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LIMIT THEOREMS FOR THE PETERSBURG GAME

SANDOR CSORGO ! and ROSSITZA DODUNEKOVA 2

We determine all possible subsequences {n}$2 , of the positive integers for which the
suitably centered and normalized total gain Sy, in n; Petersburg games has an asymptotic
distribution as k — oo, and identify the corresponding set of limiting distributions. We
also solve all the companion problems for lightly, moderately, and heavily trimmed versions

of the sum S,, and for the respective sums of extreme values in Sn,-

1. INTRODUCTION

A virtually complete and unified theory of the asymptotic distribution of sums of order
statistics has been recently worked out in the three papers (3, 4, 5] with |2] augmenting and
rounding off the study in [3]. (See, however (7], and also the survey [6].) Although a number
of ad hoc examples are scattered in these papers to illustrate various interesting phenomena,
we felt that there was a need for a didactic type of a paper that would illustrate all the
limit theorems in the above articles on a single, sufficiently complex but still manageable
example which, most importantly, is interesting in its own right. Our attention was drawn
to the famous Petersburg game by an interesting paper of Martin-Lof [10]. Since the "time-
honored” Petersburg paradox, as Feller ([8], X. 4) describes it, has been around for 276
years (since the publication of the second edition of Montmort’s book in 1713), it is clearly

of sufficient interst in itself, and it turns out that it also satisfies the other criteria.
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The ’paradox’ has been originally posed by Nicolaus Bernoulli to Montmort in 1713,
and the English translation of the nice account of it by Daniel Bernoulli in 1738 is given by
Martin-Lof [10]. For a recent historical account and references see Shafer [11]. Following
Feller and Martin-L&f, and hence doubling the gain of the Bernoullis, the Petersburg game
consists in tossing a fair coin until it falls heads; if this occurs at the k-th throw the player
receives 2% ducates. Hence if X is the gain at a single trial we have P{X = 2k} = 2-k,
k=1,2,...,and

0 , T <2,
(1.1) Fz)=P{X <z} =
{ 1-2ikeez] "z >
where, and throughout in this paper Log stands for the logarithm to the base 2, |y| =
max{j : j integer, j < y} is the usual integer part function and we shall neeed ([y] =
min{j : j integer, j > y}, y €R.

Let Xy, X2,... be independent copies of X, the gains at the first, second,... trials, so

that S, = X; +...+ X, is the total gain in n consecutive Petersburg games. Feller proved

that
(1.2) Sn / (nLogn) -p1 as n - oo,

where — p denotes convergence in probability and, denoting by —p convergence in distri-
bution, Martin-L6f proved that

Szt

(1.3) =

—k—-pV as k- oo,
where, if A,,r =0,%1,+2,..., are independent Poisson random variables with EA, =271,

— 00 o ¢]
V=3 (a-272+ Y a2,
r=1

r=0

and hence, with ¢ denoting the imaginary unit,

— oo oG
(1.4) Ee'V' = exp {22"(82" S 1-a27) 4+ Y 27 - 1)}
r=0

r=1




for any t € R. The limit theorem (1.3) then forms a basis for Martin-L&f to develop a

premium formula ”which clarifies the 'Petersburg paradox’ ”, at least when the game is
played in blocks of the size 2%, k = 1,2, ..., and is very favorable for the casino.

At this point two questions arise. The result in (1.3) means that the Petersburg
distribution is in the domain of partial attraction of the infinitely divisible distribution of
V. Since V is obviously not a stable random variable, it follows from (1.3) and Theorem 10
in [2] that F belongs to the domain of partial attraction of continuuin many different types
of infinitely divisible distributions and hence there are just as many principle clarifications
of the paradox. How different are these from one another? The second question is more

practical: What to do if ny games are played, where 25¥~! < nj < 25? Some qualitative

answers to these questions are indicated by the results for the whole sums S,, in Section

2. 1t turns out, in particular, that the two questions are more or less the same.

Since the Petersburg game is exciting exactly because of the occasional large single
gains in the total gain S,,, it is interesting to see the influence of these large gains on
the limiting distribution. Let X, , < ... < X, , be the order statistics pertaining to the

sample X,..., X . Together with the full sums S,,, in Section 2 we also investigate the

ny—m
J=1

~,

lightly trimmed sums S,, (m) = ) Xjn., where m > 1 is a fixed integer, while in
Section 3 we deal with moderately trimmed sums Sy, (m), where my —» oo but my/nx — 0
as k — oo, and heavily trimmed sums S,(n — |fn]), where 1/2 < 8 < 1. But then it is

also interesting to see what happens to the extreme sums S,, — S,, (mx). This is done in

Section 4.

The unified method in (3, 4, 5| and [2] is generally based on the quantile function

Q(s) = inf{z : F(z) > s}, 0 < s < 1, which from (1.1) presently is

. 1 )
(1.5) Q(s)=2" if 1- <s<l—2—r,r=1,2,...,

2r—1 -
and we may put Q(0) = Q(0+) =2, or
(1.6) Q1 - u) = 2fLesl/Wl | gy <,
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1In each of the following three sections we first state all the results of that section, with some .

discussion when appropriate, and the proofs occupy the remaining part of the section.

2. FULL AND LIGHTLY TRIMMED SUMS

The first result restricts the choice of meaningful normalizing and centering sequences.
We generally deal with lightly trimmed sums S, (m) = 3ty Xjni, wheren > 0 is a
fixed integer. Since S, = Z;;] Xjn for each n, we have S,,(0) = S,, so the special case

m = 0 always corresponds to total gains. Subsequences {nk}‘,f“;1 of the positive integers

are always assumed to go to infinity.

THEOREM 2.1. If for some integer my > 0, a subsequence {nx}32 , of the positive
integers, and some constants A, > 0 and C,, € R the sequence (S, (ma) ~ Cn,)/An,
converges in distribution to a non-degenerate random variable W{mg), then for each
subsequence {n}}22, C {nx}{2, and each integer m > O there exist a further subsequence

{n ), C {n}}82, and a constant a = agpmy, 0 < a < oo, such that n:/A"Lr — a and

S " (m) n" m + l " l
W e= —"‘—,—- — | IL k 1- 9llogng 1} -W .
ny (m) " ([ og— 1+ m p ~W(m) + ¢(m)

as k — oo, where c¢(m) is some constant, W (my) is as before, and none of the other random

variables W (m) is degenerate.

The theorem shows that using the normalizing sequence {nx} and the indicated
centering sequence we can achieve all possible limiting types and hence we can restrict
attention to these sequences without loss of generality when answering, in particular, the

questions posed in the introduction concerning total gains.

Define W,, = W,, (0) as above, replacing n',: by ny everywhere. Let us agree that in
the diadic expansion of a number 7, 1/2 < 4 < 1, given by

0o k
- (9T — 1 - (97 LS
(2.1) 'y—ZaJ/Z ‘klﬁléos"’ sk—Za,/z’, k>1,



where aj = 1 and a; = 0 or 1 for j > 2, we exclude all the sequences (1,a2,as,...)
which contain only a finite number of non-zero elements. Let E\, E,,... be independent
exponential random variables with the common expectation 1 and with the Gammay(j)
random variables Y; = E, + ...+ E; as jump-points, consider the standard left-continuous

. Poisson process

oo

(2.2) N(s) =) I(¥j<s), s>0,

i=1

where I(-) is the indicator function. Also, consider the independent increments

(2.3) A7) =N(AH2""™) = N(127"), r =0,%1,%2,..., where - <~<1

DN | =

is a fixed number.

THEOREM 2.2. For a given subsequence {n;}3, of the positive integers the

sequence W, converges in distribution as k — oo if and only if

- . nk —_— M Lo .~ Lo s —
‘ (2.4) kln_{go SThegm] = lerrgOZ ene—{Lognil = o for some

i

<"

DO | =

In this case, for any integer m > 0,

Sp, (m) ng
(2.5) ;i — [Log n l] ~p V,(m),
where, with
(2.6) ©l(s) = —27ILsle/MI 5 5 0,

Ym +1

1 e ) K .
V,im)=1+ ;{ / (N(s) — s)dp’(s) +/ N(s)dp(s)
2
m+1
) +mp (Ymy1) - / p-(s)ds —m .
1
. In particular, if m = 0 then under (2.4),

(2.7) S

® "

— Logny —p W, :=V, — Logy,



‘where V., = V,,(0) and we have

o0 8]
v, =1, = 1 L) = s+ [T N0 4 1
(2.8) = % {k;(N(’rZ") - 252" + ;N(w‘l"‘)‘l" + v}
-1 {E(Arw 2y 4 Ar(v)zf} .

Furthermore, if vy = 1/2, then the sequence ny = ni(1/2) =25~V 41,k = 1,2,..., satisfies

(2.4), while if 1/2 < 4 < 1, then the sequence
(2.9) nk=nk(y) =25 T+ a2 % 4 4 24ak+1, k=1,2,...,

satisfies (2.4), where a3, as,... are the binary digits in the diadic expansion (2.1).

Martin-L6f’s result in (1.3) is obtained by choosing nx = ni(1) = 2* in (2.9) and
using the third representation of V =V, = W, = U, in (2.8).

It is interesting to note that (2.7) and the general approach in [3], within the framework
of which we work in the proofs, at once imply that if {ng)}z":l, l=1,...,r,arer diffferent

sequences satisfying (2.4) with y = ~,, I = 1,...,r, respectively, then

St ORI (r)
(2.10) (kl) —Lognk ,...,_'(Lr)' - Lognk —’D (th,...,wAl'),
n, n,

where W, = (U, — yLogy)/~ for any of y = 4;, I = 1,...,r, with U, given by any of the
three representations in (2.8) in terms of the same Poisson process. For any t € R, we
have E exp(:U,t) = (E exp(iVt))? with the expression in (1.4) substituted. We see that
Uy, 1/2 < v < 1, determined by (2.10) and explicitly given in (2.8) is a segment of an
independent-increment or Lévy process. In fact, U,,1/2 <4< 1, is a segment of a special

semi-stable process as described by Lévy [9; Section 58] and we will demonstrate below

that

(2.11) Wyp = Wy
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The above results show that the continuum many inﬁnitély divisible types of distri-
butions that partially attract the Petersburg distribution is given by the set {Gy:1/2<
v < 1}, where G,(z) = P{W, < 1}, £ € R, and the essential role of the parameter ~ is
in fact to connect the gaps in the special subsequence {2%}° | of Martin-Léf. We plan
to return to this problem by providing a general premium formula that makes successive

Petersburg games asymptoticaly fair in a special subsequent note.

In order to get some additional feeling concerning the limiting distribution function
G, of Wy in (2.7), for each n = 1,2,..., let L,(7) be the Lévy distance between G, and

the approximating distribution function

n

1 oty
GW(z) =P Z Zo—ILog(Y,/7)] _ lLog%J +1

-Logy<z;, reR.
B

L
—~ ~2lLog(n/v)]
J:

Note that, in addition to (2.10), the general probabilistic approach in [3] and the details

of the proofs below imply that if {ns} satisfies (2.4) then for any integers I, > 0,

1 nk i
;‘; (Snk (I) - 7lk[L0gm1, XYLL“"K+|,ﬂk"" ’Ank,nl)
(2.12) | .
—p (Vﬁl(l), —2~ b/} _2-lLt'g(Y./7)J)
v v
as k — 0o, and so the sum
m
Z 12~1L0g(1’;/7)J
—
1=1

may be looked upon as the asymptotic contribution of the largest m gains to the limiting
distribution of the total gain Sy, in (2.5). The following result is a corollary to the Theorem

in 1] after some straightforward but lengthier calculations not reproduced here.

THEOREM 2.3. For any v > 0 and any positive number p < 1, L,(Y) = o(n~#/2)

asn — 0o.

Now we turn to the proofs of the first two theorems. Throughout the paper, all the

asymptotic relations are understood to take place as k — oo if not specified otherwise.
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Proof of Theorem 2.1. According to the results in (3,2], the limiting behavior
of centered and normalized finitely trimmed sums is by and large determined by the

asymptotic behavior of the function

0 (s,t) = /SH /dl_t(u A v - uv)dQ(u)dO(v)

1-1

(2.13) =sQ*(s) +tQ*(1 - t) + Q*(u)du

-t 2

- {sQ(s) +tQ(1 -¢t) + Q(u)du}

8
as s, | 0, where u A v = min(u,v) and this well-known equality holds for any 0 < s <
1 -t < 1. Presently we need the function o%(s) = 02(s,s), 0 < s < 1/2, for which,

substituting (1.5) and (1.6) into (2.13), we obtain by simple calculation that

0%(s) =2"3-2-(r+1)2, if % <s<
or, what is the same,
o?(s) = 2MLsU/)3 5 . ([Log(1/s)] + 1)2, 0 < s« 1/2.
Hence the asymptotic equality
(2.14) o(s) ~ V3 2llee/9l/2 55 5 g

holds, and from the same calculation we also have

1-a

[ Qu)du = [Log_] + 1 - 2sC/9ls,

(2.15) 0
Q2(u)du = 2[’-'08(1/3)]3 -2_ 22[Log(l/s)]s’ 0<s<1.

1 Jo

Thus for the sequence

(2.16) a(nk) = ynxo(1/nx), k=1,2,...,

8



‘we have by (2.14),

ng

. glLugni ] 1/2
(2.17) a(nk) ~ V3 /mg2ltoenl/2 = <3——> k.
Introducing
(2.18) ar = ap, = [Logni] — Logny and @, = Logs - | Logs],
where, obviously, 0 < ax, s < 1 for any k > 1 and s > 0, we have

[Lognk| — |Logs| , if 0< ap+ <1,
[Log(nk/s)] =
[Logni] — |Logs| =1 , if 1<ax+p,<2.

Whence and from (1.6) and (2.17),

s 2—[L..x-j 2[Lugn.] -
Q(l nk) - V3 V nkk ,OSak'i‘ﬂs‘\]a

$) 1= ~ ~
‘Pnk( ) a(nk) _2_1:;:‘-1‘ [alLogng] 1< ap+ 8, <2,
2V3 ny - s

for any fixed s > 0, where this function plays the role of v, (nk,s) in |3, 2|.

(2.19)

The assumption of the theorem and Theorem 5 in [3] imply that for each subse-
quence {n}} C {nx} there is a further subsequence {n) {C {n}} such that both se-
quences Q(s/n:')/A";c" and a(n:')gpn:kn (s)/An:u of functions converge weakly (denoted
in what follows by =) on (0,0) to some finite functions v, and s, respectively, and

a(n, )/An;u — 6, where 0 < § < oo. Since, necessarily, A,, — o0, it follows from (1.5)

that ©; = 0. But, since
(2.20) 1<2fbeesl /g a0 550,

it is clear that if § were zero then we woul(i have v, = 0, and then by the same Theorem 5 in
[3] the limiting random variable W (mg) would be degenerate. Hence § > 0 and, necessarily,
w2 # 0. Therefore, Pl () = 6~ 'p2(-), and thus by (2.20) there is a further subsequence
{n{¥} c {n,'} such that a(n{cv)gon’,‘v (-)/nt¥ = ap() for some a > 0. If we now define

W"i" (m) as Wi (m) in the theorem upon replacing [Lognf¥] by [Log(nl¥ /(m + 1))],

9



then by Theorem 4 in |3| this W"i" (m) converges in distribution to a~ 'W (n) + ¢(m) for
each m > 0, where in fact the non-degenerate W(m) is rcpresented in a special form,
taking into account (2.15) an the fact that fo'/"" Q(u)du = 2/n; —» 0. Now by (2.20),

Mt Ly Log(a/(ma )] _ M1 [1ogn,)
Nk ng

1-2(m+1) <

<2 (m+ 1),

1 7
and hence for each m > 0 we can choose a further subsequence {n.} < {n{¥} and a

constant c¢(m), both depending on m, such that W u(m) converges as stated. ®
k

We are a little bit sloppy in the defintion of p,, (-) in (2.19). Let 0 < p,, < 1 be
such that p,, | 0 and nxp,, — 0, and define ©n, (s) by (2.19) if 0 < s < ny — kP, ,

while if s > nx — nyp,, then set o, (s) = ~Q(pn)/a(nk). Now o, (-) is a negative,

non-decreasing function on the whole (0, %) with ,, (0) = pn, (04) = —0o0.

LEMMA 2.4. For a given subsequence {rik}32, the functions p,, () converge

weakly to some finite function given on (0,00) if and only if condition (2.4) holds. In

this case,

1 o lLeg/)

__1_ ‘(.)—_
Vi T T

(2.21) Pn (1) = 04() 1=
with the right-continuous function v () taken from (2.6).

Proof. In the notation of (2.18), condition (2.4) is equivalent to
(2.22) ax = oap,, > a forsome 0<a<l,
in which case

(2.23) y=27

First we prove the necessity of (2.22). Suppose that weak convergence takes place but

(2.22) is not true. Then for two subsequences {n}} and {n,} we have a; = Qp — o =

10




liminfay and @, = oy — a = limsupag, where0 < o < @ < 1. Clearly, we can find a
continuity point s > 0 of the limiting function such that for 4, defined in (2.18) we have
a <1- 8, <a,and hence for all k large enough o, < 1- 8, < @, or, what is the saine,

a; +Bs; <1and ax + Bs > 1. Thus from (2.19),

22 : 1 [2% .
’ — —_— _!.L'" s wls B ) b Logs
Pn (8) — \/32 8] and gpnk(,s)_, 2\/32 [Logs)

Equating the two limits, we obtain @ = 2 + a, which is impossible.

Now we consider sufficiency. Using (2.4), (2.22), and (2.23), from (2.19) we obtain
that if0< a < I, or equivalently, 1/2 < 4 < 1, then

i _ 2—[Lugnj

Ty if 3, < 1 1 Logn,

_ 2—[Lugaj

—2\/T_'7_’ if B> 1+ L()g’),

©ny (8) — P (s) =

if vy =1, then -
2~ [Logs]
©n (8) — p1(s) = _—_\/5——’ s > 0,

and if v = 1/2, then

2 lLume] o —
- ’ if ﬂs - 0)

V3/2
if 8, >

"2 (5) - ‘)0]/2(5) = g-lLoga)
T 2./372

\
e

When 7 =1 or v = 1/2, it is obvious that ©+(-) can be written in the form claimed in
(2.21). An elementary argument shows that this is also true when 1/2 < vy < 1. (Of
course, if 1/2 < 4 < 1 then there is no convergence in general at those s > 0 for which
Bs = 1+ Log~y. These are the jump-points s = 42%, k = 0,41,+2,.... See also (2.27)

below.) =

Proof of Theorem 2.2. Before starting the actual proof, we note that for any

sequence {nx} by (2.14) and (2.20) we have

ol(h/nk) 1 np  2flogln/m)] o
o(1/nk) ~ h2Mleemd ™ n,/h h’

11



and hence

(2.24) lim limsupo(h/ni)/o(1/n) = 0.

h—oo ko0
Also, whatever is the sequence {n;} like, it follows from (2.20) that any subsequence
{n}} C {nk} contains a further subsequence {n}} C {n%} such that (2.4) is satisfied along
{n,} and with some 7 = V(n"y» 1/2 < 4 < 1. Then by (2.17), a(n})/n, — /3/7 and

hence by Lemma 2.4, for ¢}, (-) = a(nk)@n, (-)/ni we have
()= 2030)
‘pnlk' ’7¢', .

Since Q((s/nk)+)/nk — 0 forall s > 0, this last weak convergence, (2.24) and (2.15) imply
by an application of Theorem 1* in |2| (which is an augmented form of Theorem 1 in 13])

that for any m > 0 in W_« (m) of Theorem 2.1 we have
k

1
Wn: (m) —p ;V(,,m(O, 50:,,0)
l oo )’,,,+|
= — / (N(s) - s)dp’(s) - / sdp! (s)
g Y, 41 1
m+1]
tmey ) = [ (o)ds — 03 .
1
Now if Wy, = W, (0) converges in distribution, then its subsequental limits are

all of the form V;,0(0,05,0)/v having an infinitely divisible distribution. Since this
representation, being a special case of the general representation in Theorem 3 in (3],
is unique, it follows that ¥ must be the same for all the above subsequences {n',:}, and

hence (2.4) is necessarily satisfied.

Suppose now (2.4).Then for any m > 0, the above convergence of Wy, (m) takes place

along the original {ny}. It follows then that the left side of (2.5) converges in distribution

to

1 . m+1
(2.25) ;V0,m(0, 80,7,0) +1 - ~ )

C 12




and since by easy manipulation one can see that

L e -ade- [ st

Ym +1

= /:o ~ s)dp’(s) + /’7 N(s)dp (s) + /]sdgo:,(s)

wet v
(in fact, regardless of a meaningful function ¢ replacing the present 99,,) and, separating

the cases 7y =1/2 and 1/2 < 4 < 1, that

1
/ sdpi(s) - (1) =1, 1/2= <1
8]

(see (2.27) below), it is clear that the limit in (2.25) is the same as V., (m) in (2.5). Thus

(2.5) holds, and since under (2.4),
(2.26) [Logng] — Logny — —Logy,

the convergence in (2.7) and the first representation in (2.8) also follow. Furthermore,

since the function ¢ in (2.6) can be written as
(2.27) po(s) =-27% 2k <s <2kl Kk =0,41,12,...,

the second representation in (2.8) follows from the first by carrying out the integration.

To prove the last equation in (2.8), note that by simple computation,

J
Y (v — y2k)2k 4 L N(v27%)2* + ~

k=1 k=0
i1 | o
=) ([N(a2*¥*1) = N(12%)] - 42%) 27% + [N (427) = 427|277
k=0

+ Z[N(’yZ'k“) ~ N(727%)]2% + N(y27/)2/+!

for each j > 1. Since the second term goes to zero almost surely by the law of large
numbers as j — oo and the fourth term is almost surely zero for all j large enough, the

last line of (2.8) follows upon letting j — oo.

13



Finally, it is trivial that nx(1/2) = 2*¥-1 4+ 1 satisfies (2.4) with v = 1/2. Also, if

1/2 < v < 1, then it is plain that [Logn(y)] = k for the sequence nx(y) in (2.9) and

hence, in the notation of (2.1),

ne(v)  _nely) Lk
2fLogni (1)1 ~ ok K 27—

The theorem is completely proved. m

Proof of (2.11). From the third representation in (2.8) we obtain

S 1 5 () ()

, 75) -V (5)

+ (N0 - NGQI- 3)2- V) - Q)12

li
=
I

M8

I~

(IN@™*') - N(27)) - 27) 2l + Z [N

It
(=]

:Vl - la

which is the same as (2.11). m

3. MODERATELY AND HEAVILY TRIMMED SUMS

Let {nx}g2, and {m,, }32, be two subsequences of the positive integers such that
(3.1) my — oo and my, /ng — 0,

and consider the moderately trimmed sums

nj mnk

Sny (mn,) = Z Xjni-

o,
—

The first result is an analogue of Theorem 2.1 in the present setting.

14



THEOREM 3.1. If (3.1) is satisfied and for some constants A,, > 0 and C,, €
R the sequence (Sn,(mn,) — Cn,)/An, converges in distribution to a non-degenerate
random variable W, then for each subsequence {n}}32, ¢ {ni}, there exist a further

subsequence {ny}g2, C {n}}$2, and a constant a = @iy, 0 < @ < oo, such that

(nk/\/m_n;:)/An: — a and

S " (m " N m_n» Lo "’ (T}
Wy = fmg {_ﬂ__"k) _ ([Log ny ] p1o e s )1)} o
) a

Mg mpyy Mk

as k.— oo, where ¢ is some constant.

Again we see that it is enough to deal with centering and norming sequences of the

3 - . - "
given special form. Define now Wy, as in the above theorem, replacing n, by ng. Set

€n, = [Log(ny/mpn,)] — Log(ni/my,).

THEOREM 3.2. For a given subsequence {n;}32 | of the positive integers and a
sequence {my, }32, satisfying (3.1) the sequence W,, converges in distribution as k -+ 0o

if and only if one of the following three mutually exclusive conditions holds :

(3.2) VM (1 =27%%) — 00 and /m, (1 -2'""%%) = - o0,

(3.3) Vhn (1 —2'"%) — v for some - oo<v<0,
(3.4) VMn (1 —27°%) - u for some 0<u< oo,
as k — oo.

If (3.2) holds then

(3.5) Y/ {S"* (M) _ ([Log—’-‘i] +1- 32(nk)>} Ny

B(ny) nk -

as k — oo, where Z is a standard normal random variable and

9[Log(ni/my, )] 1/2
B(ny) = .

ng/my,

15



If (3.3) holds then, as k — oo,

Sn, ni
(3.6) N {#ﬁl - Logr::k } —p V6{Z + max(0,v + Z,)},
k n

where (Z, Z3) is a bivariate normal vector with mean vector zero, EZ? = EZ} = 1, and
EZZ, = —+/2/3.
If (3.4) holds then, as k — oo,

(3.7) N Sy (Mne) Log k —p V3{Z 4 max(0, —u — Z,)},
Nk Mmeg,

where (Z, Z3) is a bivariate normal vector with mean vector zero, EZ? = EZ} = 1, and
EZZ, = —-1//3.
Furthermore, the pair of sequences (nk,mp,) where my,, is an arbitrary sequence of

positive integers such that m,, — oo, as k — oo, and
- k-1 k—2 .
ng =my, (2 + ay2 +...tak12+ay), k=1,2,...,

where a3,as,... are the binary digits in the diadic expansion (2.1) of any fixed number
1/2 < 4 < 1, satisfies (3.2).

The pair (nx,m,,) given for any k = 1,2,... by
2qk—fk—l
ny = 92q -1 + 224kme—1 l_v/\/ij + Z v,;270 %, M, =92rk+1 _ 1,

Jj=1

where gx and ry are arbitrary positive integers such that
(3.8) : gk —+ 00, Tk —00, and qr—ry - 00 as k — 0o

and vy,v,,... are the binary digits in the diadic expansion of ~v/\/2 — [-v/\/ij satisfies

(3.3) with v < 0, and the pair (nk,my,, ) given by

ng =231 8=, o gdntl 0 g2,
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with gk and ry satisfying (3.8), satisfies (3.3) with v = 0.
Finally, with qx and ry satisfying (3.8), the pair (nx,m,,) given for any k = 1,2,...
by

ng = 2%9% — 224 -1 lu] + Z u;277 5, my, =22 4,

where uy,us,... are the binary digits in the diadic expansion of u — lu], satisfies (3.4) with

u > 0, while the pair (nx,m,,) given for any k = 1,2,... by
ng=2%"1"m, =2 4]
satisfies (3.4) with u = 0.

We note that when talking about a binary expansion of a number in (0, 1) in the
above theorem we always use the convention following (2.1), but we also assume that all

the binary digits of zero are zero.

It is interesting to point out the fact that the sequence B(ny) in (3.5), for which by

(2.20) we have
(3.9) 1 < B(ny) < V2,
does not in general converge under (3.2). In fact, if

0 < liminfe,, <limsupe,, <1
—oo k—o0

then we always have (3.2).

The last result of this section is for heavily trimmed sums

LAn]
1
Saln — =Y X,n, where ;<f<l.
(n —|Bn]) 5, where 2<ﬂ

=1
It is a special case of a half-sided version of Theorem 5 in |4] easily stated for an underlying

distribution that is concentrated on the positive half line.
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THEOREM 3.3. (i) If -Log(1 — B) is not an integer, then

in ,
Z}ilj )‘J'.n

\/7—‘{ - —#(ﬂ)} —p 0,(0,0)2

as n — oo, where Z is a standard normal random variable,
u(B) = 2 - [Log(1 - §)] - 2(1 - pJz~ b1 5 g
and
01(0,8) = (6{27 118 -A1 -1} 4 2[Log(1 - B)] - [Log(1 - 8)]%)"/*.

(ii) If —-Log(1 — B) is an integer, then

[An] X
/r {Z—_n—‘ - Losi—f—é} 25 03(0,8)Z + (1 - )~V max(0, - ),

where (Z, Z3) is a bivariate normal vector with mean vector zero, EZ? = 1, EZ2 = B3, and
EZZ; = -{28+ (1 - B)Log(1 - B)}/{1 + 28— (1 - B)(1 — Log(1 — §))*}"/*
and where 02(0,8) = ({1 + 26~ (1 — 8)(1 - Log(1 - 8))2}/(1 - p))"/2.

Part (i) of this theorem leads to an interesting modification of the Petersburg game.
Suppose the casino and the player agree to play n consecutive Petersburg games so that
the largest n — | An| principal gains will not be payed to the player, where —Log(1 - 0) is

not an integer. Since we have

[ R

¢ 2 ,
=1 1=1

[Bn] 1 LBn|
P Z Xjn > nu(B) p — and P Z Xjn<nu(B) ) -~

as n — oo, the fair premium for the player to pay to the casino for playing this sequence of
n games is nu(B) if n is large enough. Of course the casino can also determine a different

premium formula from part (i) of the theorem to raise unfairly its fair chance 1/2.

Proof of Theorem 3.1. Presently we need the norming sequence

an,, (mnk) = \/'_{Za(m"k /nk)a

18




instead of the one in (2.16), for which by (2.14),

' 1/2
2[]1ng(nk/m“ y )]
(3.10) @n, (Mn,) ~ V3y/mg2lbostn/mu V2 = (3-_ . ™

Also, we use €4 = €,, in the formulation of Theorem 3.2, that is
(3.11) ek = €n, = [Log(ni/mn,)] — Log(ng/my,),

and introduce the functions, that play the role of ¥ ,, in |4],

o (2) = Y o (1 e /T ) gy ey VT

ng Nk

on R by setting ¥, () = ¥n, (— /My, /2) if £ < =M, /2 and ¥, (z) = ¥, (\/M7, /2)
if z > /my,, /2. We can separate the values of these functions according to the three
alternatives di(z) > 1, 0 < di(z) < 1, and di(z) < 0, where, with &, from (3.11),

di(z) = ex + Log(l — z/,/my,), and after showing‘that
de(z) >1 ifandonlyif z<0 and Vi, (1 =217 > r,
0<di(z) <1 ifandonlyif v’r_n::(l—‘zl‘fk) <z (1 - 275,
di(z) <0 ifandonlyif >0 and z> > /M, (1 — 2754,

we obtain by (1.6) and (2.14) that for any fixed z € R,
—\/i— B(nx) ,ifz<0 and Vn (1= 2175) > 1,
(3.12)  n (z)~40 A M (1= 217 ) <2 < (1 - 2754),
7I§B(nk) yifz>0 and /g, (1-27%) < g,
where B(ny) is as in (3.5), satisfying (3.9).
Using the assumption of the theorem and the converse half of Theorem 3 in [4] (as
formulated in Section 3 of {6]; see also the end of Section 1 in [5]), we see that for each
{n}} C {ni} there is a further {n}'} C {n%} such that ‘/’n;‘" () = ¥(-) for some finite

function %(-) on R and
an:' (mﬂl" )/Anlku — 6, 0<é <00
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(The case 6§ = 0 can be ruled out again because then the limit would be degenerate.) Thus,
using also (3.10), (3.9), (2.15), Theorem 1 in (4], and the convergence of types theorem, it is
now routine to see that there exist a subsequence {n;} C {n} } and constants 0 < a < oo

and ¢ € R such that all the statements of the theorem hold true. ®

Again, before the proof of Theorem 3.2 we need a technical lemma, paralel to Lemina
2.4. The proof of this lemma uses ideas very similar to those in the proof of Lemma 2.4

but, of necessity, is lengthier and more complicated. In the interest of saving space, it is

omitted here.

LEMMA 3.4. For a given {nx}32, and {m,, }$2, satisfying (3.1) the functions
¥n, converge weakly to some non-decreasing left-continuous function Y on R, satisfying
¥(0) < 0 and ¥(0+) > 0 if and only if one of the conditions (3.2), (3.3) or (3.4) holds. If
(3.2) holds then

(3.13) Yn, () = 0 for every z€R.

If (3.3) holds then
(3.14) Eny = 1, Yn, ()= ¢¥u() on R, and B(ny) — \/5,
where

-1//6 , <v,
m(z):{ VB, e

0 , I > 0.

If (3.4) holds then

(3.15) €ny, =0, Yn () =>9¥*() on R, and B(ny) —1,

where




iProof of Theorem 3.2. First we consider the three sufficiency statements. If (3.2)
holds, then the statement follows by a direct application of Theorem 1 in [4] on account
of (3.13) of Lemma 3.4, using (3.10).

If (3.3) holds then by Lemma 3.4 we have (3.14). Using the norming factor a;, =

nk/\/Mn, instead of an, (M, ) ~ V6 ni/,/Mny, the latter obtained from (3.10) and (3.14),

the left side of (3.6) converges in distribution to

&5+ [ e} otz o )

by Theorem 1 in [4], where the covariance EZZ; = —1/2/3 is obtained by the fact that
presently

ey I-m,, /nx B2
(3.16) Ton, 1= ——Y ¢ sdQ(s) ~ — (124)

ank(m;‘k) 0 \/é ’

which follows by integrating by parts and using formulae (1.6) and (2.15), and hence by
(3.14) we obtain ~/2/3 in the limit.

Finally, if (3.4) holds then the proof is exactly the same as above, replacing the use
of (3.14) by that of (3.15) and noting that presently we use a}, instead of ay, (11,,) ~

ny

V3 nk/\/Mn;, that the limit of the left side of (3.7) is, again by Theorem 1 in [4], now
—Za
V3 {Z + / ¢“(z)dz} = V3{Z + max(0, -u — Z,)},
0

and that (3.16) is still true with v/6 replaced by /3, and hence by (3.15) we now obtain
rem — EZ22Z, = -1/4/3.

Now we turn to necessity. Using (3.10), (3.9), and the converse result referred to in
the proof of Theorem 3.1, it follows that if W,, converges in distribution then for any
subsequence {n}} C {n,} there is a further subsequence {n}} C {n}} such that for ¥, in
(3.12) we have ¢"l’ (‘) = ¥(:) on R for some appropriate limiting function 1. But then by

Lemma 3.4 we must have exactly one of (3.2), (3.3), and (3.4) along {n',:}. Applying now
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Vthe already proved sufficency results along {n',:}, we get one of the three possible limiting
behavior. Since, obviously, no two of the three limiting random variables in (3.5), (3.6),
and (3.7) can be equal in distribution for any choice of v < 0 and u > 0, we see that these
subsequential limits must be the same, exactly one of those in (3.5), (3.6), or (3.7). Since
the subsequence {n}} C {nx} was arbitrary, the necessity statement follows.

The proof of the last statements of the theorein, that is, that the stated constructions
for (3.2), (3.3), and (3.4) to hold are indeed valid is elementary but all together extremely

tedious and lengthy. We challenge the interested reader to check what we state. W

4. EXTREME SUMS

Again and throughout this last section, {n}32, and {mpn, }§2, will be two subse-

quences of the positive integers satisfying (3.1), and we are interested in the exreme sums

ni My,
T
E,. (mﬂk) = Snp — Sn, ("lnk) = E : Xjn = 2 , X 41-jmis
j:nk—m,,k—{—l 17=1

the sums of the largest m,, gains. Following the pattern of the preceding two sections,

first we state the following.

THEOREM 4.1. If for some constants Ap, > 0 and C,,, € R the sequence
(En, (mn,) — Cn,)/An, converges in distribution to a non-degenerate random variable
R, then for each subsequence {n}}32, C {ni}2, there exist a further subsequence

{n:}z‘;l C {ni}32, and a constant a = agyry, 0 < a < oo, such that ":/An;' — a

and
E " (m u) 1
n n
R =4k r m —p -R+c¢
ny ny ":( "l’) P a

as k — oo, where
. 1
Toy (Mn, ) = (22fLognk]—lLu8ﬂAJ—l _ 2[Lugnk1) n_k + [Lognyk] - [Log(nk/mn,)]

+ 2[Log(nk/m,,k ) My,
Nng

and ¢ is some constant.
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Again, let R,, be as above, replacing n',é by nk. Our last result is the following.

THEOREM 4.2. For a given subsequence {ni}3., of positive integers and an
arbitrary subsequence {my,, }22, of positive integers satisfying (3.1) the sequence R,,

converges in distribution if and only if the sequence {nx}g2., satisfies condition (2.4) of

Theorem 2.2 with some 1/2 < v < 1. In this case,

M — (Logmnk + {2“.:08(71}.-/"1',;;)"% + Log-’i — [Log Tk ]}) )] "‘]—’,

ng ng Moy, My,

where W, is the limiting random variable appearing in (2.7).

Of course, the special constructions of {n,} in and above (2.9) for condition (2.4)
are still valid, and we emphasize that {m,, } satisfying (3.1) is completely arbitrary.
The normalizing sequence {n} is the same for full sums and extreme sums. This is
of course entirely natural having (2.12). The results' in Section 2 show that the Petersburg
distribution function F is stochastically compact (cf. [3]) and we also see that the largest
gain X, » is also stochastically compact, with all possible limiting distributions given in

(2.12). So the Petersburg game exhibits the phenomenon discussed in Corollary 12 in [3].

It is interesting to observe the generally non-convergent oscillatory term in the cen-
tering sequence in Theorem 4.2, for which, if log stands for the natural logarithm, it is

easy to see that

1 g < {2fLos<nk/mnm’""~ + Log % — [Log—* 1} <1,
Nk m,,k m,,k

Proof of Theorem 4.1. Recalling the notation in (2.13), we now need to know the
asymptotic behavior of 62(1~mp, /ng,1/nk). Using (1.5), (1.6), (2.13), and both formulae
in (2.15) yield

(1) o*(1 — my, /nk,1/ng) ~ ofLognilg
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for any my, satisfying (3.1). Hence, instead of the special norming sequence /nio(l — .
Mn, [nk,1/ni) designed for extreme sums in [5], we can use a(ny) belonging to whole

sums, since by (2.17),

— 2[Lug1q]
(4.2) vnko(l — my, [ng,1/ng) ~ (32

)

ng
According to [5], here we need the following variants of the functions ©n, and Y, in the
proofs of Theorems 2.1 and 3.1:

“QUI-7=)-)+Q((1- ) -)

LY

0<s<ng—ngpy,,

S_O_ (S) = a(ny) ’
™ “Qpny - )+QUO-5L)-)
a(ng) ’ Ng — NgpPy, < 8§ < 00,

where py, is the sequence introduced before Lemma 2.4, and

m{cz«l—",’;) )= QU - B - 2Ty} ) < Y,

Yue (2) = { B, (= /i1, /2) _ ,ze Yo
'znk(\/mnkﬁ) s lﬂ;‘ < I.

By (2.17), (2.20), (3.10), (3.12), and (4.2) it is obvious that there is a positive constant

C > 0 such that ¥, (z) < C/,/my, for any z € R, and hence by (3. 1),
(4.3) ¥, (2) =0, zel.

On the other hand, with p,, given in (2.19), we have

(4.4) Pn (8) =0n (=) — on (1-), s >0.

Also, by a computation similar to that leading to (4.1) we obtain that for any positive

numbers /,,, such that [,,, — oo and In, /Mn, — 0 we have
(4'5) 02(1 s lnk /nk,mnk /nk) ~ 2["‘“3("‘;/‘",;)'3, .

and from (2.15) and (1.6),

(4.6) 1o ((1 - i)_) L /l'_'/"k Qu)du = rp, (m, ).

—m,,k/nk ‘
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After all these preliminaries we are ready now to prove the theorem. Using the
assumption of it, (4.2), (4.3), (4.4), (2.19), and (2.20), an application of Theorem 2 in
5] shows that for any {n}} C {ny} there is a further subsequence {n} } C {n’} such that

1"

Bur(2) 20, TER, Pun() > () on (0,00) and a(ny)/A,m — 6,

where © is a finite function and § > 0. Hence an application of Theorem 1 in [5], and
the convergence of types theorem provide a subsequence {n,} C {n| } along which the

statements hold. =
Proof of Theorem 4.2. First we note that by (4.1) and (4.5),
(4.7) o(1 — Iy, /ng,mp, [ng)/o(1 — my, [/ng,1/ng) -0

for any sequences {ny} and {m,, } satisfying (3.1) and for any sequence {l,, } of positive
numbers such that {,, — oo and (,, /m,, — 0.

Also, for each fixed s > 0, by (4.4) and (2.19) we have

2—[[.-;;55—]_2 2[L:»uuk] B
. - \/5 n ) Osak_*_lj:a(‘l’
(pnk (S) ~ ~lLoga—] . .
2 ® —2 2l Logny -

2V/3 ™ y V1< a4+ 8,32,
where ay and f, are as in (2.19), and clearly the proof of Lemma 2.1 implies that &, (-)
converges weakly on (0, 00) to some finite function if and only if condition (2.4) holds. In

particular,

(4.8) B () = %(@;(-) ~%:(1)) on (0,00) if and only if (2.4) holds,
where 7 is the left-continuous version of p, given in (2.6).

Assume now that R, converges in distribution along the given {nx}. Consider an
arbitrary subsequence {n}} C {ni}. Then, obviously, there is a further subsequence
{n}} € {n’} such that condition (2.4) is satisfied for some 1/2 < ~ < 1 along this {n, }.

But then, using (4.3), (4.7), and (4.8) along {n,}, it follows from Theorem 1 in |5| that

o0

1

Y,
(49) Ry —» %VO,U(OHB:”O):%{ ﬂ (N(s) - 5)dps, (s) - / sda;(s)-f»;(l)}
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where
o &)

Nisy=)_1(v;<s), s<o,

=1
is the right-continuous version of the left-continuous Poisson process given in (2.2) and
where we use the convention that the symbol ny means fl-'t»y) whenever we integrate with
respect to a left-continuous function, just as the convention that f:’ means f(z,yl whenever
we integrate with respect to a righ-continuous function has been tacitly used throughout

the paper. Using these conventions it is easy to see that

oo Y,
VO,O(O,G;,O) = VO,U(O,tpf,,O) = /y (N(s) - s)dp (s) — /l sdp’ (s) - (,o:,(l),

and hence, using the special case m = 0 of the formula right below (2.25), we see that

(4.9) is the same as
Rn:: -D V‘V’
where V., is as in (2.7) and (2.8). At the same time, just as in the proof of Theorem 2.2, we

see that v must be unique for all these subsequences {n) }, and since {n}} was an arbitrary

subsequence of {n,}, condition (2.4) must hold along {n;}, and hence we also have

Eyp,(my,)

Nk

(410) Rnk = — T, (mnk) D V’y'

Conversely, if condition (2.4) is satisfied then, by (4.3), (4.7), and (4.8), Theorem 1
in |5] implies (4.10). But under (2.4) the first term of r,, (m,,), given in Thorem 4.1

3

converges to zero, and hence by (2.26) we obtain

E : n
—157(1&5) - (Lognk ~ [Log(ni/mn,)] + 2bo8(m/mn, )M:—;—i) —p Wy,
k k

which by adding and subtracting Logrn,, in the centering sequence is clearly equivalent

to the stated convergence in the theorem. ®m
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