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Limit theorems for the Matsumoto Zeta-function

par ANTANAS LAURIN010CIKAS

RÉSUMÉ. On démontre deux théorèmes limites fonctionnels pondérés pour
la fonction introduite par K. Matsumoto.

ABSTRACT. In this paper two weighted functional limit theorems for the
function introduced by K. Matsumoto are proved.

Let N denote the set of all natural numbers. For any m e N, we define
a positive integer g(m). Let be complex numbers and f ( j, m),1  j :5
g(m), m e N, be natural numbers. Now we can define the polynomials

of degree f (1, m) + ~ ~ ~ + f (g(m), m~ . Let s be a complex variable,
and let pn denote the n th prime number. In [5] K. Matsumoto introduced
the following zeta-function

and under some hypotheses on g(m), am and cp(s) he proved the limit
theorems for log in the complex plane C.

Let B denote a number (not always the same) bounded by a constant.
Suppose that
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with some non-negative constats a and ,Q. Let meas denote the Lebes-

gue measure of the set A, and, for T &#x3E; 0, let

where in place of dots we indicate a condition satisfied by t. Under the
condition (1) is a holomorphic function in the half-plane u &#x3E; a +,8 +1
with no zeros. Let, for u &#x3E; ,Q,

and let R denote a closed rectangle in the complex plane with the edges
parallel to the axes.

THEOREM A. (Matsumoto [5]). Suppose that ao &#x3E; a +,Q +l. Then there
exists the limit

-L , ...

If we assume that ~p(s) can be meromorphically continued to the region
~ &#x3E;_ Po, Po  a + (3 + 1, then the theorem analogue to theorem A in this
region was also proved in [5]. More precisely, let V(s) by meromorphic in
the poles in this region be included in a
compact set, and, po,

with some positive 6. Moreover, let

We put

where s’ = a’ + i~’ runs all possible zeros and poles of ~p(s) in the strip
 a + (3 +1. Define + ito) for cro + ito E G by the analytic

continuation along the path s + ito, (I &#x3E; ~o.
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THEOREM B. (Matsumoto, [5]). Suppose that po then there exists
the limit

In fact Theorems A and B are the limit theorems in sense of weak con-

vergence of probability mesures on (C, B(C)) where by B(S) we denote
the class of Borel sets of the space S. Our aim is to give a generalization
of Theorems A and B in sense of [1] and [4], i.e. to prove the weighted
functional limit theorems for the function cp(s).

Let Coo = C U {oo} be the Riemann sphere and let d(sl, s2) be a metric
on Coo given by the formulae

Here s, 81, S2 E C. This metric is compatible with the topology of Let
D = Is E &#x3E; a+,Q+1}. Denote by H(D) the space of analytic
on D functions f : D -&#x3E; (Coo, d) equiped with the topology of uniform
convergence on compacta. In this topology a sequence f fn, f n E H(D)}
converges to the function f E H(D) if

as n -~ oo uniformly in s on compact subsets of D. On the other hand
let To be a fixed positive number, and let w (T) be a positive function of
bounded variation on Let us put

Suppose that lim U (T, w) = oo and consider the probability measure
T --+ 00

Here IA denote the indicator function of the set A.
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THEOREM 1. There exists a probability measure Pw on (H(D), B(H(D)))
such that the measure PT,w converges weakly to Pw as T - oo.

Denote by M(D1) the space of meromorphic on Di functions f : Di -
equiped with the topology of uniform convergence on compacta.

Suppose that for the functions w(T) and cp(s) the estimate

is satisfied for all a &#x3E; po and all t E R. Consider the probability measure

THEOREM 2. Let the function ~p(s) be meromorphic in the half-plane u &#x3E;

Suppose that aII poles in this region are included in a compact set, and
that the estimates (2) and (3) hold. Then there exists a probabih’ty measure
Qw on such that the measure QT,w converges weakly
to Qw as T -3 00.

For the proof of Theorems 1 and 2 we will use the following auxiliary
results.

Let 81 and S2 be two metric spaces. Let h : S2 be a measurable
function. Then every probability measure P on (81,B(81)) induces on
(92)B(?2)) the unique probability measure Ph-1 defined by the equality

= P(h-1 A), A E 8(82). Let P, Pn be the probability measures
on 

LEMMA 1. Let h : S, --~ S2 be a continuous function. Then the weak

convergence of Pn to P implies that of Pnh’1 to as n - oo.

Proof. This lemma is a particular case of Theorem 5.1 from [2].
Now let S be a separable metric space with a metric p, and let Yn, Xln,

X2n, ... be the S-valued random elements defined on Then the

following assertion is true (Theorem 4.2 from [2]).
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LEMMA 2. Suppose that Xkn £gXk for each k and also If

for &#x3E; 0

then Yn 

Let 1 denote the unite circle on complex plane that is ~y = Is E =
1 ~, and let P be a probability measure on (~r, B(7’)), r E N. The Fourier
transform ... , kr) of the measure P is defined by equality

where ki E Z, xj E 1, j = 1, ... r.

LEMMA 3. Let ~Pn} be a sequence of probability measures on (,r, B(,r))
and let ... , kr) } be a sequence of corresponding Fourier transforms.
Suppose that for every set (ki, ... , kr) of integers the limit g (ki, ... , =

lim ... , l~r) exists. Then there exists a probability measure P on
n-~oo

(¡r, B(,r)) such that Pn converges weakly to P as n - oo. Moreover,
o (k1, ... , kr) is the Fourier transform of P .

Proof. Lemma is a special case of the continuity theorem for probability
measures on compact Abelian groups, see, for example, [3].

The family of probability measures on (8,B(8)) is relatively com-
pact if every sequence of elements of {P} contains a weakly convergent
subsequence.

The family ~P} is tight if for arbitrary e &#x3E; 0 there exists a compact set
K such that P(K) &#x3E; 1 - c for all P from {P}.

LEMMA 4. (The Prokhorov theorem). If the family ofprobability measures
~P} is tight, then it is relatively compact.

Proof of the lemma is contained in [2].
Let G be a region in C. The family of functions regular on G is said to

be compact on G if every sequence of this family contains a subsequence
which converges uniformly on every compact subset K C G.

LEMMA 5. If the family of functions regular on G is uniformly bounded on
every compact subset K C G, then it is compact on G.

Proof can be found, for example, in [6].
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Proof of Theorems 1. As it was noted in [5], the function cp(s) in the half-
plane a &#x3E; a + {3 +1 is presented by absolutely convergent Dirichlet series

First we will prove a limit theorem in the space H(D) for the Dirichlet
polynomial

Let

We will prove that there exists a probability measure PCPn,W on
(H(D) , B (H (D))) such that converges weakly to as T - oo.

Let pl, ... , pr be the distinct primes which divide the product

and let

where -yp, is the unite circle on C for all j = 1, ... , r. Let us define the
function hn : Qr - H(D~ by the formula

for (xl, ... , x,) E Qr. Here means that but Clearly,
the function hn is continuous on Our and
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Now we define on the probability measure

Then the Fourier transform
is given by the formula

Hence, integrating by parts and using the properties of the function w (T),
we fing that

Since the logarithms of prime numbers are linearly independent over the
field of rational numbers, whence we deduce that

as T - oo. Therefore, by Lemma 3 the measure pT,w converges weakly
to the Haar measure mr on (Hr) B(Qr)) as T 2013~ oo. Taking into account
the continuity of the function hn and the formula (4), we obtain in view
of Lemma 1 that the measure converges weakly to the measure

as T - oo.

Let K be a compact subset of the half-plane D. Since the Dirichlet series
for p (s) is absolutely and hence uniformly convergent for a &#x3E; a + (3 +1, we
have that

Let 8 be a random variable defined on the probability space ,A, B(A), P)
with values on ] and having the distribution
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We take

Then from weak convergence of the measure we have that

where X n denote an H(D)-valued random element with the distribution

It is well known that there is a sequence of compact subsets of D
such that 

~

and the sets Kn can be choosen to satisfy the following conditions:

a) Kn C 

b) if K is a compact and K C D, then K C Kn for some n.

For f , g E H(D) let

where

Then from the remark made above we have that p is a metric on H(D)
which induces its topology.

Let 1 E N. Then by Chebyshev’s inequality

Therefore
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Since the series for cp(s) converges absolutely on D, we have that

Let c be an arbitrary positive number, and let

Then (7) and (8) give

for all I E N. Let the function h : defined by the formula

Then, cleaxly, h is continuous, and

according to (6), continuity of h and Lemma 1. Hence, using the inequality
(9), we find that

for all l E N. Let us define

Then the family of functions H, is uniformly bounded on every compact
K C D. But by Lemma 5 then it is compact on D. In view of (10)

or, since Pn,w is the distribution of the random element 
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for all n &#x3E; 1. This gives the tightness of the family of probability measures
Hence by Lemma 4 it is relatively compact. Let be a

subsequence of such that Pn,,w converges weakly to Pw as n --~ oo.
Then, clearly,

The convergence of the series for cp(s) is uniform on the half-plane 7 &#x3E;
a + (3 +1 + 6 for every 6 &#x3E; 0. Hence we find that

Let us put

Then from (12) we get

for every - &#x3E; 0. Thus, by Lemma 2 and (6), (11), (13) it follows that

what proves the theorem.

Proof of Theorem 2. Part 1. First we suppose that is analytic in DI.
Then we will prove that the probability measure

converges weakly to some measure Q", on (H(Dl), B(H(Dd)) as T - oo.
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Let ai &#x3E; ~ and n E N. We define the function

in the strip -1   1. Here, as usual, denote the Euler gamma-
function. Moreover, let, for 0" &#x3E; p,

Since

uniformly in (7, a’  (7", as t ~ I - oo, it follows from (2) that the
integral for pi n (s) exists. Let

Consider the weak convergence of the measure QT,n,w . Since 0’ &#x3E; 

a + /3 + 2 and ~1 &#x3E; 2 , then a + ~1 &#x3E; a + /? +1, and the function p(s + z),
for Rez = is presented by absolutely convergent series

Let us consider the series

where

Since
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the series (14) converges absolutely for a &#x3E; a + {3 +!. Thus, interchanging
sum and integral in the definition of cpln(s), we find

It is well known that, for positive numbers a and b,

Therefore it is easy to calculate that

Consequently, the equality (15) may be written as

the series being absolutely convergent for 7 &#x3E; po. Thus, repeating the
proof of Theorem 1, we deduce that there exists a probability measure

Qn,w on such that QT,n,w converges weakly to Qn,w
as T -~ oo.

Let .K be a compact subset of DI. We will prove that

We begin by changing the contour in the integral for pi n (s). The integrand
has a simple pole at z = 0. Let po + e, e &#x3E; 0, whens E K, and we put
~2 = po + ~. Then by the residue theorem
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Denote by L a simple closed contour lying in Dl and enclosing the set K,
and let 6 denote the distance of L from the set K. Then by the Cauchy
formula we have

Therefore

Here by I L we denote the lenght of L. By the formula (17)

Thus, in view of (3),
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Consequently, since v is bounded by a constant,

as n -~ oo. The contour L can be choosen so that, for s E L, the inequalities
o &#x3E; po + 3: hold. Thus, the relation (16) is a consequence of
(18) and (19).
Now we already can prove a limit theorem for the measure Let

where the random variable 0 is defined in the proof of Theorem 1. Since

QT,n,w converges weakly to Q~,w as T - oo, hence we have that

where X n,w is an H(Di)- valued random element with the distribution
Qn,w. · Since the series for is absolutely convergent, we obtain sim-
ilarly as in the proof of Theorem 1 that the family of measures is

tight, and therefore by Lemma 4 it is relatively compact. Applying the
Chebyshev inequality, we deduce from (16) that, for every c &#x3E; 0,

Here p is a metric on H (D1) defined by the same manner as in the proof
of Theorem 1. Let us take

Then the relation (21) can be written in the form



157

Let (Qn,,w) be a subsequence of which converges weakly to the
measure say, as n’ ---~ oo. Then we have that

From this, using Lemma 2 again, we obtain in view of (20) and (22) that

The latter relation is an equivalent of the weak convergence of QT,w to 
as T 2013~ oo .

Part 2. Let o and p be two functions satisfying the hypotheses of Part
1. On (H2(Dl)’ ,~ (HZ ~D1 ~~ we define the probability measure

Then, reasoning similarly as in Part 1, we can prove that there exists a

probability measure Q§/~ on such that con-

verges weakly to Q~ as T 2013~ oo.

Part 3. Now let ~p(s) be as in Theorem 2. Since all poles of p(s) are
included in a compact set, the number r of these poles in finite. Denote
they by 81, ... , sr, and let

Then the function is analytic in D1, and, for u &#x3E; 0: + /3 +1, it is given
by an absolutely convergent Dirichlet series. The estimate (3) for 0(s) is
satisfied, too. Consequently, by Part 2 the measure Q". converges weakly
to some measure Q’ as T 2013~ oo.

Let the function h : H2 (D1) --~ M(D1) be given by the formula

Since the metric d satisfies the equality
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the function h is continuous. Therefore, from Lemma 1 we find that the
measure QT,w converges weakly to as T - oo. Theorem 2 is proved.
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