Limit Theorems for the Riemann Zeta-Function

by

Antanas Laurinčikas

Department of Mathematics, Vilnius University, Vilnius, Lithuania

KLUWER ACADEMIC PUBLISHERS

DORDRECHT / BOSTON / LONDON

Contents

reface	X1
Chapter 1. Elements of the Probability Theory	1
1.1. Weak Convergence of Probability Measures	1
1.2. Random Elements	4
1.3. Distribution Functions, Characteristic Functions and other Transforms	7
1.4. The Haar Measure	11
1.5. Weak Convergence of Probability Measures on the Complex Plane	12
1.6. Elements of Ergodic Theory	18
1.7. Supports of Random Elements in the Space of Analytic Functions	20
Notes	25
Chapter 2. Dirichlet Series and Dirichlet Polynomials	26
2.1. Definition and Convergence of Dirichlet Series	26
2.2. Perron's Formula	29
2.3. The Euler Identity	32
2.4. The Bessel Functions	33
2.5. A Limit Theorem for Trigonometric Polynomial	35
2.6. The Besicovitch Spaces	38
2.7. Some Estimates for the Dirichlet Polynomials	48
2.8. Riemann Zeta-Function2.9. Dirichlet <i>L</i>-Functions	52 66
2.10. Asymptotics of the Dirichlet Polynomials	72
2.11. Inequality of Large Sieve Type	81
Notes	86

viii CONTENTS

Chapter 3.	Limit Th	eorems for the Modulus of the Riemann Zeta-Function	87
		mit Theorem for the Modulus of the Riemann ta-Function in the Half-Plane $\sigma > 1/2$	87
		oments of the Riemann Zeta-Function near the Critical	93
	3.3. Ne	cessity of the Power Norming	109
		mit Theorem for the Modulus of the Riemann ta-Function near the Critical Line	112
		mit Theorem for the Modulus of the Riemann ta-Function on the Critical Line	118
	3.6. Lin	mit Theorem for the Modulus of the Argument of the	
		emann Zeta-Function	136
	Notes		146
Chapter 4.		eorems for the Riemann Zeta-Function on the Complex	149
		mit Theorems for the Riemann Zeta-Function on the alf-Plane $\sigma > 1/2$	149
		mit Theorem on the Complex Plane for the Riemann ta-Function near and on the Critical Line	157
	Notes		174
Chapter 5.		neorems for the Riemann Zeta-Function in the Space of Functions	179
	5.1. De	efinition of an $H(D)$ -valued Random Element	: 179
	5.2. Li	mit Theorems for the Dirichlet Polynomials in the Space Analytic Functions	184
	5.3. Ap	oplication of the Ergodic Theory	186
	5.4. Ap	opproximation by Mean of the Function $\zeta(s)$ by Absolutely onvergent Series	190
	5.5. Li	mit Theorem in the Space of Analytic Functions for the osolutely Convergent Series	194
	5.6. Pro	oof of Theorem 1.8	198
)	·	202
Chapter 6.	Universa	ality Theorem for the Riemann Zeta-Function	203
	6.1. So	ome Results on the Hilbert Spaces	203

CONTENTS ix

	6.2. The Space H^2 on the Unit Disk	212
	6.3. The Space H^2 over General Domains	214
	6.4. Elements of the Theory of Entire Functions	218
	6.5. The Universality Theorem	224
	6.6. Functional Independence of the Riemann Zeta-Function	232
	Notes	234
Chapter 7.	Limit Theorem for the Riemann Zeta-Function in the Space of Continuous Functions	237
	7.1. Limit Theorem for the Sum $S_T(s)$ in the Space $C(\mathbb{R})$	238
	7.2. Limit Theorem for the Riemann Zeta-Function near the	
	Critical Line in the Space of Continuous Functions	246
	Notes	250
Chapter 8.	Limit Theorems for Dirichlet L-Functions	251
	8.1. Limit Theorem for the Dirichlet <i>L</i> -Functions on the Half-Plane $\sigma > 1/2$	251
	8.2. Limit Theorem for the Dirichlet <i>L</i> -Functions near the Critical Line	254
	8.3. Limit Theorem for the Dirichlet <i>L</i> -functions with an Increasing Modulus	261
	Notes	274
	*	- , ₁ ·
Chapter 9.	Limit Theorem for the Dirichlet Series with Multiplicative Coefficients	276
	9.1. Limit Theorem for $Z(s)$	276
	9.2. The Universality of the Function $Z(s)$	281
	9.3. Functional Independence of the Function $Z(s)$	283
	Notes	284
References	s	286
Notation		291
Subject Inc	dex	295