a topologically transitive Anosov diffeomorphism, K a compact connected
Lie group, M = N ×K, and τ : N → K a smooth map. Let f(x, y) = (hx, τ(x)y).
Thus here G = Z×K. Compact skew extensions are studied in [11, 12, 15, 26].
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Proposition 7 ([26]). Generic skew extension is strongly u-transitive with super-
polynomial rate. In particular, if K is semisimple then all ergodic extensions are
strongly u-transitive with superpolynomial rate. Also, if N is an infranilmanifold,
then all stably ergodic extensions are strongly u-transitive with superpolynomial rate.

Corollary 7. Generic compact skew extensions of Anosov diffeomorphisms satisfy
the conclusions of Theorems 3–6 and their corollaries.

(d) Quasihyperbolic toral automorphisms. Here M = Td and f(x) = Qx
(mod 1), where Q ∈ SLd(Z), sp(Q) 6⊂ S1.

Proposition 8 ([45]). Quasi-hyperbolic toral automorphisms are strongly u-transi-
tive with exponential rate.

Corollary 8. All theorems of Sections 4 and 5 hold for quasihyperbolic toral auto-
morphisms.

(e) Translations on homogeneous spaces. Let M = G/Γ, where G is a
connected semisimle group without compact factors and Γ is an irreducible compact
lattice in G. Let f(x) = gx, g = exp(X).

Proposition 9 ([53]). Suppose that there is a factor G′ of G which is not locally
isomorphic to SO(n, 1) or SU(n, 1) and such that the projection g′ of g to G is
not quasiunipotent (i.e. sp(ad(g′)) 6⊂ (S1)). Then f is strongly u-transitive with
exponential rate.

Corollary 9. All theorems of Sections 4 and 5 hold true for translations of homo-
geneous spaces satisfying the conditions of the last proposition.

(f) Mostly contracting diffeomorphisms. Let f : M → M be partially
hyperbolic. f is called mostly contracting if ∃ε > 0 such that for any u-Gibbs state
ν

lim
n→∞

ν(ln ||dfn|Ec||)
n

≤ −ε.

See [7, 16, 27] for examples of mostly contracting diffeomorphisms.

Proposition 10 ([27]). Suppose that f : M → M is a mostly contracting topo-
logically mixing diffeomorphism, dim(M) = 3, dim(Ec) = 1. Then f strongly
u-transitive with exponential rate.

Remark. It is likely that the restrictions on dimensions given here are unnecessary
(cf. [16]).

Corollary 10. All theorems of Sections 4 and 5 hold true for mostly contracting
topologically mixing diffeomorphism on three-dimensional manifolds.

Remark. The set of mostly contracting diffeomorphisms is open. The simplest
examples of mostly contracting diffeomorphisms can be constructed by perturbing
Anosov actions. Thus this result is the first step in extending our results beyond
Anosov actions.

Other examples of diffeomorphisms satisfying our conditions could be constructed
using following observations. Let M = M1 ×M2 and f = f1 × f2, where the fj
are partially hyperbolic. If both f1 and f2 are strongly u-transitive with either
exponential or superpolynomial rate, then the same is true for f.
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Notes. As we mentioned before, not all of these results are new. Below we list the
results which were known before:

• Anosov diffeomorphisms: Theorem 3 and Corollary 3 ([23]), Theorem 4
([50]), Corollary 4 ([78]), Theorem 6 ([55]), Theorem 8 ([40]). These articles
also consider Anosov flows, but instead of time one maps they deal with

S(t)(A) =
∫ t

0

A(gsx)ds,

where gs is the flow in question. Our results are therefore slightly stronger.
Let us remark, by the way, that our formulations might be more appropriate
from the point of view of applications, because in practise it is possible to
measure Sn(A, g1) rather than S(t)(A). On the other hand, the results for
S(t) are usually proven under a weaker assumption than that of Proposition
6 (and Corollary 6 is false under these weaker assumptions). However, it
seems possible to extend our results to treat the case when (4) holds not
for a time one map of a flow but for a suitably chosen Poincaré map.
• Quasihyperbolic toral automorphsims: Theorem 3, Corollaries 3 and 4 ([33,

34]), Theorem 4 ([65]).
• Translations on homogeneous spaces: Theorem 3, Corollaries 3 and 4 ([56,

57]), Theorem 4 ([65]). Also, [54, 87] contain results quite similar in spirit
to our Theorems 6 and 7, even though Theorems 6 and 7 are not explicitly
stated there. ([56, 57, 54, 87] do not suppose that M is compact, requiring
only that Vol(M) <∞.)

However, the advantage of our method is that we give a unified proof for all these
different classes of dynamical systems, and this proof would seem to be of interest
even in the known cases.

7. Large deviations

Here we prove Theorem 1. First we verify our claim for ` = `(P ) ∈ E(P , 0, 0),
where P is a Markov family. It is enough to estimate `(Sn(A) > εn); the case
`(S(A) < −εn) is dealt with similarly. Denote B(x) = A(x)− ε

2 . By our assumption
there exists n such that ∀P ∈ P∫

P

Sn(B)(x)ρP (x)dx ≤ −nε
4
.

Also there exists some C such that ∀P ∈ P ∀n
(7) OscP (Sn(B) ◦ f−n) ≤ C,
where OscP (A) = maxP (A)−minP (A).

Hence ∃n, α < 0 such that ∀P ∈ P for any decomposition fnP =
⋃
j Pj , Pj ∈ P ,∑

j

cj max
f−nPj

Sn(B) ≤ α,

where cj =
∫
f−nPj

ρP (x)dx.

Corollary 11. ∃γ > 0, θ < 1 such that∑
j

cj exp
(
γ max
f−nPj

Sn(B)
)
< θ.
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Proof. Let

φ(γ) =
∑
j

cj exp
(
γ max
f−nPj

Sn(B)
)
.

Then φ(0) = 1, φ′(0) ≤ α. �

Corollary 12. ∀m > 0 there is a decomposition fnmP =
⋃
j Pj such that∑

j

cj exp
(
γ max
f−nmP−j

Snm(B)
)
≤ θm.

Proof (By induction). Decompose fnP =
⋃
j Qj and let fn(m−1)Qj =

⋃
k Pjk be

a decomposition such that∑
k

cjk exp
(
γ max
f−n(m−1)Pjk

Sn(m−1)(B)
)
≤ θm−1.

We have

max
f−nmPjk

Snm(B) ≤ max
f−nQj

Sn(B) + max
f−n(m−1)Pjk

Sn(m−1)(B).

Therefore ∑
jk

cjcjk exp
(
γ max
fnmPjk

Snm(B)
)

≤
∑
j

cj exp
(
γ max
f−nQj

Sn(B)
)∑

k

cjk exp
(
γ max
f−n(m−1)Pjk

Sn(m−1)(B)
)

≤ θm−1
∑
j

cj exp
(
γ max
f−nQj

Sn(B)
)
≤ θm.

�

Combining this with (7) and using |SN (B)− SN+k(B)| ≤ Kk, we get

Corollary 13. ∃C1, γ, ρ1 < 1 such that ∀` ∈ E

`(exp(γ(SN (A)− Nε

2
))) ≤ C1ρ

N
1 .

Proof of Theorem 1. By the above corollary, ∀` ∈ E(P , 0, 0)

`(SN (A) ≥ εN

2
) ≤ C1ρ

N
1 .

Using the same argument for bounding SN (A) from below, we get ∀` ∈ E(P , 0, 0)

`(|SN (A)| ≥ εN

2
) ≤ C2ρ

N
2 .

Now, given P ′, R, α, consider ` ∈ E1(P , R, α), say ` = `(Q,G). Decompose N =
N1 +N2, where N1 = δN, N2 = (1− δ)N. Then

`(|SN (A)| ≥ εN) ≤ `
(
|SN2(A) ◦ fN1 | ≥ εN

2

)
+ `

(
|SN1(A)| ≥ εN

2

)
.
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The second term is void if δ is small enough. Consider an almost Markov decom-
position fN1Q = (

⋃
j Pj) ∪ Z with respect to P . Then

`

(
|SN2(A) ◦ fN1| ≥ εN

2

)

≤ Const

c+
∑
j

cj`j

(
|SN2(A)| ≥ εN

2

)
≤ ConstC2ρ

N
2 .

(Here `j = `(Pj).) �

Notes. (1) Many results in smooth ergodic theory have partially hyperbolic
versions. For example, Corollary 2 corresponds to the statement that a
homeomorphism h : F → F of a compact F is uniquely ergodic if and only

if 1
n

n∑
j=0

A(hjx)→ ν(A) for all x. However, for partially hyperbolic systems

convergence does not hold for all x. The papers [20, 53] produce many
non-negative C∞ functions for which An ≡ 0 on a set of large Hausdorff
dimension.

(2) For Anosov diffeomorphisms one can get quite precise asymptotics for
ln `(|Sn| > εn). See [50, 51]. It is unlikely that the similar results could
be obtained under our assumptions, because the asymptotics involve in-
tegrals of A with respect to Gibbs states other than SRB measure, and
here we only assume good behavior with respect to SRB measures. On the
other hand, the asymptotics for moderate deviations (see [52]) involve only
integrals with respect to the SRB measure itself, and so it is likely to be
generalizable to the settings of u-transitive systems. We do not pursue this
topic here, however.

(3) In case f 6∈ UuEe we can obtain the following generalization of Corollary
1.

Proposition 11. ∀A ∈ C(M), u-almost surely,

lim inf
Sn(A)
n

, lim sup
Sn(A)
n

∈ [inf(µ(A)), sup(µ(A))],

where the infimum and the supremum are taken over the set of u-Gibbs measures.

The proof is a verbatim repetition of the proof of Corollary 1.

8. Multiple mixing

Proof of Theorem 2. We argue by induction on k. We can assume that ||Aj || ≤ 1.
(I) k = 1. It is enough to consider the case ` = `(P,G) ∈ E1. We have

I =
∫
P

eG(x)ρP (x)A(fnx)dx

=
∫
f
n
2 P

eG(f−
n
2 y)ρ

f
n
2 P

(y)A(f
n
2 y)dy.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1650 DMITRY DOLGOPYAT

Let f
n
2 P = (

⋃
Pj) ∪ Z be an almost Markov decomposition. Choose yj ∈ Pj ; then

I =
∑
j

cj

∫
Pj

ρPj (y)eG(f−
n
2 y)A(f

n
2 y)dy +O(θn)

=
∑
j

cje
G(f−

n
2 yj)

∫
Pj

ρPj (y)A(f
n
2 y)dy +O(θn)

=
∑
j

cje
G(f−

n
2 yj)ν(A) +O

(
θn + a

(n
2

))
.

Finally, ∑
j

cje
G(f−

n
2 yj) = `(1) +O(θn) = 1 +O(θn);

(II) From k to k + 1. Denote N = n1+n2
2 . Again consider an almost Markov

decomposition fNP = (
⋃
Pj) ∪ Z. Similarly to (I),∫
P

eG(x)ρP (x)
k+1∏
j=1

A(fnjx)dx

=
∑
j

cje
G(f−Nyj)A1(f−(N−n1)yj)

∫
Pj

ρPj (y)
k+1∏
j=2

A(fnj−Ny)dy +O(θm).

The first term is ∑
j

cje
G(f−Nyj)A1(f−(N−n1)yj)

=
∫
P

eG(x)ρP (x)A1(fn1x)dx +O(θm)

= ν(A1) +O(θm),

and the second one equals
k+2∏
j=2

ν(Aj) +O

(
a

(
m

C2(k)

)
+ θm

)
by induction. �

9. Moment estimates

Starting from this section, we suppose that the a(m) satisfy∑
m

a(m) < +∞.

Let Aj ∈ B be a sequence of functions such that ||Aj ||B ≤ K, ν(Aj) = 0. Let
Sn =

∑n−1
j=0 Aj(f

jx).

Lemma 1.
(a) |`(Sn) ≤ Const;
(b) `(S2

n) ≤ Constn;

(c) |`(S3
n)| ≤ Constn

3
2 ;

(d) `(S4
n) ≤ Constn2,

where the constants in (a)–(d) depend only on K but not on sequence Aj .
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(e) Let A(t, x) be a function defined on [0,T]×M such that for all t ∈ [0,T] we
have A(t, ·) ∈ B, ||A(t, ·)||B ≤ K and

∫
A(t, x)dµ(x) = 0. Let

(8) Sε(t) =
[ tε ]∑
j=0

A(εj, f jx).

Then, as ε→ 0,

ε`(Sε(t)2)→
∫ t

0

σ(A(s, ·))ds,

where

σ(A) =
∞∑

j=−∞
ν(A(A ◦ f j)).

Proof. (a) We have

|`(Sn)| = |
n−1∑
j=0

`(Aj(f jx))| ≤ Const
∑
j

a(j) ≤ Const .

(b) We have

`(S2
n) =

∑
j,k

`(Aj(f jx)Ak(fkx)) ≤ Const
∑
j,k

a

(
|j − k|
C

)
.

Now for fixed m there are less than 2n pairs (j, k) with |j − k| = m. So

`(S2
n) ≤ Constn

∑
m

a
(m
C

)
≤ Const .

(e) Fix some large M. We have

`(Sε(t)2) =
n−1∑
j,k=0

`(A(εj, f jx)A(εk, fkx)

=
∑

|j−k|<M
`(A(εj, f jx)A(εk, fkx)

=
∑

|j−k|≥M
`(A(εj, f jx)A(εk, fkx) = I + II.

By the argument of (b), |εIε| ≤ Const
∑
m>M a(m)→ 0 as M →∞. On the other

hand, for fixed M the following holds. Let εj → s; then∑
|k−j|<M

`(A(εj, f jx)A(εk, fkx))→
∑
|q|<M

ν(A(s, x)A(s, f qx))

= σ(A(s, ·)) + oM→∞(1).

Thus

ε`(S2
ε(t))→

∫ t

0

σ(A(s, ·))ds + o(1).

Letting M →∞, we obtain (e).
(c) follows from (b) and (d), so it suffices to establish (d). We have

`(S4
n) =

∑
j1,j2,j3,j4

`((Aj1 (f j1x)Aj2 (f j2x)Aj3 (f j3x)Aj4 (f j4x)).
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First, let us estimate the terms where not all indices jp are different. The sum
over terms with at most two different indices is bounded by Const×(the number
of terms), hence by Constn2. Also,

J =
∑

`(Aj1(f j1x)Aj2 (f j2x)A2
j3 (f j3x)) ≤ Const

∑
a

(
min jp − jp−1

C

)
.

For fixed m, the number of terms with min(nj − nj−1) = m equals Constn2. Thus

J ≤ Constn2
∑
m

a(m).

Now, up to the terms of order n2,

`(S4
n) = 12

∑
j3

j3∑
j1,j2=1

n∑
j4=j3

`(Aj1 (f j1x)Aj2 (f j2x)Aj3 (f j3x)Aj4 (f j4x)) +O(n2)

= 12
∑
j3

n∑
j4=j3

`(S2
j3Aj3 (f j3x)Aj4 (f j4x)) +O(n2).

Proposition 12. ∀l ∀j3

`

 n∑
j4=j3

S2
j3Aj3(f j3x)Aj4 (f j4x)

 ≤ Const j3.

Proof. Again it suffices to verify this for l ∈ E1, say ` = `(P,G). Consider an almost
Markov decomposition f j3P = (

⋃
q Pq) ∪ Z. Choose yq ∈ Pq; then∫

P

eG(x)ρP (x)S2
n3

(x)Aj3 (fj3x)Aj4 (fn4x)dx

= O(θj3 ) +
∑
q

cqS
2
n3

(yq)
n∑

j4=j3

∫
P

eG(f−j3y)ρPq(y)Aj3 (y)Aj4(f j4−j3y)dy

+
∑
q

cq

n∑
j4=j3

∫
P

eG(f−j3y)ρPq(y)[S2
n3

(f−j3y)− S2
n3

(yq)]Aj3 (y)Aj4(f j4−j3y)dy

= I + II.

By Theorem 2, I ≤ Const
∑

q cqS
2
j3

(yq). Now Oscf−j3Pq S
2
j3
≤ Const j3, so∑

q

cqS
2
j3(yq) ≤ Const j3 + `(S2

j3) ≤ Const j3.

Moreover,

II =
∑
q

cq

n∑
j4=j3

∫
P

eG(f−j3y)ρPq(y)[Sj3(f−j3y)− Sj3(yq)][Sj3(f−j3y) + Sj3(yq)]

× Aj3(y)Aj4(f j4−j3y)dy

=
∑
q

cq

j3−1∑
k=0

n∑
j4=j3

∫
P

{
eG(f−j3y)ρPq(y)[Sj3(f−j3y)− Sj3(yq)]

×[Ak(fk−j3y) +Ak(fkyq)]
}
Aj3 (y)Aj4(f j4−j3y)dy.
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The part in brackets is uniformly bounded and uniformly Hölder continuous. Thus
by Theorem 2 the sum over j4 is uniformly bounded for any q, k. Hence

II ≤ Const
∑
q

cq
∑
k

1 = Const j3
∑
q

cq ≤ Const j3.

�
Now

`(S4
n) ≤ Const

∑
j<n

j +O(n2) = O(n2).

This concludes the proof of Lemma 1. �

10. Tightness

In all theorems of Section 4 it suffices by the definition of weak convergence
in C[0,∞[ to show that for each T > 0 the corresponding processes converge in
C[0,T]. So let T be fixed from now on, until the end of Section 15.

Lemma 2. Let Sε(t) be defined by (8). Then the family {
√
εSε(t)} is tight.

Proof. Let Y (N) = {X(t) : ∀m > N ∀k |X(k+1
2m )−X( k

2m )| < 1

2
m
8
}. Then Y (N) is

compact in C[0,T] for all N. Let us estimate `(
√
εSε(t) 6∈ Y (N)). We have

`

([√
ε

∣∣∣∣Sε(k + 1
2m

)
− Sε

(
k

2m

)∣∣∣∣]4
)
≤ Cε2

(
1

2mε

)2

= C2−2m.

So, for given k,

`

([√
ε

∣∣∣∣Sε(k + 1
2m

)
− Sε

(
k

2m

)∣∣∣∣] < 1
2
m
8

)
≤ C2−2m(2

m
8 )4 = C2−

3m
2 .

Hence

`

(
∃k

[√
ε

∣∣∣∣Sε(k + 1
2m

)
− Sε

(
k

2m

)∣∣∣∣] < 1
2
m
8

)
≤ Const T2m2−

3m
2 = Const T2−

m
2 .

Thus `(
√
εSε(t) 6∈ Y (N)) ≤ Const 2−

N
2 . �

The next statement is used in Section 11. Take some α between 1 and 2. Denote
nk =

∑k
j=1 j

α, ηk = Snk(A). Choose θ such that 1
6 + 1

6α < θ < 1
2α .

Lemma 3. Almost surely

max
j≤k

max
nj−1≤l≤nj

|Sl(A) − ηnj−1 | ≤ Ckα( 1
2 +θ).

Proof. Let [l1, l2] be an interval of the form

l1 = nj−1 +
pjα

2m
, l2 = nj−1 +

(p+ 1)jα

2m
.

We claim that almost surely

(9) |Sl2 − Sl1 | ≥
√
l2 − l1jαθ

only finitely many times. Indeed the probability of such an event is less than

E(|Sl2 − Sl1 |4)
j4αθ(l2 − l1)2

≤ C

j4αθ
.
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(9) can happen only if l2 − l1 ≥
√
l2 − l1jαθ; that is, l2 − l1 ≥ j2αθ. Thus for fixed

j we have O(jα(1−2θ)) events, and so

Prob(∃l1, l2 satisfying (9) with given j) = O(jα(1−6θ)).

By assumption α(1 − 6θ) < −1. This completes the proof. �

11. Invariance principle

Proof of Theorem 3. We keep the notation of the previous section. Let us begin by
recalling the facts about martingales we will use in this and the following sections.
Proofs can be found for example in [38]. Let (Zn,Gn) be a martingale pair. Then
Yn = Zn − Zn−1 is called a martingale difference sequence. We consider only
martingales satisfying Z0 = 0 and E(Z2

n) <∞.

Proposition 13. (a) (Doob convergence theorem) If E(Z2
n) is bounded then

Zn converges almost surely.
There are constants C1 and C2 such that for any martingale (Zn,Gn) as above

the following holds:
(b) Let Z∗ = maxn Zn, ∆Z =

∑
n Y

2
n . Then

1
C1
E((∆Z)2) ≤ E(Z∗4) ≤ C1E((∆Z)2).

(c) (Skorohod representation theorem) After possibly enlarging the prob-
ability space, we can find a Brownian motion w(t) and stopping times Tj such that
if τk =

∑k
j=1 Tj, then Zk = w(τk), E(Tk|Fk) = E(Y 2

k ) and E(T 2
k ) ≤ C2E(Y 4

k ).
(d) Let ηn be a Gn-measurable sequence such that

βn =
∞∑
j=1

E(ηn+1−j |Fn−1) ≤ Const .

Then

(10) ηn = Yn + βn+1 − βn,
where Yn is a martingale difference sequence.

Let ` = `(P ). First we define an increasing sequence of sigma–algebras Fn on P.
Let F0 = {∅, P}. Suppose that Fn is generated by {Pj,n} such that fnPj,n ∈ P .
Decompose fn+1Pj,n =

⋃
k Pjk,n and let Fn+1 be generated by f−n−1Pjk,n. Write

Gk = Fnk , η̃k = E(ηk|Gk). Note that |ηk − η̃k| ≤ Const .

Lemma 4. ∃C such that ∀j
∑

k |E(η̃j+k|G)| ≤ C.

Proof. Let Q be an element of Gj . Then

E(η̃j+k |Gj) = E(ηj+k |Gj) =
∫
Q

ρQ(y)
nj+k∑

l=nj+k−1+1

A(f l−njy)dy.

Thus
∑

k |E(η̃j+k |G)| ≤
∑∞

l=1 a(l). �

Write η̃k = ζk + βk − βk+1, where βk =
∑∞
l=0 E(η̃k+l|Gk−1). Let Sk =

∑k
l=1 ζl.

Then (Sk,Gk) is a martingale, and |Sk − Snk | ≤ Const k. Given N , define MN by
the condition that nMN ≤ N < nMN+1.
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Proposition 14. ∃s1 such that almost surely

SN − SMN = O(N
1
2−s1).

Proof. We have SN − SMN = (SN −SMN ) + (SMN − SMN ) = I + II. For I we have

I = O(M ( 1
2 +θ)α) = O(N ( 1

2 +θ) α
α+1 )

by Lemma 3, and (1
2 + θ) α

α+1 ) ≤ 1
2 since θ < 1

2α . On the other hand, II = O(M) =

O(N
1

1+α ), and 1
α+1 <

1
2 as α > 1. �

Let w, Tj and τk be as in Proposition 13(c).

Proposition 15. ∃σN such that σN
N → σ(A) and

∑MN

j=1 Tj − σN = O(N1−s2).

Proof. We have

MN∑
j=1

Tj =
MN∑
j=1

[Tj − E(Tj |Gj−1)] +
MN∑
j=1

[E(ζ2
j |Gj−1)− ζ2

j ]

+
MN∑
j=1

[ζ2
j − E(ζ2

j )] +
MN∑
j=1

E(ζ2
j )

= I + II + III + IV.

To estimate I, write Rj = Tj − E(Tj |Gj−1), E(Tj |Gj−1) = Djα + rj , where rj is
uniformly bounded. Thus

E(R2
j ) = E(T 2

j )− 2E(Tjrj) +D2j2α ≤ Cj2α.

Since Rj is a martingale difference sequence,
∑

j
Rj

jα+ 1
2 +ε

converges almost surely by

Proposition 13(b). Writing

Rj =
(

Rj

jα+ 1
2 +ε

)
jα+ 1

2 +ε

and summing by parts, we obtain

M∑
j=1

Rj ≤ Const(ω)Mα+ 1
2 +ε = O(n1−s3

M ).

II can be bounded the same way as I. Namely let Lj = ζ2
j − E(ζ2

j |Gj−1); then

E(L2
j) = E([ζ2

j − E(ζ2
j |Gj−1)]2) ≤ E([Ajα ◦ fnj ]2) +O(j2α) = O(j2α),

so as before II =
∑M
j=1 Lj = O(n1−s3 ). Also, similarly to Lemma 1,

E


 M∑
j=1

ζ̃2 − E(ζ̃2)

2
 = E


 M∑
j=1

ζ2 − E(ζ2)

2
 ≤ Constn2

M ,

so by Borel-Cantelli III = O(n
7
8
M ) almost surely. Therefore,

∑MN

j=1 Tj =
∑MN

j=1 E(ζ2
j )+

O(n1−s3). By Section 9,
∑M

j=1 E(ζ2
j ) ∼

∑M
j=1 σ(A)jα = σ(A)nM . �
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Thus we have

Sk = w(τk) = w(σnk ) + [w(τk)− w(σnk )] = w(σnk) +O(n
1−s4

2
k )

almost surely.
This identity together with Proposition 14 proves Theorem 3. �

Note. Our exposition mostly follows [71].

12. Convergence to the Gaussian process

Theorem 9. Let Sε(t) be defined as in (8). Then as ε → 0 the process
√
εSε(t)

converges weakly to a Gaussian random process S(t) with zero mean and covariance
matrix

〈S(t),S(t)〉 =
∫ t

0

σ(A(s, ·))ds.

Remark. Clearly this theorem implies Corollary 4.

Proof. By Lemma 2 {Sε(t)} is a tight family, so we need only to verify convergence
of finite dimensional distributions. Let us start with one-dimensional distributions.
Denote n = 1

ε . Define

Ŝk =
kn

3
5−n

1
10∑

j=(k−1)n
3
5

A(εj, f jx),

S̄k =
kn

3
5−1∑

j=kn
3
5−n

1
10

A(εj, f jx),

S∗(t) =

[
t

n
3
5

]
−1∑

k=0

Ŝk,

S∗∗(t) =

[
t

n
3
5

]
−1∑

k=0

S̄k.

Then by Lemma 1 S∗∗(t)→ 0 in L2(l) and, in particular, S∗∗(t)→ 0 in probability.
Let ψk(ξ) = `(ei

√
εŜkξ).

Proposition 16.
ψk(ξ) = 1− ε 2

5σ(A(kε
2
5 , ·))(1 + o(1)).

Proof. We have

ψk(ξ) = El

(
1 + i

√
εŜkξ −

εŜ2
k

2
ξ2 − iε 3

2
Ŝ3
k

6
ξ3 +O

(
ε2hS2

kξ
4
))

.

Using Lemma 1, we get

ψk(ξ) = 1− ε 2
5σ(A(s, ·))(1 + o(1)) +O(ε

1
2 + ε

3
5 + ε

4
5 ),

where the main term comes from ε
Ŝ2
k

2 ξ
2. This proves the proposition. �
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Let φk(ξ) = `(ei
√
εS∗kξ).

Proposition 17.

(11) lnφk+1(ξ) = lnφk(ξ)− ε 2
5σ
(
A(kε

2
5 , ·)

) ξ2

2
+ o

(
ε

2
5

)
.

Proof. It suffices to verify this for ` ∈ E1.
(I) The case k = 0 constitutes Proposition 16.

(II) k > 0. Decompose fkn
3
5 P = (

⋃
j Pj) ∪ Z. Let q = kn

3
5 . Choose yj ∈ Pj .

Then

`
(
exp(i

√
εS∗k+1ξ)

)
=
∑
j

cj exp(i
√
εS∗k(f−qyj)ξ) exp(G(f−qyj))

∫
Pj

ei
√
εS∗1 (y)ξρPj (y)dy +O(θn

1
10 ).

By Proposition 16∫
Pj

ei
√
εS∗1 (y)ξρPj (y)dy = (1− ε 2

5σ(A(kε
2
5 , ·))(1 + o(1)).

Hence

φk+1(ξ) =
∑
j

cj exp(i
√
εS∗k(f−qyj)) exp(G(f−qyj)))(1 − ε

2
5 σ(A(kε

2
5 , ·))(1 + o(1)))

= φk(ξ)(1 − ε 2
5σ(A(kε

2
5 , ·))(1 + o(1))) +O(θ−n

1
10 ).

Taking logarithms of both sides, we obtain the required statement. �

Now, summing (11) for k = 0, . . . , [tn
2
5 ], we get

ln `(ei
√
εS∗(t)ξ) ∼ −ξ

2

2

∫ t

0

σ(A(s, ·))ds.

Since
√
ε[Sε(t)−S∗ε (t)]→ 0 in probability, we see that one-dimensional distributions

of
√
εSε(t) converge to those of S(t). To consider the general case, let t1, . . . , tr,

ξ1, . . . , ξr be numbers. Denote ηj =
∑j
m=1 ξm. We have∑

j

ξjSε(tj) =
∑
j

ηj [Sε(tj)− Sε(tj−1)].

By the same argument as in the proof of Proposition 11, we obtain

ln `

exp[i
√
ε
∑
j

ξjSε(tj)]

 ∼ −1
2

∑
j

η2
j

∫ tj

tj−1

σ(A(s, ·))ds.

This implies convergence of multidimensional distributions, and so proves Theorem
9. �

Note. By the same argument one can obtain versions of the central limit theorem for
families of diffeomorphisms. One only has to check the uniformity of the estimates
of the previous sections. The following statement is used in [28].
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Proposition 18. Let fε be a family of partially hyperbolic systems such that
∃C, r, v, a function space B, and a sequence {a(n)} such that

∞∑
n=1

a(n) <∞,

and a linear functional ω : B→ R such that for any Pε belonging to the (C, r1, v)-
universal family from example I of Section 2 and ∀ρ such that ||ρ||Cγ(Pε) ≤ 1 the
following estimate holds:∣∣∣∣∫

Pε

A(fnε x)ρ(x)dx − ν(A)− εω(A)
∣∣∣∣ ≤ ||A||(a(n) + o(ε)).

Let nε be a sequence such that nε → ∞ and nεε
2 → c, where c ≥ 0. Then, if x is

chosen according to Lebesgue measure,∑n−1
j=0

[
A(f jεx)− ν(A)

]
√
nε

→ N (cω(A), D(A)).

13. Short time fluctuations in averaging.

Moments of slowly changing quantities

To simplify the notation we present the proofs of Theorems 4 and 5 only for
the case d = 1. The reader will have no difficulty in establishing multidimensional
analogies of our results, but the notation in higher-dimensional settings becomes
much more complicated.

Here we prove Theorem 4. We have

∆n+1 −∆n = ε
[
A(zn, fnx)− Ā(qn)

]
= ε

[
A(qn, fnx) − Ā(qn)

]
+ ε

[
A(zn, fnx)− Ā(qn, fnx)

]
.

Using the Hadamard lemma, we rewrite the second term as

A(zn, fnx)− Ā(qn, fnx) = [DA(qn, fnx) + ζ(qn, fnx,∆n)] ∆n,

where ζ is a smooth function of its arguments, ζ(q, x, 0) = 0. Denote

Qn = DĀ(qn) + ζ̄(qn,∆n),

βn = [DA(qn, fnx) + ζ(qn, fnx,∆n)−Qn] ∆n,

γn = A(qn, fnx)− Ā(qn).

Then our equation can be rewritten as

∆n+1 −∆n = ε [Qn∆n + βn + γn] .

Let Ln be the solution of

(12) Ln+1 − Ln = εQnLn.
Substitute ∆n = Lnρn; then we have

(13) Ln+1(ρn+1 − ρn) = ε(βn + γn),

so

(14) ρn+1 = ε

n∑
j=0

L−1
j+1(βj + γj).

The next is a special case of Theorem 9.
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Proposition 19. Let γεt =
γ[ t
ε

]√
ε

. Then, as ε → 0, γεt converges to B, which is the
Gaussian process defined by (6).

In order to estimate the moments of
∑

n L
−1
n+1βn and

∑
n L
−1
n+1γn we need the

following statement, the proof of which occupies the most of this section.

Proposition 20. Let A(δ, x) satisfy
∫
A(δ, x)dν(x) = 0 for all δ. Let θp(δ) =

||Ap(δ, ·)||B. Suppose that θp are smooth functions of δ. Let κp(δ) = dθp
dδ , κ̃p(δ) =

|| ddδAp(δ, ·)||B. Suppose that |κp(δ)| < Const, |κ̃p(δ)| < Const for p ≤ 4. Let {δn(x)}
satisfy

(15) δn+1 − δn = εB(δn, fnx, ε),

where for all m || dmdδmB(δ, ·)||B is uniformly bounded and

B(δ, x, ε) = B(δ, x) +O(ε).

Let T =
∑m+ 1√

ε

j=m A(δj , f j). Then

(a) |`(T )| ≤ Const
[
`(θ1(δm)) +

√
ε
]
,

(b)
∣∣`(T 2)

∣∣ ≤ Const [`(θ2(δm)) + ε]
1√
ε
,

(c)
∣∣`(T 4)

∣∣ ≤ Const
[
`(θ4(δm))

ε
+ `(|κ4(δm)|) + `(|κ̃1(δm)θ3(δm)|)

+`(|θ3(δm)|) + `(|κ̃1(δm)θ2(δm)|) + ε`(|θ2(δm)|) + ε
3
2 `(|κ̃1(δm)) + ε2

]
.

Proof. Let

T ′ =
∑
j

A(δm, f jx),

T ′′ = ε
∑
j>k

dA

dδ
(δm, f jx)B(δm, fkx).

Lemma 5.
T = T ′ + T ′′ +O(

√
ε).

Proof. We have

T =
∑
j

A(δj , f jx) =
∑
j

A(δm, f jx) +
∑
j

[A(δj , f jx)−A(δm, f jx)].

The first term is equal to T ′. The second term can be estimated as follows:∑
j

[A(δj , f jx) −A(δm, f jx)] =
∑
j

dA

dδ
(δm, f jx)(δj − δm) +

∑
j

O
(
(δj − δm)2

)
.

Now
δm − δj ≤ Const |m− j|ε ≤ Const

√
ε.

Hence ∑
j

(δj − δm)2 ≤ Const
1√
ε
ε ≤ Const

√
ε.
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Now

δj − δm =
j∑

k=m

εB(δk, fkx) +
j∑

k=m

O(ε2) =
j∑

k=m

εB(δk, fkx) +O(ε
3
2 )

and
B(δk, fkx) = B(δm, fkx) +O(|δk − δm|) = B(δm, fkx) +O(

√
ε).

Hence∑
j

[
A(δj , f jx)−A(δm, f jx)

]
= ε

∑∑
k>j

dA

dδ
(δj , f jx)B(δm, fkx) +O(

√
ε),

as claimed. �

To estimate T ′′, rewrite

`

∑
j>k

∑ dA

dδ
(δm, f jx)B(δm, fkx)

 = `

∑
k

B(δm, fkx)
∑
j>k

dA

dδ
(δm, f jx)

 .

Now
∫
dA
dδ (δ, x)dµ(x) = 0, so similarly to Lemma 1 we obtain that for any fixed k∣∣∣∣∣∣`

B(δm, fkx)
∑
j>k

dA

dδ
(δm, f jx)

∣∣∣∣∣∣ ≤ Const .

Hence

ε

∣∣∣∣∣∣`
∑
j>k

∑ dA

dδ
(δm, f jx)B(δm, fkx)

∣∣∣∣∣∣ ≤ ε× Const
1√
ε

= Const
√
ε.

To estimate `(
∑

j A(δm, f jx)), it is enough to treat the case ` = `(P,G). In this
case we consider an almost Markov decomposition fmP = (

⋃
q Pq) ∪ Z. Choose

yq ∈ Pq. We have ∫
P

eG(x)
∑
j

A(δm, f jx)ρP (x)dx

=
∑
q

cq

∫
Pq

eG(f−m(y)
∑
j

A(δm(f−my), f j−my)ρPq (y)dy +O(θm).

For fixed q, ∫
Pq

eG(f−my)
∑
j

A(δm(y), f j−my)ρPq(y)dy(16)

=
∫
Pq

eG(f−my)
∑
j

A(δm(yq), f j−my)ρPq(y)dy

+
∫
Pq

eG(f−my)
∑
j

[A(δm(y), f j−my)−A(δm(yq), f j−my)]ρPq(y)dy.

Lemma 6. ∃C such that for small ε

(17) |δj(x1)− δj(x2)| ≤ Cεdγ(f jx1, f
jx2),

where γ is such that B ⊂ Cγ(M).
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Proof. Let Ck be a constant such that for j < k

|δj(x1)− δj(x2)| ≤ Ckεdγ(f jx1, f
jx2).

Then

|δk+1(x1)− δk+1(x2)| ≤ |δk(x1)− δk(x2)|+ ε|B(δk(x1), fkx1)−B(δk(x2), fkx2)|
≤ Ckεdγ(f jx1, f

jx2) + ε|B(δk(x1), fkx1)−B(δk(x1), fkx2)|
+ε|B(δk(x1), fkx2)−B(δk(x2), fkx2)|

≤ Ckεd(f jx1, f
jx2) + εC(B)|δk(x1)− δk(x2)|+ ε||B||dγ(fkx1, f

k(x2))

≤ [Ckε+ C(B)ε2 + ε||B||]dγ(fkx1, f
kx2).

Since f is partially hyperbolic, ∃θ < 1 such that

d(fkx1, f
kx2) ≤ θd(fk+1x1, f

k+1x2).

Thus

|δk+1(x1)− δk+1(x2)| ≤ ε[Ck + C(B)ε + ||B||]θγdγ(fk+1x1, f
k+1x2).

If ε is small enough, then εC(B) ≤ 1, so

Ck+1 ≤ (Ck + 1 + ||B||)θγ .
Thus if

Ck+1 ≤
(1 + ||B||)θγ

1− θγ ,

then (17) holds. �
Thus the second term in the RHS of (16) is less than

m+ 1√
ε∑

j=m

Const ε = Const
√
ε.

Now ∫
Pq

eG(f−my)
∑
j

A(δm(yq), f j−my)ρPq(y)dy

= ||A(δm(yq), ·)||B
∫
Pq

eG(f−qy)
∑
j

A(δm(yq), f j−my)
||δm(yq), ·)||

ρPq (y)dy

≤ ||A(δm(yq), ·)||
∑
j

a(
j −m
C

) ≤ Const ||A(δm(yq), ·)||.

So, ∣∣∣∣∣∣`
∑

j

A(δm, f jx)

∣∣∣∣∣∣ ≤
∑
q

cqθ1(δm(yq)) + Const
√
ε.

Using again Lemma 6 and the assumption that θ1 depends smoothly on δ, we get∑
q

cqθ1(δ(yq)) =
∑
q

∫
θ1(δm(f−my))ρPq(y)dy +O(ε) = `(θ1(δm)) +O(ε).

This completes the proof of (a).
(b) By Lemma 5, T = T ′ + T ′′ +O(

√
ε). Hence

`(T 2) ≤ Const[`((T ′)2) + `((T ′′)2) + ε].
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Lemma 7.

`((T ′)2) ≤ Const
(
`(θ2(δm))√

ε
+
√
ε

)
.

Proof. It suffices to give a proof in the case ` = `(P,G). Let fmP = (
⋃
q Pq) ∪ Z

be an almost Markov decomposition. Choose yq ∈ P. Then∫
P

eG(x)(T ′)2ρP (x)dx =
∑
q

cq

∫
Pq

eG(f−my)(T ′(f−mt))2ρPq (y)dy +O(θm).

Now ∫
Pq

eG(f−my)(T ′(f−mt))2ρPq(y)dy

=
∫
Pq

eG(f−my)

∑
j

A(f jx, δm(yq))

2

ρPq(y)dy

+
∫
Pq

eG(f−my)


∑

j

A(δm(y), f jx)

2

−

∑
j

A(δm(yq), f jx)

2
 ρPq (y)dy

= Iq + IIq.

Now

Iq = ||A(δm(yq), ·)||2
∫
Pq

eG(f−my)

[∑
j A(δm(yq), f jx)

]2

||A(δm(yq), ·)||2
ρPq(y)dy,

and by the argument of Lemma 1 the last integral is O( 1√
ε
). Hence

Iq ≤ Const
θ2(yq)√

ε
.

By Lemma 6,

θ2(yq) =
∫
Pq

θ2(y)ρPq(y)dy +O(ε).

Summation over q gives

(18)
∑
q

cqIq ≤ Const
[
`(θ2(δm))√

ε
+
√
ε

]
.

Now

IIq =
∫
Pq

eG(f−my)

∑
j

(A(δm(y), f jx)−A(δm(yq), f jx))


×

∑
j

(A(δm(y), f jx) +A(δm(yq), f jx))

 ρPq(y)dy.

By Lemma 6,∑
j

(
δm(y), f jx)−A(δm(yq), f jx)

)
≤
∑
j

O(ε) = O(
√
ε).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LIMIT THEOREMS FOR PARTIALLY HYPERBOLIC SYSTEMS 1663

On the other hand, ∑
j

(
A(δm(y), f jx) +A(δm(yq), f jx)

)
≤ 2

∑
j

||A(δm(y), ·)||+O(ε)

≤ Const
(
||A(δm, ·)||√

ε
+
√
ε

)
.

Thus

(19)
∑
q

cqIq ≤ Const `(|θ1(δm)|).

But

(20) `(|θ1(δm)|) = `

(
|θ1(δm)|

4
√
ε

4
√
ε

)
≤ 1

2

(
`(θ2(δm))√

ε
+
√
ε

)
Combining (18), (19) and (20), we obtain the lemma. �

Now

`((T ′′)2)

= ε2
∑

k1<j1,k2<j2,j1<j2

`

(
dA

dδ
(δm, f j1x)

dA

dδ
(δm, f21x)B(δk1 , f

k1x)B(δk2 , f
k2x)

)
.

By the argument of Lemma 1 we see that for fixed k1, j1, k2∣∣∣∣∣∣
∑
j2

`

(
dA

dδ
(δm, f j1x)

dA

dδ
(δm, f21x)B(δm, fk1x)B(δm, fk2x)

)∣∣∣∣∣∣ ≤ Const,

so the whole sum is bounded by

(21) `((T ′′)2) ≤ Const ε2

(
1√
ε

)3

= Const
√
ε.

Lemma 7 and (21) prove (b).
To prove (c) we again use

`(T 4) ≤ Const(`((T ′)4) + `((T ′′)4) + ε2).

Lemma 8.

`((T ′)4) ≤ Const [ε+ `(|κ̃1θ3|) + `(|θ3|) + `(|κ̃1θ2|)
+ε`(|θ2|) + `(θ4(δm)) + ε`(κ4(δm))] .

Proof. It suffices to consider the case ` = `(P,G). We argue as in the proof of (a).
Let fmP = (

⋃
q Pq) ∪ Z be an almost Markov decomposition. Choose yq ∈ Pq.

Then ∫
eG(x)(T ′)4ρP (x)dx

=
∑
q

cq

∫
Pq

eG(f−my)(T ′(f−my))4ρPq(y)dy +O(θm).
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Now ∫
Pq

eG(f−my)(T ′(f−my))4ρPq (y)dy

=
∫
Pq

eG(f−my)

∑
j

A(δm(yq), f jx)

4

ρPq(y)dy

+
∫
Pq

eG(f−my)

(
∑
j

A(δm(y), f jx))4 − (
∑
j

A(δm(yq), f jx))4

 ρPq(y)dy = Iq + IIq.

Reasoning as in Lemma 1(d), we obtain

|Iq| ≤ Const
(

1
ε

)2

θ4(δm(yq)) = Const
θ4(δm(yq))

ε
.

On the other hand,

IIq =
∫
Pq

eG(f−my)

(
∑
j

A(δm(y), f jx))4 − (
∑
j

A(δm(yq), f jx))4

 ρPq(y)dy

=
∫
Pq

eG(f−my)

(
∑
j

A(δm(y), f jx)−A(δm(yq), f jx))


×

(
∑
j

A(δm(y)), f jx)3 + (
∑
j

A(δm(y), f jx))2(
∑
j

A(δm(yq), f jx))

+ (
∑
j

A(δm(y), f jx))(
∑
j

A(δm(yq), f jx))2 + (
∑
j

A(δm(yq), f jx))3

 ρPq(y)dy.

Now

∑
j

[
A(δm(y), f jx)−A(δm(yq), f jx)

]
(22)

=

∑
j

DA(δq(y), f jx)(δm(y)− δm(yq))

 +O(
∑
j

[δm − δ −m(yq)]
2)

=

∑
j

DA(δq(y), f jx)(δm(y)− δm(yq))

+O(
√
ε3),

since by Lemma 6 each term in the second sum is O(ε2).
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Lemma 9.

(
∑
j

A(δm(y), f jx))3 + (
∑
j

A(δm(y), f jx))2(
∑
j

A(δm(yq), f jx))(23)

+(
∑
j

A(δm(y), f jx))(
∑
j

A(δm(yq), f jx))2 + (
∑
j

A(δm(yq), f jx))3

= 4

∑
j

A(δm(yq), f jx)

3

+O

[(
θ2(δm(y))√

ε

)
+
√
ε

]
.

Proof. Consider, for example, the first term. Other terms can be handled similarly.
We have

∑
j

A(δm(y), f jx)

3

=


∑

j

A(δm(y), f jx)

3

−

∑
j

A(δm(yq), f jx)

3


+

∑
j

A(δm(yq), f jx)

3

.

The first term here equals

∑
j

[
A(δm(y), f jx)−A(δm(yq), f jx)

]

×

(∑
k

A(δm(y), fkx)

)2

+

(∑
k

A(δm(y), fkx)

)(∑
r

A(δm(yq), f rx)

)

+

(∑
k

A(δm(yq), fkx)

)2
 .

By Lemma 6 the first factor is

1√
ε
O(ε) = O(

√
ε).

On the other hand, using the formula for difference of squares the same way we did
for cubes, we obtain that the first factor is O(1

εθ2(δm) + 1). �
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Multiplying (22) and (23), we get

IIq = 4
∫
Pq

eG(f−my)

∑
j

DA(δq(y), f jx)(δm(y)− δm(yq))


×

∑
j

A(δm(yq), f jx)

3

ρPq (y)dy

+O

√ε3

∫
Pq

eG(f−my)

∣∣∣∣∣∣
∑
j

A(δm(yq), f jx)

∣∣∣∣∣∣
3

ρPq(y)dy


+

1√
ε
O

∫
Pq

eG(f−my)

∑
j

DA(δq(y), f jx)(δm(y)− δm(yq))

 |θ2(δm(y))|ρPq (y)dy


+O

(
ε

∫
Pq

eG(f−my)|θ2(δm(y)|ρ(y)dy

)

+O

√ε ∫
Pq

eG(f−my)
∑
j

DA(δm(yq), f jx)(δm(y)− δm(yq))ρPq (y)dy

+O(ε2)

= II(1)
q + II(2)

q + II(3)
q + II(4)

q + II(5)
q + II(6)

q .

By the argument of Lemma 1(d) we obtain

II(1)
q ≤ Const sup

Pq

εκ1(δm(y))|θ3(δm(y))|
(

1√
ε

)2

= Const sup
Pq

κ̃1(δm(y))|θ3(δm(y))|

= Const

[∫
Pq

eG(f−my)κ̃1(δm(y))|θ3(δm(y))|ρPq (y)dy + ε

]
.

Also

II(2)
q ≤ Const

∫
Pq

eG(f−my)|θ3(δm(y))|ρPq (y)dy,

II(3)
q ≤ Const

∫
Pq

eG(f−my)|κ̃1(δm(y))||θ2(δm(y))|ρPq (y)dy,

and, since |δm(y)− δm(yq)| = O(ε),

II(5) ≤ Const ε
3
2

∫
P

eG(f−my)|κ̃1(δm)|ρPq (y)dy.

Thus∑
q

cq|IIq| ≤ Const
[
ε+ `(|κ1θ3|) + `(|θ3|) + `(|κ1θ2|) + ε`(|θ2|) + ε

3
2 `(|κ1|) + ε2

]
.
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Also,

θ4(δm(yq)) =
∫
Pq

eG(f−my)θ4(δm(y))ρPq (y)dy

+O(ε
∫
Pq

eG(f−my)|κ4(δm(y))|ρPq (y)dy + ε2).

Hence ∑
q

cq|Iq| ≤ Const(`(θ4(δm)) + ε`(κ4(δm)) + ε2).

This completes the proof of Lemma 8. �

On the other hand, the inequality

`((T ′′)4) ≤ Const ε

can be proven similarly to Lemma 1(d). This together with Lemma 8 completes
the proof of (c). The proof of Proposition 20 is complete. �

Proposition 21. ∣∣∣∣∣∣`
 T

ε∑
j=1

L−1
j+1γj

∣∣∣∣∣∣ ≤ Const .

Proof. We have

L−1
j+1γj = L−1

j−
√
n
γj +

[
L−1
j+1 − L−1

j−
√
n

]
γj .

Now ∣∣∣∣∣∣l
∑

j

L−1
j−
√
n
γj

∣∣∣∣∣∣ ≤ nConsta
(√

n

C

)
≤ nConst

(
√
n)2

= Const .

Also,

[
L−1
j+1 − L−1

j−√n

]
γj = εL−1

j−√n

∑
k

QkL−1
j−√nγj +O


∥∥∥∥∥∥
 j∑
k=j−√n

εQk

∥∥∥∥∥∥
2


= Ij + IIj .

But we have IIj = O((
√
ε)2) = O(ε). Thus

∑
j

`(IIj) =
∑
j

O


∥∥∥∥∥∥
 j∑
k=j−

√
n

εQk

∥∥∥∥∥∥
2
 = O(1).

Also, similarly to the proof of Lemma 1,

∑
j

`(Ij) = `

ε∑
j>k

L−1
j−
√
n

∑
k

QkL
−1
j−
√
n
γj

 ≤ Const ε
∑
j,k

a

(
j − k
C

)
.

Now, for fixed k, ∑
j>k

a

(
j − k
C

)
≤ Const .
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So ∑
j

`(Ij) ≤ Const ε

1
ε∑
j=1

O(1) = O(1).

�

14. Short time fluctuations in averaging. Recursive bounds

Here we complete the proof of Theorem 13. Let

am,p = sup
`

∣∣∣∣∣∣`
 m√

ε∑
j=0

L−1
j γj

p∣∣∣∣∣∣ .
Lemma 10. (a) am,2 ≤ Constm

√
n.

(b) am,4 ≤ Constm2n.

Proof. We want to relate am+1,p to am,p. Let S̄ =
∑ m√

ε

j=0 L
−1
j γj , Ŝ =

∑m+1√
ε

m√
ε
L−1
j γj .

We have
`((S̄ + Ŝ)2) = `(S̄2) + 2`(S̄Ŝ) + `(Ŝ2).

Applying Proposition 20 to the last term, we get

`(Ŝ2) ≤ Const
√
n.

To estimate the second term, we write

S̄Ŝ =
√
am,2

(
S̄

√
am,2

Ŝ

)
and apply Proposition 20 with

A(x, S̄, L) =
1√
am, 2

S̄L−1A(x).

Then |θ1(S̄, L)| ≤ Const, so

|`(S̄Ŝ)| ≤ Const
√
am,2,

and hence
`((S̄ + Ŝ)2) ≤ `(S̄2) + Const

[√
n+
√
am,2

]
.

Taking the supremum over l, we obtain

am+1,2 ≤ am,2 + Const(
√
n+
√
am,2).

Let am,2 = Kmm
√
n. Then we get

Km+1(m+ 1)
√
n ≤ Kmm

√
n+ Const(

√
n+

√
Kmm

√
n)

≤ Kmm
√
n+ Const(1 +

√
Km)
√
n.

(The last inequality follows from the fact that m ≤ T
√
n.) Dividing by m+ 1, we

get

Km+1 ≤ Km −
Km − (

√
Km + 1) Const
m+ 1

.

If K is such that K ≥ (
√
K + 1) Const, then Km ≤ K implies that Km+1 ≤ K,

and so (a) is proved by induction.
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To prove (b), write

`((S̄ + Ŝ)4) ≤ `(S̄4) + Const
[
`(S̄3Ŝ) + `(S̄2Ŝ2) + `(S̄Ŝ3) + `(Ŝ4)

]
.

To estimate `(S̄3Ŝ) we write

S̄3Ŝ = (am,4)
3
4

 S̄3

a
3
4
m,4

Ŝ


and apply Proposition 20 with

A(x, S̄, L) =
1

a
3
4
m,4

S̄3L−1A(x).

Then |θ1(S̄, L)| ≤ Const, so

|`(S̄3Ŝ)| ≤ Consta
3
4
m,4.

Also by Proposition 20

`(Ŝ4) ≤ Constn.

To estimate the other terms, we apply the Hölder inequality to get

`((S̄ + Ŝ)4) ≤ `(S̄4) + Const
[
a

3
4
m,4 + n+ `(S̄4)

1
4 `(Ŝ4)

3
4 +

√
`(S̄4)`(Ŝ4)

]
.

Taking the supremum, we get

am+1,4 − am,4 ≤ Const
[
a

3
4
m,4 +

√
am,4n+ a

1
4
m,4n

3
4 + n

]
.

Let am,2 = Kmm
2n; then we get

Km+1(m+ 1)2n−Kmm
2n

≤ Const
[
K

3
4
mm

3
2n

3
4 +

√
Kmm

√
n
√
n+K

1
4
m

√
mn

1
4n

3
4 + n

]
≤ Const

[
K

3
4
mmn+

√
Kmmn+K

1
4
m

√
mn+ n

]
.

(In the last inequality we are using the fact that m ≤ T
√
n.) So if K is large

enough, then Km ≤ K implies that Km+1 ≤ K. This proves (b). �

Now let

bm,p = sup
`

∣∣∣∣∣∣
 m√

ε∑
j=0

βj

p∣∣∣∣∣∣ ,
dm,p = sup

`

∣∣∣(∆p
m√
ε

)∣∣∣ .
Using equation (14) and Lemma 10, we get

(24) dm,p ≤ Const(am,p + bm,p)εp ≤ Const(bm,p + (m
√
n)

p
2 )εp.

The next step gives recursive relations for bm,p.
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Proposition 22. (a)

bm+1,2 − bm,2 ≤ Const(
√
bm,2dm,2 +

√
ndm,2).

(b) Let Dm = dm,4
ε + d

3
4
m,4 + dm,2 + ε

3
2 . Then

bm+1,4 − bm,4 ≤ Const
[
b

3
4
m,4

√
dm,2 +

√
bm,4Dm + b

1
4
m,4D

3
4
m +Dm

]
.

Proof. (a) Let R′ =
∑ m√

ε

j=1 βj , R
′′ =

∑m+1√
ε

m√
ε
βj . We have

`((R′ +R′′)2) = `((R′)2) + 2`(R′R′′) + `((R′′)2).

Thus

bm+1,2 − bm,2 ≤
[
sup
`
`(R′R′′) + `((R′′)2)

]
.

Applying Proposition 20 with δ = (q,∆) and

A(q,∆, x) =
[DA(q, x) + ζ(q, x,∆) −Q] ∆

dm,2
,

we get
`((R′′)2) ≤ Const dm,2

√
n.

Applying Proposition 20 with δ = (q,∆, R′) and

A(q,∆, x) =
[DA(q, x) + ζ(q, x,∆) −Q] ∆R′√

dm,2bm,2
,

we obtain
|`(R′R′′)| ≤ `(∆m

√
nR
′) ≤ Const

√
dm,2bm,2.

(b) First we estimate `((R′′)4). To this end we apply Proposition 20 and note
that

|θ4(δm)| ≤ Const ∆4
m
√
n,

|κ4(δm)| ≤ Const |∆m
√
n|3,

|θ3(δm)| ≤ Const |∆m
√
n|3,

|θ2(δm)| ≤ Const |∆m
√
n|2,

|κ̃1(δm)θ3(δm)| ≤ Const |∆m
√
n|3,

|κ̃1(δm)θ2(δm)| ≤ Const |∆m
√
n|2,

|κ̃1(δm)| ≤ Const,

and, that, by the Hölder inequality

`
(
|∆m

√
n|3
)
≤ d

3
4
m,4.

Thus
`((R′′)4) ≤ ConstDm.

To estimate `((R′)3R′′) we apply Proposition 20 with

A =
(R′)3 [DA(q, x) + ζ(q, x, ,∆) −Qn] ∆√

dm,2b
3
4
m,4

.

This gives
`((R′)3R′′) ≤ Const

√
dm,2b

3
4
m,4.
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To estimate the remaining terms we use the Hölder inequality. This completes the
proof of (b) . �

Now, using the a priori bound |∆m| ≤ Const, we see that the contribution of
bm,p to (24) is not larger that the contribution of am,p. Thus

(25) dm,p ≤ Const(m
√
n)

p
2 εp.

Plugging this bound into Proposition 22(a), we get

bm+1,2 − bm,2 ≤ Const(
√
bm,2 + 1)

√
ε.

From this we obtain by induction that, for m ≤ 1√
ε
,

(26) bm,2 ≤ Constm
√
ε.

Also, (25) implies that

dm,p ≤ Const ε
p
2 .

Hence Dm ≤ Const ε. The inequality of Proposition 22(b) becomes

bm+1,4 − bm,4 ≤ Const
[
b

3
4
m,4

√
ε+

√
bm,4ε+ b

1
4
m,4ε

3
4 + ε

]
.

Now, repeating the argument of Lemma 10(b), we get

(27) bm,4 ≤ Constm2nε2.

Proposition 23. (a) {∆ε
t} is a tight family.

(b) Let βεt = β[
t
ε ]√
ε

. Then βεt → 0 in probability as ε→ 0.

Proof. In view of the inequalities (26)–(27), the proof of (a) is similar to the proof
of Lemma 2. The similar argument implies that { β

ε
t√
ε
} is tight, and so βεt → 0. �

Proposition 24. Let Lεt = L[ tε ]. Then, as ε → 0, Lεt converges to the solution of
the ODE

dL

dt
= DA(q(t))L.

Proof. This follows immediately from the equation (12), the bound

||ζ̄(qn,∆n)|| ≤ Const ||∆n||

and the fact that ∆[ tε ] → 0 weakly. �

Proof of Theorem 4. If ∆t is some limit of ∆ε
t , then it follows from (13) and Propo-

sitions 19, 23 and 24 that ∆t satisfies the equation

(28) ∆(t) = L(t)
∫ t

0

L−1(s)dB(s),

where dL
dt = DĀ(q(t))L. Differentiating (28), we get

d∆ = DĀ(q(t))∆dt + dB(t).

This completes the proof of Theorem 4. �
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15. Long time fluctuations in averaging

Here we prove Theorem 5. Recall from Section 13 that for the sake of nota-
tional simplicity we give the proof only for the case z ∈ R1, the general case being
completely similar.

Lemma 11.
∣∣∣`(∑n

j=0 A(zj , f jx)
)∣∣∣ ≤ Const(1 + εn).

Proof. Let r = βε

√
1
ε , where βε is chosen so that βε → 0 but ar

ε → 0 as ε→ 0. For
j > r we write

zj = zj−r +
j−1∑

m=j−r
εA(zm, fmx).

From this and Lemma 5 we obtain

A(zj , f jx) = A(zj−r , f jx) + ε

j−1∑
m=j−r

DA(zj−r , f j−rx)A(zm, fmx) +O(ε2r2).

Similarly to the proof of Theorem 2, we get∣∣`(A(zj−r , f jx))
∣∣ ≤ Const ar.

Thus

(29) `

 n∑
j=r

A(zj , f jx)


= O(ε2nr2) +O(nar) + ε`

(
n∑

m=0

A(zm, fmx)
m+r∑

k=m+1

DA(zk−r , fkx)

)
.

By the argument of Lemma 1 the contribution to the last term of each fixed m can
be bounded by

Const ε
m+r∑

k=m+1

a

(
k −m
C

)
≤ Const ε

∑
k

a

(
k

C

)
.

Thus `(
∑n
j=r A(zj , f jx)) = O(εn). Similarly

r∑
j=0

`(A(zj , f jx))

=
r∑
j=0

`(A(z0, f
jx)) + ε

∑∑
j>k

`
(
A(zk, fkx)DA(z0, f

jx)
)

+O(ε2r3).

Similarly to Lemma 1(a) and (b), we can estimate the first term here by Const and
the second by Const εr. �

Corollary 14. (a)

`


 ∆

ε∑
j=0

A(zj , f jx)

2
 ≤ Const

∆
ε
.
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(b) As ∆→ 0,

ε`


 ∆

ε∑
j=0

A(zj , f jx)

2
 ∼ ∆σ(z0).

Proof. (a) follows from Lemma 10(a).
(b) We have

`


 ∆

ε∑
j=0

A(zj , f jx)

2
 =

∑
j,k

`
(
A(zj , f jx)A(zk, fkx)

)
.

Break this sum into two parts:

∑
|j−k|≤K

`(A(zj , f jx)A(zk, fkx)) ∼ ∆
ε
ν

(
K∑

k=−K
A(z0, x)A(z0, f

kx)

)
.

On the other hand,∣∣∣∣∣∣
∑

|j−k|>K
`(A(zj , f jx)A(zk, fkx))

∣∣∣∣∣∣ = oK→∞(1) +O

(
∆2

ε

)
.

Letting K →∞, we obtain the required statement. �

Lemma 12. (a)

`


 ∆

ε2∑
j=0

A(zj , f jx)

2 ≤ Const
∆
ε2
.

(b) As ∆→ 0,

`


 ∆

ε2∑
j=0

A(zj , f jx)

2
 ∼ σ(z0)

∆
ε2
.

Proof. (a) We proceed by induction. Namely, we will show that for each k there is
a constant Rk such that

(30) `


 2k

ε∑
j=0

A(zj , f jx)


2 ≤ Rk 2k

ε2
.
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Corollary 14 show that this is true for k = 1. Let us see haw to pass from k to k+1.
We have

`


 2k+1

ε∑
j=0

A(zj , f jx)


2 = `



 2k

ε∑
j=0

A(zj , f jx)

+

 2k+1
ε∑

2k
ε +1

A(zj , f jx)




2

= `


 2k

ε∑
j=0

A(zj , f jx)


2

+

 2k+1
ε∑

2k
ε +1

A(zj , f jx)


2

+2`

 ∑
0≤j≤ 2k

ε <m≤
2k+1
ε

A(zj , f jx)A(zm, fmx)

 .

The sum of the first two terms is bounded by Rk 2k+1

ε , by the induction hypothesis.
By the argument of Lemma 11 the last term is less than

`


∣∣∣∣∣∣∣

2k
ε∑

j=0

A(zj , f jx)

∣∣∣∣∣∣∣
Const 2k.

By the induction hypothesis the first factor here is at most
√
Rk

2
k
2√
ε
. Thus

Rk+12k+1

ε
≤ 2

Rk2k

ε
+O

(√
Rk2k

ε
2k
)
.

In other words,

Rk+1 ≤ Rk +O(
√
Rk2kε).

Let R∗k = max(Rk, 1); then

R∗k+1 ≤ R∗k
(

1 +O
(√

2kε
))

.

Hence

R∗k ≤ R∗0
k∏
j=0

(
1 + Const

√
2jε
)
.

Now

2jε = 2kε2j−k ≤ ∆
2k−j

.

The second term is less than
∏∞
m=0(1 + Const

√
∆2−j). Hence the R∗k and so the

Nk are uniformly bounded. This proves (a).
(b): (a) implies that as ∆ → 0, zn → z0 in probability uniformly for n < ∆

ε2 .
Hence we can repeat the computation of (a), replacing (30) by the assumption that
∀N = 2k

ε ,

`


 N∑
j=0

A(zj , f jx)

2
 = (σ(z0) + ρl,k)N,
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where |ρl,k| < δk. We then get

δk+1 ≤ δk

1 +O

√2kε
δk

 .

We want to show that, given δ > 0, there exists ∆̄ such that |δk| < δ for ∆ < ∆̄.
Let k′(k) be the largest number less than k such that |δk′ | < δ2. Reasoning as in
(a), we get

δk < δ2
k∏

j=k′

(
1 + Const

√
2jε
δ

)
≤ δ2

∞∏
l=1

(
1 + Const

√
2−l∆
δ

)
.

The second term converges to 1 as ∆→ 0. This proves (b). �

Corollary 15. As ∆→ 0,

`

 ∆
ε2∑
j=0

A(zj , f jx)

 ∼ ∆
ε
a(z0).

Proof. By (29) we have

`

 ∆
ε2∑
j=0

A(zj , f jx)

 = ε

∆
ε2∑
j=0

∑
k

`
(
A(zj , f jx)DA(zk−r , fkx)

)
+ o

(
∆
ε

)

= ε

∆
ε2∑
j=0

K∑
k=1

`
(
A(zj , f jx)DA(zj+k−r , fkx)

)
+ oK→∞

(
∆
ε

)
.

But for fixed j

`

(
A(zj , f jx)

K∑
k=1

DA(zj+k−r , f j+kx)

)
∼ ν

(
A(zj , f jx)

K∑
k=1

DA(zj , f j+kx)

)
.

Also, zj → z0 in probability by Lemma 12; thus
∆
ε2∑
j=0

`

(
A(zj , f jx)

K∑
k=1

DA(zj+k−r , f j+kx)

)
∼ ∆

ε

K∑
k=1

ν
(
A(z0, f

jx)DA(z0, f
kx)
)
.

Letting K →∞, we obtain the required statement. �

Lemma 13.

`


 ∆

ε2∑
j=0

A(zj , f jx)

4
 ≤ Const

∆2

ε4
.

Proof. We proceed as in Lemma 12. The inequality

`


 ∆

ε∑
j=0

A(zj , f jx)

4
 ≤ Const

∆2

ε2
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follows from Lemma 10. Let Mk be the number such that

`


 2k

ε∑
j=0

A(zj , f jx)


4 ≤Mk

(
2k

ε

)2

.

Let

T̄ =

2k
ε∑
j=0

A(zj , f jx),

T̂ =

2k+1
ε∑

j= 2k
ε +1

A(zj , f jx).

We have

`


 2k+1

ε∑
j=0

A(zj , f jx)


4

= `((T̄ + T̂ )4) = `(T̄ 4) + `(T̂ 4) + 4`(T̄ 3T̂ ) + 4`(T̄ T̂ 3) + 6`(T̄ 2T̂ 2).

Using the argument of Proposition 20, Corollary 14 and Lemma 12, we obtain

`
(
T̄ 4
)
≤Mk

22k

ε2
,(31)

`
(
T̂ 4
)
≤Mk

22k

ε2
,(32)

|`(T̂ 3T̄ )| ≤ Const `(|T̂ |3)2k ≤ ConstM
3
4
k

2
5k
2

ε
3
2
≤ ConstM

3
4
k

22k

ε2
(33)

(the last inequality is true because 2k ≤ 1
ε ), and

(34) `(T̂ 2T̄ 2) ≤ Const
22k

ε2
.

Lemma 14. ∣∣∣`(T̂ T̄ 3)
∣∣∣ ≤ ConstM

3
4
k

22k

ε2
.

Proof. It is enough to prove this for ` = `(P,G). Denote k∗ = 2k

ε . Consider an
almost Markov decomposition fk

∗
P =

⋃
Pj ∪ Z. Denote ξj = supf−k∗Pj |T̂ | + 1.

Then ∣∣∣`(T̂ T̄ 3)
∣∣∣

≤
∑
j

cjξj

∣∣∣∣∣∣∣
∫
Pj

eG(f−k
∗
y) (T̂ (f−k

∗
y)

ξj

k∗−1∑
j=0

A(zk∗+j , f jy)

3

ρPj (y)dy

∣∣∣∣∣∣∣+O
(
θk
∗
)
.

Now the Hölder norm of T̂ ◦ f−k∗ is O(1). Now, any bounded function can be
decomposed as a difference of two positive functions as follows:

A = 2||A||L∞ − (2||A||L∞ −A).
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This implies that

`∗j (A) =
∫
Pj

eG(f−k
∗
y) (T̂ (f−k

∗
y)

ξj
A(y)ρPj (y)dy

can be written as `∗j = a1`
′
j − a2`

′′
j , where `′j , `

′′
j ∈ E(P , R, α) and |a1| < Const,

|a2| < Const . Thus ∣∣∣∣∣∣∣`j

k∗−1∑
j=0

A(zk∗+j , f jy)

3

∣∣∣∣∣∣∣

≤ (Hölder)

`j

k∗−1∑
j=0

A(zk∗+j , f jy)

4



3
4

≤ (inductive hypothesis)
M

3
4
k 2

3k
2

ε
3
2

.

Thus ∣∣∣`(T̂ T̄ 3
)∣∣∣ = O

M 3
4
k 2

3k
2

ε
3
2

∑
j

cjξj

+O(θk
∗
) = O

M 3
4
k 2

3k
2

ε
3
2

∑
j

cjξj

 .

Using the argument of Proposition 20, we get∑
j

cjξj ≤ Const(`(|T̂ |) + 1) ≤ Const(
√
`(T̂ 2) + 1) ≤ Const

2
k
2

√
ε
,

where the last inequality follows by (30). Thus

|`(T̂ T̄ 3)| ≤ ConstM
3
4
k

22k

ε2
,

as claimed. �

Combining (31)–(34) and Lemma 14, we get

Mk+122k+2

ε2
= 2

Mk22k

ε2
+ Const

(
M

3
4
k

22k

ε2
+ 1
)
.

Thus

Mk+1 ≤
Mk

2
+K

(
M

3
4
k + 1

)
.

Hence if M is so large that
M

2
≥ K

(
M

3
4
k + 1

)
,

then Mk ≤M implies Mk+1 ≤M. This completes the proof of Lemma 13. �

Corollary 16. {Zεt } is tight.

Proof. In view of Lemma 13, the proof is the same as the proof of Lemma 2. �

To prove Theorem 5 we need the following characterization of diffusion processes.
(See, for example, [86], Exercise 4.6.6.)
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Proposition 25. Let (ξt,Ft) be a random process with continuous paths such that

ξt −
∫ t

0

a(ξs)ds and

(
ξt −

∫ t

0

a(ξs)ds
)2

−
∫ t

0

σ(ξs)ds

are martingales. Then ξt is diffusion with drift a(x) and diffusion coefficient σ(x).

Proof of Theorem 5. By Corollary 16, {Zεt } is a tight family. Let Z be some limit
of Zεt . We need to show that if Q(z1 . . . zm) is any smooth bounded function and
t1, . . . , tm are any numbers, tj ≤ t, then

(35) E (Q(Zt1 . . . Zts) [Zt+∆ − Zt −∆a(Zt)]) = o(∆)

and

(36) E
(
Q(Zt1 . . . Zts)

[
(Zt+∆ − Zt)2 −∆σ(Zt)

])
= o(∆).

Let us consider (35) ((36) is similar). In terms of the original family Zεt we have to
show that ∀` ∈ E(P , R, α)

`
(
Q(, Zt1/ε2 , . . . , Ztm/ε2)

(
Z(t+∆)/ε2 − Zt/ε2 −∆a(Zt/ε2)

))
→ 0

uniformly as ε → 0. It suffices to verify this for ` = `(P,G). However, in this
case the proof proceeds as before by considering an almost Markov decomposition
f t/ε

2
P =

(⋃
j Pj

)
∪ Z and applying Corollary 15 to each Pj . The details are left

to the reader. �

16. Three series theorem

Here we prove Theorem 6. Consider a series

(S) =
∑
n

cnAn(fnx).

It is enough to assume that ν(An) = 0,
∑

n c
2
n < ∞,

∑
a(m) < ∞, ‖An‖B ≤ 1.

Take a Markov family P . Let P ∈ P .

Proposition 26. (S) converges in L2(`(P )).

Proof. We have

`([
∞∑
n=N

cnAn ◦ fn]2)

= Const
∞∑

m,n=N

cncma

(
n−m
C

)

≤ Const
∞∑

m,n=N

(c2n + c2m)a
(
n−m
C

)

≤ Const
∞∑

m,n=N

c2na

(
n−m
C

)

≤ Const

( ∞∑
m=1

a(m)

)( ∞∑
n=N

c2n

)
.

�
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Let FN be as in Section 11.

Proposition 27. ∀Q ∈ FN , ∀A ∈ B such that ν(A) = 0, ||A|| ≤ 1,∣∣∣∣∫
Q

A(fnx)ρP (x)dx
∣∣∣∣ ≤ Consta(n−N) Vol(Q).

Proof. Indeed,∣∣∣∣∫
Q

A(fnx)ρQ(x)dx
∣∣∣∣ =

∫
fNQ

An(fn−Ny)ρfNQ(y)dy ≤ a(n−N),

but ρP = cP,QρQ, where cP,Q ∼ Vol(Q). �

Proof of the theorem. Denote by B the L2-sum B =
∑
cnAn ◦ fn. We have, ∀Q ∈

Fr, ∫
Q

B(x)ρP (x)dx =

(
r∑

n=1

+
∞∑

n=r+1

)
cnAn(fnx)ρP (x)dx = I + II.

But

|II | ≤ Const
∞∑

n=r+1

cna(n− r) Vol(Q) ≤ Const(max
n≥r

cn) Vol(Q).

Let y be any point in Q Then

I =
r∑

n=1

cnA(fny) Vol(Q) +O(
r∑

n=1

cnθ
r−n) Vol(Q).

The second term can be bounded as follows:
r∑

n=1

cnθ
r−n ≤ (max

n
cn)

r
2∑

n=1

θr−n + max
n> r

2

cn(
∑
n> r

2

θr−n) ≤ Const(θ
r
2 + max

n> r
2

cn).

Hence ∫
QB(x)ρP (x)dx

Vol(Q)
=

r∑
n=1

cnA(fny) + o(1),

so the theorem follows by Doob’s martingale convergence theorem. �

Note. In this section we followed [55] quite closely.

17. Borel–Cantelli lemma

Here we prove Theorem 7. Let rn be the radius of Bn, pn = ν(Bn) ∼ rdn, µmn =
ν(1Bm(fmx)1Bn(fnx)). Set SN =

∑N
j=1 1Bj (f jx), EN = E(SN ) =

∑N
n=1 pn, and

(37) VN = E(S2
N ) =

N∑
m,n=1

µmn.

Lemma 15. VN ≤ E2
N + CEN .

Proof. To estimate VN we break the sum (37) into five parts. Below, ε is such
that, for k < ε ln( 1

pm
), fkBm ∩ Bn has at most one component, c1 is an arbitrary

constant and c2 is a constant whose value will be chosen at the end of this section.
(I) m = n. Then I =

∑N
n=1 µnn =

∑N
n=1 pn = EN .
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(II) m < n < m + ε ln( 1
pm

). Consider the set B̃m obtained as follows. For any
leaf Wu(x) such that Wu

loc(x)∩Bm 6= ∅, choose a ball Wm,x of radius rm containing
Wu
loc(x) ∩Bm. Let B̃m =

⋃
xWm,x.

Proposition 28. ν(B̃m) ≤ Const pm.

Proof. Let distu denote the distance in the induced Wu metric. Then locally we
have distu(·, ·) ≤ Const dist(·, ·). Hence B̃m is contained in a ball with the same
center as Bm and of radius Const rm. �

Proposition 29. If m < n < m+ ε ln( 1
pm

), then

µmn ≤ Cθn−m(pn + pm).

Proof. Choose δ such that fkWm,x contains a ball of radius (1 + δ)krm. Consider
two cases:

(a) rn ≥ rm(1 + δ
2 )n−m. Then µmn ≤ pm ≤ Const(1 + δ)d(n−m)pn.

(b) rn < rm(1 + δ
2 )n−m. Let `x denote `(Wm,x). Then `x(fn−mWm,x ∩ Bn) ≤

Const(1 + δ)(n−m) Vol(Wm,x), and hence µmn ≤ Const(1 + δ
2 )n−mpm. �

(III) m + ε ln( 1
pm

) ≤ n ≤ m + c1 ln( 1
pm

). Then fn−mWm,x contains a ball of
radius r1−γ

m , γ = γ(ε). Again there are two cases.
(a) If rn ≤ r

1− γ2
m , then any component of fn−mWm,x ∩Bn can be surrounded by

an annulus of width r1−γ
m − r1− γ2

m disjoint from Bn. Thus ∃δ1 such that

`x(fn−mWm,x ∩Bn) ≤ Const pδ1m .

Thus µmn ≤ p1+δ1
m .

(b) If rn > r
1− γ2
m , then µmn ≤ pm.

(IV) m+ c1 ln( 1
pm

) < n < m+ ( 1
pm

)c2 .

Proposition 30. µmn ≤ Const p
d

d−du
m .

Proof. Now any component of fn−mWm,x ∩ Bn can be surrounded by an annulus
of constant width disjoint from Bn. Hence

`x(fn−mWm,x ∩Bn) ≤ Const rdun .

On the other hand, µmn ≤ pn. So

µm,n ≤ C sup
r

(min(rd, rdupm)) = Cp
d

d−du
m .

�

(V) n > m+ ( 1
pm

)c2 . The following is analogous to Theorem 2.

Proposition 31. Let B1 and B2 be two balls, of radii r1 and r2 respectively. Then,
given n0, ∃C(n0) such that

|ν(1B1(x)1B2(fmx))− ν(B1)ν(B2)| ≤ Const

[(
1

m− C ln r1

)k ( 1
r2

)α
+ rn0

]
.
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So, µmn ≤ pmpn + δmn, where for δmn we have two bounds:

δmn ≤ C[(
1
pn

)α(
1

n−m )k + pn0
m ] and δmn ≤ pn.

Hence

δmn ≤ sup
p

(
min

(
C

(
1
p

)α( 1
n−m

)k
+ pn0

m , p

))
= C

(
1

n−m

) k
α+1

.

(Here we have used that 1
n−m � pn0

m .)
Let us sum up these terms. Direct calculation shows that

(I) = EN ;

(II) ≤ ConstEN ;

(III)(a) ≤ Const
∑
m

p1+δ
m ln

(
1
pm

)
≤ Const

∑
m

pm ≤ ConstEN ;

(IV ) ≤
∑
m

(
1
pm

)c2
p

d
d−du
m ≤ EN

if c2 < du
d−du . To estimate (III)(b), observe that we have two lower bounds for pm.

First, pm ≤ p1+δ
n , and second, pm ≤ e−

n−m
c1 . Thus

(III)(b) ≤
∑
n

 ∑
n−m<( 1

pn
)
δ
2

p1+δ
n +

∑
m−n≥( 1

pn
)
δ
2

e
−n−mc1


≤
∑
n

Const pn ≤ ConstEN .

Finally,

(V ) ≤ E2
N +

∑
m

∑
j>( 1

pm
)c2

(
1
j

) k
α+1

≤ E2
N + C

∑
m

p
c2( k

α+1−1)
m ≤ E2

N + CEN

if c2( k
α+1 − 1) ≥ 1, i.e., c2 ≥ α+1

k−(α+1) . So for c2 we have two inequalities:

α+ 1
k − (α+ 1)

≤ c2 <
du

d− du
.

They are compatible, since k
α+1 > d

du
. Combining these bounds, we get VN ≤

E2
N + ConstEN , as claimed. This completes the proof of Lemma 15. �

Proof of Theorem 7. By Lemma 15, E([ SNEN − 1]2) ≤ Const
EN

. Choose Nj so that

ENj ≥ 2j. Then, by the Borel-Cantelli lemma,
ENj
SNj

→ 1 ν–almost surely. Thus
SNj →∞ ν–almost surely. Since SN is non-decreasing, SN →∞. �

Notes. The first Borel-Cantelli lemma for a dynamical system was proved in [70].
[87] and [54] prove Borel-Cantelli for some partially hyperbolic dynamical systems
on non-compact manifolds and present several applications to geometry and number
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theory. [19] deals with Anosov diffeomorphisms and establishes Borel-Cantelli under
various assumptions on the shapes of the Bn.

18. Poisson law

Here we prove Theorem 8. Let Bn = B(x0,
1
n ), Xn,θ =

∑nθ

j=1 1Bn(f jx).

Lemma 16. If θ > 1+α
k , then `(X) = nθν(Bn)(1 + o(1)).

Proof. We have

`(X) = nθν(Bn) +O

 nθ∑
j=1

min

(
(

1
n

)du , nα
(

1
j

)k) .

The second term is O(( 1
n )du(1− 1

k )−αk ). If θ > 1+α
k , then the main term here is the

first one. �

Let us estimate `(X ≥ 2). Denote Wn,x = Bn ∩Wu
loc(x) and `x = `(Wn,x). Fix

K. Put B̂n(K) =
⋃
Wn,x⊃Bu(ȳ, 1

nK )Wn,x.

Proposition 32.
ν(B̂n(K))
ν(Bn)

→ 1

as K →∞ uniformly over n.

Proof. Similarly to Proposition 28, Bn\Bn(K) ⊂ B(x0,
1
n (1− Const

K )). �

We have

`(X ≥ 2) ≤ `(∃j ≤ nθ : f jx ∈ Bn\B̂n(K))

+
∑
m

`(∃j ≤ nθ : 1Bn(f j+mx) = 1|fnx ∈ B̂n(K))`(1B̂n(K)(f
mx)).

By Proposition 32 the first term is less than εnθν(Bn) if K is large enough. To
bound the second term, break it into four parts.

(I) j ≤M0. This term vanishes, since x0 is not periodic.
(II) M0 < j ≤ ε lnn.

Proposition 33. ∀ε ∃M0 such that II ≤ ε`(X).

Proof. The intersection f j(Wn,x) ∩Bn has at most one component. Hence

`x(f j(Wn,x) ∩Bn) ≤ C rdun
Vol(f jWn,x)

≤ Cξj ,

ξ < 1. So

II ≤
∑
m

1B̂n(K)(f
mx)

∞∑
j=M0

Cξj ≤
∞∑

j=M0

Cξj`(X) ≤ C ξM0

1− ξ `(X),

and the last expression goes to 0 as M0 tends to infinity. �

(III) ε lnn < j ≤ C1 lnn.

Proposition 34. For fixed C1, ∃ε̃ such that III ≤ Const(lnn)nε̃`(X).
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Proof. Here for any component of f jWn,x∩Bn there is an annulus of width at least
( 1
n )1−ε̃ disjoint from Bn. Hence∑

j

`x(f jWn,x ∩Bn) ≤ Const(lnn)
(

1
n

)ε̃
.

�
(IV) C1 lnn < j ≤ nθ.

Proposition 35. If C1 is large enough, then IV ≤ Const( 1
n )dunθ`(X).

Proof. Here for any component of f jWn,x∩Bn there is an annulus of width of order
1 disjoint from Bn. So `x(f jWn,x ∩Bn) ≤ Const( 1

n )du . Hence∑
j

`x(f jWn,x ∩Bn) ≤ nθ
(

1
n

)du
.

�
Thus IV ≤ ε`(X) if θ < du. So we have for θ the inequalities 1+α

k < θ < du.

They are compatible if k
α+1 >

1
du
. So we have

Proposition 36. Let 1+α
k < θ < du. Then

`(eitX) = 1− nθν(Bn)(1 − eit) + o(nθν(Bn)).

Now introduce

Xn,k =
k∑
j=1

(j+1)nθ−n
θ
2∑

l=jnθ

1Bn(f lx).

ThenXn,(ν(Bn)nθ)−1−
∑ν(Bn)−1

l=1 1Bn(f lx) converges to 0 in probability. Let φn,k(`, t)
= E`(eitXn,k).

Proposition 37.

φn,k(`, t) =
[
1− nθν(Bn)(1− eit)

]k
+ o(knθν(Bn)).

Proof (Induction on k). For k = 1 this is the subject of Proposition 36. Assume
that we have established our claim for k. Take ` ∈ E1, ` = `(P ). Consider an almost
Markov decomposition f (k+1)nθP = (

⋃
j Pj) ∪ Z. Choose yj ∈ f−(k+1)nθPj . Then

φn,k+1(`, t) =
∑
j

cje
itXn,k(yj)φn,1(`(Pj), t) +O(ζn)

=
∑
j

cje
itXn,k(yj)[(1 − nθν(Bn)(1− eit)) +O(εnθν(Bn))]

= [φn,k(`, t) +O(ζn
θ
2 )][(1− nθν(Bn)(1 − eit)) +O(εnθν(Bn))]

= [(1− nθν(Bn)(1 − eit))k +O(δk + ζn
θ
2 )][(1− nθν(Bn)(1 − eit)) +O(εnθν(Bn))]

= (1− nθν(Bn)(1 − eit))k+1 + δk+1,

where
δk ≤ δk + εnθν(Bn) + Const ζ

n
2 .

�
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Proof of Theorem 8. Since Xn(∆) is a point process, we only need to establish
the convergence of finite-dimensional distributions. Let ∆1, . . . ,∆m be disjoint
intervals. By Proposition 37,

`(Xn(∆1) = n1) ∼ ∆n1
1

n1!
e−∆1 .

Repeating the argument of Proposition 37, we obtain

`(
⋂
j

{Xn(∆j) = nj}) ∼
∏
j

(
∆nj
j

nj !

)
e−∆j .

�
Notes. (1) There are two useful extensions of Theorem 8. The first says that if

x0 is periodic of least period T , then Xn(∆) is asymptotically distributed as∑
j∈N∆

ξj , where N∆ is the Poisson process with the unit density and the ξj
are mutually independent, independent of N∆ and identically distributed.
Their distribution can be obtained as follows. Let M be a linear transfor-
mation of a d-dimensional Euclidean space such that at least one eigenvalue
of M has absolute value greater then 1. Let η be uniformly distributed in
the unit ball B. Define ξ(M) =

∑∞
k=1 1B(Mkη). Then the ξj have the same

distribution as ξ(dfT (x0)). (The proof is the same as before, but now (I) is
not zero.) Second, one can consider the pair (j, n dist(f jx, x0)), where j is
such that f jx ∈ Bn, and prove the Poisson limit for this pair. (Again the
proofs are very similar, but now balls need to be replaced by annuli.) One
application of this generalization of the Poisson law is the following.

Corollary 17. Let mn = minj≤n dist(f jx, x0). If x0 is aperiodic, then

ν(n
1
dmn < t) ∼ exp(−K(x0)td).

Thus, for a typical point, ( 1
n )

1
d is a correct normalization for mn(x). [39]

studies the set of points with different asymptotic behavior of mn.
(2) Other classes of dynamical systems satisfying the Poisson law are described

in [40, 41, 42, 22]. The method of proof we use is similar to that of [79] (cf.
also [72, 22]).

Appendix A. Absolute continuity

Proof of Proposition 2. We will use the following fact (see [13]). Let D1 and D2

be smooth (d − du)-dimensional discs transversal to Eu. Let xj ∈ Dj be points
such that x2 ∈ Wu(x1) and distu(x1, x2) ≤ 1. Then locally near x1 we can define
a continuous map p : D1 → D2 such that px1 = x2 and px = Wu

loc(x). Then p
is absolutely continuous and its Jacobian Jp(x) is Hölder continuous, where the
Hölder constant depends only on the angle between TDj and Eu and the norms of
the embeddings Dj = ijD, D being the standard disc in Rd−du . (In fact,

Jp(x) = lim
n→∞

det(df−n|TD2)(x)
det(df−n|TD1)(x)

.

)
Now let U be a parallelogram obtained as follows. Take x0 ∈ X. Locally near
x0, chose a foliation V transversal to Eu. Then near x0 we have a local product
structure; that is, for x, y ∈ X there is a unique point z = Wu

loc(x) ∩ V (y), where
V (y) is the leaf of V containing y. Write z = [x, y]. Consider the set U of the
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form U = [V0,W
u
loc(x0)], where V0 is a small disc in V (x0). We first show that the

restriction of the Lebesgue measures to U belongs to E(R,α), where the constants
R and α do not depend on the choice of V0. Decompose V0 =

⋃
Vj , where the Vj

are small discs in V0. Take xj ∈ Vj and let Wj = [xj ,Wu
loc(x0)], Uj = [Vj ,Wu

loc(x0)].
Then ∫

Uj

A(x)dx =

[∫
Wj

dy

(∫
Vj(y)

A(v)dv

)(
dx

dydv

)
(y)

]
(1 + o(1)),

where Vj(y) = [Vj , y] is the slice of V inside Uj. By the Hölder continuity of Eu,
dx
dydv (y) is Hölder continuous. Also

∫
Vj(y) ∼ A(y) Vol(Vj(y)) and Vol(Vj(y)) ∼

Vol(Vj)Jpy (y), where py is the projection py : Vj → Vj(y). This verifies our claim.
Now the same remains true if instead of requiring U to be a parallelogram we only
ask that unstable slices of U satisfy conditions (a)–(d) of the definition of an almost
Markov family and that they depend continuously on the point in the sense that
if π is the projection along V leaves, then πWU (y) → WU (x) in the Hausdorff
topology as y → x. (Indeed, such sets can be approximated by parallelograms.)
Now decomposing X =

⋃
j Ûj , where the Ûj are the sets as above, completes the

proof of the proposition. �

Proof of Proposition 3. This proposition does not use the absolute continuity of
Wu. In fact, it remains valid if we replace Wu by any continuous foliation with
smooth leaves. We only have to show that any ` ∈ E assigns zero measure to
u-negligible sets. Choose a small r. Let D be a (d − du)-dimensional disc. Denote
by U a union of unstable balls of radii r centered at D. For x ∈ D let `x denote
`(Wu

r (x)). Then x→ `x is continuous (see, e.g., [75]). Thus the map A→ Ā(x) =
`x(A) is continuous from C(U) → C(D). Therefore the set M(U) of measures of
the form

∫
D
µ(x)`x is weakly closed in C(X)∗. Now take ` ∈ E(P , R, α). By the

definition it is a limit of some `j ∈ E2(P , R, α). Let `j =
∑
k cjk`(Pjk, Gjk). If

∂Pjk ∩U 6= ∅, enlarge Pjk slightly so that the boundary of the resulting sets P ′jk is
disjoint from U. By property (b) of an almost Markov family, this can be done in
such a way that meas(P ′jk) ≤ Const meas(Pjk). Let `′j = 1

cj

∑
cjk`(P ′jk), where cj

is the normalization constant. Then `j |U ≤ Const `′j|U . Thus it is enough to show
that any limit point of `′j assigns zero measure to u-negligible sets. But `′j ∈M(U).
Thus if `′j → `′, then `′ ∈M(U). So the statement follows by Fubini’s theorem. �
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