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Abstract

This paper derives the asymptotic behavior of realized power variation of pure-jump Itô
semimartingales as the sampling frequency within a fixed interval increases to infinity. We
prove convergence in probability and an associated central limit theorem for the realized power
variation as a function of its power. We apply the limit theorems to propose an efficient adaptive
estimator for the activity of discretely-sampled Itô semimartingale over a fixed interval.
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1 Introduction

Realized power variation of a discretely sampled process can be defined as the sum of the
absolute values of the increments of the process raised to a given power. The leading case is
when the power is 2, which corresponds to the realized variance that is widely used in finance.
It is well known that under very weak conditions, see e.g. Jacod and Shiryaev (2003), the
realized variance converges to the quadratic variation of the process as the sampling frequency
increases. Other powers than 2 have also been used as a way to measure variation of the process
over a given interval in time as well as for estimation in parametric or semiparametric settings.
Recently, Ait-Sahalia and Jacod (2009b) have used the realized power variation as a way to test
for presence of jumps on a given path and Jacod and Todorov (2009) have used it to test for
common arrival of jumps in a multivariate context.

The limiting behavior of the realized power variation has been studied in the continuous
semimartingale case by Barndorff-Nielsen and Shephard (2003) and Barndorff-Nielsen et al.
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(2005). Some of these results are extended by Barndorff-Nielsen et al. (2006) to situations when
jumps are present but only when they have no asymptotic effect on the behavior of the realized
power variation. Jacod (2008) contains a comprehensive study of the limiting behavior of the
realized power variation when the observed process is a continuous semimartingale plus possible
jumps. This work includes also cases when jumps affect the limit of the realized power variation.

Common feature of the above cited papers is that the observed process always contains
a continuous martingale. At the same time there are different applications, e.g. for model-
ing internet traffic (Todorov and Tauchen (2010)) or volume of trades (Andrews et al. (2009))
and asset volatility (Todorov and Tauchen (2008)), where pure-jump semimartingales, i.e. semi-
martingales without a continuous martingale and nontrivial quadratic variation, seem to be more
appropriate. Parametric models of pure-jump type for financial prices and/or volatility have
been proposed in Barndorff-Nielsen and Shephard (2001), Carr et al. (2003) and Klüppelberg
et al. (2004) among others. The main goal of this paper is to derive the limit behavior of the
realized power variation of pure-jump semimartingales.

Some work has already been done in this direction. When the power exceeds the (generalized)
Blumenthar-Getoor index of the jump process, it follows from Lepingle (1976) and Jacod (2008)
that the (unscaled) realized power variation converges almost surely to the sum of jumps raised
to the corresponding power, which in general is not predictable (Jacod and Shiryaev (2003),
Definition I.2.1) although the exact rate of this convergence is not known.

The limiting behavior of the realized power variation when the power is less than the
Blumenthal-Getoor index is not known in general (apart from the fact that it explodes). Here
we concentrate precisely on this case. We make an assumption of locally stable behavior of the
Lévy measure of the jump process. That is we assume that the Lévy measure behaves like that
of a stable process around zero, while its behavior for the “big” jumps is left unrestricted. This
assumption allows us to derive the asymptotic behavior of the realized power variation in this
case. Unlike the case when the power exceeds the Blumenthal-Getoor index, here the realized
power variation needs to be scaled down by a factor determined by the Blumenthal-Getoor in-
dex and its limit is an integral of a predictable process. The latter is a direct measure for the
stochastic volatility of the discretely-observed process, which is of key interest for financial ap-
plications. Thus the realized power variation for powers less than the Blumenthal-Getoor index
contains information for the value of this index as well as the underlying stochastic volatility,
and hence the importance of the limit results for this range of powers that are derived here.
Finally, in earlier work Woerner (2003a,b, 2007) has studied some limit theorems for realized
power variations for pure-jump processes, but the results apply in somewhat limiting situations
regarding time-dependence and presence of a drift term (i.e. an absolutely continuous process),
both of which are very important characteristics of financial data.

A distinctive feature of this paper is that the convergence results for the realized power
variation are derived on the space of functions of the power equipped with the uniform topol-
ogy. In contrast, all previous work have characterized the limiting behavior for a fixed power.
The uniform convergence is important when one needs to use an infinite number of powers in
estimation or the power of the realized power variation needs first to be estimated itself from
the data. Such a case is illustrated in an application of the limit theorems derived in the paper.

Our application is for the estimation of the activity level of a discretely observed process. The
latter is the smallest power for which the realized power variation does not explode (formally
the infimum). In the case of a pure-jump process the activity level is just the Blumenthal-
Getoor index of the jumps and when a continuous martingale is present it takes its highest
value of 2. Apart from the importance of the Blumenthal-Getoor index in itself, the activity
level provides information on the type of the underlying process (e.g. whether it contains a
continuous martingale or not). The latter determines the appropriate scaling factor of the
realized power variation in estimating integrated volatility measures.

We use the realized power variation computed over two different frequencies to estimate the
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activity level. The choice of the power is critical as it affects both efficiency and robustness. We
develop an adaptive estimation strategy using our limit results. In a first step we construct an
initial consistent estimator of the activity and then, based on the first step estimator, we choose
the optimal power to estimate the activity on the second step.

The paper is organized as follows. Section 2 presents the theoretical setup. Section 3 derives
convergence in probability and associated central limit theorems for the appropriately scaled
realized power variation. Section 4 applies the limit results of Section 3 to propose an efficient
adaptive estimator of the activity of a discretely sampled process. Section 5 contains a short
Monte Carlo study of the behavior of the estimator. Proofs are given in Section 6.

2 Theoretical Setup

The theoretical setup of the paper is as follows. We will assume that we have discrete obser-
vations of some one-dimensional process, which we will always denote with X. The process
will be defined on some filtered probability space (Ω,F ,P) with F denoting the filtration. We
will restrict attention to the class of Itô semimartingales, i.e. semimartingales with absolutely
continuous characteristics, see e.g. Jacod and Shiryaev (2003).

Throughout we will fix the time interval to be [0, T ] and we will suppose that we observe the
process X at the equidistant times 0,∆n, ..., [T/∆n]∆n, where ∆n > 0. The asymptotic results
in this paper will be of fill-in type, i.e. we will be interested in the case when ∆n ↓ 0 for a fixed
T > 0.

The activity of the jumps in X is measured by the so-called (generalized) Blumenthal-Getoor
index. All of our limiting results for the realized power variation will depend in an essential way
on it. The index is defined as

inf



r > 0 :

∑

0≤s≤T

|∆Xs|r < ∞


 , (2.1)

where ∆Xs := Xs −Xs−. The index was originally defined in Blumenthal and Getoor (1961)
only for pure-jump Lévy processes. The definition in (2.1) extends it to an arbitrary jump
semimartingale and was proposed in Ait-Sahalia and Jacod (2009a). We recall the following well-
known facts: (1) the index takes its values in [0, 2], (2) it depends on the particular realization
of the process on the given interval, (3) the value of 1 for the index separates finite from infinite
variation jump processes.

Finally, we define the main object of our study - the realized power variation. It is constructed
from the discrete observations of the process as

Vt(p,X, ∆n) =
[t/∆n]∑

i=1

|∆n
i X|p, p > 0, t > 0, (2.2)

where ∆n
i X := Xi∆n −X(i−1)∆n

. Our main focus will be the behavior of Vt(p,X, ∆n) when X
is pure-jump semimartingale and we will restrict further attention to the case when the power
is below the Blumenthal-Getoor index and the drift term has no asymptotic effect.

3 Limit Theorems for Power Variation

We start with deriving the asymptotic limit of the appropriately scaled realized power variation
and then proceed with a central limit theorem associated with it. To ease exposition we first
present the results in the Lévy case and then generalize to the case when X is a semimartingales
with time-varying characteristics. For completeness we state corresponding results in the case
when X is a continuous martingale (plus jumps) as well.
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3.1 Convergence in Probability Results

The convergence in probability results have been already derived in Barndorff-Nielsen and Shep-
hard (2003), Barndorff-Nielsen et al. (2005), Jacod (2008), Woerner (2003b,a) and Todorov and
Tauchen (2010) among others with various degrees of generality. We briefly summarize them
here as a starting point of our analysis. We first introduce some notation that will be used
throughout. We set µp(β) := E(|Z|p), where Z is a random variable with a standard stable
distribution with index β if β < 2 (i.e. with characteristic function E (exp(iuZ)) = exp(−|u|β)),
and with standard normal distribution if β = 2 (i.e. normal with mean 0 and variance 1).
Further µp,q(β) := E|Z(1)|p1 |Z(1) + Z(2)|p2 , where Z(1) and Z(2) are two independent random
variables whose distribution is standard stable with index β if β < 2 and is standard normal if
β = 2. Finally we denote ΠA,β := 2A

∫∞
0

(
1−cos(x)

xβ+1

)
dx for β ∈ (0, 2) and A > 0.

Throughout κ(x) will denote a continuous truncation function, i.e., a continuous function
with bounded support such that κ(x) ≡ x around the origin, and κ′(x) := x− κ(x).

3.1.1 The Lévy Case

Theorem 1 (a) Suppose X is given by

dXt = mcdt + σdWt +
∫

R
κ(x)µ̃(dt, dx) +

∫

R
κ′(x)µ(dt, dx), (3.1)

where mc and σ 6= 0 are constants and Wt is a standard Brownian motion; µ is a homogenous
Poisson measure with compensator F (dx)dt. Denote with β′ the Blumenthal-Getoor index of
the jumps in X. Then, if β′ < 2 and for a fixed T > 0, we have

∆1−p/2
n VT (X, p, ∆n) P−→ T |σ|pµp(2), (3.2)

locally uniformly in p ∈ (0, 2).
(b) Suppose X is given by

dXt = mddt +
∫

R
κ(x)µ̃(dt, dx) +

∫

R
κ′(x)µ(dt, dx) (3.3)

where md is some constant; µ is a Poisson measure with compensator ν(x)dx where

ν(x) = ν1(x) + ν2(x), (3.4)

with
ν1(x) =

A

|x|β+1
and |ν2(x)| ≤ B

|x|β′+1
when |x| ≤ x0, (3.5)

for some A > 0, B ≥ 0 and x0 > 0; β ∈ (0, 2) and β′ < β. Assume that md−
∫
R κ(x)ν(x)dx = 0

if β ≤ 1. Then for a fixed T > 0, we have

∆1−p/β
n VT (X, p, ∆n) P−→ TΠp/β

A,βµp(β), (3.6)

locally uniformly in p ∈ (0, β).

Remark 3.1. The crucial assumption in the pure-jump case is the decomposition of the Lévy
measure in (3.4). This assumption implies that locally the process behaves like the stable, i.e.
the very small jumps of the process are as if from a stable process. This assumption allows to
scale the realized power variation using the Blumenthal-Getoor index β. We note that ν2(x)
is not necessarily a Lévy measure (since it can be negative) and thus (3.5) does not allow to
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represent X (in distribution) as a sum of two independent jump processes, the first being the
stable and the second with Blumenthal-Getoor index of β′. ¤

Remark 3.2. If jumps are of finite-variation, in part (b) of the theorem we restrict X to be equal
to the sum of the jumps on the interval. The reason for this is that if a drift term is present (or
equivalently a compensator for the small jumps), then it “dominates” the jumps and determines
the behavior of the realized power variation, see for example Jacod (2008). ¤

Remark 3.3. When p > β in the pure-jump case the limit of the realized power variation is just
the some of the p-th absolute power of the jumps, and this result does not follow from a law of
large numbers but rather by proving that an approximation error for this sum vanishes almost
surely. Thus the behavior of the realized power variation for p < β and p > β is fundamentally
different. The case p = β is the dividing one. In this case the realized power variation (unscaled)
converges neither to a constant nor to the sum of the absolute values of the jumps raised to the
power β (which is infinite). It can be shown that after subtracting the “big” increments, i.e.
keeping only those for which |∆n

i X| ≤ K∆1/β
n , for an arbitrary constant K > 0, the realized

power variation converges to a non-random constant.
We note that the behavior of the realized power variation for p ≥ β in the pure-jump case is very
different from the case when X does not contain jumps. In the latter case for all powers

(
p Q 2

)
the limit of the realized power variation is determined by law of large numbers and hence we
always need to scale the realized power variation in order to converge to a non-degenerate limit,
see e.g., Barndorff-Nielsen et al. (2005). ¤

3.1.2 Extension to General Semimartingales

Now we extend Theorem 1 to the case when σ and ν (and the drift terms mc and md) in (3.1)
and (3.3) are stochastic. Nothing fundamentally changes, apart from the fact that the limits
are now random (depending on the particular realization of the process X). In the case of
continuous martingale plus jumps, we can substitute (3.1) with the following

dXt = mctdt + σ1tdWt +
∫

R
κ(δ(t, x))µ̃(dt, dx) +

∫

R
κ′(δ(s, x))µ(dt, dx), (3.7)

where mct is locally bounded and σ1t is a process with càdlàg paths; in addition |σ1t| > 0 and
|σ1t−| > 0 for every t > 0 almost surely; µ is a homogenous Poisson measure with compensator
F (dx)dt and δ(t, x) is a predictable function satisfying

the process t → sup
x

|δ(t, x)|
γ(x)

is locally bounded with
∫

R
(|γ(x)|β′ ∧ 1)F (dx) < ∞ for some non-random function γ(x)

and some constant β′ ∈ [0, 2].

(3.8)

Additionally we assume that σ1t is an Itô semimartingale satisfying equations similar to (3.7)-
(3.8) (with arbitrary driving Brownian motion and Poisson measure (and jump size function)
satisfying a condition as (3.8) with β′ = 2) with locally bounded coefficients. We note that the
generalized Blumenthal-Getoor index of the jumps of X in (3.7) is bounded by the non-random
β′.

In the pure-jump case more care is needed in introducing time-variation. Essentially we
should keep the behavior around 0 of the jump compensator intact. Therefore the generalization
of (3.3) that we consider is given by

dXt = mdtdt +
∫

R
σ2t−κ(x)µ̃(dt, dx) +

∫

R
σ2t−κ′(x)µ(dt, dx), (3.9)
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where mdt and σ2t are processes with càdlàg paths; µ is a jump measure with compensator
ν(x)dxdt where ν(x) is given by (3.4). We note that under this specification, the generalized
Blumenthal-Getoor index of X in (3.9) equals β on every path, where β is the constant appearing
in (3.5). Further we assume |σ2t| > 0 and |σ2t−| > 0 for every t > 0 almost surely and impose
the following dynamics for the process σ2t

dσ2t = b2tdt + σ̃2tdWt +
∫

R2
κ(δ(t, x))µ̃(dt, dx) +

∫

R2
κ′(δ(t, x))µ(dt, dx), (3.10)

where W is a Brownian motion; µ is a homogenous Poisson measure on R2 with compensator
ν(dx)dt for ν denoting some σ-finite measure on R2, satisfying µ(dt,A× R) ≡ µ(dt,A) for any
A ∈ B(R0) with R0 := R \ {0}; δ(t,x) is an R-valued predictable function satisfying

the process t → sup
x

|δ(t,x)|
γ(x)

is locally bounded with
∫

R2
(|γ(x)|β+ε ∧ 1)ν(x)dx < ∞ for some non-random function

on R2, γ(x), where β is the constant in (3.5), and for ∀ε > 0.

(3.11)

Additionally we assume that mdt and σ̃2t are Itô semimartingales satisfying equations similar to
(3.7)-(3.8) (with arbitrary driving Brownian motion and Poisson measure) with locally bounded
coefficients. This specification for σ2t is fairly general and it importantly allows for dependence
between the driving jump measure in (3.9) and σ2t, which is important for financial applications,
see e.g. the COGARCH model of Klüppelberg et al. (2004).

The restrictions on σ1t and σ2t in (3.7) and (3.10) are stronger than needed for the conver-
gence in probability results in the next theorem, but they will be used for deriving the central
limit results in the next subsection. These assumptions are nevertheless weak and therefore we
impose them throughout. For example, the Itô semimartingale restrictions on σ1t and σ2t and
their coefficients, together with conditions (3.8) and (3.11), will be automatically satisfied if X
solves

dXt = f(Xt−)dLt, (3.12)

for some twice continuously differentiable function f(·) with at most linear growth and L being
the Lévy process in (3.1) or (3.3), see e.g., Remark 2.1 in Jacod (2008). The next theorem states
the general result on convergence in probability of realized power variation.

Theorem 2 (a) Suppose X is given by (3.7) and (3.8) is satisfied with β′ < 2. Then for a
fixed T > 0 we have

∆1−p/2
n VT (X, p, ∆n) P−→ µp(2)

∫ T

0

|σ1s|pds, (3.13)

locally uniformly in p ∈ (0, 2).
(b) Suppose X is given by (3.9)-(3.10) and (3.5) holds with β′ < β. Further assume mds −

σ2s−
∫
R κ(x)ν(x)dx is identically zero on [0, T ] on the observed path if β ≤ 1. Then for a fixed

T > 0 we have

∆1−p/β
n VT (X, p, ∆n) P−→ Πp/β

A,βµp(β)
∫ T

0

|σ2s|pds, (3.14)

locally uniformly in p ∈ (0, β).

Remark 3.4. As seen from the above theorem, in both cases the (scaled) realized power varia-
tion estimates an integrated volatility measure

∫ T

0
|σis|pds for i = 1, 2, which is important for

measuring volatility in financial applications. What is different in the two cases is the scaling
factor that is used. The latter depends on the activity of X that we formally define later in
Section 4 and then estimate using the limit theorems of the current section. ¤
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3.2 CLT Results

Since in our application we make use of the realized power variation over two frequencies, ∆n and
2∆n, we derive a CLT for the vector (VT (X, p, 2∆n), VT (X, p, ∆n))′. In the next and subsequent
theorems L− s will stand for convergence stable in law, see e.g. Jacod and Shiryaev (2003) for
a definition for filtered probability spaces.

3.2.1 The Lévy Case

As for the convergence in probability we start with the Lévy case. The result is given in the
following theorem.

Theorem 3 (a) Suppose X is given by the process in (3.1) with Blumenthal-Getoor index β′ <

1. Then, for a fixed T > 0 and any 0 < pl ≤ ph < 1 such that β′

2−β′ < pl ≤ ph < 1, we have

∆−1/2
n

(
∆1−p/2

n VT (X, p, 2∆n)− 2p/2−1T |σ|pµp(2)
∆1−p/2

n VT (X, p, ∆n)− T |σ|pµp(2)

)
L−s−→ Ψ2,T (p), (3.15)

where the convergence takes place in C(R2, [pl, ph]) - the space of R2-valued continuous functions
on [pl, ph] equipped with the uniform topology; Ψ2,T (p) is a continuous centered Gaussian process,
independent from the filtration on which X is defined, with the following variance-covariance
Cov (Ψ2,T (p), Ψ2,T (q)) for some p, q ∈ [pl, ph]

T |σ|2p

(
2(p+q)/2−1(µp+q(2)− µp(2)µq(2)) µq,p(2)− 2p/2µp(2)µq(2)

µp,q(2)− 2q/2µp(2)µq(2) µp+q(2)− µp(2)µq(2)

)
.

(b) Suppose X is given by the process in (3.3) and (3.5) holds with β′ < β/2. Then, for a
fixed T > 0 and any 0 < pl ≤ ph < 1 such that either (i)

(
2−β

2(β−1) ∨ ββ′

2(β−β′)

)
< pl ≤ ph < β/2

when β >
√

2 or (ii) md ≡ 0, ν and κ symmetric and ββ′

2(β−β′) < pl ≤ ph < β/2, we have

∆−1/2
n

(
∆1−p/β

n VT (X, p, 2∆n)− 2p/β−1TΠp/β
A,βµp(β)

∆1−p/β
n VT (X, p, ∆n)− TΠp/β

A,βµp(β)

)
L−s−→ Ψβ,T (p), (3.16)

where the convergence takes place in C(R2, [pl, ph]) - the space of R2-valued continuous functions
on [pl, ph] equipped with the uniform topology; Ψβ,T (p) is a continuous centered Gaussian process,
independent from the filtration on which X is defined, with the following variance-covariance
Cov (Ψβ,T (p),Ψβ,T (q)) for some p, q ∈ [pl, ph]

TΠ2p/β
A,β

(
2(p+q)/β−1(µp+q(β)− µp(β)µq(β)) µq,p(β)− 2p/βµp(β)µq(β)

µp,q(β)− 2q/βµp(β)µq(β) µp+q(β)− µp(β)µq(β)

)
.

Remark 3.5. The result in part (a) for a fixed p has been already shown, see e.g. Barndorff-
Nielsen et al. (2005) and references therein. In the pure-jump case (3.3), the result in (3.16) for
a fixed p has been derived by Woerner (2003a) but only in the case when there is no drift (i.e.,
only under condition (ii) in part (b) of Theorem 3) and a slightly more restrictive condition
on the residual measure ν2. The general treatment here is important for financial applications,
as the presence of risk premium means theoretically that the dynamics of traded assets should
contain a drift term. Allowing for a drift term is also important for applications to processes
exhibiting strong mean reversion like asset volatilities and trading volumes, see e.g., Andrews
et al. (2009). ¤

Remark 3.6. Theorem 3 shows that the convergence of the scaled and centered power variation
is uniform over p. This result has not been shown before. The uniformity is important for
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example in adaptive estimation where the power of the realized power variation to be used
needs to be estimated from the data. This is illustrated in our application in Section 4. ¤

Remark 3.7. Comparing Theorem 3 with Theorem 1 we see that both in part (a) and (b) we
have imposed the stricter restrictions

p ∈
(

2− β

2(β − 1)
∨ ββ′

2(β − β′)
, β/2

)
,

(with β = 2 for part (a)) and β′ < β/2. The lower bound for p is determined from the presence
of a “less active” component in X. The restriction p > 2−β

2(β−1) comes from the presence of a drift

term. We note that it is more restrictive the lower the β is. In fact when β ≤ √
2, the presence

of a drift term will slow down the rate of convergence of the scaled power variation and therefore
the limiting result in (3.16) will not hold. In contrast for high values of β, p > 2−β

2(β−1) is very
weak and in the limiting case when β = 2 (part (a) of the theorem) it is never binding. We can
interpret the restrictions p > ββ′

2(β−β′) and β′ < β/2 similarly. They come from the presence in
X of a less active jump component with Blumenthal-Getoor index β′.

Also, the restriction p < β/2, which in particular implies that the function |x|p is subadditive,
is crucial for bounding the effect of the “residual” jump components in X. ¤

Remark 3.8. We can also derive a central limit theorem when p ∈ (β/2, β) (and when there
are no “residual” jump components). In this case pure-continuous and pure-jump martingales
differ. While in the former case the rate of convergence continuous to be

√
∆n, in the latter the

rate slows down. The precise result is:
Suppose X is symmetric stable plus a drift, i.e. the process in (3.3) with ν2(x) ≡ 0 and further
md−

∫
R κ(x)ν1(x)dx ≡ 0 when β ≤ 1. Set a = md +

∫
R(x−κ(x))ν1(x)dx when β > 1 and a = 0

when β ≤ 1. Then for a fixed p ∈ (β/2 ∨ 1
β 1{β>1∩a 6=0}, β) we have

∆p/β−1
n

(
∆1−p/β

n VT (X, p, ∆n)− TΠp/β
A,βµp(β)

) L−→ ST , (3.17)

where St is pure-jump Lévy process with Lévy density 1{x>0}2A
p

1
x1+β/p and zero drift with respect

to the “truncation” function κ(x) = x. This is an asymmetric stable process with index β/p ∈
(1, 2).
As seen from (3.17), as we increase p the rate of convergence of the realized power variation
slows down from

√
∆n to 1. Therefore this range of powers is less attractive for estimation

purposes. This will be further discussed in Section 4. ¤

3.2.2 Extension to General Semimartingales

We proceed with the analogue of Theorem 3 in the more general setup of Section 3.1.2. We state
the case when β >

√
2 only, since as seen from Theorem 3 and Remark 3.8, the case β ≤ √

2
needs an assumption of zero drift and this limits its usefulness for financial applications, where
the drift arises from the presence of risk premium.

Theorem 4 (a) Suppose X is given by (3.7) and (3.8) is satisfied with β′ < 1. Then, for a
fixed T > 0 and any 0 < pl ≤ ph < 1 such that β′

2−β′ < pl ≤ ph < 1, we have

∆−1/2
n

(
∆1−p/2

n VT (X, p, 2∆n)− 2p/2−1µp(2)
∫ T

0
|σ1s|pds

∆1−p/2
n VT (X, p, ∆n)− µp(2)

∫ T

0
|σ1s|pds

)
L−s−→ Ψ2,T (p), (3.18)

where the convergence takes place in C(R2, [pl, ph]) - the space of R2-valued continuous functions
on [pl, ph] equipped with the uniform topology; Ψ2,T (p) is a continuous centered Gaussian process,
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independent from the filtration on which X is defined, with the following variance-covariance
Cov (Ψ2,T (p), Ψ2,T (q)) for some p, q ∈ [pl, ph]

∫ T

0

|σ1s|2pds

(
2(p+q)/2−1(µp+q(2)− µp(2)µq(2)) µq,p(2)− 2p/2µp(2)µq(2)

µp,q(2)− 2q/2µp(2)µq(2) µp+q(2)− µp(2)µq(2)

)
.

(b) Suppose X is given by (3.9)-(3.11) with β >
√

2 and (3.5) holds with β′ < β/2. Then,
for a fixed T > 0 and any 0 < pl ≤ ph < 1 such that(

2−β
2(β−1) ∨ β−1

2 ∨ ββ′

2(β−β′)

)
< pl ≤ ph < β/2, we have

∆−1/2
n

(
∆1−p/β

n VT (X, p, 2∆n)− 2p/β−1Πp/β
A,βµp(β)

∫ T

0
|σ2s|pds

∆1−p/β
n VT (X, p, ∆n)−Πp/β

A,βµp(β)
∫ T

0
|σ2s|pds

)
L−s−→ Ψβ,T (p), (3.19)

where the convergence takes place in C(R2, [pl, ph]) - the space of R2-valued continuous functions
on [pl, ph] equipped with the uniform topology; Ψβ,T (p) is a continuous centered Gaussian process,
independent from the filtration on which X is defined, with the following variance-covariance
Cov (Ψβ,T (p),Ψβ,T (q)) for some p, q ∈ [pl, ph]

Π2p/β
A,β

∫ T

0

|σ2s|2pds

(
2(p+q)/β−1(µp+q(β)− µp(β)µq(β)) µq,p(β)− 2p/βµp(β)µq(β)

µp,q(β)− 2q/βµp(β)µq(β) µp+q(β)− µp(β)µq(β)

)
.

Part (a) of the theorem has been derived in Barndorff-Nielsen et al. (2005), while part (b) is a
new result. We note that compared with the Lévy case in part (b) of the theorem we have a
slightly stronger restriction for p, i.e. p cannot be arbitrary small when β is close to 2. This
is of no practical concern as the very low powers are not very attractive because of the high
associated asymptotic variance. This is further discussed in Section 4.

4 Application: Adaptive Estimation of Activity

We proceed with an application of our limit results. We first define our object of interest, the
activity level of the discretely-observed process, and show how the realized power variation can
be used for its inference. Following that we develop an adaptive strategy for its estimation.

4.1 Definitions

We define the activity level of an Itô semimartingale X as the smallest power for which the
realized power variation does not explode, i.e.

βX,T := inf
{
r > 0 : plim∆n→0V (r,X, ∆n)T < ∞}

. (4.1)

βX,T takes values in [0, 2] and is defined pathwise. It is determined by the most active component
in X and the order of the different components forming the Itô semimartingale from least to
most active is: finite activity jumps, jumps of finite variation, drift (absolutely continuous
process), infinite variation jumps, continuous martingale. When the dominating component of
X is its jump part (and only then), βX,T coincides with the generalized Blumenthal-Getoor
index. Thus, for X in (3.7), βX,T ≡ 2, and for X in (3.9)-(3.10), βX,T ≡ β. We note that βX,T

determines uniquely the appropriate scale for the realized power variation in the estimation of
the integrated volatility measures of the process, see Theorems 1-2.

When the process is observed discretely, βX,T is unknown and our goal is to derive an
estimator for it. Since the scaling of the realized power variation depends on the activity level,
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we can identify the latter by taking a ratio of the realized power variation over two scales.
Therefore our estimation will be based on the following function of the power

bX,T (p) =
ln (2) p

ln (2) + ln [VT (X, p, 2∆n)]− ln [VT (X, p, ∆n)]
, p > 0. (4.2)

A two-scale approach for related problems has been previously used also in Zhang et al. (2005),
Ait-Sahalia and Jacod (2009a), Todorov and Tauchen (2010).

4.2 Limit Behavior of bX,T (p)

For ease of exposition here we restrict attention to the Lévy case. The extension to the general
semimartingales in (3.7) and (3.9)-(3.10) follows from an easy application of Theorem 4. In
what follows, for any p and q both in (0, β/2) we denote

Kp,q(β) =
β4

ln2(2)pqµp(β)µq(β)

(
3µp+q(β) + µp(β)µq(β)

− 21−p/βµp,q(β)− 21−q/βµq,p(β)
)

.

(4.3)

Corollary 1 (a) Suppose X is given by (3.1). Then for a fixed T > 0 and any 0 < pl ≤ ph < 1
we have √

T

∆n
(bX,T (p)− 2) L−s−→ Z2(p), uniformly on [pl, ph], (4.4)

where Z2(p) is a centered Gaussian process on [pl, ph] with Cov (Z2(p), Z2(q)) = Kp,q(2) for
some p, q ∈ [pl, ph] and independent from the filtration on which X is defined, provided β′ < 1
and β′

2−β′ < pl ≤ ph < 1, where β′ is the Blumenthal-Getoor index of X.
(b) Suppose X is given by (3.3). Then for a fixed T > 0 and any 0 < pl ≤ ph < 1 we have

√
T

∆n
(bX,T (p)− β) L−s−→ Zβ(p), uniformly on [pl, ph] (4.5)

where Zβ(p) is a centered Gaussian process on [pl, ph] with Cov (Zβ(p), Zβ(q)) = Kp,q(β) for
some p, q ∈ [pl, ph] and independent from the filtration on which X is defined, provided (3.5)
holds with β

′
< β/2 and either (i)

(
2−β

2(β−1) ∨ ββ′

2(β−β′)

)
< pl ≤ ph < β/2 when β >

√
2 or (ii)

md ≡ 0, ν symmetric and ββ′

2(β−β′) < pl ≤ ph < β/2.

As seen from the corollary, bX,T (p) will estimate the activity level only for powers that are below
the activity level, which of course is unknown. Corollary 1 shows further that the power is also
crucial for the rate at which the activity level is estimated. The range of values of p for which
bX,T (p) is

√
∆n-consistent for βX,T defined in (4.1) depends on the activity of the most active

part of the process, but also on the activity of the less active parts, i.e. β′ in part (a) and β′ ∨ 1
in part (b). For example, when the observed process is a continuous martingale plus jumps
(part (a) of the corollary), then the activity of the jumps needs to be sufficiently low in order
to estimate βX,T at a rate

√
∆n. Similar observation holds for the pure-jump case as well. The

activity of the less active components of X is unknown but we want an estimator of βX,T that
is robust, in the sense that it has

√
∆n rate of convergence for most values of β′. Based on the

corollary, this means that we need to use values of p that are “sufficiently” close to half of the
activity level βX,T /2.

The presence of a less active component in the observed process aside, the power at which
bX,T (p) is evaluated is also important for the rate of convergence and the asymptotic variance
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of the estimation of the overall activity index. There is a difference between case (a) and case
(b) in this regard. When the activity level of X is 2 (and there are no jumps), bX,T (p) will be√

∆n-consistent for any power. In contrast, in the pure-jump case, this will be true only for
powers less than β/2. Using powers p ∈ (β/2, β) slows down the rate of convergence from

√
∆n

to 1, as pointed out in Remark 3.8. In Figure 1 we plotted the asymptotic standard deviation
of bX,T (p) for different values of the activity index βX,T . For activity less than 2 the asymptotic
variance has a pronounced U-shape pattern, and as a result it is minimized somewhere within
the admissible range (for

√
∆n-rate of convergence), but the minimizing power depends on β.

On the other hand, when βX,T = 2, i.e. when continuous martingale is present, the asymptotic
variance is minimized for p = 1 (p = βX,T /2 is admissible if βX,T ≡ 2), although

√
Kp,p(2)

changes very little around 1. These observations are further confirmed from Figure 2, which
plots the power at which the asymptotic variance is minimized as a function of the activity level.
Remark 4.1. We note that in Corollary 1 (and in fact throughout the paper) we kept T fixed.
What happens if T goes to infinity? In this case the result in Corollary 1 will remain valid
without any assumption on the relative speed of T ↑ ∞ and ∆n ↓ 0 but only in the case when
X is symmetric stable. In all other cases captured by the specification in (3.3) we will need to
impose a restriction on the relative speed with which T increases. This happens because the
error in estimating βX,T depends on ∆n and cannot vanish by just increasing the time span T .
¤

4.3 Two-Step Estimation of Activity

We turn now to the explicit construction of an estimator of the activity level guided by the
results of Corollary 1. Our goal here is to derive a point estimator of the activity level which has
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Figure 1: Asymptotic Standard Deviation of bX,T (p) for different values of p and the activity level
βX,T defined in (4.1). Kp,q(β) is defined in (4.3).
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good robustness and efficiency properties. As we noted in the previous subsection, the powers
used in the construction of an estimator for the activity level are crucial for its consistency,
rate of convergence and asymptotic efficiency. Importantly, whether to use a given power in the
estimation depends on the value of βX,T which is unknown and is itself being estimated.

This suggests implementing an adaptive (two-stage) estimation procedure, where on a first
stage we construct an initial consistent estimator of the activity. Any estimator with arbitrary
rate of convergence on this first stage can be used - the only requirement is that it is consistent.
Then, on a second stage, we can use the first-stage estimator to select the power(s) at which
bX,T (p) is evaluated. This can be done because the convergence in (4.4) and (4.5) is uniform in
p. We give the generic construction of the two-stage estimator in the Lévy case in the following
theorem.

Theorem 5 Fix some T > 0 and suppose X is given either by (3.1) or (3.3) with activity level
βX,T defined in (4.1). Let β̂fs

X,T be an arbitrary consistent estimator of βX,T constructed from

X0, X∆n , ...., X∆n[T/∆n], i.e., we have β̂fs
X,T

P−→ βX,T as ∆n → 0. Suppose the functions fl(z)
and fh(z) are continuously differentiable in z in a neighborhood of βX,T and we have identically
0 < fl(z) < fh(z). Set

τ∗1 = fl(βX,T ) and τ∗2 = fh(βX,T ),

τ̂1 = fl(β̂
fs
X,T ) and τ̂2 = fh(β̂fs

X,T ).

Finally denote

β̂ts
X,T =

∫ τ̂2

τ̂1

w(u)bX,t(u)du, (4.6)

where w(·) is some weighting function, which is either continuous on [τ∗1 , τ∗2 ] or Dirac mass at
some point in [τ∗1 , τ∗2 ] and such that

∫ τ∗2
τ∗1

w(u)du = 1. Then we have

√
T

∆n

(
β̂ts

X,T − βX,T

) L−s−→ ε×
√∫ τ∗2

τ∗1

∫ τ∗2

τ∗1

Ku,v(βX,T )w(u)w(v)dudv, (4.7)

where ε is standard normal defined on an extension of the original probability space provided:
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Figure 2: Minimizing power p of the asymptotic variance Kp,p(βX,T ) as a function of the activity
level βX,T defined in (4.1).
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(a) if X is given by (3.1), then τ∗2 < βX,T /2 and the Blumenthal-Getoor index of the jumps
in X, β′, is such that β′

2−β′ < τ∗1 (which implies β′ < 1),

(b) if X is given by (3.3), then τ∗2 < β/2 and either (i) β >
√

2 and τ∗1 >
(

2−β
2(β−1) ∨ ββ′

2(β−β′)

)

or (ii) md ≡ 0, ν and κ symmetric and τ∗1 > ββ′

2(β−β′) , where β′ is a constant satisfying
(3.5).

The two-step estimator can be viewed as a weighted average of bX,T (p) over an adaptively
selected region of powers. This range is determined on the basis of an initial consistent estimator
of the activity. The averaging of the powers on the second stage might be beneficial since the
correlation between the centered bX,T (p) evaluated over different powers is not perfect. We would
expect that the biggest benefit from averaging different powers in the estimation will come from
using powers that are sufficiently apart. However, as we saw from Figure 1, significantly different
powers would imply that at least one of them is associated with too high asymptotic variance
and this could offset the benefit from the averaging. Therefore, in practice on the second stage
one can just evaluate bX,T (p) at a single power. This case is stated in the next corollary.

Corollary 2 Let β̂fs
X,T be an arbitrary consistent estimator of βX,T constructed from X0, X∆n

, ....,

X∆n[T/∆n], i.e. we have β̂fs
X,T

P−→ βX,T as ∆n → 0. Set

β̂ts
X,T ≡ bX,T (τ̂) with τ̂ := f(β̂fs

X,T ), (4.8)

where f(·) is some continuous function and further we set τ∗ := f(βX,T ). Then we have for a
fixed T √

T

∆n

(
β̂ts

X,T − βX,T

) L−s−→ ε×
√

Kτ∗,τ∗(βX,T ), (4.9)

for ε being standard normal, provided βX,T > 2τ∗ and for β′ as in Theorem 5 we have

(a) if X is given by (3.1), then β′ < 2τ∗
1+τ∗ ,

(b) if X is given by (3.3), then β′ < 2βτ∗

β+2τ∗ and if md 6= 0 and/or ν is not symmetric then in
addition we also have β >

√
2 and τ∗ < 2−β

2(β−1) .

A natural choice for the function f(·), i.e., the power that is used on the second stage, will be the
one that minimizes the asymptotic variance Kp,p(β). This is further discussed in the numerical
implementation in the next section. Alternatively, one can sacrifice some of the efficiency in
exchange for robustness to a wider range of β′ by picking power closer to βX,T /2. We finish
this section with stating the equivalent of Corollary 2 in the case when X is a semimartingale
with time-varying characteristics. The theorem gives also feasible estimates of the asymptotic
variance of the two-step estimator.

Theorem 6 Suppose β̂fs
X,T and β̂ts

X,T are given by (4.8) for some fixed T > 0.
(a) If X is given by (3.7) and (3.8) is satisfied with β′ < 2τ∗

1+τ∗ , then we have

1√
∆n

(
β̂ts

X,T − 2
) L−s−→ ε×

√
Kτ∗,τ∗(2)

√∫ T

0
|σ1s|2τ∗ds

∫ T

0
|σ1s|τ∗ds

, (4.10)

where ε is standard normal and is defined on an extension of the original probability space.
(b) If X is given by (3.9)-(3.11) with β >

√
2 and (3.5) holds with β′ < βτ∗

1+τ∗ and τ∗ ∈(
2−β

2(β−1) ∨ β−1
2 , β/2

)
, then we have

1√
∆n

(
β̂ts

X,T − β
) L−s−→ ε×

√
Kτ∗,τ∗(β)

√∫ T

0
|σ2s|2τ∗ds

∫ T

0
|σ2s|τ∗ds

, (4.11)
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where ε is standard normal and is defined on an extension of the original probability space.
(c) A consistent estimator for the asymptotic variance of both (4.10) and (4.11) is given by

∆−1
n Kf(β̂ts

X,T ),f(β̂ts
X,T )(β̂

ts
X,T )

µ2
f(β̂ts

X,T )
(β̂ts

X,T )

µ2f(β̂ts
X,T )(β̂

ts
X,T )

VT (X, 2f(β̂ts
X,T ), ∆n)

V 2
T (X, f(β̂ts

X,T ),∆n)
. (4.12)

Remark 4.2. Although the choice of the first-step estimator does not affect the first-order
asymptotic properties of the two-stage estimator, in practice it can matter a lot. One possible
choice for a first-step estimator of the activity is

β̃X,T =
2

ln(k)
(ln(V ′

T (α,X, ∆n))− ln(V ′
T (α, X, 2∆n))) (4.13)

where V ′
T (α, X, ∆n) =

∑[T/∆n]
i=1 1{|∆n

i X|≥α
√

∆n} and α > 0 is an arbitrary constant. It is easy

to show that under the assumptions of Theorem 4, β̃X,T is a consistent estimator for βX,T .
Another alternative first step estimator is bX,T (p) evaluated at some small power. The latter
will be a consistent estimator only if we know apriori that the true value of βX,T is higher than
some positive number. ¤

5 Numerical Implementation

In this section we test on simulated data the limit results of Section 3. We do this by investigating
the finite sample performance of the activity estimator of Section 4. In our Monte Carlo study
we work with the following model for X

Xt = σ1Wt + σ2

∑

0≤s≤t

∆Xs, (5.1)

where the jumps of X are with either of the following two compensators

A
e−λ|x|

|x|β+1
dxds or λcδ{x=±r}dxds. (5.2)

The first compensator is that of a tempered stable (Carr et al. (2002), Rosiński (2007)) whose
Blumenthal-Getoor index is the parameter β and the second compensator is of a compound
Poisson (which has of course a Blumenthal-Getoor index of 0). Note that for the tempered
stable process the value of β′ in (3.5) is equal to β − 1∨ 0. Therefore, the assumption β′ < β/2
in Theorems 3 and 4 will always be satisfied.

In Table 1 we listed the four different cases we consider in the Monte Carlo. The first two
correspond to pure-jump processes with two different values of the level of activity. The last two
cases correspond to a setting where a Brownian motion is present and therefore overall activity
of X is 2. In Case D the jumps in addition to the Brownian motion have 20% share in the total
variation of X on a given interval, which is consistent with empirical findings for financial price
data.

If we think of a unit of time being a day, then in our Monte Carlo on each “day” we sample
M = 390 times. This corresponds to approximately every minute for 6.5 hours trading day
and every 5 minutes for 24 hours trading day. The activity estimation is performed over 22
days, i.e. we set T = 22. This corresponds to 1 calendar month of financial data. This Monte
Carlo setup is representative of a typical financial application that we have in mind. We do not
report results for other choices of T and M although we experimented with. Quite intuitively,
an increase T led to a reduction in the variance of the estimators, while an increase in M led
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Table 1: Parameter Setting for the Monte Carlo

Case σ2
1 σ2

2 Jump Specification

A 0.0 1.0 tempered stable with A = 1, β = 1.50 and λ = 0.25
B 0.0 1.0 tempered stable with A = 1, β = 1.75 and λ = 0.25
C 0.8 0.0 none
D 0.8 1.0 rare-jump with λc = 0.3333, r = 0.7746

to the elimination of any existing biases. Finally, we consider 10, 000 number of Monte Carlo
replications.

Following our discussion in Section 4.3 we calculate over each simulation the following two-
step estimator β̂ts

X,T . On a first stage we evaluate the function bX,T (p) at p = 0.1. This yields
an initial consistent, albeit far from efficient, estimator for the activity, provided of course the
activity is above 0.1. Then, given our first step estimator of the activity, we compute the power
at which Kp,p(β̂

fs
X,T ) is minimized (recall the definition of Kp,q(β) in (4.3)). Our two-stage

estimator is simply the value of bX,T (p) at this optimal power.
In the Monte Carlo we compare the performance of our estimator with an ad-hoc one where

we simply evaluate bX,T (p) at the fixed “low” power p = 0.1. In Figure 3 we plot the histograms
of the two estimators β̂ts

X,T and bX,T (0.1). As we can see from this figure, the adaptive estimation
of the activity clearly outperforms the ad-hoc one based on a fixed power. In all cases β̂ts

X,T

is much more concentrated around the true value. This is further confirmed from Table 2,
which reports summary statistics for the two estimators. The interquartile range for the ad-hoc
estimator is from 30% to 60% wider than that of the adaptive estimator. Similar conclusion
holds also for the mean absolute deviation reported in the last column of the table. Thus, we
can conclude that choosing an “optimal” power can lead to non-trivial improvements in the
estimation of the activity, which is consistent with our theoretical findings in Section 4.2.

We next investigate how well we can apply the feasible CLT for the two-step activity esti-
mator. For each estimated β̂ts

X,T we calculate standard errors using (4.12). Table 3 provides
summary statistics for how well these estimated asymptotic standard errors track the exact
finite-sample standard error of the two-step estimator β̂ts

X,T . Since X is simulated from a Lévy
process, the latter is computed as the standard error of β̂ts

X,T over the Monte Carlo replications.

6 Proofs

The proof of Theorems 1 and 2 follows from results in Todorov and Tauchen (2010) and therefore
is omitted here. For the rest of the results, we first proof the ones for the Lévy case, and then
proceed with those involving semimartingales with time-varying characteristics. In what follows
we use En

i−1 and Pn
i−1 as a shorthand for E

(·|F(i−1)∆n

)
and P

(·|F(i−1)∆n

)
respectively. In the

proofs K will denote a positive constant that does not depend on the sampling frequency and
might change from line to line.

6.1 Proof of Theorem 3

The proof of the theorem consists of showing (1) finite-dimensional convergence (i.e. identifying
the limit) and (2) tightness of the sequence. In the proof we will show part (b) only. Part (a)
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can be established in exactly the same way. We will assume that A in (3.5) is that of a standard
stable process and therefore ΠA,β = 1. The result for an arbitrary A then will follow trivially
by rescaling (and centering). In what follows L will stand for a standard symmetric β-stable
process, defined on some probability space which is possibly different from the original one.

Step 1 (Finite Dimensional Convergence). We start with establishing the final-dimensional
convergence. It will follow from Lemma 1 below in which we denote with • the Hadamard
product of two matrixes (i.e. the element-by-element product). The stated lemma is slightly
stronger than what we need for two reasons. First, it contains locally uniform convergence
in t and in the theorem we work with a fixed T . Second, in the lemma we will show the
finite-dimensional convergence for a process X defined in the following way

Xt =
∫ t

0

mdsds +
∫ t

0

∫

R
σs−κ(x)µ̃(ds, dx) +

∫ t

0

∫

R
σs−κ′(x)µ(ds, dx), (6.1)

where µ is the Poisson measure of Theorem 3; for arbitrary càdlàg processes σs and σ̃s with
K−1 < |σs| < K and 0 ≤ |σ̃s| ≤ K for some K > 0 and a Brownian motion Wt, σs is
defined via σs = σ(i−1)∆n

+ σ̃(i−1)∆n
(Ws − W(i−1)∆n

) for s ∈ [(i − 1)∆n, i∆n) and further
mds = md,(i−1)∆n

for s ∈ [(i− 1)∆n, i∆n). Obviously Xt includes the Lévy case of Theorem 3,
and the generalization will be needed later for the proof of Theorem 4.
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Figure 3: Histograms of β̂ts
X,T and bX,T (0.1) from the Monte Carlo.
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Table 2: Comparison between two-step and one-step estimator

Estimator Summary Statistics
β median IQR MAD

Case A

βts
X,T 1.50 1.5237 0.0495 0.0247

bX,T (0.1) 1.50 1.4985 0.0632 0.0316
Case B

βts
X,T 1.75 1.7075 0.0590 0.0294

bX,T (0.1) 1.75 1.6785 0.0814 0.0407
Case C

βts
X,T 2.00 2.0001 0.0719 0.0359

bX,T (0.1) 2.00 2.0005 0.1176 0.0588
Case D

βts
X,T 2.00 1.9632 0.0664 0.0332

bX,T (0.1) 2.00 1.9865 0.1164 0.0573

Note: IQR is the inter-quartile range and MAD is the mean absolute deviation.

Lemma 1 Let p = (p1, ..., pk)′ for some integer k, µp = (µp1 , ..., µpk
)′ and 1k is k × 1 vector

of ones. Then, if X is given by (6.1) and under the conditions of Theorem 3(b) (in particular
all elements of p are in [pl, ph]), we have the following convergence locally uniformly in t

1√
∆n

Ṽt(p, X, ∆n) L−s−→ Ξ(p)t, (6.2)

Ṽt(p, X, ∆n) =




∆
1k−p/β
n • Vt(p, X, 2∆n)−∆

1k−p/β
n • 2p/β−1k • µp(β) •∑[t/∆n]

i=1

(∫ i∆n

(i−1)∆n
|σs|βds

)p/β

∆
1k−p/β
n • Vt(p, X, ∆n)−∆

1k−p/β
n • µp(β) •∑[t/∆n]

i=1

(∫ i∆n

(i−1)∆n
|σs|βds

)p/β


 ,

Vt(p, X, ι∆n) = (Vt(p1, X, ι∆n), ..., Vt(pk, X, ι∆n))′ , ι = 1, 2,

and the R2k-valued process Ξ(p)t is defined on an extension of the original probability space,
is continuous, and conditionally on the σ-field F of the original probability space is centered
Gaussian with variance-covariance matrix process given by Ct defined via

Ct(i, j) =





∫ t

0
|σs|pi+pj ds2pi/β+pj/β−1(µpi+pj (β)− µpi(β)µpj (β)), for i = 1, .., k; j = 1, ..., k,∫ t

0
|σs|pi−k+pj−kds

(
µpi−k+pj−k (β)− µpi−k (β)µpj−k (β)

)
, for i = k + 1, .., 2k; j = k + 1, ..., 2k,∫ t

0
|σs|pi−k+pj ds

(
µpi−k,pj (β)− 2pj/βµpi−k (β)µpj (β)

)
, for i = k + 1, .., 2k; j = 1, ..., k.

(6.3)

Proof: We start with some notation. We set C̃ = Ct when t = 1 and σs ≡ 1 for ∀s ∈ [0, 1]. We
further denote

Yt =
∫ t

0

mdsds +
∫ t

0

∫

R
κ(x)µ̃(ds, dx) +

∫ t

0

∫

R
κ′(x)µ(ds, dx), (6.4)
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Table 3: Precision of Standard Error Estimation for the Two-Step Estimator
√

T
∆n

Var(βts
X,T ) Summary Statistics for Âse(βts

X,T ))
median IQR MAD

Case A

3.3341 3.2774 0.2005 0.1005
Case B

4.0320 3.8366 0.2638 0.1320
Case C

4.9588 4.6678 0.2609 0.0590
Case D

4.6626 4.7929 0.4596 0.2298

Note: Var(βts
X,T ) is the exact variance of the two-step estimator, computed from the 10, 000 Monte

Carlo replications of the estimator. Âse(βts
X,T )) is the estimated asymptotic standard error using

(4.12). MAD is computed around the exact standard error of the estimator
√

T
∆n

Var(βts
X,T ).

and

Xt(τ) = Xt −
∑

s≤t

∆Xs1{|∆Xs|<|σs−|τ},

Yt(τ) = Yt −
∑

s≤t

∆Ys1{|∆Ys|<τ}, τ > 0.
(6.5)

First, we have

∆1−1/2−pi/β
n |Vt(pi, X, ∆n)− Vt(pi, X(τ), ∆n)| u.c.p.−→ 0, i = 1, ..., k

∆1−1/2−pi/β
n |Vt(pi, X, 2∆n)− Vt(pi, X(τ), 2∆n)| u.c.p.−→ 0, i = 1, ..., k,

(6.6)

using the algebraic inequality ||a + b|p − |a|p| ≤ |b|p for p ≤ 1 and the fact that pi < β/2
for i = 1, ..., k. Therefore we are left with showing (6.2) with Vt(p, X, ∆n) and Vt(p, X, 2∆n)
substituted with Vt(p, X(τ),∆n) and Vt(p, X(τ), 2∆n) respectively.

For arbitrary power p we set

ζ(p)n
i = (ζ(p)n

i1, ζ(p)n
i2)
′, i = 1, 2, ...,

[
t

2∆n

]
,

ζ(p)n
i1 = ∆1/2

n

(
∆−p/β

n |∆n
2i−1X(τ)|p + ∆−p/β

n |∆n
2iX(τ)|p

− 2µp(β)

(
1

∆n

∫ i∆n

(i−1)∆n

|σs|βds

)p/β )
,
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ζ(p)n
i2 = ∆1/2

n

(
∆−p/β

n |∆n
2i−1X(τ) + ∆n

2iX(τ)|p

− 2p/βµp(β)

(
1

∆n

∫ i∆n

(i−1)∆n

|σs|βds

)p/β )
.

It is convenient also to write further ζ(p)n
i1 = ξ(p)2i−1 + ξ(p)2i with

ξ(p)j = ∆1/2
n


∆−p/β

n |∆n
j X(τ)|p − µp(β)

(
1

∆n

∫ j∆n

(j−1)∆n

|σs|βds

)p/β

 ,

for j = 1, 2, ..., 2
[

t
2∆n

]
. Using Theorem IX.7.19 in Jacod and Shiryaev (2003) it suffices to show

the following for all t > 0 and arbitrary element p from the vector p
∣∣∣∣∣∣

[t/(2∆n)]∑

i=1

En
2i−2(ζ(p)n

i )

∣∣∣∣∣∣
P−→ 0, (6.7)

[t/(2∆n)]∑

i=1

(
En

2i−2[ζ(pq)n
isζ(pr)n

il]− En
2i−2(ζ(pq)n

is)En
2i−2(ζ(pr)n

il)
)

P−→ Ct(q + (2− s)k, r + (2− l)k),

(6.8)

where s, l = 1, 2 and q, r = 1, ..., k,

[t/(2∆n)]∑

i=1

En
2i−2 |ζ(p)n

i |2+ι P−→ 0, for some 0 < ι < β/p− 2, (6.9)

[t/(2∆n)]∑

i=1

En
2i−2[ζ(p)n

i (∆n
2i−1M + ∆n

2iM)] P−→ 0, (6.10)

for M being an arbitrary bounded local martingale defined on the original probability space.
We start with (6.7). We prove it for the first element of ζ(p)n

i and arbitrary element p of the
vector p, the proof for the second element of ζ(p)n

i is similar. Because of the assumption on the
Lévy measure in (3.4) we can write

En
i−1


|∆−1/β

n ∆n
i X(τ)|p − µp(β)

(
1

∆n

∫ i∆n

(i−1)∆n

|σs|βds

)p/β

 =

3∑

j=1

An
ij ,

for i = 1, 2, ..., 2
[

t
2∆n

]
and where

An
i1 = En

i−1




∣∣∣∣∣∆
−1/β
n

∫ i∆n

(i−1)∆n

σs−dLs

∣∣∣∣∣

p

− µp(β)

(
1

∆n

∫ i∆n

(i−1)∆n

|σs|βds

)p/β

 ,

An
i2 = En

i−1

(∣∣∣∣∣∆
−1/β
n

∫ i∆n

(i−1)∆n

σs−dLs + ai∆−1/β
n

∣∣∣∣∣

p

−
∣∣∣∣∣∆

−1/β
n

∫ i∆n

(i−1)∆n

σs−dLs

∣∣∣∣∣

p)
,
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An
i3 = En

i−1|∆−1/β
n ∆n

i X(τ)|p − En
i−1

∣∣∣∣∣∆
−1/β
n

∫ i∆n

(i−1)∆n

σs−dLs + ai∆−1/β
n

∣∣∣∣∣

p

,

with

ai = md,(i−1)∆n
∆n

−
(∫

|x|>τ

κ′(x)ν1(x)dx + 2
∫

x:ν2(x)<0,|x|<τ

κ(x)ν2(x)dx

)∫ i∆n

(i−1)∆n

σsds,
(6.11)

where recall that L is a standard stable process which is defined on an extension of the original
probability space and is independent of it. We have ai = 0 for β ≤ √

2, because of our
assumption of the symmetry of ν(x) and md,(i−1)∆n

≡ 0 for this case. Also, by the assumptions
of the theorem, β′ < β/2 ≤ 1 and therefore the integral with respect to ν2 in the definition of ai

is well defined. Then, using the algebraic inequality |x+y|p ≤ |x|p + |y|p for p ≤ 1 and arbitrary
x and y, it is easy to show that for An

i3 we have

|An
i3| ≤ K∆−p/β

n En
i−1

∣∣∣∣∣
∫ i∆n

(i−1)∆n

σs−dL̃(1)
s

∣∣∣∣∣

p

+ K∆−p/β
n En

i−1

∣∣∣∣∣
∫ i∆n

(i−1)∆n

σs−dL̃(2)
s

∣∣∣∣∣

p

+K∆−p/β
n En

i−1

∣∣∣∣∣
∫ i∆n

(i−1)∆n

σs−dL̃(3)
s

∣∣∣∣∣

p

,

where K is some constant and




L̃(1) is a pure-jump Lévy process with Lévy density of
−2ν2(x)1{x:ν2(x)<0,|x|<τ}, zero drift and zero truncation function;
L̃(2) is a pure-jump Lévy process with Lévy density of
ν2(x)1{x:ν2(x)>0,|x|<τ} − ν2(x)1{x:ν2(x)<0,|x|<τ},
zero drift and zero truncation function;
L̃(3) is a pure-jump Lévy process with Lévy density of
ν1(x)1{|x|>τ}, zero drift and zero truncation function;

(6.12)

The three processes are well-defined because β′ < 1 and are defined on an extension of the
original probability space and independent from the original filtration. Then, using the fact that
σs− is independent from the processes L̃(i) for i = 1, 2, 3, E|σs|p < ∞ for s ∈ [(i − 1)∆n, i∆n)
and any positive p, the Hölder’s inequality, and the basic one |∑i |ai||p ≤

∑
i |ai|p for p ≤ 1

and arbitrary ai, we easily have

|An
i3| ≤ K∆p/β′∧1−p/β−ι

n , (6.13)

for any ι > 0. Taking into account the restriction on p and β′, we have p/β′ ∧ 1− p/β− ι > 1/2
for some ι > 0. In a similar way we can show |Ãn

i3| ≤ K∆1/2+ι
n for some ι > 0 where

Ãn
i3 = En

i−1

(
|∆−1/β

n ∆n
i X(τ)|p∆n

i W −
∣∣∣∣∣∆

−1/β
n

∫ i∆n

(i−1)∆n

σs−dLs + ai∆−1/β
n

∣∣∣∣∣

p

∆n
i W

)
.

Further, since
∫ i∆n

(i−1)∆n
σs−dLs

d= Lbi,n for bi,n =
∫ i∆n

(i−1)∆n
|σs|βds, and using the self-similarity

property of a strictly stable process we have An
i1 = 0. We have similarly Ãn

i1 = 0, where

Ãn
i1 = En

i−1




∣∣∣∣∣∆
−1/β
n

∫ i∆n

(i−1)∆n

σs−dLs

∣∣∣∣∣

p

∆n
i W − µp(β)

(
1

∆n

∫ i∆n

(i−1)∆n

|σs|βds

)p/β

∆n
i W


 ,
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because W is independent from L. Next, to prove (6.7), we need only show that |An
i2| ≤ K∆1/2+ι

n

for some ι > 0. We show this only for the case β >
√

2, since for β ≤ √
2 it is trivially satisfied.

For the proof we make use of the following general inequality for arbitrary real numbers x and
y and p ≤ 1

∣∣|x + y|p − |x|p − p|x|p−1sign{x}y1{|x|6=0,|y|≤|x|/2}
∣∣

≤ K
|y|p+1−ι

|x|1−ι
1{|x|6=0} + |y|p1{|x|=0 ∪ |y|>|x|/2},

(6.14)

for some ι > 0 and a positive constant K. The inequality follows by looking at the difference
|x + y|p − |x|p on two sets: |y| ≤ |x|/2 and |y| > |x|/2. On the former we apply a second-order
Taylor series approximation and further use |y|/|x| ≤ 1/2 on this set (therefore (6.14) holds with
K = 2p−2−ιp(1− p)). On the set |y| > |x|/2 we use the subadditivity of the function |x|p. We
can substitute in the above inequality x with ∆−1/β

n Lbi,n
and y with ai∆

−1/β
n . Then, by first

conditioning on the filtration generated by σs, and then using the fact that L has symmetric
distribution, we get

En
i−1

(
|∆−1/β

n Lbi,n |p−1sign{Lbi,n}ai∆−1/β
n 1{|Lbi,n

|6=0,|Lbi,n
|≥2|ai|}

)
= 0. (6.15)

Next we have for some p0, p1 > 0 (note that we have universal bounds on σs and σ̃s)

En
i−1

(∫ i∆n

(i−1)∆n

|σs|p0ds

)−p1

≤ KEn
i−1 (Tb ∧∆n)−p1 < K∆−p1

n , (6.16)

where Tb is the hitting time of the Brownian motion
(
Ws −W(i−1)∆n

)
s≥(i−1)∆n

of the level b for
b = −σ(i−1)∆n

/(2K) 6= 0 for some positive K, whose negative powers (of Tb) are finite. Then
for ι such that 0 < ι < p− 2−β

2(β−1) (recall the assumption on p for β >
√

2) we have

En
i−1




∣∣∣ai∆
−1/β
n

∣∣∣
p+1−ι

|∆−1/β
n Lbi,n |1−ι

1{Lbi,n
6=0}


 ≤ En

i−1

[∣∣∣ai∆−1/β
n

∣∣∣
p+1−ι

|∆−1/β
n b

1/β
i,n |ι−1

]

×E (|L1|ι−1
)

(6.17)

≤ K∆1/2+ι′
n ,

with some ι′ > 0 and a positive constant K. This follows from the self-similarity of the strictly
stable process, the fact that E|L1|1−ι <∞ since ι ∈ (0, 1), see e.g. Sato (1999), and the preceding
inequality (6.16). Similarly, for some ι ∈

(
0, p− 2−β

2(β−1)

)
using the Chebycheff’s inequality we

have

En
i−1|ai∆−1/β

n |p1{|Lbi,n
|<2|ai|} ≤ KE

(|L1|ι−1
)
∆(1−1/β)(p+1−ι)

n

≤ K∆1/2+ι′
n .

(6.18)

with some ι′ > 0. Combining (6.13)-(6.18) and using that stable distribution has a density with
respect to Lebesgue measure, see e.g., Remark 14.18 in Sato (1999), we prove |An

i2| ≤ K∆1/2+ι
n

for some ι > 0 and thus (6.7) follows. Similarly we have |Ãn
i2| ≤ K∆1/2+ι

n for some ι > 0 where

Ãn
i2 = En

i−1

( ∣∣∣∣∣∆
−1/β
n

∫ i∆n

(i−1)∆n

σs−dLs + ai∆−1/β
n

∣∣∣∣∣

p

∆n
i W

−
∣∣∣∣∣∆

−1/β
n

∫ i∆n

(i−1)∆n

σs−dLs

∣∣∣∣∣

p

∆n
i W

)
,
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Before proceeding with (6.8) we derive a result that we make use of later for the proof of
Theorem 4. First, for two random variables X1 and X2 and some ε > 0 we have

P (|X1 + X2| ≤ ε) ≤ P (|X1| ≥ ε) + P (|X2| ≤ 2ε) . (6.19)

Then we can apply this inequality twice, use the fact that
∫
[−1,1]

|x|β′+α′ν2(x)dx < ∞ for any
α′ > 0, the fact that |∆Xs(τ)| ≤ τ |σs−|; the fact that the stable distribution has finite moments
for powers that are negative but higher than−1; the bound in (6.16); and finally the Chebycheff’s
inequality to get

Pn
i−1

(
∆−1/β

n |∆n
i X(τ)| ≤ ε

)
≤

3∑

j=1

Pn
i−1

(∣∣∣∣∣
∫ i∆n

(i−1)∆n

σs−dL̃(j)
s

∣∣∣∣∣ ≥ 0.5∆1/β
n ε

)

+Pn
i−1

(
|ai∆−1/β

n + ∆−1/β
n Lbi,n

| ≤ 4ε
)

(6.20)

≤ K

(
εα + ∆(1−1/β)α

n +
∆p/β′−p/β−α′

n

εp

)
,

for any α ∈ (0, 1), p ≤ β′ and α′ > 0 and where K is some positive constant that does not
depend on ε. Similarly for two random variables X1 and X2 and p > 0 and ε > 0 we can derive

E
(|X1 + X2|−p1{|X1+X2|≥ε}

) ≤ K

[
ε−pP (|X2| ≥ kε)

+ E
(|X1|−p1{|X1|>(1−k)ε}

) ]
,

for any k ∈ (0, 1) and where the constant K depends on k only. Using this inequality then it is
easy to derive the following bound

En
i−1

(
|∆−1/β

n ∆n
i X(τ)|−p1{∆−1/β

n |∆n
i X(τ)|≥ε}

)
≤ K

(
ε(1−p)∧0−α′ +

∆1−β′/β−α′
n

εp+β′

)
, (6.21)

for any p, α′ > 0 and where the constant K does not depend on ε.
We continue with (6.8). First using Lemma 1(b) in Todorov and Tauchen (2010), since for

each element p of the vector p we have 2p < β, we have (recall the notation in (6.4)-(6.5))

En
i−1|∆−1/β

n ∆n
i Y (τ)|pq+pr − En

i−1|∆−1/β
n ∆n

i Y (τ)|pqEn
i−1|∆−1/β

n ∆n
i Y (τ)|pr

P−→ C̃(k + q, k + r),

1
2
En

2i−2|∆−1/β
n ∆n

2i−1Y (τ) + ∆−1/β
n ∆n

2iY (τ)|pq+pr

− 1
2
En

2i−2|∆−1/β
n ∆n

2i−1Y (τ) + ∆−1/β
n ∆n

2iY (τ)|pq

× En
2i−2|∆−1/β

n ∆n
2i−1Y (τ) + ∆−1/β

n ∆n
2iY (τ)|pr

P−→ C̃(q, r),

En
2i−2|∆−1/β

n ∆n
2i−1Y (τ) + ∆−1/β

n ∆n
2iY (τ)|pq |∆−1/β

n ∆n
2i−1Y (τ)|pr

− En
2i−2|∆−1/β

n ∆n
2i−1Y (τ) + ∆−1/β

n ∆n
2iY (τ)|pqEn

i−1|∆−1/β
n ∆n

i Y (τ)|pr

P−→ C̃(q, k + r),
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where q, r = 1, ..., k and for the first limit i = 1, 2, ..., 2
[

t
2∆n

]
while for the last two i =

1, 2, ...,

[
t

2∆n

]
. Next, by Riemann integrability, we have

∆n

[t/∆n]∑

i=1

|σ(i−1)∆n
|p P−→

∫ t

0

|σs|pds, p > 0. (6.22)

Therefore to show (6.3) we need only to prove that for arbitrary p < β

En
i−1

∣∣∣|∆−1/β
n X(τ)|p − |∆−1/β

n σ(i−1)∆n
Y (τ)|p

∣∣∣ ≤ K∆ι
n, (6.23)

for some ι > 0. But this follows by using Burkholder-Davis-Gundy inequality (if β > 1) and the
elementary one (

∑
i |ai|)p ≤ ∑

i |ai|p for arbitrary reals ai and some p ≤ 1, together with the
definition of the process σs.

Turning to (6.9), we show it only for the first component of ζ(p)n
i , the proof for the second

one being exactly the same. Using again Lemma 1(b) in Todorov and Tauchen (2010) we have

En
i−1

(
∆−(2+ι)p/β

n |∆n
i Y (τ)|(2+ι)p

)
P−→ E

(
|L1|(2+ι)p

)
, (6.24)

for i = 1, 2, ..., 2
[

t
2∆n

]
and 0 < ι < β/p − 2. Then (6.9) follows by combining this result with

(6.22)-(6.23). We are left with proving (6.10). It suffices to show

∆1/2
n

2[t/(2∆n)]∑

i=1

En
i−1

(
∆−p/β

n |∆n
i X(τ)|p∆n

i M

− µp(β)

(
1

∆n

∫ i∆n

(i−1)∆n

|σs|βds

)p/β

∆n
i M

)
P−→ 0.

(6.25)

First, if M is a discontinuous martingale, then using (6.7)-(6.9), we have that
∑2[t/(2∆n)]

i=1 ξ(p)n
i

is C-tight, i.e. it is tight and any limit is continuous. At the same time
∑2[t/(2∆n)]

i=1 ∆n
i M trivially

converges to a discontinuous limit. Therefore the pair (
∑2[t/(2∆n)]

i=1 ξ(p)n
i ,

∑2[t/(2∆n)]
i=1 ∆n

i M) is
tight, see Jacod and Shiryaev (2003), Theorem VI3.33(b). But then the left hand side of (6.25)
converges to the predictable version of the quadratic covariation of the limits of

∑2[t/(2∆n)]
i=1 ξ(p)n

i

and
∑2[t/(2∆n)]

i=1 ∆n
i M , which is zero since continuous and discontinuous martingales are orthog-

onal, see Jacod and Shiryaev (2003), Proposition I.4.15.
Second if M is a continuous martingale orthogonal to the Brownian motion Wt used in

defining σt, we can proceed similar to Barndorff-Nielsen et al. (2005) and argue as follows. If
we set Nt = E (|∆n

i X(τ)|p|Ft) for t ≥ (i− 1)∆n, then (Nt)t≥(i−1)∆n
is a martingale. It remains

also martingale, conditionally on F(i−1)∆n
, for the filtration generated by the Poisson measure µ

and the Brownian motion (Wt−W(i−1)∆n
)t≥(i−1)∆n

since ∆n
i X is uniquely determined by these

processes. Therefore by a martingale representation theorem (see Jacod and Shiryaev (2003),
III.4.34)

Nt = N(i−1)∆n
+

∫ t

(i−1)∆n

∫

R
δ′(s, x)µ̃(ds, dx) +

∫ t

(i−1)∆n

ηsdWs,

when t ≥ (i − 1)∆n for an appropriate predictable function δ′(s, x) and process ηs. Therefore
Nt is a sum of pure-discontinuous martingale, which hence is orthogonal to Mt − M(i−1)∆n

(see Jacod and Shiryaev (2003), I.4.11), and a continuous martingale which is also orthogonal
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to Mt − M(i−1)∆n
because of our assumption on M . This implies that for M a continuous

martingale orthogonal to the Brownian motion we have

En
i−1





∆−p/β

n |∆n
i X(τ)|p − µp(β)

(
1

∆n

∫ i∆n

(i−1)∆n

|σs|βds

)p/β

 ∆n

i M




= En
i−1 (∆n

i N∆n
i M) = 0,

and this shows (6.25) in this case.
The only case that remains to be covered is when M = W . For this case we can use the

bounds derived above for Ãi1, Ãi2 and Ãi3 and from here (6.25) follows easily in this case. ¤

Step 2 (Tightness). We are left with establishing tightness, which follows from the next lemma.

Lemma 2 Assume that X is given by (6.1) and that the conditions of Theorem 3 hold. Then
for a fixed T > 0 we have that the sequence

1√
∆n

ṼT (p, X, ∆n),

for ṼT (p, X, ∆n) defined in (6.2), is tight on the space of continuous functions C(R2, [pl, ph])
equipped with the uniform topology, where pl and ph satisfy the conditions of part (b) of Theo-
rem 3.

Proof: We will prove only that the sequence

V̂T (p,X, ∆n) = ∆1/2−p/β
n VT (p, X, ∆n)

−∆1/2
n µp(β)

[T/∆n]∑

i=1

(
1

∆n

∫ i∆n

(i−1)∆n

|σs|βds

)p/β

is tight in the space of R-valued functions on [pl, ph] and the arguments generalize to the tightness
of 1√

∆n
ṼT (p, X, ∆n). For arbitrary pl ≤ p < q ≤ ph we can write

∣∣∣V̂T (q, X,∆n)− V̂T (p,X, ∆n)
∣∣∣ ≤

4∑

i=1

An
i (p, q),

where

An
1 (p, q) = ∆−1/2

n

∣∣∣∣∆1−q/β
n (VT (q, X, ∆n)− VT (q, X(τ),∆n))

−∆1−p/β
n (VT (p,X, ∆n)− VT (p,X(τ),∆n))

∣∣∣∣,

and for i = 2, 3, 4, An
i (p, q) d= Ãn

i (p, q) with

Ãn
2 (p, q) = ∆1/2

n

∣∣∣∣
[T/∆n]∑

i=1

[ ∣∣∣∣∣∆
−1/β
n

∫ i∆n

(i−1)∆n

σs−dLs

∣∣∣∣∣

q

− µq(β)

(
1

∆n

∫ i∆n

(i−1)∆n

|σs|βds

)q/β

−
∣∣∣∣∣∆

−1/β
n

∫ i∆n

(i−1)∆n

σs−dLs

∣∣∣∣∣

p

+ µp(β)

(
1

∆n

∫ i∆n

(i−1)∆n

|σs|βds

)p/β ]∣∣∣∣,
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Ãn
3 (p, q) = ∆1/2

n

∣∣∣∣
[T/∆n]∑

i=1

[ ∣∣∣∣∣∆
−1/β
n

∫ i∆n

(i−1)∆n

σs−dLs + ai∆
−1/β
n

∣∣∣∣∣

q

−
∣∣∣∣∣∆

−1/β
n

∫ i∆n

(i−1)∆n

σs−dLs

∣∣∣∣∣

q

−
∣∣∣∣∣∆

−1/β
n

∫ i∆n

(i−1)∆n

σs−dLs + ai∆
−1/β
n

∣∣∣∣∣

p

+

∣∣∣∣∣∆
−1/β
n

∫ i∆n

(i−1)∆n

σs−dLs

∣∣∣∣∣

p ]∣∣∣∣,

where ai is defined in (6.11) in the proof of Lemma 1 and Ãn
4 (p, q) is a residual term whose

moments involve the processes L̃(1), L̃(2) and L̃(3) of (6.12). It can be shown using the continuity
of the power function and the restriction on ν2(x) that

lim sup
∆n↓0

E

(
sup

p,q∈[pl,ph]

Ãn
4 (p, q)

)
= 0. (6.26)

For An
1 (p, q) we can first apply the inequality ||a + b|p − |a|p| ≤ |b|p for p ≤ 1, and then use the

continuity of the power function for positive powers to show that

sup
p,q∈[pl,ph]

An
1 (p, q) a.s.−→ 0. (6.27)

For Ãn
2 (p, q) we easily have for p, q ∈ [pl, ph]

E
(
Ãn

2 (p, q)
)2

≤ K(p− q)2, (6.28)

and Theorem 12.3 in Billingsley (1968) implies tightness. Turning to Ãn
3 (p, q), it is identically

0 for β ≤ √
2 due to our assumptions. So we look at the case β >

√
2. We can decompose

Ãn
3 (p, q) as Ãn

3 (p, q) ≤ Ãn
31(p, q) + Ãn

32(p, q) with




Ãn
31(p, q) = ∆

1/2
n

∣∣∣∑[T/∆n]
i=1 [ci(q)− ci(p)] 1{Cn

i }
∣∣∣ ,

Ãn
32(p, q) = ∆

1/2
n

∣∣∣∑[T/∆n]
i=1 [ci(q)− ci(p)] 1{(Cn

i )c}
∣∣∣ ,

where Cn
i =

{∣∣∣
∫ i∆n

(i−1)∆n
σs−dLs

∣∣∣ 6= 0,
∣∣∣
∫ i∆n

(i−1)∆n
σs−dLs

∣∣∣ ≥ 2|ai|
}

and

ci(p) =

∣∣∣∣∣∆
−1/β
n

∫ i∆n

(i−1)∆n

σs−dLs + ai∆−1/β
n

∣∣∣∣∣

p

−
∣∣∣∣∣∆

−1/β
n

∫ i∆n

(i−1)∆n

σs−dLs

∣∣∣∣∣

p

.

For Ãn
31(p, q) we can write

E
(
Ãn

31(p, q)
)2

≤ KE
(
[ci(q)− ci(p)]2 1{Cn

i }
)

+ K∆n




[T/∆n]∑

i=1

En
i−1

(
[ci(q)− ci(p)] 1{Cn

i }
)



2

.

(6.29)

For the first expectation on the left-hand side of (6.29) we have similar to (6.28)

E
(
[ci(q)− ci(p)]2 1{Cn

i }
)
≤ K(p− q)2. (6.30)

For the second expectation on the right-hand side of (6.29), we apply the following inequality,
similar to (6.14). For every x and y and p, q ∈ [pl; ph] we have

∣∣∣∣|x + y|p − |x|p − |x + y|q + |x|q

− (p|x|p−1 − q|x|q−1)sign{x}y1{|x|6=0,2|y|≤|x|}

∣∣∣∣1{|x|6=0,2|y|≤|x|}

≤ K|p− q| (|y|
pl+1−ι + |y|ph+1−ι)

|x|1−ι
1{|x|6=0},
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for some 0 < ι < 1.
Substituting in the above inequality x with ∆−1/β

n

∫ i∆n

(i−1)∆n
σs−dLs and y with ai∆

−1/β
n and

using the fact that (p|x|p−1 − q|x|q−1)sign{x}1{|x|6=0,2|y|≤|x|} is odd in x, we get

E
(
En

i−1

(
[ci(q)− ci(p)] 1{Cn

i }
))2 ≤ K(p− q)2

(
|∆n|2(pl+1−ι)(1−1/β)

+ |∆n|2(ph+1−ι)(1−1/β)

)
,

for some ι < pl − 2−β
2(β−1) . For Ãn

32(p, q) we have for sufficiently small ∆n

sup
p,q∈[pl,ph]

Ãn
32(p, q) ≤ K∆1/2

n

[T/∆n]∑

i=1

apl

i ∆−pl/β
n 1{(Cn

i )c}.

Then using the definition of the set (Cn
i )c and the calculation in (6.18) we can conclude

lim sup
∆n↓0

E

(
sup

p,q∈[pl,ph]

Ãn
32(p, q)

)
= 0. (6.31)

Combining the above results we get the tightness of V̂T (q,X, ∆n) on the space of continuous
functions of p in the interval [pl, ph]. ¤

6.2 Proof of Remark 3.8

In what follows we denote

χn
i := ∆p/β

n

(
|∆−1/β

n ∆n
i X|p −Πβ

A,βµp(β)
)

.

It is no restriction of course to assume that the constant A in (3.5) corresponds to that of
a standard stable and we proceed in the proofs with that assumption. In view of Theorem
XVII.2.2 in Feller (1971) we need to prove the following

1
∆n
E(χn

i 1{|χn
i |≤1}) → −2

β

β − p

A

β
, (6.32)

1
∆n

[E((χn
i )21{|χn

i |≤K})− (E(χn
i 1{|χn

i |≤K}))2] → 2K2−β/p β

2p− β

A

β
, (6.33)

1
∆n
E(1{χn

i >K}) → 2Kβ/p A

β
and

1
∆n
E(1{χn

i <−K}) → 0, (6.34)

where K > 0 is an arbitrary positive constant.
We recall that X is symmetric stable process plus a drift, i.e. Xt

d= Lt + at, where Lt

denotes symmetric stable process with Lévy density equal to ν1(x) in (3.5) and a = md +
∫
R(x−

κ(x))ν1(x)dx when β > 1 and a = 0 when β ≤ 1. Using the self-similarity of the symmetric
stable we have ∆−1/β

n ∆n
i X

d= L1 + a∆1−1/β
n .

First we state several basic facts about the stable distribution that we make use of in the
proof. We recall that for the tail of the symmetric stable we have (see e.g. Zolotarev (1986))
P (L1 > x) ∼ P (L1 < −x) ∼ A

β
1

xβ as x ↑ +∞ where for two functions f(·) and g(·), f(∆n) ∼
g(∆n) means lim∆n↓0

f(∆n)
g(∆n)=1. Therefore the tail probability of the stable distribution varies

regularly at infinity and we can use this fact and Theorems 8.1.2 and 8.1.4 in Bingham et al.
(1987) to write for p ∈ (β/2, β)
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E
(|L1|p1{L1>x}

) ∼ E (|L1|p1{L1<−x}
) ∼ xp−β β

β − p

A

β
, (6.35)

E
(|L1|2p1{|L1|≤x}

) ∼ 2x2p−β β

2p− β

A

β
, (6.36)

as x ↑ ∞. We continue with the proof of (6.32)-(6.34). We start with showing (6.32). First we
have

1
∆n
E(χn

i ) = ∆p/β−1
n E

(
|L1 + a∆1−1/β

n |p − |L1|p
)

+ ∆p/β−1
n E

(
|L1|p −Πβ

A,βµp(β)
)

→ 0.

(6.37)

We note that the second term on the right-hand side of (6.37) is identically zero, while the
convergence of the first term can be split into two cases. First, when p ≤ 1 the result follows
from the bound for the term An

i2 in (6.17)-(6.18) in the proof of Theorem 3 provided p > 1/β.
When p > 1 the convergence follows from a trivial application of Taylor expansion.

Second using the rate of decay of the tail probability of the stable distribution we have

∆p/β−1
n P

(∣∣∣|L1 + a∆1−1/β
n |p −Πβ

A,βµp(β)
∣∣∣ > ∆−p/β

n

)
→ 0.

Third using Taylor expansion around L1 and the fact that we evaluate L1 on a set growing to
infinity at the rate ∆−1/β

n we have

∆p/β−1
n E

(
|L1 + a∆1−1/β

n |p − |L1|p
)

1{∣∣∣|L1+a∆
1−1/β
n |p−Πβ

A,βµp(β)
∣∣∣>∆

−p/β
n

} → 0.

Thus to prove (6.32) we need to show

∆p/β−1
n E|L1|p1{∣∣∣|L1+a∆

1−1/β
n |p−Πβ

A,βµp(β)
∣∣∣>∆

−p/β
n

} → 2
β

β − p

A

β
.

But this follows from (6.35) with

x =
((

Πβ
A,βµp(β) + ∆−p/β

n

)1/p

± a∆1−1/β
n

)
,

and hence we are done. We turn now to (6.33). It is easy to show that

∆2p/β−1
n E

(
|L1 + a∆1−1/β

n |2p − |L1|2p
)
1{∣∣∣|L1+a∆

1−1/β
n |p−Πβ

A,βµp(β)
∣∣∣≤K∆

−p/β
n

}

→ 0.

Therefore, (6.33) will follow if we can show

∆2p/β−1
n E|L1|2p1{∣∣∣|L1+a∆

1−1/β
n |p−Πβ

A,βµp(β)
∣∣∣≤K∆

−p/β
n

} → 2K2−β/p β

2p− β

A

β
. (6.38)

To show (6.38) we can apply (6.36) with

x =
((

Πβ
A,βµp(β) + K∆−p/β

n

)1/p

± a∆1−1/β
n

)
.

Finally (6.34) follows trivially from the expression for the tail probability of a stable stated
earlier.

¤
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6.3 Proof of Corollary 1

Again, as in the proof of Theorem 3 we will show only part (b), the proof of part (a) being
identical. Since the process X has no fixed time of discontinuity the result of Lemma 1 implies
that the convergence in (6.2) holds for an arbitrary fixed T > 0. Then, there is a set Ωn on
which 2VT (X, p, 2∆n) 6= VT (X, p, ∆n) for p ∈ [pl, ph] and from Theorem 2 (under the conditions
of this theorem) Ωn → Ω. On Ωn bX,T (p) is a continuous transformation of VT (X, p, 2∆n) and
VT (X, p, ∆n) and thus Lemma 1 implies the finite-dimensional convergence of the sequences on
the left-hand sides of (4.4) and (4.5). Similarly, since tightness is preserved under continuous
transformations, using Lemma 2 we have that the left-hand sides of (4.4) and (4.5) are tight.
Hence the result of Theorem 1 follows. ¤

6.4 Proof of Theorem 5

We first show the result for the case when w(u) is continuous on [τ∗1 , τ∗2 ]. Set

τ1(z) = fl(z) and τ2(z) = fh(z).

Since τ1(z) is continuous in a neighborhood of βX,T and τ1(βX,T ) > β′

2−β′ as well as τ2(βX,T ) <

βX,T /2 when X is given by (3.1), then there are z∗ < βX,T < z∗ such that for all z ∈ (z∗, z∗)
⇒ τ1(z) > β′

2−β′ and τ2(z) < βX,T /2. Similarly if X is given by (3.3), then βX,T ≡ β and
due to the assumptions of the theorem, there exist z∗ < β < z∗ such that for z ∈ (z∗, z∗) ⇒
τ1(z) >

(
2−β

2(β−1) ∨ ββ′

2(β−β′)

)
and τ2(z) < β/2 when β >

√
2 and z ∈ (z∗, z∗) ⇒ τ1(z) > ββ′

2(β−β′)

and τ2(z) < β/2 when β ≤ √
2.

Denote with A the subset of (z∗, z∗) for which τ1(z) and τ2(z) are continuously differentiable.
From the assumptions of Theorem 5 the set A contains a neighborhood of βX,T . Then, using
Taylor expansion on the set Bn := {ω : β̂fs

X,T ∈ A∩Ωn} where Ωn is the set defined in the proof
of Corollary 1 above, we can write

∆−1/2
n

(
β̂ts

X,T − βX,T

)
= 1Bn

∫ τ∗2

τ∗1

w(u){∆−1/2
n (bX,t(u)− βX,T )}du

+ 1Bn∆−1/2
n ΘT (βX,T )

(
β̂fs

X,T − βX,T

)

+ 1Bc
n
∆−1/2

n

(
β̂ts

X,T − βX,T

)
,

(6.39)

where βX,T is between β̂fs
X,T and βX,T and

ΘT (z) = w(τ2(z))∇zτ2(z)(bX,T (τ2(z))− βX,T )
− w(τ1(z))∇zτ1(z)(bX,T (τ1(z))− βX,T ).

The last term on the right-hand-side of (6.39) is asymptotically negligible because β̂fs
X,T is

consistent for βX,T . We now show that the second term in (6.39) is asymptotically negligible.

First note that since β̂fs
X,T

P−→ βX,T we also have βX,T
P−→ βX,T . Then to establish the

asymptotic negligibility it suffices to show that

P

(
∆−1/2

n

∫ τ2

τ1

|(bX,T (u)− βX,T )w(u)| du > ε

)
↓ 0, for ε ↑ +∞, (6.40)
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where τ1 := τ1(βX,T ) and τ2 := τ2(βX,T ). For any ε > 0 we have

P

(
∆−1/2

n

∫ τ2

τ1

|(bX,T (u)− βX,T )w(u)| du > ε

)

≤ P(βX,T ∈ Ac) + P

(
1{βX,T∈A}

∫ τ2

τ1

∣∣∣∆−1/2
n (bX,T (u)− βX,T )w(u)

∣∣∣ du > ε

)
,

The first probability in the second line of (6.40) is converging to 0 as ∆n ↓ 0, while the second
one converges to zero as ε ↑ +∞. This is because when βX,T ∈ A, τ1 > pl and τ2 < ph where
pl < ph are some constants that satisfy the conditions of Theorem 3 and as a consequence of
this theorem ∆−1/2

n (bX,t(u)− βX,T ) converges uniformly in u for u ∈ [pl, ph].
We are left with the first term in (6.39). Using the uniform convergence result of Theorem 3,

the fact that the integration over a bounded interval is continuous for the uniform metric on
the space of continuous functions (in fact for this even finite dimensional convergence suffices)
we have

∫ τ∗2

τ∗1

w(u){∆−1/2
n (bX,T (u)− βX,T )}du

L−s−→
∫ τ∗2

τ∗1

ZβX,T
(u)w(u)du,

where

Zβ(u) =





β2

u ln 2
1

TΠ
u/β
A,β µu(β)

(
Ψ(2)

β,T (u)− 21−u/βΨ(1)
β,T (u)

)
if β < 2,

4
u ln 2

1
T |σ|uµu(2)

(
Ψ(2)

2,T (u)− 21−u/2Ψ(1)
2,T (u)

)
if β = 2,

and Ψ(1)
β,T and Ψ(2)

β,T are the first and second elements respectively of the limiting Gaussian
process of part (a) and (b) of Theorem 3. The proof of Theorem 5 for the case of continuous
w(u) then easily follows. The proof in the case of w(u) being Dirac mass at some point follows
from the proof of Corollary 2 given below. ¤

6.5 Proof of Corollary 2

Denote with A the set of values of z for which f(z) ∈ (pl, ph) for some 0 < pl < ph < βX,T /2
satisfying the conditions of Theorem 3 in the different cases for βX,T . Finally, set Bn := {ω :
β̂fs

X,T ∈ A∩Ωn}. We know that this set contains neighborhood of βX,T because of the continuity
of f(·) and the fact that p∗ ∈ (pl, ph). Then we can write

∆−1/2
n

(
β̂ts

X,T − βX,T

)
= 1Bn∆−1/2

n (bX,T (τ∗)− βX,T ) + 1Bc
n
∆−1/2

n

(
β̂ts

X,T − βX,T

)

+ 1Bn∆−1/2
n ΘT (f(β̂fs

X,T ))
(
f(β̂fs

X,T )− f(βX,T )
)

,

where f(β̂fs
X,T ) is between f(β̂fs

X,T ) and f(βX,T ) and

ΘT (z) = Θ(1)
T (z) + Θ(2)

T (z), Θ(1)
T (z) =

bX,T (z)− βX,T

z
− b2

X,T (z)− β2
X,T

βX,T z
,

Θ(2)
T (z) =

b2
X,T (z)
z ln 2

(
∇z[∆

1−z/βX,T
n VT (z,X, ∆n)]

∆1−z/βX,T
n VT (z, X, ∆n)

− ∇z[(2∆n)1−z/βX,T VT (z,X, 2∆n)]
(2∆n)1−z/βX,T VT (z, X, 2∆n)

)
.
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The result of Corollary 2 then will follow if we can show that ∆−1/2
n ΘT (f(β̂fs

X,t)) is bounded in
probability on the set Bn. But this holds true because we can prove exactly as in Theorem 3
that

∆−1/2
n


∆n

[T/∆n]∑

i=1

|∆−1/βX,T
n ∆n

i X|p ln |∆−1/βX,T
n ∆n

i X|1{|∆n
i X|>0} − TE(|L1|p ln |L1|)




converges uniformly in p (under the same conditions for the power as in that theorem). ¤

6.6 Proof of Theorem 4

We do not show here part (a). The finite-dimensional convergence for this case (without jumps
in X) has been already shown in Barndorff-Nielsen et al. (2005) (extending their result to
the case with jumps satisfying the conditions of Theorem 4, part(a) follows trivially using the
subadditivity of |x|p for p ≤ 1). The tightness can be shown in exactly the same way as part
(b) (i.e., in the decomposition in equation (8.2) in Barndorff-Nielsen et al. (2005) we can apply
the same techniques as in the proof of our Lemma 2).
Proof of part(b): We will establish only the finite-dimensional convergence, the proof the
tightness is done exactly as in Lemma 2. Also we will prove the finite dimensional convergence for
a fixed p and the second element of the vector on the left-hand side in (3.19). The generalization
will follow immediately.

As in the previous proofs we assume that A in (3.5) corresponds to that of a standard stable.
Upon using a localization argument as in Jacod (2008) we can and will assume the following
stronger assumption on the various processes in (3.9)-(3.10):

We have |mdt| + |bt| + |σ2t| + |σ2t|−1 + |σ̃2t| ≤ K and |δ(t,x)| ≤ γ(x) ≤ K for some positive
constant K which bounds also the coefficients in the Itô semimartingale representations of the
processes mdt and σ̃2t;

∫
R 1|x|>Kν(x)dx = 0.

We can make the following decomposition

∆−1/2
n

(
∆1−p/β

n VT (X, p, ∆n)− µp(β)
∫ T

0

|σ2s|pds

)
=

5∑

i=1

Ai,

A1 = ∆1/2
n

[T/∆n]∑

i=1


|∆−1/β

n ∆n
i X|p − µp(β)

(
1

∆n

∫ i∆n

(i−1)∆n

|σ2s|βds

)p/β

 ,

A2 = µp(β)∆1/2
n

[T/∆n]∑

i=1

ai2, ai2 =

(
1

∆n

∫ i∆n

(i−1)∆n

|σ2s|βds

)p/β

− |σ2,(i−1)∆n
|p,

A3 = µp(β)∆1/2
n

[T/∆n]∑

i=1

ai3, ai3 =
1

∆n

∫ i∆n

(i−1)∆n

(|σ2,(i−1)∆n
|p − |σ2s|p

)
ds,

A4 = ∆−1/2
n µp(β)

∫ T

0

(|σ2s|p − |σ2s|p)ds,

A5 = ∆1/2
n

[T/∆n]∑

i=1

(
|∆−1/β

n ∆n
i X|p − |∆−1/β

n ∆n
i X|p

)
,

where for i = 1, ..., [T/∆n] and s ∈ [(i− 1)∆n, i∆n)

σ2s = σ2,(i−1)∆n
+ σ̃2,(i−1)∆n

(Ws −W(i−1)∆n
),
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Xs = X(i−1)∆n
+

∫ s

(i−1)∆n

md,(i−1)∆n
du +

∫ s

(i−1)∆n

∫

R
σ2u−κ(x)µ̃(du, dx)

+
∫ s

(i−1)∆n

∫

R
σ2u−κ′(x)µ(du, dx), s ∈ [(i− 1)∆n, i∆n).

We start with A1. We can apply directly Lemma 1 to show that A1 converges stably to the
limit on the right-hand side of (3.19) (recall our stronger assumption on the process σ2 stated at
the beginning of the proof). We continue with the term A2 which we now show is asymptotically
negligible. First we denote the set

Bi,n :=

{
ω : sup

s∈[(i−1)∆n,i∆n]

|σ2,(i−1)∆n
− σ2s| > 0.5σ2,(i−1)∆n

}
.

Then, using the exponential inequality for continuous martingales with bounded variation, see
e.g. Revuz and Yor (1999), it is easy to derive

|En
i−11{Bi,n}a

n
i2| ≤ Ke−K/∆n , En

i−11{Bi,n} (an
i2)

2 ≤ Ke−K/∆n .

Using second-order Taylor expansion and the fact that σ2s is bounded from below on the set
(Bi,n)c, we get

∣∣En
i−1

(
1{(Bi,n)c}an

i2

)∣∣ ≤ KEn
i−1

(
1{(Bi,n)c}

1
∆n

∫ i∆n

(i−1)∆n

∣∣|σ2s|β − |σ2,(i−1)∆n
|β

∣∣ ds

)2

+ KEn
i−1

(
1

∆n

∫ i∆n

(i−1)∆n

(
σ2s − σ2,(i−1)∆n

)2
ds

)

≤ K∆n,

where we made also use of the following inequality
∣∣∣∣∣E

n
i−1

(
1{(Bi,n)c}

∫ i∆n

(i−1)∆n

(σ2s − σ2,(i−1)∆n
)ds

)∣∣∣∣∣

=

∣∣∣∣∣E
n
i−1

(
1{Bi,n}

∫ i∆n

(i−1)∆n

(σ2s − σ2,(i−1)∆n
)ds

)∣∣∣∣∣ ≤ Ke−K/∆n .

Finally, a first-order Taylor expansion together with the fact that σ2s is bounded from below
on the set (Bi,n)c gives

En
i−1

(
1{(Bi,n)c}an

i2

)2 ≤ KEn
i−1

(
1{(Bi,n)c}

1
∆n

∫ i∆n

(i−1)∆n

∣∣|σ2s|β − |σ2,(i−1)∆n
|β∣∣ ds

)2

≤ K∆n.

Combining the above two inequalities we get
{

∆1/2
n

∑[T/∆n]
i=1 En

i−1ai2
u.c.p.−→ 0,

∆n

∑[T/∆n]
i=1 En

i−1 (ai2)
2 u.c.p.−→ 0.

This implies the asymptotic negligibility of A2. We continue with A3. We can use the standard
inequality |a + b|p ≤ |a|p + |b|p for 0 < p ≤ 1 as well as Hölder’s inequality to get

|En
i−11{Bi,n}a

n
i3| ≤ Ke−K/∆n , En

i−11{Bi,n} (an
i3)

2 ≤ Ke−K/∆n .
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Similar inequalities as for ai2 on the set (Bi,n)c give

|En
i−11{(Bi,n)c}an

i3| ≤ K∆n, En
i−1

(
1{(Bi,n)c}an

i3

)2 ≤ K∆n.

These two inequalities establish the asymptotic negligibility of A3. We continue with A4. First,
for some ε > 0 denote the set Bn

i,ε := {ω : sups∈[(i−1)∆n,i∆n] |σ2s − σ2s| > ε}. Then we can
decompose A4 into

A4 = µp(β)(C1 + C2 + C3),

C1 = ∆−1/2
n

[T/∆n]∑

i=1

∫ i∆n

(i−1)∆n

g(σ2s)(σ2s − σ2s)ds,

C2 = p(p− 1)∆−1/2
n

[T/∆n]∑

i=1

1(Bn
i,ε)

c

∫ i∆n

(i−1)∆n

|σ∗2s|p−2(σ2s − σ2s)2ds,

C3 = ∆−1/2
n

[T/∆n]∑

i=1

1Bn
i,ε

∫ i∆n

(i−1)∆n

(|σ2s|p − |σ2s|p − (σ2s − σ2s)g(σ2s)) ds,

where σ∗2s is a number between σ2s and σ2s and g(x) = p sign{x}|x|p−1. Note that for ε
sufficiently small C2 is well defined because of the boundedness from below of |σ2s|.

Using Burkholder-Davis-Gundy inequality, Hölder’s inequality, the assumption of Itô semi-
martingale for the process σ̃2 (due to which the leading term in σ2s−σ2s is

∫ s

(i−1)∆n

∫
R2 κ(δ(u,x))µ̃(u,x)),

and the integrability condition for the dominating function of the jumps in σ2t, γ(x), in (3.11),
we have for s ∈ [(i− 1)∆n, i∆n)

{
En

i−1|σ2s − σ2s|p ≤ K|s− (i− 1)∆n|p/β−ε, for p ≤ β, ∀ε > 0,
En

i−1|σ2s − σ2s|p ≤ K|s− (i− 1)∆n|, for p > β,
(6.41)

for some constant K that does not depend on ∆n. We will show that the three terms C1,
C2 and C3 are asymptotically negligible. For C1 and C2 we make use of the fact that a
sufficient condition for asymptotic negligibility of

∑[T/∆n]
i=1 ξn

i , where ξn
i is Fi∆n-measurable,

is
∑[T/∆n]

i=1 En
i−1|ξn

i | P−→ 0, see Theorem VIII.2.27 of Jacod and Shiryaev (2003) (or the
first part of Lemma 4.1 in Jacod (2007)). Note that for C2 we use the fact that σ∗2s is
bounded by a constant on the set (Bn

i,ε)
c. For C3 we can first make use of Doob’s inequal-

ity to show that P(ω ∈ Bn
i,ε) ≤ K∆n for some constant K that depends on ε. Then, since

E
(∫ i∆n

(i−1)∆n
(|σ2s|p − |σ2s|p − (σ2s − σ2s)g(σ2s)) ds

)k

≤ K∆k+1
n for some k > 2 and constant

K > 0, using Hölder’s inequality we have that C3 is also asymptotically negligible. This proves
the asymptotic negligibility of the term A4.

We are left with proving asymptotic negligibility of A5. We start with some preliminary
results that we will make use of. We have for 0 < p < β ∧ 1

En
i−1

∣∣∣∣∣∆
−1/β
n

∫ i∆n

(i−1)∆n

(mds −md,(i−1)∆n
)ds

∣∣∣∣∣

p

≤ K∆3p/2−p/β
n , (6.42)

where we made use of Hölder’s inequality and the fact that mds is an Itô semimartingale with
bounded coefficients and therefore E|mds − md,(i−1)∆n

| ≤ K|s − (i − 1)∆n|1/2 for s ∈ [(i −
1)∆n, i∆n). Similarly for p ≤ β and arbitrary ε > 0

En
i−1

∣∣∣∣∆−1/β
n

∫ i∆n

(i−1)∆n

∫

R
(σ2s− − σ2s−)κ(x)µ̃(ds, dx)

+ ∆−1/β
n

∫ i∆n

(i−1)∆n

∫

R
(σ2s− − σ2s−)κ′(x)µ(ds, dx)

∣∣∣∣
p

≤ K∆p/β−ε
n ,

(6.43)
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where we made use of Hölder’s inequality, the Burkholder-Davis-Gundy inequality (recall β > 1)
and (6.41).

Further, for some deterministic sequence εn ↓ 0 denote

Sn
i := {ω : ∆−1/β

n |∆n
i X| > εn ∩∆−1/β

n |∆n
i X −∆n

i X| < 0.5εn}.

Then we can apply the result in (6.20) to get for any α, α′ ∈ (0, 1)

Pn
i−1

(
∆−1/β

n |∆n
i X| ≤ εn

)
≤ K

(
εα
n + ∆(1−1/β)α

n +
∆1−β′/β−α′

n

εβ′
n

)
. (6.44)

Similarly using the same arguments as above and (6.21), we get for εn ↓ 0, some α > 0, and any
α′ > 0

En
i−1

(
|∆−1/β

n ∆n
i X|−α1{|∆−1/β

n ∆n
i X|>εn}

)
≤ K

(
ε(1−α)∧0−α′
n +

∆1−β′/β−α′
n

εα+β′
n

)
. (6.45)

Finally, using (6.42) and (6.43), we get for any α′ > 0

Pn
i−1

(
∆−1/β

n |∆n
i X −∆n

i X| ≥ 0.5εn

)
≤ K

∆1−α′
n

εβ
n

. (6.46)

We are now ready to prove the asymptotic negligibility of A5. We can make the following
decomposition using a Taylor expansion on the set Sn

i

|∆−1/β
n ∆n

i X|p − |∆−1/β
n ∆n

i X|p = g(∆−1/β
n ∆n

i X∗)
(
∆−1/β

n ∆n
i X −∆−1/β

n ∆n
i X

)
1Sn

i

+
(
|∆−1/β

n ∆n
i X|p − |∆−1/β

n ∆n
i X|p

)
1(Sn

i )c ,

where ∆n
i X∗ is between ∆n

i X and ∆n
i X and recall g(x) = p sign{x}|x|p−1. Then using the

definition of the set Sn
i we have |∆−1/β

n ∆n
i X∗| ≥ 0.5|∆−1/β

n ∆n
i X|. Therefore, using the definition

of the function g(·), it clearly suffices to show

T1 := ∆−1/2
n En

i−1

(
|∆−1/β

n ∆n
i X|p−1

∣∣∣∆−1/β
n ∆n

i X −∆−1/β
n ∆n

i X
∣∣∣ 1Sn

i

)
≤ K∆α′

n , (6.47)

T2 := ∆−1/2
n

∣∣∣En
i−1

{(
|∆−1/β

n ∆n
i X|p − |∆−1/β

n ∆n
i X|p

)
1(Sn

i )c

}∣∣∣ ≤ K∆α′
n , (6.48)

for some α′ > 0. Setting εn = ∆x
n for some x > 0, we can use the Hölder inequality to bound T1

T1 ≤ ∆−1/2
n

(
En

i−1

∣∣∣∆−1/β
n ∆n

i X
∣∣∣
(p−1) β

β−1
1Sn

i

) β−1
β (

En
i−1|∆−1/β

n ∆n
i X −∆−1/β

n ∆n
i X|β

) 1
β

.

(6.49)
Then using the bounds in (6.42), (6.43) and (6.45) we get

T1 ≤ K∆1/β−1/2−α′
n

(
∆

x(p−1+ β−1
β )∧0

n + ∆
(1−β′/β) β−1

β −x(1−p)−xβ′ β−1
β

n

)
, (6.50)

for some α′ > 0. Similarly for T2 we can use Hölder inequality to get

T2 ≤ ∆−1/2
n

(
En

i−1

∣∣∣|∆−1/β
n ∆n

i X|p − |∆−1/β
n ∆n

i X|p
∣∣∣
β/p

) p
β (
Pn

i−1((S
n
i )c)

)1− p
β . (6.51)
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Then using the bounds in (6.42), (6.43), (6.44) and (6.46) we get

T2 ≤K∆p/β−1/2−α′
n

(
∆(1−p/β)x

n + ∆(1−1/β)(1−p/β)
n

+ ∆(1−β′/β)(1−p/β)−(1−p/β)β′x
n + ∆(1−p/β)(1−xβ)

n

)
,

(6.52)

for some α′ > 0. Finally, we can make use of the restrictions on p and β′ to pick x > β−2p
2(β−p) for

which (6.47) and (6.48) will be fulfilled. ¤

6.7 Proof of Theorem 6

The proof follows directly from the fact that under the conditions of the theorem: (1) the
functions µp(β) and µp,p(β) are continuous both in β and p; (2) β̂ts

X,T is consistent for β; (3)
VT (X, p, ∆n) converges uniformly in p (after scaling appropriately). ¤
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Rosiński, J. (2007). Tempering Stable Processes. Stochastic Processes and their Applica-
tions 117, 677–707.
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