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LIMIT THEOREMS FOR RANDOM TRANSFORMATIONS AND

PROCESSES IN RANDOM ENVIRONMENTS

YURI KIFER

Abstract. I derive general relativized central limit theorems and laws of it-
erated logarithm for random transformations both via certain mixing assump-
tions and via the martingale differences approach. The results are applied to
Markov chains in random environments, random subshifts of finite type, and
random expanding in average transformations where I show that the condi-
tions of the general theorems are satisfied and so the corresponding (fiberwise)
central limit theorems and laws of iterated logarithm hold true in these cases.
I consider also a continuous time version of such limit theorems for random
suspensions which are continuous time random dynamical systems.

1. Introduction

Let (Ω,G, P ) be a probability space with an invertible P−preserving transfor-
mation θ : Ω → Ω, let (Ξ,F) be another measurable space, and let Ξ be a mea-
surable (with respect to the product G × F) subset of Ξ × Ω with the “fibers”
Ξω = {ξ ∈ Ξ : (ξ, ω) ∈ Ξ} ∈ F . The set-up includes also a measurable map
τ : Ξ → Ξ such that τ(ξ, ω) = (fωξ, θω) with fω : Ξω → Ξθω being measurable
“fiber” maps called random transformations (while τ is called the skew product
transformation) with the composition rule fnω = fθn−1ω ◦ · · · ◦ fθω ◦ fω : Ξω → Ξθ

nω.
Denote by P(Ξ) the space of probability measures µ on Ξ, and write µ ∈ PP (Ξ)

if the marginal of µ on Ω is P. Such measures are determined by an essentially
unique measurable family µω such that µω belongs to the space P(Ξω) of probability
measures on Ξω and

µ(dξ, dω) = µω(dξ)P (dω).(1.1)

It is easy to see that µ is τ−invariant if and only if fωµ
ω = µθω.

There is already an extensive literature on the ergodic theory of random trans-
formations, known also as the relativized ergodic theory, and, in particular, on the
thermodynamic formalism (variational principle, equilibrium states, symbolic rep-
resentations) for expanding random transformations and random subshifts of finite
type (see [Ki1], [KK], [BG1], [BG2]) which yields also large deviations type results.
In the deterministic case the study of the Ruelle-Perron-Frobenius (RPF) operator,
which usually is the key point in the thermodynamic formalism approach, leads to
estimates of decay of correlations which, in turn, via some probabilistic arguments
yield central limit theorem (CLT) type results for corresponding dynamical systems
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(see [De]). Actually, the CLT requires much weaker conditions than one needs for
the thermodynamic formalism set-up, but for many interesting classes of dynamical
systems these conditions were verified only via RPF operator estimates.

In the random transformations framework the natural CLT has the following
form. Let µ ∈ PP (Ξ) be τ−invariant with the disintegration (1.1), and let ϕ(ξ, ω) =
ϕω(ξ), ξ ∈ Ξω , be a measurable function. The aim of this paper is to provide
conditions (which can be verified for specific cases) which ensure that if ψω =
ϕω −

∫
ϕωdµ

ω, then for P−almost all (a.a.)ω and any real a,

µω
{
ξ ∈ Ξω :

1√
n

n−1∑
i=0

ψ ◦ τ i(ξ, ω) ≤ a

}
−→
n→∞

1

σ
√

2π

∫ a

−∞
e
x2

2σ2 dx,(1.2)

which may be called a relativized (or fiberwise) CLT or a CLT in random envi-
ronments, depending on whether one takes a dynamical systems or a probabilistic
point of view. I shall derive also a corresponding law of the iterated logarithm
(LIL) saying that for P−a.a.ω and µω−a.a.ξ the sum

∑n−1
i=0 ψ ◦ τ i(ξ, ω) has the

order 2σ2n log log(σ2n).
The whole set-up can be reformulated in the language of processes in random

environments. Namely, let (X,A) be another measurable space, X , a measurable
subset of X × Ω, and Z : Ξ → X a measurable “bundle” map, so that Z(ξ, ω) =
(Zω(ξ), ω), where Zω maps Ξω to Xω ∈ A. I view Ω as an environments space
and Ξω and Xω as the path and the phase (or state) spaces, respectively, in the
environment ω for the process Zω

n = Z ◦ τn(ξ, ω) = Zθnω(fnω ξ). If µ ∈ PP (Ξ) is
τ−invariant, then Zω

n (ξ) can be considered as a usual stationary process on the
probability space (Ξ,G × F , µ), but my goal is to study properties of the process
Zω
n (ξ) with respect to the measure µω for a fixed P−typical ω, which usually

requires different arguments. In particular, if there exists a measurable family
of probability measures Pω(x, ·) on Xθω, x ∈ Xω, such that for any measurable

Γi ⊂ Xθiω, i = 1, ..., n,

µω{ξ ∈ Ξω : Zω
1 ∈ Γ1, Z

ω
2 (ξ) ∈ Γ2, ..., Z

ω
n (ξ) ∈ Γn|Zω

0 (ξ) = x}(1.3)

=

∫
Γ1

...

∫
Γn−1

Pω(x, dy1) · · ·P θn−2ω(yn−2, dyn−1)P
θn−1ω(yn−1,Γn),

then Zω
n (ξ) becomes for each ω a time-inhomogenious Markov chain and the whole

object is called a Markov chain, in a random environment. A particular case of
this set-up when all Xω coincide with one countable set was introduced as a model
for stochastic automata, and its ergodic theory was studied in a number of papers
(see [Or] and the references there). An ω−wise CLT for this situation under rather
indirect assumptions was obtained in [Co], but even for this particular case I shall
derive here more general and more comprehensive results. I shall obtain first a
CLT and an LIL in rather general circumstances, both under some uniform mixing
assumptions and using the martingale differences approach. Then I shall verify the
conditions of these theorems in the case of Markov chains in random environments
under the random Doeblin condition introduced in [Ki3], and in the cases of random
subshifts of finite type under certain random topological mixing conditions and
random expanding in average transformations. A corresponding law of the iterated
logorithm holds true for these cases, as well. Note that the large deviations type
results were obtained for Markov chains in random environments in [Se] and [Ki3],
and for random expanding transformations in [Ki1].
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In the deterministic dynamics an important class of continuous time dynamical
systems (flows) can be modelled by suspensions constructed by a well-mixing trans-
formation and a Hölder continuous function. I introduce also the notion of random
suspensions and obtain under natural conditions a CLT for this class of random
continuous time dynamical systems.

2. Preliminaries and main results

I shall start with the set-up which, includes a τ−invariant probability measure µ
on Ξ with the disintegration (1.1) and a measurable family of σ−algebras Fω

m,n, n ≥
m,ω ∈ Ω, of sets from Ξω such that

Fω
m,n ⊂ Fω

m′,n′ ifm
′ ≤ m andn′ ≥ n and f−1

ω Fθω
m,n = Fω

m+1,n+1.(2.1)

The uniform mixing (φ−mixing) coefficient is defined by

φωi,j = sup
A∈Fω

0,i,µ
ω(A) 6=0,B∈Fω

j,∞

∣∣∣∣µω(A ∩B)

µω(A)
− µω(B)

∣∣∣∣, j > i.(2.2)

Let ϕ = ϕ(ξ, ω) = ϕω(ξ) be a measurable function on Ξ so that ϕω as a function on
Ξω is Fω

0,∞−measurable, and so in view of (2.1), ϕθiω ◦ f iω is Fω
i,∞−measurable as

a function on Ξω. The set-up includes also a measurable set Q ⊂ Ω with P (Q) > 0
and the corresponding sequence of hitting times

ki+1(ω) = min{k > ki(ω) : θkω ∈ Q}with k0 ≡ 0.(2.3)

Set

ψω = ϕω − Eµωϕω, Ψ(ξ, ω) = Ψω(ξ) =

k1(ω)−1∑
i=0

ψ ◦ τ i(ξ, ω),

c(ω) = (Eµω |ψω|2)1/2, C(ω) = (Eµω |Ψω|2)1/2,

dn(ω) =

(
Eµω (ψω − Eµω (ψω |Fω

0,n))
2

)1/2

,

Dn(ω) =

(
Eµω (Ψω − Eµω (Ψω|Fω

0,n))2
)1/2

,

where Eν always denotes the expectation (i.e. the integral) with respect to a
probability measure ν and Eν(·|·) is the corresponding conditional expectation.
Observe that

C(ω) ≤
k1(ω)−1∑
i=0

c(θiω) andDn(ω) ≤
k1(ω)−1∑
i=0

dn−i(θiω).(2.4)

Set Θ = θk1(ω), Fω = f
k1(ω)
ω , and T (ξ, ω) = (Fωξ,Θω). I always assume that

θ : (Ω, P ) −→ (Ω, P ) is ergodic; then it is well known (see, for instance, [CFS]) that
Θ is an ergodic measure-preserving transformation on the space (Q,PQ), where

PQ(A) = P (A∩Q)
P (Q) . I shall denote by ΞQ the restriction of Ξ to Ξ×Q and by µQ the

normalized restriction of µ to ΞQ, i.e. dµQ(ξ, ω) = dµω(ξ)dPQ(ω). It follows that
µQ is invariant under the action of T.
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2.1. Theorem. Let φj = supω,i≥1 φ
ω
ki(ω),ki+j(ω) and βj = (EPQD

2
kj

)1/2, and sup-

pose that
∞∑
j=1

φ
1/2
j <∞,(2.5)

∞∑
j=1

βj <∞,(2.6)

and

EPQ

( k1−1∑
i=0

c ◦ θi
)2

<∞.(2.7)

Then P−a.s.(almost surely),

σ2 def
= lim

n→∞
1

n
Eµω

( n−1∑
j=0

ψθjω ◦ f jω
)2

= P (Q)

(
EµQΨ2 +

∞∑
l=1

EµQ(Ψ(Ψ ◦ T l))
)(2.8)

and the series in the right hand side of (2.8) converges. Furthermore, P−a.s. for
any number a,

lim
n→∞µω

{
ξ ∈ Ξω :

1√
n

n−1∑
i=0

ψ ◦ τ i(ξ, ω) ≤ a

}
=

1

σ
√

2π

∫ a

−∞
e−

x2

2σ2 dx,(2.9)

i.e. for P−a.a.ω the µω−distribution of n−1/2
∑n−1

i=0 (ψ ◦ τ i)ω converges to the nor-
mal distribution with zero mean and variance σ2, which in case σ = 0 is understood
as the unit mass at 0. Finally, σ = 0 if and only if there exists a function η on ΞQ
from L2(ΞQ, µQ) such that µQ−a.s.,

Ψ ◦ T = η ◦ T − η.(2.10)

Moreover, assuming that σ > 0, the following invariance principle for the law of
the iterated logarithm (LIL) holds true. If ζ(t) = (2t log log t)1/2 and

ηn(t) = (ζ(σ2n))−1
k−1∑
j=0

(
ψ ◦ τ j + (nt− k)ψ ◦ τk

)
for t ∈ [

k

n
,
k + 1

n
), k = 0, 1, ..., n− 1,

then µQ−a.s. the sequence of functions {ηn(·), n ≥ 3/σ2} is relatively compact in
the space C[0, 1] (of continuous functions on [0, 1] considered with the supremum
norm), and the set of its limit points as n→∞ coincides with the set K of absolutely

continuous x ∈ C[0, 1] with
∫ 1

0 (ẋ(t))2dt ≤ 1.

I note that though there are some results on CLT for nonstationary processes
(see, for instance, [VR]) which at first sight could be used in Theorem 2.1, it turns
out that the assumptions needed for these results are not satisfied for the interesting
models I have in mind. Namely, [VR] requires that

(n−m)−1Eµω
∑

m≤j≤n−1

Ψ2 ◦ T i
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is uniformly in n andm bounded away from zero and infinity, which may be satisfied
only when k1 is uniformly bounded—a very restrictive precondition. Thus in order
to derive Theorem 2.1 one has to take into account in an essential way the stationary
evolution on the space (Ω, P ). My proof of Theorem 2.1 borrows few elements from
[Co], where a partial case of Markov measures µω (with a countable phase space of
the corresponding Markov chain) and functions ϕω measurable with respect to Fω

0,0

was considered. The extension to a class of functions ϕω more general than in [Co]
follows by a slight modification of arguments from Section 20 of [Bi1]. The LIL part
of Theorem 2.1 follows via a random martingale differences representation, which
provides also another proof of the CLT part of Theorem 2.1. After this paper was
accepted B.-Z. Rubshtein showed me [Ru] where CLT was proved in a similar setup
using martingale differences under rather general conditions.

It is much more convenient to formulate the assumptions of Theorem 2.1 and
of other results of this section in terms of the function Ψ and not in terms of
the original function ϕ and the set Q, but it is useful to have also some sufficient
conditions on ϕ and on k1 which yield these assumptions. I shall now formulate
a sufficient condition of this type (which will be proved at the end of Section 3)
in terms of mixing and approximations with respect to a family of σ−algebras
Gm,n ⊂ G,−∞ ≤ m ≤ n ≤ ∞, on Ω such that Gm.n ⊂ Gm′,n′ if m′ ≤ m, n′ ≥ n and
θGm,n = Gm−1,n−1. The strong mixing (α−mixing) coefficient with respect to this
family of σ−algebras is defined by

αn = sup
k,A∈G−∞,k,B∈Gk+n,∞

∣∣∣∣P (A ∩B)− P (A)P (B)

∣∣∣∣.(2.11)

Set also

γn = EP

∣∣∣∣IQ − EP (IQ|G−n,n)

∣∣∣∣,(2.12)

where IQ(ω) = 1 if ω ∈ Q and = 0, otherwise.

2.2. Proposition. Suppose that

sup
ω
c(ω) <∞ and

∞∑
l=1

l2(αl + γl) <∞ orEPQc
4 <∞ and

∞∑
l=1

l5/4(αl + γl)
1/4 <∞.

(2.13)

Then (2.7) holds true. If Q = QL = {ω : Lω ≤ L} for some random variable Lω on
(Ω, P ) and a constant L, then γn ≤ 2γ̃n with γ̃n = EP |Lω − EP (Lω|G−n,n)|, and
so one can write γ̃l in place of γl in (2.13), which provides a sufficient condition
directly in terms of Lω, and the latter has an explicit representation in the specific
cases of Theorems 2.4-2.6 below.

Next, I shall describe another approach which sometimes is more convenient
since it does not require an explicit uniform mixing condition with respect to a
certain family of σ−algebras as in Theorem 2.1. The set-up includes the same
objects fω, θ, τ, ϕ, ψ, µ,Q, ki, Ψ, Fω,Θ, T, PQ,ΞQ, and µQ as above, but now in
place of a family of σ−fields Fω

m,n I consider another family of σ−algebras T ω
l =

(f lω)−1T θlω
0 , where T ω

0 for each ω is the restriction of the σ−algebra F to Ξω ⊂
Ξ. Then T ω

l , l = 0, 1, ..., is a nonincreasing sequence of σ−algebras on Ξω. Let
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uω : L2(Ξθω, µθω) −→ L2(Ξω , µω) be an isometry operator acting by the for-
mula uωϕ(ξ) = ϕ(fωξ) and let u∗ω : L2(Ξω , µω) −→ L2(Ξθω, µθω) be its con-
jugate defined by

∫
ϕ(u∗ωϕ̃)dµθω =

∫
(uωϕ)ϕ̃dµω for any ϕ ∈ L2(Ξθω, µθω) and

ϕ̃ ∈ L2(Ξω , µω). It is easy to see that uωu
∗
ω : L2(Ξω , µω) −→ L2(Ξω, µω) is the

orthogonal projection to uωL
2(Ξθω, µθω), and the last set is exactly the set of

T ω
1 −measurable functions in L2(Ξω , µω). Introduce also the operator Uω = u

k1(ω)
ω ,

where unω = uθn−1ω ◦ · · · ◦ uθω ◦ uω, and let U∗
ω be its conjugate. The proof of

the following result emplois nonstationary backwards martingale differences ap-
poroximations and proceeds along the scheme similar to [Li], which, in turn, is a
modification of [Go], though both papers dealt with the stationary case only.

2.3. Theorem. Assume that (2.7) holds true and that the following two conditions
are satisfied:

EPQ

∞∑
n=0

∣∣∣∣Eµω (Ψω(Ψ ◦ T n)ω)

∣∣∣∣ <∞(i)

and

EPQEµω

( ∞∑
n=0

|U∗n
Θ−nωΨΘ−nω|

)2

<∞,(ii)

where U∗n
ω = U∗

Θn−1ω ◦· · ·◦U∗
ΘωU

∗
ω. Then P−a.s. (2.8) and (2.9) hold true, and the

criterion (2.10) for σ = 0 remains valid, as well. Moreover, assuming that σ > 0,
the invariance principle for the law of iterated logarithm (LIL) stated in Theorem
2.1 holds true.

Actually, by an approximation argument similar to [Li] one can prove Theorem
2.3 assuming the weaker condition

EPQ

( ∞∑
n=0

Eµω |U∗n
Θ−nωΨΘ−nω|

)2

<∞(ii′)

in place of (ii), but since for the models I have in mind the verification of (ii′) is
not easier than that of (ii) and since, on the other hand, the proof of Theorem 2.3
under (ii′) is more complicated, I restrict myself to the case when (ii) holds true.

Next, I shall discuss specific examples of processes in random environments and
random transformations for which either the mixing conditions of Theorem 2.1
or the convergence conditions of Theorem 2.3 needed for martingale differences
approximations hold true. First, I shall consider the case when the µω’s are Markov
measures, and using Theorem 2.1 I shall obtain a result which both generalizes and
specifies the CLT for Markov chains in random environments from [Co], deriving it
for a more general class of functions and showing that the uniform mixing condition
required in Theorem 2.1 follows if one assumes the random Doeblin condition for
transition probabilities from [Ki3]. Thus, assume that µω is given by (1.3), but in
place of the conditional probabilities there I write

µω
{
ξ ∈ Ξω : Zω

1 (ξ) ∈ Γ1, Z
ω
2 (ξ) ∈ Γ2, ..., Z

ω
n (ξ) ∈ Γn

}(2.14)

=

∫
Xω

ηω(dx)

∫
Γ1

...

∫
Γn−1

Pω(x, dy1) · · ·P θn−2ω(yn−2, dyn−1)P
θn−1ω(yn−1,Γn),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LIMIT THEOREMS FOR RANDOM TRANSFORMATIONS 1487

where Xω, Pω(x, ·), and Γi are the same as in (1.3) and ηω, ω ∈ Ω, is a measurable
family of probability measures on Xω such that for any measurable Γ ⊂ Xω,∫

Xω

ηω(dx)Pω(x,Γ) = ηθω(Γ).(2.15)

Let

Pω(n, x,Γ) =

∫
Xθω

...

∫
Xθn−1ω

Pω(x, dy1)P
θω(y1, dy2) · · ·P θn−1ω(yn−1,Γ)

and assume that there exist random variablesN = Nω ∈ Z+ = {1, 2, ...} and γω > 0
and a measurable family of measures mω ∈ P(Xω) such that for P−a.a.ω ∈ Ω, any

x ∈ Xθ−Nω, and each measurable Γ ⊂ Xω,

P θ−Nω(N, x,Γ) ≥ γωm
ω(Γ),(2.16)

which is a randomized version of the Doeblin condition introduced in [Ki3]. It
follows from [Ki3] that (2.16) implies the existence and uniqueness of a measure
ηω satisfying (2.15). Let σ−algebras Fω

m,n be generated by all sets of the form

{ξ : Zω
l (ξ) ∈ Γ}, l = m,m+ 1, ..., n, for measurable Γ ⊂ Xθlω .

2.4. Theorem. Let Q = QL = {ω : max(Nω , γ
−1
ω ) ≤ L} for a sufficiently large

L, so that P (Q) > 0. Suppose that (2.16) is satisfied, µω is defined by (2.14), and
the ki(ω)’s are defined by (2.3). Then the condition (2.5) holds true. Thus if ϕ is
a measurable function on Ξ as in Theorem 2.1 satisfying the conditions (2.6) and
(2.7), then (2.8) and (2.9) hold true, as well. If ϕω(ξ) = ϕω(Zω(ξ)) is, in fact, a
function on X (and, as before, ψω = ϕω−Eµωϕω), then (2.9) can be written in the
form

lim
n→∞µω

{
ξ ∈ Ξω :

1√
n

n−1∑
k=0

ψθkω(Zω
k (ξ)) ≤ a

∣∣∣∣Zω
0 (ξ) = x

}
(2.17)

= lim
n→∞µω

{
ξ ∈ Ξω :

1√
n

n−1∑
k=0

ψθkω(Zω
k (ξ)) ≤ a

}
=

1

σ
√

2π

∫ a

−∞
e−

u2

2σ2 du,

which is satisfied for any initial point x ∈ Xω. A corresponding LIL described in
Theorem 2.1 holds true for this case, as well.

Next, I shall deal with random subshifts of finite type (see [BG2] and [KK]). In
this case Ξω = {ξ = (ξ0, ξ1, ...) : ξi ∈ {1, ..., `(θiω)} and aξiξi+1(θ

iω) = 1 for all
i = 0, 1, ...}, where ` = `(ω), is a random variable on (Ω, P ) satisfying∫

log `dP <∞(2.18)

and A(ω) = (aij(ω)), ω ∈ Ω is a measurable family of `(ω)× `(θω)−matrices with
0 and 1 entries such that P−a.s. A(ω) has no zero row. A random subshift of
finite type is called topologically mixing if there exists a Z+ = {1, 2, ...}− valued

random variable Ñ = Ñω <∞ on (Ω,G, P ) so that A(θÑω) · · ·A(θ−2ω)A(θ−1ω) is
a matrix with positive entries for P−a.a.ω. This property is equivalent to existence
of random variables N = Nω <∞ and Ñ = Ñω <∞ such that for any n ≥ Nω and
k ≥ Ñω the matrices A(ω)A(θω) · · ·A(θnω) and A(θ−kω)A(θ−k+1ω) · · ·A(θ−1ω)
have only positive entries. The maps fω act by shifts, i.e. (fωξ)j = ξj+1 for each
ξ ∈ Ξω. The spaces Ξω are imbedded into the compact space Ξ = Z̄+ × Z̄+ × · · · ,
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which is the infinite product of the one-point compactifications Z̄+ = Z+ ∪ {∞} of
Z+ with a metric on Ξ given by

d(ξ, ξ̃) =

∞∑
i=0

2−i
∣∣∣∣ 1ξi − 1

ξ̃i

∣∣∣∣.(2.19)

For any measurable function g = g(ξ, ω) = gω(ξ) on Ξ× Ω set

varngω = sup{|gω(ξ)− gω(ξ̃)| : ξi = ξ̃i ∀i = 0, 1, ..., n− 1}.(2.20)

Consider g such that there exist κ > 0 and a random variable Kg(ω) > 0 satisfying

EP | logKg(ω)| <∞(2.21)

and, for any n = 0, 1, 2, ...,

varngω ≤ Kg(ω)e−κn.(2.22)

Suppose also that

EP sup
ξ
|gω(ξ)| <∞.(2.23)

The random Ruelle-Perron-Frobenius (RPF) operator Lωγ corresponding to a func-

tion g maps functions on Ξω to functions on Ξθω by the formula

Lωg q(ξ) =
∑

ζ∈f−1
ω ξ

egω(ζ)q(ζ).(2.24)

If g satisfies (2.21)-(2.23), then the random RPF theorem for a topologically mixing
random subshift of finite type yields (see [KK] and in a more restricted form [BG2])
that there exist a unique positive random variable λ = λω with EP | logλ| < ∞, a
positive measurable in (ξ, ω) and continuous in ξ function h = h(ξ, ω) = hω(ξ), and
probability measures νω on Ξω such that

Lωg hω = λωhθω, (Lωg )∗νθω = λων
ω, and

∫
Ξω
hωdν

ω = 1.(2.25)

Then probability measures µω (called random Gibbs measures) such that

dµω

dνω
(ξ) = hω(ξ)(2.26)

satisfy

fωµ
ω = µθω,(2.27)

and the corresponding measure µ with the disintegration (1.1) is invariant with
respect to the corresponding skew product transformation τ.

Let Fω
m,n, n <∞, be the finite σ−algebra generated by cylinder sets

Cηm,ηm+1,...,ηn = {ξ = (ξ0, ξ1, ...) : ξi = ηi for i = m,m+ 1, ..., n},
and let Fω

m,∞ be the minimal σ−algebra containing
⋃
n≥m Fω

m,n.

2.5. Theorem. Suppose that a random subshift of finite type is topologically mix-
ing, (2.18) is satisfied, the σ−algebras Fω

m,n are defined as above, and a measurable
family of probability measures µω is constructed by a function g satisfying (2.21)-
(2.23) so that (2.25)-(2.27) hold true. Then one can choose a set Q in the form
Q = QL = {ω : Lω ≤ L} with P (Q) > 0, where Lω is a random variable constructed
explicitly in the proof (see Remark 6.5), so that the condition (2.5) will be satisfied.
Thus, by Theorem 2.1, if (2.6) and (2.7) are satisfied, then (2.8) and (2.9) hold
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true together with the characterization (2.10) of the case σ = 0. The corresponding
LIL follows, as well.

If I set T ω
l = Fω

l,∞, then it follows from Section 6 that the conditions of Theorem
2.3 are also satisfied for random subshifts of finite type as above, and so Theorem
2.5 can be derived from Theorem 2.3, as well, though for a more restricted class of
functions similar to the one in Theorem 2.6 below.

Finally, I shall consider expanding in average smooth random maps studied
in [KK]. In this set-up the Ξω’s for all ω coincide with one compact connected
d−dimensional C2 Riemannian manifold M (though a more general case of mani-
folds Mω depending on ω may be considered, as well) and all fω : M −→ M are
C2 endomorphisms of M such that

log ‖Df−1
ω ‖, log ‖Dfω‖ ∈ L1(Ω, P ),(2.28)

and

α = EP log ‖Df−1
ω ‖ < 0,(2.29)

where Df is the differential of f and ‖ · ‖ is the supremum norm. Again, I define a
random RPF operator Lωg by (2.24), and if the gω’s are Hölder continuous, i.e.

|gω(x) − gω(y)| ≤ Kg(ω)(d(x, y))κ ∀x, y ∈M(2.30)

(where d(·, ·) is the distance function on M) for some κ > 0 and a random variable
Kg(ω) > 0 satisfying (2.21), then (see [KK]) the random RPF theorem holds true,
yielding a random variable λω > 0, a function h = hω(x) > 0 on M × Ω, and
probability measures νω , µω on M and µ on M × Ω satisfying (2.25)-(2.27).

2.6. Theorem. Assume that the random transformation fω satisfies (2.28) and
(2.29), the measures µω with properties (2.25)-(2.27) are constructed via the ran-
dom RPF theorem from [KK] by a function g satisfying (2.30), and a function
ϕ = ϕω(x) (for which the CLT is going to be proved) is Hölder continuous in ξ,
i.e. it satisfies (2.30) with, say, the same exponent κ > 0 and a random variable
Kϕ(ω) > 0 such that

EPQ

( k1(ω)−1∑
j=0

(‖ϕθjω‖+Kϕ(θjω))

)2

<∞,(2.31)

with k1 given by (2.3). Then one can choose a set Q in the form Q = QL = {ω :
Lω ≤ L} with P (Q) > 0, where Lω is a random variable constructed explicitly in
the proof (see Remark 6.5), so that the conditions (i) and (ii) of Theorem 2.3 will
be satisfied, and so (2.8) and (2.9) together with the characterization of the case
σ = 0 hold true, as well as the corresponding LIL.

If the closure of {fω, ω ∈ Ω} is a compact set of uniformly expanding endomor-
phisms, then one can construct a random Markov partition (see [BG1]) and reduce
the problem to the case of random subshifts of finite type considered in Theorem
2.5. In the general case of random transformations expanding only in average (and
in further generalizations) when symbolic representations are not available it is not
clear how to construct the σ−algebras Fω

m,n and to exhibit the uniform mixing con-
dition of Theorem 2.1, and one has to use Theorem 2.3 instead. If a version of the
RPF theorem holds true so that an RPF operator (2.24) together with hω, λω, ν

ω

satisfying (2.25) exist, then it is possible to write an explicit formula for the opera-
tor u∗ω (see (6.29) in Section 6); but such a formula does not exist in more general
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situations, and then it is not clear how to verify the condition (ii) of Theorem 2.3,
so in a number of cases Theorem 2.1 may be more readily applicable. Also the class
of functions for which one can derive a CLT and LIL via Theorem 2.3 is usually
more restrictive than what one gets via Theorem 2.1.

Observe that Theorem 2.6 yields fiber-wise CLT and LIL for some deterministic
skew product transformations. For instance, consider an expanding map of the
3-dimensional torus T3 = T1 × T2 given by the formula τ(x, y) = (fyx, θy), where
θ is an ergodic automorphism of T2 and fyx = γ(y) + n(y)x (mod 1), where γ(y) ∈
R, n(y) ∈ Z+ are measurable functions with 0 <

∫
T2 logn(y)dy <∞. Since both θ

and the fy’s preserve the Lebesgue measures (denoted Leb below) on T2 and on T1,
respectively, I can view the fy’s as ”random” expanding maps of T1 with Ω = T2,
P =Leb, M = T1, and µy =Leb (which is a ”random” Gibbs measure corresponding
to the function gy = logn(y)). Thus I arrive at a very particular case of the above

situation, and Theorem 2.6 yields that for Leb-a.a.y, Leb{x : 1√
n

∑n−1
l=0 ψ ◦ τ l(x, y)

≤ a} converges as n → ∞ to the right hand side of (2.9), and the corresponding
LIL follows, as well.

As another application of Theorem 2.6 I can write a CLT and an LIL for sums
of digits in “random base” expansions (see [Ki4]).

2.7. Remark. An easy extension of the proofs of Theorems 2.1 and 2.3 yields a

random functional CLT saying that for P−a.a.ω the process ζ
(n)
t = 1√

n

∑[nt]
i=0 ψ ◦

τ i(ξ, ω) on the space (Ξω , µω) weakly converges as n → ∞ to the process σwt,
where wt is the standard Wiener process (see Remark 2 on p. 510 in [Sh] and its
proof on p. 517). Furthermore, combining methods of [PS] and the present paper,
one can derive some invariance principle type results which also yield a P−a.s. law
of the iterated logarithm for

∑n
i=0 ψ ◦ τ i(ξ, ω) with respect to µω. Note also that,

using analyticity properties of the random RPF operators (see [Gu]), one can derive
similarly to [Ki2] relativized (fiberwise) moderate deviations type results.

Important classes of continuous time dynamical systems can be modelled by
suspension flows constructed by a well-mixing transformation and a sufficiently
regular function. I introduce next the notion of random suspensions and formulate a
corresponding CLT for them. The set-up consists of a measurable function l = lω(ξ)
such that C−1(ω) < lω(ξ) < C(ω) for some random variable C(ω) > 0 on Ω, the
space Y = {(s, ξ, ω) : (ξ, ω) ∈ Ξ, 0 ≤ s < lω(ξ)}, and a continuous time (random)
dynamical system (semi-flow) σt defined by σt(s, ξ, ω) = (s+ t, ξ, ω) if s+ t < lω(ξ)
and σt(s, ξ, ω) = (u, τk(ξ, ω)) if 0 ≤ u = s + t −

∑
0≤i≤k−1(l ◦ τ i)ω(ξ), where

k = k(s, t, ξ, ω) = max{j ≥ 1 : s + t −
∑

0≤i≤j−1(l ◦ τ i)ω(ξ) ≥ 0}. The semi-

flow σt is called a suspension over τ with the ceiling function l. One can speak
also of a family of random transformations gtω defined by gtω(s, ξ) = (s + t, ξ) if
ξ ∈ Ξω, s+ t < lω(ξ) and gtω(s, ξ) = (u, fkωξ) if u and k = k(s, t, ξ, ω) are as above.
Then guθkωg

t
ω(s, ξ) = gu+t

ω .
Let µ be a τ−invariant probability measure with the disintegration (1.1); then

η ∈ P(Y ) defined by dη(s, ξ, ω) = 1
l̄
dµω(ξ)dP (ω)ds, where l̄ =

∫
lω(ξ)dµω(ξ)dP (ω),

is σ−invariant. Let ϕ = ϕω(ξ, s) be a measurable function on Y, ψ = ψω =

ϕω −
∫
ϕωdµ

ω, ϕ
(l)
ω (ξ) =

∫ lω(ξ)

0
ϕω(ξ, s)ds, and ψ

(l)
ω (ξ) = ϕ

(l)
ω (ξ) −

∫
ϕ

(l)
ω dµω. Let

σ−algebras Fω
m,n, a set Q, and hitting times ki be as in Theorem 2.1, and set

Ψ
(l)
ω =

∑k1(ω)−1
i=0 (ψ(l) ◦ τ i)ω(ξ) and R

(l)
ω =

∑k1(ω)−1
i=0 |ψ(l) ◦ τ i(ξ, ω)|.
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2.8. Theorem. Suppose that the conditions of Theorem 2.1 are satisfied both for
the function ϕ(l) and for the function l in place of ϕ there, and, in addition,
supω C(ω) <∞,

EµQ(R(l))8 <∞ and EPQ

∫ lω(ξ)

0

|ψω(ξ, s)|ds <∞,(2.32)

∞∑
j=1

j4φ
1/8
j <∞,(2.33)

and
∞∑
j=1

j4β
(8)
j <∞(2.34)

where β
(8)
j = (EPQ(D

(8)
kj

)8)1/8 and D
(8)
n (ω) = (Eµω (Ψ

(l)
ω − Eµω (Ψ

(l)
ω |Fω

0,n))8)1/8.

Then, P−a.s. for any number a,

lim
t→∞µω

{
ξ ∈ Ξω :

1√
t

∫ t

0

(ψ ◦ σs)ω(0, ξ)ds ≤ a

}
=

1

σ
√

2π

∫ a

−∞
e−

x2

2σ2 dx(2.35)

where, P−a.s.,

σ2 = lim
t→∞

1

t
Eµω

(∫ t

0

(ψ ◦ σs)ωds
)2

(2.36)

= l̄−1P (Q)

(
EµQ(Ψ(l))2 +

∞∑
l=1

EµQ(Ψ(l)(Ψ(l) ◦ T j))
)
.

If σ > 0, then, combining methods of [DP] and the present paper, a corresponding
LIL follows, as well.

3. Limit theorems under mixing conditions

Set Nn(ω) = max{l : kl(ω) < n}; then∣∣∣∣ n−1∑
l=0

ψ ◦ τ l(ξ, ω)−
Nn(ω)−1∑

j=0

Ψ ◦ T j(ξ, ω)

∣∣∣∣ ≤ R ◦ TNn(ω)(ξ, ω),(3.1)

where Rω(ξ) = R(ξ, ω) =
∑k1(ω)−1

j=0 |ψ ◦ τ j(ξ, ω)|. Next,

(EµωR
2
ω)1/2 ≤

k1(ω)−1∑
j=0

c(θjω)
def
= I(ω).(3.2)

By (2.7) and the ergodic theorem, P−a.s.,

lim
n→∞

1

n
Nn(ω) = P (Q) and lim

n→∞
1√
n
I(ΘNn(ω)ω) = 0.(3.3)

Hence by (3.1) and (3.2), P−a.s.,

lim
n→∞

1

n
Eµω

( n−1∑
j=0

(ψ ◦ τ j)ω
)2

= lim
n→∞

1

n
Eµω

(Nn(ω)−1∑
j=0

(Ψ ◦ T j)ω
)2

,(3.4)
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and for each ε > 0 and P−a.a.ω,

lim
n→∞µω

{
ξ :

1√
n

∣∣∣∣ n−1∑
l=0

ψ ◦ τ l(ξ, ω)−
Nn(ω)−1∑

j=0

Ψ ◦ T j(ξ, ω)

∣∣∣∣ > ε

}
= 0.(3.5)

Thus it remains to deal with the asymptotical behavior of 1√
n

∑Nn(ω)−1
j=0 Ψ◦T j(ξ, ω),

which is the same as of 1√
n

∑Nn(ω)−1
j=1 Ψ ◦ T j(ξ, ω), and so one has to prove results

only for PQ−a.s.ω. First, I shall study the variance

Eµω

(Nn(ω)−1∑
i=0

(Ψ ◦ T i)ω
)2

=

Nn(ω)−1∑
i,j=0

Eµω

(
(Ψ ◦ T i)ω(Ψ ◦ T j)ω

)
(3.6)

=

Nn(ω)−1∑
i=0

EµΘiωΨ2
Θiω + 2

Nn(ω)−2∑
i=0

ΦNn(ω)−i(Θiω),

where Φk(ω) =
∑k−1

l=1 Eµω (Ψω(Ψ ◦ T l)ω), and I use the equality Eµω (g ◦ T )ω =
EµΘωgΘω, which follows since Fωµ

ω = µΘω. By Lemma 1 from Section 20 in
[Bi1], whenever the function V is Fω

0,ki(ω)−measurable and the function W is

Fω
ki+j(ω),∞−measurable, for any r, s > 1, 1

r + 1
s = 1, one has

|Eµω (VW )− EµωV EµωW | ≤ 2φ
1/r
j (Eµω |V |r)1/r(Eµω |W |s)1/s.(3.7)

Since (Ψ ◦ T l)ω is Fω
kl(ω),∞−measurable, then by (3.7) and the Cauchy-Schwarz

inequality∣∣∣∣Eµω(Ψω(Ψ ◦ T l)ω
)∣∣∣∣ ≤ ∣∣∣∣Eµω((Ψω − Eµω (Ψω|Fω

0,k[l/2](ω)))(Ψ ◦ T l)ω
)∣∣∣∣(3.8)

+

∣∣∣∣Eµω(Eµω (Ψω|Fω
0,k[l/2](ω))(Ψ ◦ T l)ω

)∣∣∣∣
≤
(
Eµω (Ψω − Eµω (Ψω|Fω

0,k[l/2](ω)))
2

)1/2(
Eµω (Ψ ◦ T l)2ω

)1/2

+ 2φ
1/2
[l/2]

(
Eµω (Eµω (Ψω|Fω

0,k[l/2](ω)))
2

)1/2(
Eµω (Ψ ◦ T l)2ω

)1/2

≤ Dk[l/2](ω)(ω)C(Θlω) + 2φ
1/2
[l/2]C(ω)C(Θlω),

where [a] denotes the integral part of a. This together with the Cauchy-Schwarz
inequality gives

EPQ

∣∣∣∣Eµω(Ψω(Ψ ◦ T l)ω
)∣∣∣∣ ≤ β[l/2](EPQC

2)1/2 + 2φ
1/2
[l/2]EPQC

2.(3.9)

It follows from (2.4)-(2.7) and (3.9) that the series

Φ(ω) =
∞∑
l=1

Eµω (Ψω(Ψ ◦ T l)ω)(3.10)
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converges absolutely PQ−a.s. and in L1(Q,PQ). Next, I claim that, PQ−a.s. and
in L1(Q,PQ),

lim
m→∞

1

m

m−2∑
i=0

Φm−i(Θiω) = EPQΦ,(3.11)

which by the ergodic theorem is the same as

lim
m→∞

1

m

m−2∑
i=0

(Φ(Θiω)− Φm−i(Θiω)) = 0.(3.12)

Indeed,

|Φ(Θiω)− Φm−i(Θiω)| ≤ δm−i(Θiω),(3.13)

where

δj(ω) =
∞∑
l=j

(
Dk[l/2](ω)(ω)C(Θlω) + 2φ

1/2
[l/2]C(ω)C(Θlω)

)
.

Since δj is monotone decreasing in j, then

m−2∑
i=0

δm−i(Θiω) ≤
m−j∑
i=0

δj(Θ
iω) +

m−2∑
i=m−j+1

δ2(Θ
iω).(3.14)

By (2.5)–(2.7), δ2 ∈ L1(Q,PQ), and so limm→∞ 1
mδ2(Θ

m−iω) = 0 P−a.s. and in

L1(Q,PQ). Thus (3.14) together with the ergodic theorem yield that, P−a.s. and
in L1(Q,PQ),

lim sup
m→∞

1

m

m−2∑
i=0

δm−i(Θiω) ≤ lim
m→∞

1

m

m−j∑
i=0

δj(Θ
iω) = EPQδj.(3.15)

Since δj → 0 as j → ∞ both PQ−a.s. and in L1(Q,PQ) and the left hand side of
(3.15) does not depend on j, I derive that the left hand side of (3.15) is zero, which
by (3.13) gives (3.12), and so (3.11) holds true. Finally, (3.1)-(3.4), (3.6), (3.11),
and the ergodic theorem yield both (2.8) and

lim
m→∞

1

m
Eµω

(m−1∑
i=0

(Ψ ◦ T i)ω
)2

= EµQΨ2 + EPQΦ = σ2/P (Q).(3.16)

Next, I shall show that, PQ−a.s. for any number a,

lim
m→∞µω

{
ξ ∈ Ξω :

1√
m

m−1∑
i=0

Ψ ◦ T i(ξ, ω) ≤ a

}
=

√
P (Q)

σ
√

2π

∫ a

−∞
e−

P (Q)x2

2σ2 dx(3.17)

with σ = 0 if and only if there exists a function η on ΞQ from L2(ΞQ, µQ) such
that µQ−a.s. (2.10) holds true. Actually, this last statement (i.e. the last assertion
of Theorem 2.1) follows already from (3.16) (see §§2–5 from Ch.18 in [IL] ). If

σ = 0 then (2.8) says that 1√
m

∑n−1
j=0 ψθjω ◦ f jω converges in L2(Ξω, µω) (and so in

µω−measure) to zero, which yields the assertion of Theorem 2.1 for this case, so
in what follows I assume that σ2 > 0. Observe also that it suffices to prove (3.17)
for each a P−a.s. and not P−a.s. simultaneously for all a, since the latter follows
from the former in view of the monotonicity in a of the left hand side of (3.17) and
continuity in a of the right hand side of (3.17), and so everything is determined
already by rational a’s.
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Set Ψ
(N)
ω = Eµω (Ψω|Fω

0,kN (ω)). I want to show first that if δ(N) = Ψ − Ψ(N),

then, P−a.s. for any ε > 0,

lim
N→∞

lim sup
m→∞

µω
{
ξ :

∣∣∣∣ 1√
m

m−1∑
j=0

δ(N) ◦ T j(ξ, ω)

∣∣∣∣ ≥ ε

}
= 0.(3.18)

To do this I estimate

Eµω

(m−1∑
j=0

(δ(N) ◦ T j)ω
)2

=

m−1∑
j=0

EµΘjω (δ
(N)
Θjω)2 + 2

m−2∑
i=0

H
(N)
m−i(Θ

iω),(3.19)

where H
(N)
k =

∑k−1
l=1 Eµω (δ

(N)
ω (δ(N) ◦ T l)ω). Taking into account that(

Eµω

(
δ(N)
ω − Eµω (δ(N)

ω |Fω
0,k[l/2](ω))

)2)1/2

(3.20)

≤
(
Eµω

(
Ψω − Eµω (Ψω|Fω

0,k[l/2](ω))

)2)1/2

+

(
Eµω

(
Ψ(N)
ω − Eµω (Ψ(N)

ω |Fω
0,k[l/2](ω))

)2)1/2

≤ 2Dk[l/2](ω)(ω),

I derive in the same way as in (3.8) that∣∣∣∣Eµω(δ(N)
ω (δ(N) ◦ T l)ω

)∣∣∣∣ ≤ (Eµω (δ(N)
ω − Eµω (δ(N)

ω |Fω
0,k[l/2](ω)))

2

)1/2

(3.21)

×
(
Eµω (δ(N) ◦ T l)2ω

)1/2

+ 2φ
1/2
[l/2]

(
Eµω (δ(N)

ω )2
)1/2(

Eµω (δ(N) ◦ T l)2ω
)1/2

≤ 2Dk[l/2](ω)(ω)DkN (ω)(Θ
lω) + 2φ

1/2
[l/2]DkN (ω)(ω)DkN (ω)(Θ

lω).

This together with the Cauchy-Schwarz inequality gives

EPQ

∣∣∣∣Eµω(δ(N)
ω (δ(N) ◦ T l)ω

)∣∣∣∣ ≤ 2β[l/2]βN + 2φ
1/2
[l/2]β

2
N .(3.22)

It follows from (2.5) and (2.6) that the series

H(N)(ω) =
∞∑
l=1

Eµω (δ(N)
ω (δ(N) ◦ T l)ω)(3.23)

converges P−a.s. and in L1(Q,PQ), and so I derive similarly to (3.16) that, P−a.s.
and in L1(Q,PQ),

lim
m→∞

1

m
Eµω

m−1∑
j=0

(δ(N) ◦ T jω)2 = β2
N + EPQH

(N).(3.24)

Now (3.18) follows from (3.21)-(3.23) together with the Chebyshev inequality. Sim-
ilarly to above I derive also that, P−a.s. and in L1(Q,PQ),

lim
m→∞

1

m
Eµω

(m−1∑
j=0

(Ψ(N) ◦ T j)ω
)2

= EµQ(Ψ(N))2 + EPQΦ(N) def
= (σ(N))2,(3.25)
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where Φ(N)(ω) =
∑∞

l=1 Eµω (Ψ
(N)
ω (Ψ(N) ◦T l)ω), and it follows from (2.5), (2.6), and

(3.22) that

lim
N→∞

lim
m→∞

1

m
Eµω

(m−1∑
j=0

(Ψ(N) ◦ T j)ω
)2

= lim
N→∞

(σ(N))2 =
σ2

P (Q)
.(3.26)

Since I am assuming that σ2 > 0, then for all N large enough (σ(N))2 > 0; and
only such N will be considered in what follows. Therefore, in order to obtain (3.17)
it remains to show that, PQ−a.s. for each number a and any N large enough,

lim
m→∞µω

{
ξ ∈ Ξω :

1√
m

m−1∑
j=0

Ψ(N) ◦ T j(ξ, ω) ≤ a

}
=

√
P (Q)

σ(N)
√

2π

∫ a

−∞
e
− P (Q)x2

2(σ(N))2 dx.

(3.27)

Set Z(n) = Z
(n)
ω =

∑n−1
j=0 (Ψ(N)◦T j)ω, Z(m,n) = Z

(m,n)
ω = Z

(n)
ω −Z(m)

ω for n ≥ m,

and χ(m,n)(u) = χ
(m,n)
ω (u) = Eµωe

iuZ(m,n)
ω , where i =

√
−1. Observe that

(Ψ(N) ◦ T j)ω = EµΘjω (ΨΘjω|FΘjω
0,kN (Θjω)) ◦ F j

ω = Eµω (Ψ ◦ T j|Fω
kj(ω),kj+N (ω)),

(3.28)

and so Z
(m,n)
ω is Fω

km(ω),kn+N−1(ω)−measurable. Set

Aj(ω) = Eµω

(
(eiuZ

((k−1)l,kl)
ω − 1)(eiu(Ψ(N)◦Tkl+j)ω − 1)eiuZ

(kl+j+1,ml)
ω

)
− Eµω (eiuZ

((k−1)l,kl)
ω − 1)Eµω

(
(eiu(Ψ(N)◦Tkl+j)ω − 1)eiuZ

(kl+j+1,ml)
ω

)
.

Then the Cauchy-Schwarz inequality and |eiux − 1| ≤ |ux| yield that for any j =
0, 1, ...,

Aj(ω) ≤ 2u2

(
Eµω (Z((k−1)l,kl)

ω )2
)1/2

C(Θkl+jω),(3.29)

and using, in addition, (3.7), I derive for j = N,N + 1, ... that

Aj(ω) ≤ 2u2φ
1/2
j−N+1

(
Eµω (Z((k−1)l,kl)

ω )2
)1/2

C(Θkl+jω).(3.30)

Thus, similarly to Lemma 3 from [Co], it follows that, for any k = 1, 2, ...,m − 1
and J = (m− k)l,

|χ((k−1)l,ml)
ω (u)− χ((k−1)l,kl)

ω (u)χ(kl,ml)
ω (u)| ≤ |

J−1∑
j=0

Aj(ω)|

(3.31)

≤ 2u2

(
Eµω (Z((k−1)l,kl)

ω )2
)1/2(N−1∑

j=0

C(Θkl+jω) +

J−1∑
j=N

φ
1/2
j−N+1C(Θkl+jω)

)
.
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Therefore by the Cauchy-Schwarz inequality

|χ(0,ml)
ω (u)−

m∏
k=1

χ((k−1)l,kl)
ω (u)|

≤
∣∣∣∣m−1∑
k=1

(χ((k−1)l,ml)
ω (u)− χ((k−1)l,kl)

ω (u)χ(kl,ml)
ω (u))

k−1∏
j=1

χ((j−1)l,jl)(u)

∣∣∣∣
≤ 2u2

(m−1∑
k=1

(Eµω (Z((k−1)l,kl)
ω )2

)1/2

×
( m∑
k=1

( N∑
j=0

C(Θkl+jω) +

∞∑
j=N

φ
1/2
j−N+1(C(Θkl+jω)

)2)1/2

≤ 2u2

(m−1∑
k=1

(Eµω (Z((k−1)l,kl)
ω )2

)1/2

(
∞∑
j=1

φ
1/2
j )1/2

( m∑
k=1

G(Θkl+N−1ω)

)1/2

,

(3.32)

where G(ω) =
∑∞

j=1 φ
1/2
j C2(Θjω). Since Θ preserves PQ, then by (2.4), (2.5), (2.7),

and the monotone convergence theorem I obtain that

EPQG = EPQC
2
∞∑
j=1

φ
1/2
j <∞.(3.33)

By the ergodic theorem

lim
m→∞

1

m

m−1∑
k=1

G ◦Θkl+N−1(ω) = EPQ(G ◦ΘN−1|Jl),(3.34)

where Jl is the σ−algebra of Θl−invariant subsets of Q.
Now let m = [n/l]. Since

1√
n

(
Eµω (Z(n)

ω − Z(ml)
ω )2

)1/2

≤
∑l

j=0 C(Θml+jω)
√
ml

,(3.35)

then it follows by (2.4) and (2.7) that, for PQ−a.a.ω and any ε > 0,

µω{ξ :
1√
n
|Z(n)

ω (ξ)− Z(ml)
ω (ξ)| > ε} −→ 0 as n→∞,(3.36)

while l remains fixed. Next, applying (3.32) I obtain

|χ(0,ml)
ω (

u√
n

)−
m∏
k=1

χ((k−1)l,kl)
ω (

u√
n

)| ≤ 2u2

l

(
1

m

m−1∑
k=1

Eµω (Z((k−1)l,kl)
ω )2

) 1
2

(3.37)

×
(√

N

(
1

m

m−1∑
k=1

N−1∑
j=0

C2(Θkl+jω)

) 1
2

+ (
∞∑
j=1

φ
1
2
j )

1
2

(
1

m

m−1∑
k=1

G(Θkl+N−1ω)

) 1
2
)
.

Since for any Borel function q,

Eµωq(Z
((k−1)l,kl)
ω ) = E

µΘ(k−1)lωq(Z
(l)

Θ(k−1)lω
),(3.38)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LIMIT THEOREMS FOR RANDOM TRANSFORMATIONS 1497

then by the ergodic theorem as m → ∞ the right hand side of (3.37) converges
PQ−a.s. and in L1(Q,PQ) to

2u2

√
l

{
1

l
EPQ

(
Eµω (Z(l)

ω )2
∣∣∣∣Jl)}1/2

(3.39)

×
{(

EPQ(N
N−1∑
j=0

C2 ◦Θj |Jl)
)1/2

+ (
∞∑
j=1

φ
1
2

j )
1
2

(
EPQ(G ◦ΘN−1|Jl)

) 1
2
}
.

By (3.25), in L1(Q,PQ),

lim
l→∞

1

l
EPQ(Eµω (Z(l)

ω )2|Jl) = (σ(N))2.(3.40)

Choose l = lν = ν! for ν = 1, 2, ...; then Jlν+1 ⊃ Jlν , and so, by the martingale
convergence theorem the term in the second braces in (3.39) converges PQ−a.s. as
lν → ∞. By (3.40) the term in the first braces in (3.39) converges in L1(Q,PQ),
and so I can choose a subsequence νj so that along the subsequence lνj this term

converges PQ−a.s. In view of the coefficient l−1/2 in front, the whole expression in
(3.39) converges PQ−a.s. to zero along l = lνj →∞, and so PQ−a.s.,

χ(0,n)
ω (

u√
n

)−
n∏

k=1

χ
((k−1)lνj ,klνj )
ω (

u√
n

) −→ 0(3.41)

as, first, m→∞ and, then, l = lνj →∞. Since χ
(0,n)
ω ( u√

n
) does not depend directly

on m and lνj , while m = mνj = [ n
lνj

], and the product in (3.41) is the characteristic

function of a sum of (not identically distributed) independent random variables
then in order to complete the proof of Theorem 2.1 I can use a CLT for arrays
(see Theorem 7.1 in [Bi1], Theorem 27.2 in [Bi2], or §4 of Ch.III in [Sh]) provided
the Lindenberg condition saying that P−a.s. for any ε > 0 (recall that I assume
(σ(N))2 > 0 in (3.25)),

lim
lνj→∞

lim
mνj

→∞
1

mνj lνj

mνj∑
k=1

∫
{|Z((k−1)lνj

,klνj
)

ω |>ε√mνj
lνj}

(Z
((k−1)lνj ,klνj )
ω )2dµω = 0

(3.42)

holds true. In order to obtain (3.42), observe that in view of (3.38) by the ergodic
theorem for any K > 0, PQ−a.s. and in L1(Q,PQ),

lim
m→∞

1

m

m∑
k=1

Eµω

(
(Z((k−1)l,kl))

ω )2I|Z((k−1)l,kl))
ω |>K

)
(3.43)

= EPQ

(
Eµω ((Z(l)

ω )2I|Z(l)
ω |>K)

∣∣∣∣Jl).
If mνj is large enough then ε

√
mνj lνj > K, and so, PQ−a.s.,

lim sup
mνj

→∞
1

mνj lνj

mνj∑
k=1

∫
{|Z((k−1)lνj

,klνj
)

ω |>ε√mνj
lνj}

(Z
((k−1)lνj ,klνj )
ω )2dµω(3.44)

≤ EPQ

(
Eµω (Z(lνj ))2I|Z(lνj

)|>K

∣∣∣∣Jlνj)
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for any K > 0. Since the left hand side of (3.44) does not depend on K and the
right hand side of (3.44) tends to zero as K → ∞, I conclude that both the limit
in (4.44) and the limit in (3.42) equal zero.

The invariance principle for the LIL part of Theorem 2.1 will be derived in the
next section via a martingale differences representation by some modification of
methods from [HH], which will provide another proof of the CLT part of Theorem
2.1, as well.

In order to prove Proposition 2.2, observe that

EPQ

( k1−1∑
j=0

c ◦ θj
)2

≤ c2EPQk
2
1 =

1

P (Q)

∞∑
j=0

P{k1 > j}(3.45)

if supω c(ω) = c <∞, and

EPQ

( k1−1∑
j=0

c ◦ θj
)2

≤
∞∑
j=0

(EPQIk(ω)>jc
2 ◦ θj)1/2(3.46)

≤ (EPQc
4)1/4(P (Q))−1/4

∞∑
j=0

(P{k1(ω) > j})1/4.

Employing Lemma 1.1 from [VR] (or applying repeatedly Lemma 2 from Section
27 of [Bi2]), I obtain

P{k1 > n} = P{θj /∈ Q, j = 1, 2, ..., n} ≤ EP
∏

1
3

√
n≥l≥0

IΩ\θ−(1+3l[
√
n])Q(3.47)

≤ EP
∏

1
3

√
n≥l≥0

EP

(
IΩ\θ−(1+3l[

√
n])Q

∣∣∣∣G1+(3l−1)[
√
n],1+(3l+1)[

√
n]

)

+
∑

1
3

√
n≥l≥0

EP

∣∣∣∣Iθ−(1+3l[
√
n])Q − EP (Iθ−(1+3l[

√
n])Q|G1+(3l−1)[

√
n],1+(3l+1)[

√
n])

∣∣∣∣
≤ 6

√
nα([

√
n]) + (1− P (Q))[

1
3

√
n] +

∑
1
3

√
n≥l≥0

EP

∣∣∣∣IQ − EP (IQ|G−[
√
n],[

√
n])

∣∣∣∣
≤ 6

√
n(α([

√
n]) + γ([

√
n])) + (1− P (Q))[

1
3

√
n]

with αn and γn defined in (2.11) and (2.12). This together with (3.45) and (3.46)
yields Proposition 2.2.

4. Limit theorems via martingale differences

In order to obtain martingale difference representations in the framework of
Theorem 2.1 I shall pass first to an invertible case by means of the “random natural
extension construction”. Namely, introduce the spaces

Ξ̂ω = {ξ̂ : ξ̂ = (..., ξ−1, ξ0, ξ1, ...), ξi ∈ Ξθ
iω, ξi+1 = fθiωξi ∀i ∈ Z},

Ξ̂ = {(ξ̂, ω) : ω ∈ Ω, ξ̂ ∈ Ξ̂ω}, and Ξ̂Q = {(ξ̂, ω) : ω ∈ Q, ξ̂ ∈ Ξ̂ω}. Then the two-

sided shift f̂ω : Ξ̂ω → Ξ̂θω defined by (f̂ω ξ̂)i = ξi+1 is invertible and fωιω = ιθω f̂ω
where, ιω : Ξ̂ω → Ξω acting by ιω(ξ̂) = ξ0, ξ̂ = (..., ξ−1, ξ0, ξ1, ...) is the natural

projection. Set F̂ω
m,n = ι−1

ω Fω
m,n, n ≥ m ≥ 0, and F̂ω

−k,n = f̂kθ−kωF̂θ−kω
0,n+k for k ≥ 0.
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Observe that F̂ω
m,n ⊂ F̂ω

m′,n′ if m′ ≤ m, and n′ ≥ n and f̂−1
ω F̂θω

m,n = F̂ω
m+1,n+1, and

so for all k ≥ 1,

F̂ω
−(k−1),n = f̂kθ−kω f̂

−1
θ−kωF̂

θ−(k−1)ω
0,n+k−1 = f̂kθ−kωF̂θ−kω

1,n+k ⊂ f̂kθ−kωF̂θ−kω
0,n+k = F̂ω

−k,n.

By F̂ω
−∞,n I denote the minimal σ−algebra containing

⋃
k≥0 F̂ω

−k,n. Let µ be a

τ−invariant probability measure with the disintegration (1.1). For any Γ ∈ F̂ω
m,n

with 0 ≤ m ≤ n ≤ ∞ there exists G ∈ Fω
m,n such that Γ = ι−1

ω G, and I set

µ̂ω(Γ) = µω(G). If Γ ∈ F̂ω
m,n with m < 0 and −∞ < m ≤ n ≤ ∞, then there exists

G ∈ Fθmω
0,n−m such that Γ = (f̂mω )−1ι−1

θmωG. For such Γ I define µ̂ω(Γ) = µθ
mω(G) and

I extend µ̂ω to the whole F̂ω−∞,∞ by monotone limits. It follows that f̂ωµ̂
ω = µ̂θω

and f̂−1
ω µ̂θω = µ̂ω. Set also ϕ̂ω = ϕω ◦ ιω, ψ̂ω = ψω ◦ ιω, Ψ̂ω = Ψω ◦ ιω , τ̂ (ξ̂, ω) =

(f̂ω ξ̂, θω), F̂ω = f̂
k1(ω)
ω and T̂ (ξ̂, ω) = τ̂k1(ω)(ξ̂, ω).

Let ki(ω) be as before for i ≥ 0 and ki(ω) = max{k < ki+1(ω) : θkω ∈ Q} for

i < 0. Take arbitrary A ∈ F̂ω
kl(ω),ki(ω) and B ∈ F̂ω

ki+j(ω),∞ with l < 0 and l ≤ i ≤ j;

then there exist G ∈ Fθkl(ω)ω
0,ki(ω)−kl(ω) = FΘlω

0,ki−l(Θlω) and H ∈ FΘlω
ki+j−l(Θlω),∞ such that

A = F̂−l
Θlω

ι−1
Θlω

G and B = F̂−l
Θlω

ι−1
θlω
H. It follows that∣∣∣∣ µ̂ω(A ∩B)

µ̂ω(A)
− µ̂ω(B)

∣∣∣∣ = ∣∣∣∣µΘlω(G ∩H)

µΘlω(G)
− µΘlω(H)

∣∣∣∣ ≤ φj .(4.1)

Since (4.1) is preserved under monotone limits, I conclude that it remains true for

any A ∈ F̂ω
−∞,ki(ω). Set

I
(l)
i (ω) = Eµ̂ω (Ψ̂ ◦ T̂ l|F̂ω

−∞,k−i(ω))

and

J
(l)
i (ω) = Ψ̂ ◦ T̂ l − Eµ̂ω (Ψ̂ ◦ T̂ l|F̂ω

−∞,k−i(ω)),

where T̂ l(ξ̂, ω) = ((F̂−l
Θlω

)−1ξ̂,Θlω) for l < 0, and define

Yω =

∞∑
l=0

(I
(l)
0 (ω)− I

(l)
1 ) +

−1∑
l=−∞

(J
(l)
1 (ω)− J

(l)
0 (ω)),

gω =

∞∑
l=0

I
(l)
1 (ω)−

−1∑
l=−∞

J
(l)
1 (ω).

(4.2)

I claim that for PQ−a.a.ω all series above converge in L2(Ξ̂ω , µ̂ω). Indeed, for l ≥ 0,

I
(l)
0 (ω) = Eµ̂Θlω (Ψ̂Θlω|F̂Θlω

−∞,k−l(Θlω)) ◦ F̂ l
Θlω,

and so

Eµ̂ω (I
(l)
0 (ω))2 = Eµ̂Θlω

(
Ψ̂ΘlωEµ̂Θlω(Ψ̂Θlω|F̂Θlω

−∞,k−l(Θlω))

)
.(4.3)

Since Ψ̂Θlω is F̂Θlω
0,∞−measurable, in view of (4.1) I can apply to the right hand side

of (4.3) Lemma 1 from Section 20 in [Bi1], which in the same way as in (3.7) yields
that

Eµ̂ω (I
(l)
0 (ω))2 ≤ 2φ

1/2
l C(Θlω)(Eµ̂ω (I

(l)
0 (ω))2)1/2,
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and so

(Eµ̂ω (I
(l)
0 (ω))2)1/2 ≤ 2φ

1/2
l C(Θlω).(4.4)

Next, for l < 0,

J
(l)
0 (ω) =

(
Ψ̂Θlω − Eµ̂Θlω (Ψ̂Θlω|F̂Θlω

−∞,k−l(Θlω))

)
◦ (F̂−l

Θlω
)−1,

and so

Eµ̂ω (J
(l)
0 )2 = D2

k−l(Θlω)(Θ
lω).(4.5)

Now (4.4), (4.5) and similar estimates for I
(l)
1 and for J

(l)
1 together with (2.5) and

(2.6) yield that for PQ−a.a. ω the series in (4.2) converge in L2(Ξ̂ω, µ̂ω).

It is easy to see that gω ◦ T̂ =
∑∞

l=1 I
(l)
0 −

∑0
l=−∞ J

(l)
0 (ω), and so

Yω + gω − (g ◦ T̂ )ω = I
(0)
0 (ω) + J

(0)
0 = Ψ̂ω.

For l = 0, 1, ... set Y (l) = Y ◦ T̂ l; then Y
(l)
ω is F̂ω

−∞,kl(ω)−measurable,

Ψ̂ ◦ T̂ l = Y (l) + g ◦ T̂ l − g ◦ T̂ l+1,(4.6)

and

Eµ̂ω (Y (l)
ω |F̂ω

−∞,kl−1(ω)) = Eµ̂Θlω(YΘlω|F̂Θlω
−∞,k−1(Θlω)) ◦ F̂ l

ω = 0,(4.7)

which provides the required martingale difference representation. Thus

1√
m

m−1∑
l=0

Ψ ◦ T l =
1√
m

m−1∑
l=0

Y (l) +
1√
m

(g − g ◦ Tm).(4.8)

Since g ∈ L2(Ξ̂Q, µ̂Q), where µ̂Q is the normalized restriction of µ̂ to Ξ̂Q, then the
last term in the right hand side of (4.8) tends to 0 as m→∞ both µQ−a.s. and in

L2(Ξ̂ω , µ̂ω) for PQ−a.a.ω. Note also that in view of (2.7), µQ−a.s. 1√
n
R ◦ T n → 0

as n → ∞. It follows that in order to prove Theorem 2.1 it suffices to derive the

CLT and the invariance principle for the LIL for martingales
∑m−1

l=0 Y
(l)
ω .

First, observe that by (4.6)-(4.8) and by the ergodic theorem, PQ−a.s.,

lim
m→∞

1

m
Eµ̂ω

(m−1∑
l=0

(Ψ̂ ◦ T l)ω
)2

= lim
m→∞

1

m
Eµ̂ω

(m−1∑
l=0

Y (l)
ω

)2

(4.9)

= lim
m→∞

1

m

m−1∑
l=0

Eµ̂Θlω (YΘlω)2 = Eµ̂Q(Ψ̂ + g ◦ T̂ − g)2.

This together with (3.16) yields that σ = 0 if and only if Ψ̂ = g − g ◦ T̂ µ̂Q−a.s.
Assume now that σ > 0. In order to complete the CLT part of the proof of

Theorem 2.1 by means of the central limit theorem for nonstationary martingale
differences (see Section 4.1 in [HH] or §8 of Ch.VII from [Sh]) it remains only to
verify the Lindenberg condition saying that, PQ−a.s.,

lim
m→∞

1

m

m−1∑
l=0

Eµω

(
(Y (l)

ω )2I|Y (l)
ω |>ε√m

)
= 0.(4.10)
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In order to derive (4.10) observe that by the ergodic theorem, PQ−a.s. and in
L1(Q,PQ) for any K > 0,

lim sup
m→∞

1

m

m−1∑
l=0

Eµ̂ω

(
(Y ◦ T l)2ωI|(Y ◦T l)ω|>ε√m

)
(4.11)

= lim sup
m→∞

1

m

m−1∑
l=0

Eµ̂Θlω

(
(YΘlω)2I|Y

Θlω
|>ε√m

)

≤ lim
m→∞

1

m

m−1∑
l=0

Eµ̂Θlω

(
(YΘlω)2I|Y

Θlω
|>K

)
= EPQEµ̂ω

(
(Yω)2I|Yω |>K

)
.

Since the last expression in (4.11) tends to zero as K →∞ and the first expression
in (4.11) does not depend on K, then (4.10) follows.

In order to derive the invariance principle for the LIL for sums of the martingale
differences Y (l) I shall employ Theorem 1 from [HS] (see also Section 4 in [HH]).
The last condition of this theorem follows from (3.3), (3.4), (3.16) and (4.9), and
the other two conditions hold true since

EPQ

∞∑
n=1

n−2Eµ̂ω

(
(Y (n)

ω )4I|Y (n)
ω |<δn1/2

)
= Eµ̂Q

(
Y 4

∞∑
n=1

n−2I|Y |<δn1/2

)
(4.12)

≤ Eµ̂Q

(
δ4 + Y 4

∫ ∞

|Y |2δ−2

x−2dx

)
= δ4 + δ2EµQY

2 <∞

and

EPQ

∞∑
n=1

n−1/2Eµ̂ω

(
|Y (n)
ω |ωI|Y (n)

ω |≥εn1/2

)
= Eµ̂Q

(
|Y |

∞∑
n=1

n−1/2I|Y |≥εn1/2

)
(4.13)

≤ Eµ̂Q

(
|Y |
∫ |Y |2ε−2

0

x−1/2dx

)
= 2ε−1Eµ̂Q |Y |2 <∞.

Observe that, for any Borel set U ⊂ R,

{ξ̂ ∈ Ξ̂ω :

m−1∑
l=0

Ψ̂ ◦ T̂ l(ξ̂, ω) ∈ U} = {ξ̂ ∈ Ξ̂ω :

m−1∑
l=0

ΨΘlω ◦ ιΘlω ◦ F̂ l
ω(ξ̂) ∈ U}

= {ξ̂ ∈ Ξ̂ω :

m−1∑
l=0

ΨΘlω ◦ F l
ω ◦ ιω(ξ̂) ∈ U} = ι−1

ω (S(m)
ω )−1U

where S
(m)
ω =

∑m−1
l=0 ΨΘlω ◦ F l

ω is an Fω
0,∞−measurable function on Ξω. It follows

that

µ̂ω{ξ̂ ∈ Ξ̂ω :

m−1∑
l=0

Ψ̂ ◦ T̂ l(ξ̂, ω) ∈ U} = µω((S(m)
ω )−1U)

= µω{ξ ∈ Ξω :

m−1∑
l=0

Ψ ◦ T l(ξ, ω) ∈ U}.

Hence the CLT and the LIL derived above for
∑m−1

l=0 Ψ̂ ◦ T̂ l with respect to µ̂ω

imply the CLT and the LIL for
∑m−1

l=0 Ψ ◦T l with respect to µω, yielding Theorem
2.1.
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4.1. Remark. It is possible to prove Theorem 2.1 and even stronger invariance
principles without passing to random natural extension constructions as above by
modifying methods from [PS] which lead to martingale difference representations
of the form

Ψ(N(n)) ◦ T n = Y (n) + g(n) − g(n+1)

where Ψ
(N)
ω = Eµω (Ψω|Fω

0,kN (ω)),

g(n)
ω =

∞∑
l=0

Eµω (Ψ(N(n+l)) ◦ T n+l|Fω
0,kn−1(ω)+N(n−1)),

and

Y n
ω =

∞∑
l=0

(
Eµω (Ψ(N(n+l)) ◦ T n+l|Fω

0,kn(ω)+N(n))

− Eµω (Ψ(N(n+l)) ◦ T n+l|Fω
0,kn(ω)+N(n−1))

)
.

Here one chooses N(j) to be small relative to j1/2 and such that

n−1/2
n∑
j=0

(Ψω −Ψ(N(n))
ω ) ◦ T j → 0

as n → ∞. The corresponding estimates here are more technical than above, and
they can be done similarly to [PS].

Next, I shall prove Theorem 2.3 working in the original spaces without using the
above natural extension construction. Since (3.4) and (3.5) require only (2.7), which
I assume also in Theorem 2.3, then one has to obtain only (3.16) and (3.17), which

already yield (2.8) and (2.9). I shall find functions Y
(l)
ω = Y

(l)
ω (ξ) and gω = gω(ξ)

belonging to L2(ΞQ, µQ) such that for PQ−a.a.ω and any l = 1, 2, ...,

Eµω (Y (l)
ω |T ω

kl(ω)) = 0, Y (l)
ω is T ω

kl−1(ω) −measurable(4.14)

and

(Ψ ◦ T l)ω = Y (l)
ω + (g ◦ T l)ω − (g ◦ T l−1)ω ,(4.15)

which will provide the required backwards martingale difference representation. If
(4.15) holds true, then

1√
m

m−1∑
l=1

(Ψ ◦ T l)ω =
1√
m

m−1∑
l=1

Y (l)
ω +

1√
m

((g ◦ Tm)ω − gω) +
1√
m

Ψω.(4.16)

Since g ∈ L2(ΞQ, µQ), the last two terms in the right hand side of (4.16) tend to
zero as m → ∞ in L2(Ξω , µω) for PQ−a.a.ω. Thus it will suffice to show that,
PQ−a.s.,

lim
m→∞

1

m
Eµω

(m−1∑
l=1

Y (l)
ω

)2

= lim
m→∞

1

m
Eµω

(m−1∑
i=0

(Ψ ◦ T i)ω
)2

= σ2/P (Q)(4.17)

and to derive the P−a.s. CLT and LIL with respect to µω for backwards martingales∑m−1
l=1 Y

(l)
ω .
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Set

gω =

∞∑
n=0

U∗n
Θ−nωΨΘ−nω ;(4.18)

then by the assumption (ii) of Theorem 2.3 g belongs to L2(ΞQ, µQ). Clearly,

ΨΘω = gΘω − U∗
ωgω.(4.19)

Observe that for any bounded T Θω
0 −measurable function q on ΞΘω,

EµΘω

(
qU∗

ωE
ω
µ (gω|T ω

k1(ω))

)
= Eµω

(
(Uωq)gω

)
= EµΘω

(
qU∗

ωgω

)
,(4.20)

since Uωq is T ω
k1(ω)−measurable. Hence U∗

ωgω = U∗
ωE

ω
µ (gω|T ω

k1(ω)) µ
Θω−a.s., which

together with (4.19) gives

ΨΘω = gΘω − U∗
ωE

ω
µ (gω|T ω

k1(ω)).(4.21)

Applying Uω to both parts of (4.21) and taking into account that UωU
∗
ωq = q for

any T ω
k1(ω)−measurable q, I obtain

ΨΘω ◦ Fω = gΘω ◦ Fω − Eµω (gω|T ω
k1(ω)).(4.22)

Considering (4.22) for Θl−1ω in place of ω and applying U l−1
ω to both parts, I derive

ΨΘlω ◦ F l
ω = gΘlω ◦ F l

ω − EµΘl−1ω

(
gΘl−1ω

∣∣∣∣T Θl−1ω
k1(ω)

)
◦ F l−1

ω(4.23)

= (g ◦ T l)ω − Eµω ((g ◦ T l−1)ω |T ω
kl(ω)).

Taking conditional expectations in (4.23), I have

Eµω ((Ψ ◦ T l)ω|T ω
kl(ω)) = Eµω ((g ◦ T l)ω |T ω

kl(ω))− Eµω ((g ◦ T l−1)ω |T ω
kl(ω)).(4.24)

Set Y
(l)
ω = (Ψ ◦ T l)ω − (g ◦ T l)ω + (g ◦ T l−1)ω . Then (4.24) implies (4.14) and

Y (l)
ω = (Y (1) ◦ T l−1)ω.(4.25)

In fact, one can reverse the above arguments and conclude that such gω and Y
(l)
ω

are the only possible choices for the functions satisfying (4.14) and (4.15).
Next I shall prove (4.17). It follows from assumption (i) of Theorem 2.3 that the

series (3.10) converges absolutely PQ−a.s. and in L1(Q,PQ). One has

|Φ(Θlω)− Φm−l(Θlω)| ≤ δ̃m−l(Θlω),(4.26)

where

δ̃l(ω) =

∞∑
j=l

|Eµω (Ψω(Ψ ◦ T l)ω)|.

In the same way as in (3.14)-(3.15) I derive (3.16) from this and assumption (i) of
Theorem 2.3. Thus the second equality in (4.17) holds true, and the first equality
there follows from (4.16) and the fact that

lim
n→∞

1

n
Eµω (g ◦ T n)2ω = lim

n→∞
1

n
EµΘnωg2

Θnω = 0,(4.27)

since Eω
µ gω ∈ L2(Q,PQ). Observe that by (4.14), for any l2 > l1 ≥ 1,

Eµω (Y (l1)
ω Y (l2)

ω ) = Eµω (Y (l2)
ω Eµω (Y (l1)

ω |T ω
kl1 (ω))) = 0,
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and so, by (4.15), (4.25) and the ergodic theorem, PQ−a.s.,

lim
m→∞

1

m
Eµω

(m−1∑
l=1

Y (l)
ω

)2

= lim
m→∞

1

m

m−1∑
l=1

Eµω (Y (l)
ω )2(4.28)

= lim
m→∞

1

m

m−1∑
l=1

EµΘlω (Y
(1)

Θlω
)2 = EµQ(Ψ ◦ T − g ◦ T + g)2.

This together with (4.17) yields that σ = 0 if and only if Ψ ◦ T = g ◦ T − g
µQ−a.s. Finally, assuming that σ > 0, I verify the Lindenberg condition (4.10) for

martingale differences Y
(l)
ω required for application of the CLT results from [HH]

and [Sh] and the conditions for the LIL from [HS] and [HH] exactly in the same
way as in (4.11)-(4.13) above, which completes the proof of Theorem 2.3.

5. Markov chains in random environments

In this section I shall derive Theorem 2.4 from Theorem 2.1, verifying the condi-
tions of the latter. Define inductively k̃i+1(ω) = min{k > k̃i(ω) : θ−kω ∈ Q} with

k̃0(ω) ≡ 0 and ñ1 = ñ1(ω) = min{k̃i(ω) : k̃i(ω) ≥ L} and ñj+1(ω) = min{k̃i(ω) :

k̃i(ω) ≥ ñj(ω)+L}, j = 1, 2, .... Set l̃ω(n) = l̃ωL(n) = max{j : ñj(ω) < n}. By (2.12)

from [Ki3] it follows that for any x ∈ Xθ−nω, a measurable Γ ⊂ Xω, and P−a.a.
ω̃ ∈ Ω,

|P θ−nω̃(n, x,Γ)− ηω̃(Γ)| ≤ 2(1− L−1)l̃
ω̃(n),(5.1)

where ηω is the unique probability measure satisfying (2.15). Take ω̃ = θki+j(ω)ω,
n = ki+j(ω)− ki(ω) = kj(θ

ki(ω)ω), and set

ζx,ωn (Γ) = Pω(n, x,Γ)− ηθ
nω(Γ)(5.2)

Then by (5.1), for any y ∈ Xθki(ω)ω and a measurable Γ ⊂ Xθki+j(ω)ω,∣∣∣∣ζy,θki(ω)ω
ki+j(ω)−ki(ω)(Γ)

∣∣∣∣ ≤ 2(1− L−1)l̃
θ
ki+j (ω)

ω(ki+j(ω)−ki(ω)) ≤ 2(1− L−1)j/L.(5.3)

In order to verify (2.5) it suffices to consider the right hand side of (2.2) for
A ∈ Fω

0,ki(ω) of the form A = {ξ : Zω
1 (ξ) ∈ Γ1, ..., Z

ω
ki(ω)(ξ) ∈ Γki(ω)} and an

arbitrary B ∈ Fω
ki+j(ω),∞. By (2.14), (2.15), (5.2), (5.3), and the Markov property

it follows that

µω(A ∩B) =

∫
Xω

dηω(x)

∫
Γ1

...

∫
Γki(ω)

Pω(x, dz1) · · ·P θki(ω)−1ω(zki(ω)−1, dzki(ω))

(5.4)

×
∫
Xθ

ki+j (ω)
ω

P θki(ω)ω(ki+j(ω)− ki(ω), zki , dv)µ
ω(B|Zω

ki+j(ω) = v)

= µω(A)µω(B) + IωA,B ,

where

|IωA,B | ≤ sup
y∈Xθki(ω)ω

∣∣∣∣ ∫
Xθ

ki+j(ω)
ω

ζy,θ
ki(ω)ω

ki+j(ω)−ki(ω)(dv)µ
ω(B|Zω

ki+j(ω) = v)

∣∣∣∣(5.5)

≤ sup
y∈Xθki(ω)ω

ζy,θ
ki(ω)ω

ki+j(ω)−ki(ω)(Γ
+
y ) ≤ 2(1− L−1)j/L
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and Γ+
y ⊂ Xθki+j(ω)ω is the positive set in the Hahn decomposition (see [Bi2]) for

the signed measure ζy,θ
ki(ω)ω

ki+j(ω)−ki(ω). Hence

φj ≤ 2(1− L−1)j/L,(5.6)

and so (2.5) holds true. Thus if (2.6) and (2.7) are satisfied, then (2.8) and (2.9)
follow by Theorem 2.1. If ϕω(ξ) = ϕω(Zω(ξ)) is, in fact, a function on X and
ψω(z) = ϕω(z) − Eµωϕω(Zω(ξ)) = ϕω(z) − Eηωϕω , then the second equality in
(2.17) follows from Theorem 2.1.

In order to obtain the first equality in (2.17), set

Sωn (ξ) =
n−1∑
k=0

ψ(Zω
k (ξ), θkω), Sωm,n(ξ) = Sωn (ξ) − Sωm(ξ) forn ≥ m,(5.7)

µωx{·} = µω{·|Zω
0 = x}, and observe that

µωx

{
ξ :

1√
n
Sωki(ω),n(ξ) ≤ a− δ

}
− µωx

{
ξ :

1√
n
|Sω0,ki(ω)(ξ)| > δ

}
(5.8)

≤ µωx

{
ξ :

1√
n
Sω0,n(ξ) ≤ a

}
≤ µωx

{
ξ :

1√
n
Sωki(ω),n(ξ) ≤ a+ δ

}
+ µωx

{
ξ :

1√
n
|Sω0,ki(ω)(ξ)| > δ

}
.

By (2.14), (2.15), (5.2), (5.3), and the Markov property it follows that

µωx

{
ξ :

1√
n
Sωki(ω),n(ξ) ≤ b

}
(5.9)

+

∫
Xθki(ω)ω

Pω(ki(ω), x, dy)µω
{
ξ :

1√
n
Sωki(ω),n(ξ) ≤ b

∣∣∣∣Zω
ki(ω) = y

}
= µω

{
ξ :

1√
n
Sωki(ω),n(ξ) ≤ b

}
+ Jωx,i,

where

|Jωx,i| ≤ sup
x∈Xω

ζx,ωki(ω)(Γ̃
+
x ) ≤ 2(1− L−1)i/L(5.10)

and Γ̃+
x is the positive set in the Hahn decomposition for the signed measure ζx,ωki(ω).

Letting, first, n→∞, then i→∞, and finally δ → 0, I conclude from (5.7)-(5.10)
that both limits in (2.17) are the same, provided the second limit in (2.17) exists
and equals the right hand side of (2.17), which I have proved already.

6. Random subshifts and random expanding transformations

In this section I shall verify the conditions of Theorem 2.1 for random subshifts
of finite type and of Theorem 2.3 for random expanding in average transforma-
tions, extending to my more general situation the deterministic arguments from
Lemmas 1.9–1.12 and 1.14 in [Bo]. Whenever possible I shall deal with both cases
simultaneously. Set

Rω =
∞∑
l=1

Kg(θ
−lω)e−κl, ρ(ξ, ξ̃) = e−min{j≥0:ξj 6=ξ̃j},(6.1)
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provided ξ, ξ̃ ∈ Ξω, in the case of random subshifts,

Rω =

∞∑
l=1

Kg(θ
−lω)(‖Df−1

θ−lω‖ · · · ‖Df
−1
θ−2ω‖‖Df

−1
θ−1ω‖)

κ, ρ(ξ, ξ̃) = d(ξ, ξ̃)(6.2)

in the case of random expanding transformations, and in both cases

Rω(ξ, ξ̃) = Rω(ρ(ξ, ξ̃))κ.(6.3)

By (2.21) and (2.29) it follows that Rω <∞ P−a.s.
In the expanding random transformations case set

Zω =

∞∑
l=1

‖Df−1
θ−lω‖ · · · ‖Df

−1
θ−2ω‖‖Df

−1
θ−1ω‖

and εω = 1
2 min(1, ρM )min(1, Z−1

ω ), where ρM is the injectivity radius of the Rie-
mannian manifold M. It follows (see Exercise 2.3 and its solution in Ch. 2 of [Ha])
that, for any z ∈ M , if f−1

ω z = {z1, ..., zm} then the balls Bzi(
εθω

‖Dfω‖ ) are disjoint

and there exist closed domains Uzi ⊃ Bzi(
εθω

‖Dfω‖ ) which are mapped by fω diffeo-

morphically onto Bz(εθω), and so each Uzi may contain only one preimage of each
point from Bz(εθω). In particular, distances between different preimages under fω
of any point in M are not less than εθω

‖Dfω‖ , and so the number `ω of preimages

under fω of any point of M is bounded by C( εθω
‖Dfω‖ )

d, where C > 0 depends only

on M. If d(z, z̃) ≤ εθω, then for each i there is a unique z̃i ∈ f−1
ω z̃ belonging to Uzi

and

d(zi, z̃i) ≤ ‖Df−1
ω ‖d(z, z̃) ≤ 1

2
min(1, ρM )min(‖Df−1

ω ‖, ‖Df
−1
ω ‖

Zθω
)(6.4)

≤ 1

2
min(1, ρM )(1 + Zω)−1 ≤ εω.

In order to deal simultaneously both with random expanding transformations
and with random subshifts I set also in the second case εω = e−1 and define in both
cases a family of cones of continuous functions on Ξω by

Λω
γ = {q : q ≥ 0,

∫
qdνω = 1 and q(ξ) ≤ eγRω(ξ,ξ̃)q(ξ̃) if ρ(ξ, ξ̃) ≤ εω},(6.5)

where νω is the same as in (2.25) and γ ≥ 1 is a constant. By (2.25) and (6.4) it is
easy to check directly (cf. [Ki1]) that

λ−1
ω Lωg Λω

γ ⊂ Λθω
γ for any γ ≥ 1,(6.6)

where λω is the same as in (2.25), and by the construction, the functions hω from

(2.25) belong to Λω
1 . (see [KK]). It is easy to see that there exists a constant C̃ > 0

depending only on M such that for any C1 endomorphism f : M → M and any
x ∈ M the set f−1x is C̃‖Df−1‖−net, i.e. for any y ∈ M there exists z ∈ f−1x

such that d(y, z) ≤ C̃‖Df−1‖. Applying this to fnω and taking into account that,
by (2.29) and the ergodic theorem,

lim
n→∞

1

n
log ‖(Dfnω )−1‖ ≤ lim

n→∞
1

n

n−1∑
j=0

log ‖Df−1
θjω‖ = α < 0P − a.s.,(6.7)

I conclude that there exists a random variable N = Nω < ∞ on (Ω,G, P ) with
values in Z+ such that P−a.s. for any x ∈M the set (fNω )−1x is an εω−net. In the
case of random subshifts I denote by N = Nω a Z+−valued random variable such
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that A(ω)A(θω) · · ·A(θnω) is a positive matrix for all n ≥ N , where the A(ω)’s are
`(ω)× `(θω) matrices apearing in the definition of a random subshift in Section 2.
Such an Nω exists by the topological mixing assumption in Theorem 2.5. Observe
that this definition of N = Nω is equivalent to saying that for P−a.a.ω and any

η ∈ Ξθ
Nω the set (fNω )−1η is an ε(ω)−net in Ξω with respect to the metric ρ(·, ·)

defined in (6.1), since both characterizations of Nω are equivalent to the third one
saying that for any j ∈ {1, ..., `(ω)} the set (fNω )−1 contains a point ξ = (ξ0, ξ1, ...)
from Ξω with ξ0 = j. Thus the characterization of Nω is, essentially, the same
in both cases under consideration, which enables me to give their simultaneous
treatment.

I claim that in both cases, for any q ∈ Λω
γ ,

inf
ξ

(λω · · ·λθNω−1ω)−1Lω,Nω
g q(ξ) ≥ G−1

ω e−γH
(1)
ω ,(6.8)

whereGω = λω · · ·λθNω−1ω exp(
∑Nω−1

j=0 ‖gθjω‖) with ‖·‖ being the supremum norm,

H
(a)
ω (ω) = Rωε

a
ω, Lω,ng = Lθn−1ω

g ◦ · · · ◦ Lθωg ◦ Lωg , and I take the infinum in (6.8)

over all ξ ∈ Ξθ
Nωω where in the random expanding transformations case Ξω = M

for all ω ∈ Ω. Indeed, if ξ ∈ Ξθ
Nω, η ∈ Ξω then there exists ζ′ ∈ (fNω )−1ξ ∈ Ξω with

ρ(η, ζ ′) ≤ εω, and so by (2.24),

Lω,Nω
g q(ξ) =

∑
ζ∈(fNωω )−1ξ

exp(

Nω−1∑
j=0

g ◦ τ j(ζ, ω))q(ζ)(6.9)

≥ e−
∑Nω−1
j=0 ‖g

θjω
‖q(ζ′) ≥ e−

∑Nω−1
j=0 ‖g

θjω
‖e−γRωεωq(η).

Since
∫
Ξω qdν

ω = 1 and q ≥ 0, then there exists η ∈ Ξω with q(η) ≥ 1, and for such

η (6.9) implies (6.8). Since
∫
Lω,Nω
g qdνθ

Nωω = λω · · ·λθNω−1ω, (6.9) yields also that
for any q ∈ Λω

γ ,

q ≤ Gωe
γH(1)

ω .(6.10)

Next I shall need

6.1. Lemma. For P−a.a.ω and any γ ≥ 2 there exists aω = aω,γ ≤ 1
2 such that

for any γ ≥ 2 and q ∈ Λω
γ one can find q′ ∈ ΛθNωω

γ satisfying

(λω · · ·λθNω−1ω)−1Lω,Nω
g q = aωhθNωω + (1− aω)q′,(6.11)

where hω is the same as in (2.25).

Proof. I have to choose aω so that

(λω · · ·λθNω−1ω)−1Lω,Nω
g q − aωhθNωω ∈ ΛθNωω

γ ,(6.12)

which requires

(λω · · ·λθNω−1ω)−1Lω,Nω
g q(ξ)− aωhθNωω(ξ)

≤ eγRθNωω(ξ,ξ̃)

(
(λω · · ·λθNω−1ω)−1Lω,Nω

g q(ξ̃)− aωhθNωω(ξ̃)

)
,
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provided ρ(ξ, ξ̃) ≤ εθNωω, or, which is the same,

aω

(
eγRθNωω(ξ,ξ̃)hθNωω(ξ̃)− hθNωω(ξ)

)(6.13)

≤ eγRθNωω(ξ,ξ̃)(λω · · ·λθNω−1ω)−1Lω,Nω
g q(ξ̃)− (λω · · ·λθNω−1ω)−1Lω,Nω

g q(ξ).

By (6.6),

q̃
def
= (λω · · ·λθNω−2ω)−1Lω,Nω−1

g q ∈ ΛθNω−1ω
γ .(6.14)

Observe that if ξ, ξ̃ ∈ Ξθ
Nωω satisfy ρ(ξ, ξ̃) ≤ εθNωω, then there exists a one-to-one

correspondence between points ξ′ ∈ f−1
θNω−1ω

ξ and ξ̃′ ∈ f−1
θNω−1ω

ξ̃ so that

ρ(ξ′, ξ̃′) ≤ min(εθNω−1ω, DθNω−1ωρ(ξ, ξ̃)),(6.15)

where Dω = e−1 for random subshifts and Dω = ‖Df−1
ω ‖ for random expanding

transformations. Set Dω(ξ, ξ̃) = Kg(ω)Dκ
ω(ρ(ξ, ξ̃))κ; then

γDθNω−1ω(ξ, ξ̃) +Dκ
θNω−1ωRθNω−1ω(ξ, ξ̃) = RθNωω(ξ, ξ̃),

and so by (2.22), (2.30), (6.14), and (6.15), for any ξ, ξ̃ ∈ Ξθ
Nωω as above

(λθNω−1ω)−1LθNω−1

g q̃(ξ) = (λθNω−1ω)−1
∑

ξ′∈f−1

θNω−1ω
ξ

egθNω−1ω
(ξ′)q̃(z′)

≤ e−(γ−1)D
θNω−1ω

(ξ,ξ̃)+γR
θNωω

(ξ,ξ̃)(λθNω−1ω)−1LθNω−1ω
g q̃(ξ̃).

So in order to obtain (6.13) it suffices to have

aω

(
eγRθNωω(ξ,ξ̃)hθNωω(ξ̃)− hθNωω(ξ)

)
≤
(
eγRθNωω(ξ,ξ̃) − e−(γ−1)D

θNω−1ω
(ξ,ξ̃)+γR

θNωω
(ξ,ξ̃)

)
(λω · · ·λθNω−1ω)−1Lω,Nω

g q(ξ̃).

Since by the construction hθNωω ∈ ΛθNωω
1 , and so hθNωω(ξ̃) ≤ eRθNωω(ξ,ξ̃)hθNωω(ξ),

then taking into account (6.8) and (6.10) (the latter for q = hθNωω) it suffices to
obtain that

aω

(
eγRθNωω(ξ,ξ̃) − e−RθNωω(ξ,ξ̃)

)
GθNωωe

H
(1)

θNωω(6.16)

≤
(
eγRθNωω(ξ,ξ̃) − e−(γ−1)D

θNω−1ω
(ξ,ξ̃)+γR

θNωω
(ξ,ξ̃)

)
G−1
ω e−H

(1)
ω .

Next, for ξ, ξ̃ as above,

0 ≤ RθNωω(ξ, ξ̃) ≤ Rωε
κ
ω = H(κ)

ω

and

0 ≤ γRθNωω(ξ, ξ̃)− (γ − 1)DθNω−1ω(ξ, ξ̃) ≤ γRθNωω(ξ, ξ̃).

For any x, y ∈ [−H(κ)
ω , γH

(κ)
ω ] one has

e−H
(κ)
ω (x− y) ≤ ex − ey ≤ eγH

(κ)
ω (x− y).
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Hence in order to obtain (6.16) it suffices to have

(γ + 1)aωe
(γ+1)H

(κ)

θNωωRθNωω(ξ, ξ̃)GθNωω ≤ (γ − 1)DθNω−1ω(ξ, ξ̃)G−1
ω e−γH

(1)
ω ,

and since

DθNω−1ω(ξ, ξ̃)RθNωω = RθNωω(ξ, ξ̃)Kg(θ
Nω−1ω)Dκ

θNω−1ω

and I always can assume that Kg ≥ 1, I only need that

aω ≤
1

3
e−γ(2H

(κ)

θNωω
+H(1)

ω )Υω(6.17)

where Υω = G−1
θNωω

G−1
ω Dκ

θNω−1ωR
−1
θNωω

. Observe that in view of (6.1), (6.2), (6.8),

and (6.10) the inequality (6.17) implies that aωhθNωω ≤ (λω · · ·λθNω−1ω)−1Lω,Nω
g q,

i.e. the other condition for (6.12) is also satisfied. Thus, defining aω by the right
hand side of (6.17), I complete the proof of Lemma 6.1.

Let Q be a measurable set in Ω such that P (Q) > 0 and

Q ⊂ QL =

{
ω : max(Nω, 2H

(κ)
θNωω +H(1)

ω , Gω,Υ
−1
ω ) ≤ L

}
,(6.18)

and define the hitting times ki(ω) by (2.3).

6.2. Lemma. For any ω ∈ Q, q ∈ Λω
γ , γ ≥ 2, and n satisfying kj(ω) ≤ n one has

‖(λω · · ·λθnω)−1Lω,ng q − hθnω‖ ≤ 2LeγL
(

1− 1

3
L−1e−γL

)[j/L]

.(6.19)

Proof. It follows from (6.11) that for any ω̃ = θki(ω)ω, q ∈ Λω̃
γ , and l ≥ L there

exists q′ ∈ Λθlω
γ such that

(λω̃ · · ·λθl−1ω̃)−1Lω̃,lg q = aω̃hθlω̃ + (1− aω̃)q′.(6.20)

By induction it is easy to derive from (6.20) that for any i = 1, 2, ... and q ∈ Λω̃
γ

there exists q′iL ∈ ΛθkiL(ω)ω
γ such that

(λω · · ·λθkiL(ω)−1ω)−1Lω,kiL(ω)
g q =

(
1−

i−1∏
l=0

(1− aθklL(ω)ω)

)
hθkiL(ω)ω

+ q′iL
i−1∏
l=0

(1− aθklL(ω)ω).

This together with (6.10), (6.18), and the choice of aω yields (6.19).

6.3. Lemma. Let q and r be measurable functions on Ξω and Ξθ
kj (ω)ω, respectively,

such that ‖q‖, ‖r‖ <∞ and there exists Kq ≥ 1 with

|q(ξ)− q(ξ̃)| ≤ Kq(ρ(ξ, ξ̃))
κ ∀ξ, ξ̃ ∈ Ξω,(6.21)

where kj(ω) are the same as in Lemma 6.2. Then∣∣∣∣ ∫ q(r ◦ fkj(ω)
ω )dµω −

∫
qdµω

∫
rdµθ

kj (ω)ω

∣∣∣∣(6.22)

≤ 4Le2L(‖q‖+KqR
−1
ω )‖r‖

(
1− 1

3
L−1e−2L

)[j/L]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1510 YURI KIFER

and

‖(λω · · ·λθkj(ω)ω
)−1h−1

θkj(ω)ω
Lω,kj(ω)
g q −

∫
qdµω‖,(6.23)

≤ 4Le2L(‖q‖+KqR
−1
ω )‖h−1

θkj(ω)ω
‖
(

1− 1

3
L−1e−2L

)[j/L]

,

where µω is the same as in (2.26) and γ = γω = 1 +KqR
−1
ω .

Proof. Observe that, by (2.28),

Rω ≥ Kg(θ
−1ω)‖Df−1

θ−1ω‖ ≥ ‖Df−1
θ−1ω‖ ≥ ‖Dfθ−1ω‖−1 > 0P − a.s.,(6.24)

since I assume (without loss of generality) that Kg(ω) ≥ 1. Suppose, first, that
q ≥ 0, and set q̂ = (q +KqR

−1
ω )(

∫
qdµω +KqR

−1
ω )−1. Then

∫
q̂hωdν

ω = 1 and, by

(6.21), for any ξ, ξ̃ ∈ Ξω,

q̂(ξ) ≤ q̂(ξ̃)

(
1 +

Kq(ρ(ξ, ξ̃))
κ

q(ξ̃) +KqR
−1
ω

)
≤ q̂(ξ̃)(1 +Rω(ξ, ξ̃)) ≤ q̂(ξ̃)eRω(ξ,ξ̃),(6.25)

and since hω ∈ Λω
1 I derive that qhω ∈ Λω

2 . Thus by (2.27) and (6.19),∣∣∣∣ ∫ q(r ◦ fkj(ω)
ω )dµω −

∫
qdµω

∫
rdµθ

kj(ω)ω

∣∣∣∣(6.26)

= (

∫
qdµω +

Kq

Rω
)

∣∣∣∣ ∫ q̂(r ◦ fkj(ω)
ω )hωdν

ω −
∫
rdµθ

kj(ω)ω

∣∣∣∣
= (

∫
qdµω +

Kq

Rω
)

×
∣∣∣∣(λω · · ·λθkj (ω)ω

)−1

∫
rLω,kj(ω)

g (q̂hω)dνθ
kj (ω)ω −

∫
rh

θkj(ω)ω
dνθ

kj(ω)ω

∣∣∣∣
≤ (‖q‖+KqR

−1
ω )‖r‖‖(λω · · ·λθkj (ω)ω

)−1Lω,kj(ω)
g (q̂hω)− h

θkj(ω)ω
‖

≤ 2Le2L(‖q‖+KqR
−1
ω )‖r‖

(
1− 1

3
L−1e−2L

)[j/L]

,

proving (6.22) for a nonnegative q. Similarly, by (6.19),

‖(λω · · ·λθkj(ω)ω
)−1h−1

θkj(ω)ω
Lω,kj(ω)
g q −

∫
qdµω‖(6.27)

× ‖h−1

θkj(ω)ω
‖‖(λω · · ·λθkj (ω)ω

)−1Lω,kj(ω)
g q̂ − h

θkj(ω)ω
‖

≤ 2Le2L(‖q‖+KqR
−1
ω )‖h−1

θkj(ω)ω
‖
(

1− 1

3
L−1e−2L

)[j/L]

,

proving (6.23) for a nonnegative q. For a general q, represent it as the difference of
its positive q+ and negative q− parts and apply (6.26) and (6.27) to each of them;
then (6.22) and (6.23) follow via the triangle inequality.

I shall deal first with the random expanding maps case. In order to employ the
estimate (6.23) I first need an upper bound for ‖h−1

ω ‖. Observe that as n→∞,

‖(Dfnθ−nω)−1‖Zθ−nω ≤ ‖Df−1
θ−nω‖ · · · ‖Df

−1
θ−1ω‖Zθ−nω

=
∞∑

l=n+1

‖Df−1
θ−lω‖ · · · ‖Df

−1
θ−1ω‖ → 0

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LIMIT THEOREMS FOR RANDOM TRANSFORMATIONS 1511

as the remainder of a converging series. It follows that there exists a random

variable Ñ = Ñω such that ∀x ∈M the set (f Ñ
θ−Ñω

)−1x is an εθ−Ñω−net. Thus for

any x, y ∈M there exists z ∈ (f Ñ
θ−Ñω

)−1x with d(y, z) ≤ εθ−Ñω, and so

λθ−Ñω · · ·λθ−1ωhω(x) = Lθ−Ñω,Ñg hθ−Ñω(x) ≥ hθ−Ñω(z) exp(−
Ñ∑
j=1

‖gθ−jω‖)

≥ hθ−Ñω exp(−γRθ−Ñωεθ−Ñω −
Ñ∑
j=1

‖gθ−jω‖).

Since
∫
hθ−Ñωdν

θ−Ñω = 1, I can choose y so that hθ−Ñω(y) ≥ 1. Taking into account
also that

λθ−Ñω · · ·λθ−1ω =

∫
Lθ

−Ñω,Ñ
g 1dνω ≤

Ñ∏
j=1

`(θ−jω)e‖gθ−jω‖,

I derive that for any x ∈M,

hω(x) ≥ e−γRθ−Ñω
ε
θ−Ñ ω

Ñ∏
j=1

`−1(θ−jω)e−2‖gθ−jω‖ def
= ι(ω),

and so ‖h−1
ω ‖ ≤ ι−1(ω).

Now take Q = QL ∩ {ω : max(R−1
ω , ι−1(ω)) ≤ L} with QL defined by (6.18),

and apply (6.22) and (6.23) with q = Ψω and r = Ψ
θkj(ω)ω

. Since
∫

Ψωdµ
ω =∫

Ψ
θkj(ω)ω

dµθ
kj(ω)ω = 0, it follows by (2.31), (6.22), and the Cauchy-Schwarz in-

equality that

EPQ

∞∑
n=0

∣∣∣∣Eµω (Ψω(Ψ ◦ T n)ω)

∣∣∣∣ ≤ 12L4e4LEPQ(‖Ψω‖+KΨ(ω))2 <∞,(6.28)

establishing condition (i) of Theorem 2.3. In order to derive condition (ii) I use the
formula

u∗ωqω = λ−1
ω h−1

θωL
ω
g (qωhω),(6.29)

which holds true since for any q ∈ L2(Ξω , µω) and r ∈ L2(Ξθω , µθω),

λ−1
ω

∫
rh−1

θωL
ω
g (qhω)dµθω = λ−1

ω

∫
rLωg (qhω)dνθω

= λ−1
ω

∫
Lωg (qhωuωr)dν

θω =

∫
(uωr)qdµ

ω .

Applying (6.29) successively, I obtain that

U∗n
Θ−nωΨΘ−nω = (λω̃ · · ·λθkn(ω̃)ω̃)−1h−1

θkn(ω̃)ω̃
Lω̃,kn(ω̃)
g Ψω̃, with ω̃ = Θ−nω.
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Therefore by (2.31), (6.23), and the Cauchy-Schwarz inequality,

EPQEµω

( ∞∑
n=0

|U∗n
Θ−nωΨΘ−nω|

)2

≤ 16L4e4LEPQ

( ∞∑
n=0

(‖ΨΘ−nω‖+KΨ(Θ−nω))(1− 1

3
L−1e−2L)[n/L]

)2

≤ 48L6e6LEPQ

∞∑
n=0

(‖ΨΘ−nω‖+KΨ(Θ−nω))2(1− 1

3
L−1e−2L)[n/L]

= 144L8e8LEPQ(‖Ψω‖+KΨ(ω))2 <∞,

(6.30)

establishing the condition (ii) of Theorem 2.3, and so completing the proof of The-
orem 2.6.

In order to complete the proof of Theorem 2.5 I shall need a few additional
arguments which can be applied only in the random subshifts case. Denote by Cωn
the set of functions r on Ξω such that varωnr = 0, with varωn defined by (2.20).

6.4. Lemma. If q ∈ Λω
γ , γ ≥ 1, r ∈ Cωn , r ≥ 0, and rq 6≡ 0, then

(

∫
qrdνω)−1(λω · · ·λθn−1ω)−1Lω,ng (qr) ∈ Λθnω

γ .(6.31)

Proof. Let ξ, ξ̃ ∈ Ξω and ρ(ξ, ξ̃) = e−m, then

Lω,ng (qr)(ξ) =
∑

ζ∈(fnω )−1ξ

exp(
n−1∑
j=0

g ◦ τ j(ζ, ω))q(ζ)r(ζ)(6.32)

≤
∑

ζ̃∈(fnω )−1 ξ̃

exp

( n−1∑
j=0

(g ◦ τ j(ζ̃ , ω) + varθ
jω
m+n−jg)

)
eγRω(ζ,ζ̃)q(ζ̃)r(ζ̃),

where ρ(ζ, ζ̃) = e−(m+n). By (2.22), (6.1), and (6.3),

Rω(ζ, ζ̃) +

n−1∑
j=0

varθ
jω
m+n−jg ≤

∞∑
j=1

Kg(θ
−jω)e−κ(m+n+j)

+

n−1∑
l=0

Kg(θ
lω)e−κ(m+n−l) = Rθnω(ξ, ξ̃).

This together with (6.32) yields that for γ ≥ 1,

Lω,ng (qr)(ξ) ≤ eγRθnω(ξ,ξ̃)Lω,ng (qr)(ξ̃).(6.33)

Next, in the same way as in (6.9),∫
qrdνω(6.34)

= (λθnω · · ·λθNθnω−1(θnω))
−1

∫
Lθnω,Nθnω
g (λω · · ·λθn−1ω)−1Lω,ng (qr)dνω

≥ G−1
ω e−γB1(ω)(λω · · ·λθn−1ω)−1Lω,ng (qr)(ξ)

for any ξ ∈ Ξθ
nω. Since qr 6≡ 0, there exists ξ so that the right hand side of (6.34)

is not equal to 0, and so the left hand side of (6.34) is positive. This together with
(6.33) yields (6.31).
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Now I can complete the proof of Theorem 2.5. Take Q = QL with QL defined
by (6.18), and consider cylinder sets A = {ξ = (ξ0, ξ1, ...) ∈ Ξω : ξi = ai for i =

0, 1, ..., l} and B = {ζ = (ζ0, ζ1, ...) ∈ Ξθ
l+nω : ζi = bi for i = 0, 1, ...,m}. Then

µω(A ∩ (f l+nω )−1B) =

∫
IA(IB ◦ f l+nω )hωdν

ω(6.35)

= (λω · · ·λθl+n−1ω)−1

∫
IBLω,l+ng (IAhω)dνθ

l+nω.

Since IA ∈ Cωl , IA ≥ 0, hω ∈ Λω
1 , and hω > 0, then by Lemma 6.4,

qθlω
def
= (

∫
hωIAdνω)−1(λω · · ·λθlω)−1Lω,lg (IAhω) ∈ Λθlω

1 ,

and so by (6.35) and by (6.19) considered with ω̃ = θlω in place of ω and n ≥ kj(ω̃)
it follows that

|µω(A ∩ (f l+nω )−1B)− µω(A)µθ
l+nω(B)|(6.36)

=

∣∣∣∣ ∫ ((λω · · ·λθl+n−1ω)−1Lω,l+ng (IAhω)

− (

∫
hωIAdνω)hθl+nω

)
IBdνθ

l+nω

∣∣∣∣
≤ µω(A)νθ

l+nω(B)‖(λω̃ · · ·λθnω̃)−1Lω̃,ng qω̃ − hθnω̃‖

≤ 2µω(A)νθ
l+nω(B)LeL

(
1− 1

3
L−1e−L

)[j/L]

.

Take l = ki(ω) and n = kj(θ
lω); then, by the choice of Q = QL, ν

θl+nω(B) ≤
µθ

l+nω(B)‖h−1
θl+nω

‖ ≤ Lµθ
l+nω(B), which together with (6.36) yields (2.5). This

yields (2.5) and completes the proof of Theorem 2.5.

6.5. Remark. It is possible to define the set Q via the function g and intrinsic
characterictics of random subshifts and random expanding transformations. In
order to do that it is necessary to obtain appropriate upper bounds for Gω and
‖hω‖. Since hω ∈ Λω

1 , then by (6.10) one needs only an upper bound on Gω . In
view of the definition of Gω one has to obtain an upper bound for λω · · ·λθNω−1ω,
which follows by

λω · · ·λθNω−1ω =

∫
Lω,Nω
g 1dνθ

Nωω ≤
Nω−1∏
j=0

`(θjω) exp(

Nω−1∑
j=0

‖gθjω‖).

Thus I can take Q = Q̃L = {ω : max(Nω, G̃ω, G̃θNωω, Rω, RθNωω) ≤ L} with

G̃ω =
∏Nω−1

j=0 `(θjω)e‖gθjω‖ in the random subshift case, and Q = Q̃L ∩ {ω :

max(R−1
ω , ι−1(ω)) ≤ L} in the random expanding maps case.

7. Random suspensions

In order to prove Theorem 2.8, set l̄ω =
∫
lω(ξ)dµω(ξ) and apply Theorem 2.1

to the function l. Then for any α > 0, P− a.s.,

lim
n→∞µω

{
ξ : n−( 1

2+α)|
n−1∑
i=0

(lθiω − l̄θiω)(f iθiω(ξ))| > δ

}
= 0 ∀δ > 0.(7.1)
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Set tω(k) =
∑k

i=0 l̄θiω and nω(ξ, s) = max{n ≥ 0 :
∑n

i=0(l ◦ τ i)ω(ξ) ≤ s}. Then

{ξ : |nω(ξ, tω(k))− k| ≥ b
√
k} = {ξ :

∑
0≤i≤k+b√k

(l ◦ τ i)ω(ξ) ≤
k∑

k=0

l̄θiω}(7.2)

∪ {ξ :
∑

0≤i≤j
(l ◦ τ i)ω(ξ) >

k∑
i=0

l̄θiω for some j = 0, ..., [k − b
√
k] + 1}

⊂ {ξ : k−1/2|
k∑
i=0

(lθiω − l̄θiω)(f iωξ)| ≥ (b− 1)C−1
1 },

where C1 = supω C(ω). By (7.1) and (7.2), P−a.s. for any α > 0,

lim
k→∞

µω{ξ : |nω(ξ, tω(k))− k| > k
1
2+α} = 0.(7.3)

Observe that∫ t

0

(ψ ◦ σs)ω(0, ξ)ds =

nω(ξ,t)∑
i=0

(ψ(l) ◦ τ i)ω(ξ) +

∫ t

sω(ξ,t)

(ψ ◦ σs)ω(0, ξ)ds,(7.4)

where sω(ξ, t) =
∑nω(ξ,t)

i=0 (l ◦ τ i)ω(ξ) and 0 ≤ t− sω(ξ, t) ≤ C1, and∣∣∣∣ ∫ t

sω(ξ,t)

(ψ ◦ σs)ω(0, ξ)ds

∣∣∣∣ ≤ (q ◦ τnω(ξ,t))ω(ξ),(7.5)

where by assumption

qω(ξ) =

∫ lω(ξ)

0

|ψω(ξ, s)|ds ∈ L1(ΞQ, µQ).(7.6)

In view of (7.3)-(7.6) it is easy to see that in order to obtain (2.35) it suffices to
show that, P−a.s. for any a,

lim
k→∞

µω
{
ξ ∈ Ξω :

1√
k

k∑
i=0

(ψ(l) ◦ τ i)ω(ξ) ≤ a

}
=

1

σ̃
√

2π

∫ a

−∞
e−

x2

2σ̃2 dx,(7.7)

where

σ̃2 = lim
k→∞

1

k
Eµω

( k−1∑
i=0

(ψ(l) ◦ τ i)ω
)2

(7.8)

= P (Q)

(
EµQ(Ψ(l))2 +

∞∑
j=1

EµQ(Ψ(l)(Ψ(l) ◦ T j))
)
.

By the ergodic theorem, P−a.s.,

lim
k→∞

tω(k)

k
= l̄,(7.9)

and so

lim
k→∞

µω
{
ξ ∈ Ξω :

1√
tω(k)

k∑
i=0

(ψ(l) ◦ τ i)ω(ξ) ≤ a

}
=

1

σ
√

2π

∫ a

−∞
e−

x2

2σ2 dx.(7.10)
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Theorem 2.8 will follow if I show that for any ε > 0 and P−a.a.ω,

lim
k→∞

µω
{
ξ ∈ Ξω :

1√
k

∣∣∣∣ k∑
i=0

(ψ(l) ◦ τ i)ω(ξ) −
nω(ξ,tω(k))∑

i=0

(ψ(l) ◦ τ i)ω(ξ)

∣∣∣∣ > ε

}
= 0.

(7.11)

Actually, it suffices to obtain (7.11) for PQ−a.a.ω, since n−1/2
∑k1(ω)

i=0 (ψ(l)◦τ i)ω → 0
as n→∞. Taking into account (7.3), this will hold true if, PQ−a.s.,

lim
k→∞

∑
−k 1

2
+α≤j≤k 1

2
+α

µω
{
ξ ∈ Ξω :

1√
k
|Lk,j(ξ, ω)| > ε

}
= 0(7.12)

where Lk,j(ξ, ω) = r|j| ◦ τk+j(ξ, ω) and rn(ξ, ω) =
∑n

i=0(ψ
(l) ◦ τ i)ω(ξ). It suffices to

show that there exists C2 such that for any n = 1, 2, ...,

EµQr
8
n ≤ C2n

4.(7.13)

Indeed, by the Chebyshev inequality the sum in (7.12) does not exceed

Mk(ω)
def
= ε−8k−4

∑
−k 1

2
+α≤j≤k 1

2
+α

Eµθk+jω(r8|j|)θk+jω.(7.14)

If (7.13) holds true, then

EPQMk ≤ 2C2ε
−8k−

3
2+5α.(7.15)

If α < 1
10 then the right hand side of (7.15) is a k−th term of a converging series, and

so employing the Borel-Cantelli lemma I conclude that PQ−a.s. limk→∞Mk = 0,
which proves (7.12).

In order to establish (7.13) I observe that

(EµQr
8
n)1/8 ≤ (EµQV

8
n )1/8 + (EµQ (R(l))8)1/8,(7.16)

where Vn =
∑Nn(ω)−1

j=0 Ψ(l) ◦ T j(ξ, ω) with Nn(ω) and R(l)(ξ, ω) being the same

as in (3.1) and (2.32), respectively. I have to estimate only the first term in the
right hand side of (7.16), since the last term there is bounded by (2.32). Since
Nn(ω) ≤ n, then

EµQV
8
n ≤ 8!

∑
0≤i1≤i2≤···≤i8

EPQ

∣∣∣∣Eµω 8∏
j=1

Ψ(l) ◦ T ij
∣∣∣∣,(7.17)

and so one obtains (7.13) from the following result.

7.1. Lemma. Let Ψ = Ψω(ξ) be a measurable function on Ξ such that Ψω is
Fω

0,∞−measurable function on Ξω with EµωΨω = 0. Set

D(m)
n = (Eµω (Ψω − Eµω (Ψω|Fω

0,n))2m)
1

2m

and β
(m)
j = (EPQ(D

(m)
kj

)2m)
1

2m . Suppose that

EµQΨ2m <∞,(7.18)

∞∑
j=1

jmφ
1

2m

j <∞,(7.19)
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and

∞∑
j=1

jmβj <∞.(7.20)

Then there is a constant C = Cm such that for any n = 1, 2, ...,

∑
0≤i1≤···≤i2m≤n

EPQ

∣∣∣∣Eµω 2m∏
j=1

Ψ ◦ T ij
∣∣∣∣ ≤ Cnm,(7.21)

and so

EµQ(

n∑
i=0

Ψ ◦ T i)2m ≤ 2m!Cnm.(7.22)

Proof. The argument resembles the proofs of Lemma 2.1 from [Kh], of Lemma 4
from §20 in [Bi], and of Theorem 2 from Section 1.4.1 in [Do] (see also Remark 4
there), and it proceeds in the following way. Let

s = si1,...,i2m = max
1≤q<m

(i2q+1 − i2q) = i2r+1 − i2r.

Then by (3.7) and the Cauchy-Schwarz inequality,

Iωi1,...,i2m
def
=

∣∣∣∣Eµω( 2m∏
j=1

Ψ ◦ T ij
)(7.23)

− Eµω

( 2r∏
j=1

Eµω

(
Ψ ◦ T ij

∣∣∣∣Fω
0,ki2r+[s/2]

))
Eµω

( 2m∏
j=2r+1

Ψ ◦ T ij
)∣∣∣∣

≤
(

2φ
1/2m
[s/2] +

2r∑
u=1

D
(2m)
[s/2] (Θ

iuω)

(
EµΘiuωΨ2m

Θiuω

)−1/2m) 2m∏
j=1

(
E
µΘ

ij ω
Ψ2m

Θijω

)1/2m

.

Furthermore, by the same reasons, for t = i2m− i2m−1 and each v = 1, 2, ..., 2m−2,

∣∣∣∣Eµω 2m∏
j=v

Ψ ◦ T ij
∣∣∣∣

(7.24)

≤
(

2φ
1/2m
[t/2] +

2m−1∑
u=v

D
(2m)
[t/2] (Θ

iuω)

(
EµΘiuωΨ2m

Θiuω

)−1/2m) 2m∏
j=v

(
E
µΘ

ij ω
Ψ2m

Θijω

)1/2m

.

Using (7.24) with v = 1 and v = 2r + 1, it follows from (7.18), (7.23), and the
Cauchy-Schwarz inequality that

EPQIi1,...,i2m ≤ 2φ
1/2m

[ 12 max(s,t)]
EµQΨ2m + 2mβ

(2m)

[ 12 max(s,t)]
(EµQΨ2m)7/8,(7.25)

which by (7.19) and (7.20) yields that∑
0≤i1≤...≤i2m≤n

EPQIi1,...,i2m ≤ C̃nm(7.26)
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for some constant C̃ > 0 independent of n. Estimating

Eµω

( 2r∏
j=1

Eµω (Ψ ◦ T ij |Fω
0,ki2r+[s/2]

)

)
and Eµω

( 2m∏
j=2r+1

Ψ ◦ T ij
)

similarly to (7.23)-(7.26) and continuing in the same way, one eventually arrives at
(7.21).
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