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LIMIT THEOREMS FOR U-PROCESSES!’

By MIGUEL A. ARCONES AND EVARIST GINE

Mathematical Sciences Research Institute, Berkeley and
University of Connecticut

Necessary and sufficient conditions for the law of large numbers and
sufficient conditions for the central limit theorem for U-processes are
given. These conditions are in terms of random metric entropies. The CLT
and LLN for VC subgraph classes of functions as well as for classes
satisfying bracketing conditions follow as consequences of the general
results. In particular, Liu’s simplicial depth process satisfies both the LLN
and the CLT. Among the techniques used, randomization, decoupling
inequalities, integrability of Gaussian and Rademacher chaos and exponen-
tial inequalities for U-statistics should be mentioned.

1. Introduction. Let (S, ., P)be a probability space and let X,: SN - S
be the coordinate functions [{X;} is thus an i.i.d. sequence with .Z(X,) = P].
Let % be a class of measurable real functions on S™. The U-process based on
P and indexed by ¥ is

Un(f, P) =Uz(f)

1.1 (n - m)!
(1.1) e Y f(X,...X.) feF
n: Ggyeonyip)eln
where I ={(iy,...,i,):i, €N, 1<i; <n; i; # i, if j # k}. These processes

appear often in statistics. For instance, Liu’s simplicial depth process [Liu
(1990)],

-1
Dn(x) - (k i 1) Z IS(Xilr---yXih+1)(x)’ x € Rk’

l<iy< ++ <ipysn

where X, are iid. R*-valued random variables and S(x,,...,%,,,) is the
simplex of R* determined by x,...,x,,, € R*, is a U-process of order & + 1
indexed by the class & = {I,,: x € R*}, C(x) € 8**! = (R*)**! being the set
of all simplices of R* that contain x. Nolan and Pollard (1987, 1988) study the
law of large numbers and the central limit theorem for U-processes of order
m = 2 and give also some interesting examples from density estimation and
statistics of directions. Their study parallels that of empirical processes: They
give sufficient conditions for the central limit theorem to hold in terms of
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integrals of random entropies, as done for empirical processes in, for example,
Section 8 of Giné and Zinn (1984). Of course, they used a symmetrization
technique and an exponential inequality adapted to the new situation. The
object of this article is to further study the limit theory of U-processes,
without restriction to the case m = 2. We also follow patterns from empirical
process theory, and the additional techniques we use include a decoupling
inequality [de la Pefia (1992)], exponential inequalities for U-statistics (includ-
ing a new Bernstein type inequality for degenerate U-statistics) and integrabil-
ity properties (based on hypercontractivity) of Gaussian and Rademacher
chaos [Bonami (1970) and Borell (1979)].

In this section we describe the basics about convergence in law of U-statis-
tics and U-processes, and prove two permanence properties that hold in
general (i.e., without extra measurability assumptions) namely, that the “CLT
property”’ is preserved by finite unions and by convex hulls of classes of
functions, as in the empirical process case. We thank Professor R. M. Dudley
for asking about this and for a discussion on the proofs. Section 2 is devoted to
the description of some basic facts to be used later. It contains a new Bernstein
type inequality for degenerate U-statistics, which is optimal in a certain
sense. Section 3 contains a quite complete study of the law of large num-
bers for U-processes. We obtain a necessary and sufficient condition for
IU? — P™||&— 0 a.s. under measurability, and apply it to several examples in
this section and in Section 6; for instance, the law of large numbers for Banach
valued U-statistics is obtained as a corollary. In Section 4 we study the central
limit theorem for nondegenerate U-statistics. The results are relatively com-
plete—they cover the important VC-subgraph and bracketing cases, and much
more. The more difficult degenerate case is considered in Section 5; some of
the results depend on the above mentioned Bernstein type inequality. There
are examples in each section, but we collect some special ones in Section 6,
particulary the previously mentioned simplicial depth process.

Next we introduce some notation and basic concepts. & will always denote
a collection of real measurable functions on 8™, and the words ‘‘real” and
“measurable” will usually be omitted. Let Gp be the “Brownian bridge”
associated to P, that is, Gp is the centered Gaussian process indexed by
L3(S, P) with covariance

(1.2)  EGp(f)Ge(g) = Pfg — (Pf)(Pg), f,g€L*S,P).

Then the finite dimensional distributions of {nY/2(U* — P™(f)): f€ &} con-
verge in law to the corresponding finite dimensional distributions of
{mGpoP™ XS, ) fe F), where

Proif(x) = [ [f(xroes 2y 1,%) dP(21) -+ dP(2p-1),

and S, f(x;,...,%,) =(mD 'L f(x,,...,x; ), the sum extended over the m!
permutations (i,,...,i,,) of {1,..., m}. As in empirical process theory, we say
that the CLT holds for {nY/2(U" — P™)(f): fe &} (or for F) if
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{GpoP™ 'S, (f) f€ F}is sample continuous on (F, 7p ,,), with

(13) r2.,.(f.8) =P(P™ '8, (f-8) — (P™(f-g)’ fgcF
and if
(1.4) nV/2(U? — P™) -, mGpo P 108, in [*(F).

Convergence in (1.4) is in the sense of Hoffmann-Jgrgensen (1991) [see, e.g.,
Giné and Zinn (1986)]. Proving (1.4) reduces to the central limit theorem for
the empirical process indexed by {P™~1f: f & %) together with convergence
in probability to 0 of certain remainder terms (given by Hoeffding’s decomposi-
tion [Hoeffding (1948))).

If P 'S (f)=0 for all f< &, then the limit in (1.4) is 0. This case,
that is, the case of degenerate %, is mathematically more appealing because it
is genuinely nonlinear (although the nondegenerate case seems to appear more
often in applications). Among the classes of degenerate functions, we will only
consider classes % of P-canonical (i.e., completely degenerate) functions f
since partial degeneracy reduces to the canonical case together with conver-
gence to 0 of remainder terms via Hoeffding’s decomposition. We say that f is
P-canonical if P(S,, f)(xy,...,%,,_1, - ) = 0 for almost all x,,...,%,,_;. If f;
are P-canonical and P™f? < «, i < k < o, then
(1.5) (R 72U £ i < k) =4 (Kp n(Sn f2): 6 < k),
where Kp (S, f) is an element of the chaos of order m associated to Gp
[Rubin and Vitale (1980), Bretagnolle (1983), Dynkin and Mandelbaum (1984),
Gregory (1977) and Serfling (1980) for m = 2]. For ¢ € L% S, P) with P¢ = 0
and P¢? = o}, let h¥(xy,...,x,) = ¢(x) - ¢(x,) and Kp (h?) =
(m)~'?¢,"H,(Gp($)/0,), where H,, is the Hermite polynomial of degree m
and leading coefficient 1. The map A® — K, , (h?) extends to a linear isometry
S,.f— Kp (f) between the subspace of symmetric canonical functions of
L,(S™,P™) and %,(Gp), the Gaussian chaos space of order m [letting, for
each r e N, & c L,(Q, 3, Pr) be the closure of the linear span of the set of
real polynomials of degree r in the variables Gp(f), f € Ly(S, .7, P), %,(Gp)
is defined as &, & &, _;]. We say that a P-canonical % satisfies the CLT if
the process {Kp (S, f): f€ &} has a version with bounded uniformly
continuous paths in (%, ep ), where e, . (f, g) = || f — gllLxpm), and if

(1.6) n™*UN(f) =2 Kp moSu(f) ini(F).

The central limit theorems (1.4) and (1.6) reduce to an asymptotic equicontinu-
ity condition as follows. If Y,,, Y are random elements taking values in {*(%),
then the law of Y is Radon and Y, —» ., Y in [*(%) if and only if the finite
dimensional distributions of Y, converge in law to those of Y and there exists
a pseudometric p on # such that (&, p) is totally bounded and

(1.7) lim lim sup Pr*{ sup |Y,(f) - Y.(g)|> s} —0
8—0 o(f g)<é

for all £ > 0. If this is the case, then the process Y admits a version with

n-—o
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bounded uniformly p-continuous paths and conversely, for any p for which
there is a version of Y in C, (%, p), the conditions (%, p) totally bounded and
(1.7) are necessary and sufficient for the CLT. This result is due to several
authors [see, e.g., Andersen, Giné, Ossiander and Zinn (1988), page 282]. A
proof of it in a special case, which readily extends to the general case, can be
found in Giné and Zinn [(1986), Theorem 1.1.3]. This criterion for weak
convergence will be used throughout in this article. In the CLT for U-statistics
with Gaussian limits (1.4), the distance p in (1.7) can be taken to be
5. ml > 8) = ep (71 1 © S, ()1 1 © S,(g)). Arcones (1991) shows that if the
limit law of a degenerate U-statistic is Radon, then it has a version in
CAF,ep ) and (¥, ep ) is totally bounded. As a consequence, the CLT for
U-processes with canonical kernels (1.6) holds if and only if C (%, ep ,,) is
totally bounded and (1.7) holds with p =ep ,. [The same applies to the
general CLT (1.10) and the distance (1.12).]

Hoeffding’s decomposition of a U-statistic will be repeatedly used, so we
give it here together with some notation. The operator =}, = m, ,, acts on
P™.integrable functions h: S™ — R as follows: .

Wk’mh(xl,...,xk) = (3361 _P) tre (5xk _P)Pm_kh,

where @, -+ Q,h = [ - [h(x,...,x,)dQ(x)) - dQ,(x,). Note that
Tk, m P is a P-canonical function of % variables. Hoeffding’s decomposition is
as follows: For all P™-integrable functions f: S™ — R,
(18) UR(E) = T 70 (mime S )
£=0

The first term is just P™f = P™(U{(f)).

In the previous paragraphs we have implicitly assumed that the functional
f—= UXNf)—P"f is in ["(F). We will assume, without further mention, a
little more, namely,

sup |7y, Sy F(%y,..., %) <o
(1.9) fes
forall x,,...,x, € Sand £ =0,1,...,m.

We must also impose some measurability requirements on the classes %. In
fact the classes % must satisfy measurability conditions allowing for: (1)
replace outer probability and outer expectation by probability and expectation,
respectively; and (2) randomize (and ‘‘unrandomize”) by Rademacher or nor-
mal multipliers and use Fubini’s theorem, both in expressions involving not
only sup;c Uy — P™)(f)| but also sup; . &Uy* (7, ,, S, f)l for all & <m,
as well as sups of the same expressions over certain subsets of {f — g:
f,g € &)}, denoted below by % . If this is the case, we say that % is
measurable. A very general sufficient condition for % to be measurable is that
& be image admissible Suslin [Dudley (1984), Section 10} and that % satisfy
(1.9). As noted by Dudley, personal communication, if % satisfies these two
conditions then the classes 7,5 = {m, ,,S,, f: f € F} are also image admissi-
ble Suslin: By the definition, in order to see this it suffices to observe that if T":
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Y - F satisfies that (¢, x,,...,x,,) = T()(«,,..., x,,) is jointly measurable,
where (Y, %) is a measurable space, then the map (4, x,,...,x,) >
JT@)(xyq,...,x,)dP(x,) -+ dP(x,) is also jointly measurable (by a monotone
class argument). Then, Theorem 10.3.2 in Dudley (1984) shows that the
operations (1) and (2) on expressions involving the above sups are allowed.

Our notation conforms in general with that of Giné and Zinn (1984). For
instance |l¢ll# = supll¢(f): fe F} if ¢ €I°(F), the envelope F of F is
sups < &| f1 and so on. We say that f: S™ — R is symmetric if S,, f = f.

Next we give two permanence properties of the CLT for U-processes. In this
article we only consider the two cases (1.4) (the nondegenerate case) and (1.6)
(the P-canonical or completely degenerate case). If the class % consists of
square integrable functions which are degenerate of order r — 1 or larger, that
is, such that

m
UR(F) = P™(f) = T (7 JUr(mame S f),
=r
then, for every f € %, the sequence {n"/2(U(f) — P™f)} has the same limit
in law as {(’f)Ur"(w,’ m ° Sy )}, whichis Kp o, . oS, (f). We then say that
F satisfies the CLT if the process {Kp .o, ,,° 8,(f): f€ ¥} has a version
with almost all its trajectories bounded and uniformly continuous for

ep »° My m° S, and if

(1.10) W/ (UR(f)P = P™f) > ™ )Kp,om, o S, f) in 19(5F),

(1.4) and (1.6) correspond, respectively, to r = 1 and r = m in (1.10). Since for
every f, wf m° S,,(f)is a P-canonical function, a modification of Corollary 4.2
reduces the general case to the P-canonical case. So, without loss of generality
we can (under some integrability and measurability conditions) restrict our
attention to the P-canonical case. In the following sections we only consider
the P-canonical and the nondegenerate cases, but in this section we prove the
previously mentioned permanence properties in general.

ProposrTioN 1.1. If % and %, are classes of functions on S™, degenerate
of order at least r — 1 for some fixed r, 1 < r < m, and if both satisfy the CLT
(1.10) for P, then so does the class % U %,.

ProOF. Let us denote by K the process Kp .o, ,, S, and by e(f, g) the
pseudodistance ep (, ., ° S, (f), 7, ., °8S,(g). Then, K has versions which
are chaos random variables with values in C(F,, e), i = 1,2 [Arcones (1991)),
and therefore [e.g., Arcones and Giné (1991)] it has an expansion, which we
keep denoting by K, as follows:

K(f) =(m)™" ) E[K(f)njlemj(il ..... im)(gj)]
(1.11) i1

><sz1Hmj(i1 ..... i (&)
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with convergence taking place uniformly a.s., where m (i, ...,i,) =
e JIG, =j), H,, is the Hermite polynomial of degree m and leading coeffi-
cient 1, and {g j} is an ortho-Gaussian sequence. Since the coefficients
E[K(f)I;, H,, ;, .. :,(&)] are uniformly continuous on (¥, U F,e) it
follows that the process {K(f): fe % U %} has almost all of its trajectories
in C (% U %, e).

As mentioned in comments following (1.7), the CLT for F;, i = 1,2, implies
that for ¢ > 0,

(1.12) lim lim sup Pr*{n"/2|U2 - P™|lgus,e) 2 €} = 0,
d n—o

with F'(8,e) ={f—g: f,g8 € &, e(f, g) < 8} and the pseudometric spaces
(&, e), i = 1,2, are totally bounded. For each & > 0, let 7;: F, U %, » F U
%, be a map with finite range, with 7,(f) € & for fe %, i=1,2, and
such that e(ry(f), f) <8 for all fe & U %, (Such a map exists by total
boundedness.) Then, the following inequalities follow by (1.12), finite dimen-
sional convergence in distribution of U-statistics and sample continuity of K
on ¥ U %y

lim lim sup Pr*{n"/?|U} = P™llis50 5y6s,e) 2 3¢}
80 n—o
2
< lim limsup ), Pr*{n’/zllU,,'f — P™lgs,ey 2 5}
55—

n—oo i=]_

+ lim lim sup Pr*{ max n"/2
f.g€ F1UF; elrs(f), 75(g) <35

-0 5, 50

XI(Ug = P)(ro( £) = ()] = )
< lim Pr{lKllcs;u s3765,0 2 6} = 0.
Therefore, the class %, U %, satisfies the CLT. O

ProPoOSITION 1.2. Let & be a class of functions on 8™, degenerate of order
at least r, 1 <r < m, satisfying the CLT (1.10). Let ¥ be the symmetric
convex hull of & and let & be the set of all limits of functions in #,
simultaneously pointwise and in ZH(P™). Then, & also satisfies the CLT
(1.10).

Proor. This follows by the a.s. representation theorem in Dudley [(1985),
Theorem 4.1], the linearity of U — P™ and of K [cf. (1.11)], and their
continuity for the simultaneous convergence. 0

Finally we should mention that, although we restrict our attention to
U-processes of the form (1.1), the results of this article extend to more general
situations, such as multisample U-processes.
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2. Preliminaries. Randomization by Rademacher variables plays a role
in U-processes similar to the role it plays for regular empirical processes due to
the fact that U-processes can be ‘‘decoupled.” We state here the pertinent
result from de la Pefa (1992) [see also Kwapiei (1987) for other decoupling
results and related techniques]. The statement of the next proposition involves
;5 to ease notation X f;  ; Ils will denote

~~~~~~~~~~

Supfll ,,,,, lme'g.il ,,,,, im|2f‘i1 """ iml.

PrOPOSITION 2.1 [de la Pefia (1992)]. Let & ; ,(iy,...,i) €1, m<
n < o, be classes of functions in L(P™) and let ¢: [0,0) > R be a convex,
increasing function. Let {X;: i € N} be i.i.d. and let {X®: i € N}, bei.i.d.
copies of {X;: i € N}. Then

E*$ o foi( K X)) )
(21) [T i )elr | G
SE*(b( Z fil ..... Lm(XL(il)’7XL(,,:)) )
(€2 i )ell F

If moreover the functions f satisfy f; . i = foiyp,...,06,n for each permuta-
tion o and each i,,...,i,, and they are symmetric (i.e., the classes are
symmetric and the functions in each class are themselves symmetric), then the
reverse inequality holds. If the classes &;  ; are measurable and consist

only of P-canonical functions, then the right-hand side of (2.1) is equivalent to

)

Under the symmetry condition, by further use of (2.1), this is also equivalent to
T |
F

Gyyo . ipdell
where {¢} are i.i.d. independent of {X;} and {¢{®} are independent copies of
{¢,}, independent of {X{®: i € N} ,.

¥ N T (Xi(ll)’ ces X,-(Z‘))

,,,,, 2.
Gyp.nripdeln

(2.2) E¢(

fil ..... i (Xil""’Xim)

im m

(2.3) E¢(

“Rquivalent” for E¢(A) and E¢(B) means that there are constants c; =
c;(m) (independent of ¢, n, F) such that E¢(c;A) < E4(B) < E¢(c,A) and
< means that E¢(c;A) < E¢(B).

The equivalence between (2.1) and (2.3) allows us the use of Khinchin-type
inequalities for the Rademacher chaos.

PropoSITION 2.2 [Borell (1979)]. Let x;  ; be elements in a Banach

space (B, || - ) and let {;} be as above. Then, leting X = ¥; .. <; <n&;, '
g X; i,

L3R5 PR im

_ m/2
(EIXIIP)"? < (p—l) (EIIXI9)Y? foralll <q<p <.
e
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Proposition 2.2 will play the role of the exponential inequalities for sub-
Gaussian processes in empirical processes theory. Another very useful expo-
nential inequality is Bernstein’s (or Prohorov’s) for sums of independent
random variables. This inequality has a well known extension to U-statistics
[Hoeftding (1963)] which will be useful for the treatment of the nondegenerate
case. We present below a new Bernstein type inequality for degenerate U-sta-
tistics.

ProposiTiION 2.3. Let | fll. <¢, Ef(X,,...,X,)=0 and o% =
Ef%X,,...,X,). Then for any t > 0:

t2
(a) P{U(f,P)>t}< exp{ - —27%} [Hoeffding (1963)].
(b) P{UZ(f,P) >t} < exp{—[n/m]t?/c? [Hoeffding (1963)].

If moreover f is P-canonical there are constants c; depending only on m such
that

( ) Gy, ..., im)ely
c
< c,expy — Cth/m
< ¢y €Xp o2/m (Ctl/mn_l/z)Z/(m+1)
and
(d) P{ nom/2 Y f(Xil,...,Xim)' > t} <c exp{—cz(t/c)z/m}.
Gy, i )EIR

These inequalities also hold for decoupled U-statistics.

Proor oF ProrosiTION 2.3(c). We may assume that f is symmetric. We
first note that, by Proposition 2.2, if X =%, _ . _; _,&, ' ¢ a; ..; with
82 =Y, < .. <i_<n@3 ..; ,then thereexist c,(a, m), c,(a, m) € (0, ) such that

forall t>0and 0 < @ < 2/m,
(24) Eet|X|°‘ < ¢y exp<cz(sat)1/(1—am/2)>.

[Proof of inequality (2.4): Developing exp{A| X /s>’ ™} and applying Proposition
2.2 gives that if 0 < Am/2e then there is M(A) < » independent of s such
that E exp{A| X /s> ™} < M(A). To relate | X[*/™ to | X|*, « < 2/m, we use the
inequality |abl < 1/plal” + 1/q|61%1/p + 1/g=1,1 <p < x,a,b € R,
which gives ¢/ X|* < am/2|cX/s|*™ + (1 — am/2)(s% /c®)'/1~*m/2 for any
¢ > 0. Taking ¢ so that A := amc?/™/2 < m/2e and applying the previous
inequality yields (2.4).] Now we take a so that the exponent of s in (2.4) is 2,
that is, @ = 2/(mm + 1), apply (2.3) in Proposition 2.1 to the class of functions
{tY/of: fe F} for a convex function ¥ satisfying 6¥(x) < exp x® < ¥(x) for
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all x > 0 and some § > 0, and then (2.4) with a;

.....

obtain
2/(m+1)
Eexp t n_m/2 Z f(Xil""’Xim)
(1< <ip<n
<c,E exp{czt’"“n_'" Y X Xim)}
(1< <ip<n
(2.5) < ¢, exp{cyo?t™*1}

><Eexp{czt’"“n‘m Y (fz(Xil,...,Xim)

(1< <ip<n

-Ef¥(X,,..., Xm))}.

The constants c,, c, depend only on m, but may not be the same as in (2.4).
Since (m!(n — m)l/nD%; ... o, _,f(X;,..., X, ) is the average of
W(X;,...,X;) over all the permutations (i;,...,7,) of 1,...,n with
W(X,,...,X,) =k 'E, 0 f(X, i1, Xy 1ym) and & = [n/m] [Hoeffding
(1963) e.g., Serfling (1980)], we have, by convexity,

Eexp{czt”‘”n"" Y (fz(Xil,...,Xi )
(1< <ip<n "
—Efz(Xl,...,Xm))}

(2.6) [n/m]

< Eexp{chzt"‘“n‘1 Y (FA(Xivimnmr - Xim)
i=1
-Ef¥(X,,..., Xm))}.

A form of Bernstein’s inequality for i.i.d. random variables is

n t20? 3nt/?
E tn~1/2 < ,ltl < ,
exp{ n i§1§,} exp{2 — (2/3)tcn_1/2} |¢] .

where ¢ are iid., ||l <c, E¢2 =02 E¢ = 0. By applying this inequality in
(2.6) and then in (2.5), we obtain

n-m/2 Y f(Xi-- 0 X, )

Lm
(1< <ip=n

2/(m+1)
Eexp(t

(2.7)

2

4mC§t2(m+1)0'202 }

< tm+1
‘1 exp{02 7 T an- (8/3)meye?tm+t
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Hence,
P{n—'n/2 Y (X, X )| =2 u}
(2.8) i1< o <ip=n
— 41y 2/(m+1) mal 9 4mczt2(m+1)0202
< clexp{ tu + ¢yt o’ + o (8/3)mc2tm+1}'
If we take

t = (uz/(rrt+1)/cz(m + 1)02)1/”‘

[obtained by minimizing —#u2/™*D + ¢ t™*+152], the sum of the first two
terms in the exponent are of the order —c,(u/0)?>/™. This will be the order of
the whole exponent if the third term is smaller than a small constant times
(u/a)?/ ™. Therefore, there are K and ¢, < » such that, under the condition

u2/me?

n0_2(m+1)/m

we have P{n /%L, . o f(X;,...,X; )= u} <c exp{—chu/a)* ™.
If condition (2.9) is not satisfied, then ¢™*! = nc~? gives a bound for the
right-hand side of (2.8) of the order c, exp{—cj(nu2/c?)/™+b} This proves
part (c). O

(2.9) <K,

Proor oF ProrosITION 2.3(d). As in (2.5),

2/(m+1)}

E expit

n-m/2 Y f(Xi,. 0 X; )

i< e <ip<n

<c exp{czt”‘”n_’" Yy X Xim)} < ¢, exp{c,t™*ic?}.
(1< <ip<n

Thus P{n "2%IT;, .. o; < f(X;,. .., X, )l > u} < c; exp{—tu?/ "D +

cyt™*1c?} and (d) follows by minimizing the exponent with respect to ¢. O

The proof for decoupled U-statistics is very similar and is omitted. Note
that the inequality in (¢) is just Bernstein’s when m = 1. Inequality (c) shows
that the tail of the normalized U-statistic n™/2U"(f) for f P-canonical with
P™f? =02 || fll. <c, is of the order of the tail of the limiting chaos process,
namely exp{—cy(t/m)*>/ ™}, only for ¢t < o™*'n™/2/c™ We show next that
this is the correct “breakpoint.” If {X;},{Y;} are two independent sequences,
each iid. but possibly with different laws, then the expression (n(n —
D)7'E; e XY, is a U-statistic [with h((x, y), (z,v)) = (xv + yu)/2 and
P =_Z(X,Y)]. Let, for n fixed, £(V,) =(1/n)é; + (n — 1/n)s,, X; =V, —
EV, and .A(Y,) = (1/2)(8_; + 8,). We show that there exists M < « such that
the inequality Pr{n‘lli(i’j)E,;Xinl > t} < ¢, exp(—cyt /o) cannot happen for
t > Mo®n/c? if n is large, where 02 =n"! and ¢ = 1. Let a, > 0 be such
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that
c, exp{—2c2a3/2(log a)l/z} < Pr{lA — 1| > a} Pr{lgl > (alog a)l/z}

for all @ > a,, where A is Poisson with parameter 1 and g is N(0, 1); this is
satisfied for all a large enough because this product is of the order of
exp(—(3/2)a log a) for a large. Let M = 2a%2(log a,)'/? and ¢ =
2a**(log a)'/2n~/% for a > a,. Then

Pr{in ', XY} > t} < Pr{Tr., X, > a)Pr{ITr,Y;| > (alog a)/?nt/2}
— Pr{Tr_,Y| = a®?(log a)l/znl/z}.

This last expression tends to Pr{{A — 1| > a} Pr{|g| = (a loga)/?} as n —» «. A
similar example gives the optimality of the breakpoint for higher order U-sta-
tistics (one takes the product of m — 1 Rademacher variables and one Bernoulli
1/n). We thank M. Talagrand for comments regarding the optimality property
of the inequality in 2.3(c).

The breakpoint in Bernstein’s inequality for degenerate V-statlstlcs satisfy-
ing |h(X,,..., X, ) < T1" ,g(X,) is different from the above [Borisov (1990)].

Next we state (a.nd 1ndlcate the proof of) Hoeffding’s extension of Chernoff’s
inequality for binomial probabilities [see, e.g., Proposition 2.2.5 in Dudley
(1984)], which is needed below.

ProposiTION 2.4 [Hoeffding (1963)]. Let {X,)7_, be i.i.d. r.v.’s and let h:
— {0,1} with Eh = p. Then, forp <t <1,

1-p )(l—t)[n/m]

pt[n/m]
PUMh) 2t} <|—
{'”()>}<(t) 1-—¢

Proor. For A > 0, using the argument preceding (2.6),
P{Ur(h) = t} < Eeln/mXUntt)=5

[n/m]
<Eexp) ) (h(X1+(j—1)m, s Xprjmym) — t)
j=1
= (pe* 0 + (1 — p)e)"™.
Taking A = log((1 — p)t/p(1 — ¢)) gives the bound. O

We will require a now well known metric entropy bound for processes
satisfying some regularity. This goes back at least to Dudley (1967); the
version here can be found in Fernique (1983) and in Pisier (1983). A Young
function ¥ is an increasing convex function with ¥(0) = 0.

ProposiTION 2.5. Let (T, d) be a a pseudometric space, let ¥ be a Young
function and let {X,, t € T} be a stochastic process with values in a Banach
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space such that EV(| X, — X_||/d(s,#)) <1 for all s,t with d(s,t) < ». Then

E sup |X, - X, < s/ W-YN(T,d,¢)) de,
s, teT

where N(T, d, &) = min{n: 3 a covering of T by n balls of radius < &} and D is
the diameter of (T, d).

A basic elementary inequality in the proof of this proposition is that

E¥(|X;/c]l) <a,i=1,..., N,

(2.10) implies Emax||Xl|| < \I}—l(aN)maX|Ci|
i<N i<N

for any set of Banach space valued random variables X;. (The proof uses only
convexity.)

Proposition 2.5 can be strengthened to a bound involving majorizing mea-
sures [see Ledoux and Talagrand (1991), Chapter 11] and this would produce
somewhat sharper results in what follows but, for simplicity, majorizing
measures will not be considered in this paper.

If a process {X,: t € T} satisfies

_ m/2
(2.11) (EIX, - X,II”)'7" < (%) (EIX, - X,19)"?, 1<qg<p<w

for some m > 1 (see Proposition 2.2), and if

1/2
(2.12) p(s,8) = (EIX, - X,II*)
then it follows easily that E exp{(|X, — X,|l/cp(s, t))?/™} < ¢, where ¢ =
c¢(m) < « depends only on m. We can apply Propos1t10n 2.5 to {X,} with a
Young function of the same order as exp(|x|>™) at «, for instance with
W(x) = X7_,x2"/(mr)), to obtain the following propos1t10n

ProrosiTiON 2.6. If {X,: t € T} satisfies (2.11) and p is as in (2.12), there
is a constant K = K(m) < o such that

(2.13) E sup |X, - X,| < K/ [log N(T,p,£)]™"*ds,

s, teT
D being the p-diameter of T. Moreover, if T is finite, that is, T = {1,..., N},
and N > 2, then

(2.14) E max|| X,| < K(log N)"* max (EI|X,[%)"””.
i<N i<N

We will apply Proposition 2.6 not only to Rademacher chaos processes but
also to the limiting processes of degenerate U-statistics, namely the Gaussian
chaos processes {Kp ,(f): f€ &} described in the introduction. In fact,



1506 M. A. ARCONES AND E. GINE

Nelson [(1973), Theorem 3], showed that:

PropoSITION 2.7.

(E|Kp () — Ko (&))"

(2.15) p—1\"? L

/9

<(q_1) (EIKP,m(f)_KP,m(g)|q)

for 1 <q <p < . Therefore Proposition 2.6 applies to {Kp ,(f). f€ F}
wlth p(f7 g) = eP,m(f’ g)

The following Hoffmann-Jgrgensen type inequality will help us treat inte-
grability in some cases.

ProPOSITION 2.8 [Giné and Zinn (1992b)]. Let & be a measurable class of
real functions on S™. There exist finite constants c{(p), co{ p) and c5(p) € (0,1)
such that

P
E| ) JRCORN (m)f( ., Xm)
i . i
|(i1 ..... i )EIR ! F
1 1
< cytf + e max Yy gD o gD

4

’

Xf(X(l) X(m))
F

where t, is any number satisfying

Pr* {

If moreover the class & consists of P-canonical functions, then the same
inequality holds for the U-process (U f, P): f &€ %), possibly with different
constants.

1 1
T e® e emp(xO, L xm)| > to} <5
[T i,)ell F

Note that, for m = 2 and % uniformly bounded, Proposition 2.8 implies the
following: If {lln"'E ; c 1260 PF(XD, XP)l| 5} is stochastically bounded,
then all the powers of this sequence are uniformly integrable.

3. The law of large numbers for U-processes. We will prove an
analogue of the laws of large numbers for empirical processes of Vapnik and
Cervonenkis (1981) and Giné and Zinn (1984). We introduce some random
entropies that will be used throughout. Given a pseudometric space (%, ¢) the
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g-covering number of (F, e) is

N(e, F,e) = min{n: 3fy..., fo € Fst. sup mine(f, f,) < a}
feg‘l<n
If {X,}/_, are iid. and &% is a class of real functions on S™, then we
define N, (e, F) as the (random) &- coverlng numbers of (¥, e, ), where
e, g) = (UM f— glPpd/mnrt, If{X(”}l 1 J = 1,areii.d. copies of{X )R
then N dec(s F) is the (random) e-covering number of (7, ede") where

)(l/p)/\l

el (f.8) = (<(n—m)!/n!) L (XL X

We also define some other distances, namely,

i 2 (n—'n)'
en,p(f’g): Z 1' Z (f_g)
= ) ..... in): Guyennip)EIR A
D (1/p)nl
X(X; . X )
for 0 < p < », and
(n —m)!
nw(f,g)—max————— Z (f_g) Xi""’Xi
hsn| (n = Db i) Gy, i) EIn (% )

along with their associated covering numbers N (g, #), as well as the same
distances for the decoupled statistic , ~dec( f, &) and N dec(e F). For p =2,

én.,2( f’ g)
(3.1)

_penom)!
(n)!

The following is the main result of this section.

Ea( ‘ )y Eil(f_g)(Xilw--’Xi,,,))z]l/z-

THEOREM 3.1. Let % be a measurable class of symmetric functions on 8™
and let P be a probability measure on (S, .”) such that P™F < «. Then the
following conditions are equivalent:

® U — P™|le— 0 a.s.
() Elln~™X; iyern (X, X; Ng— 0.
(iii) n~*log N, (e, F) > 0 in probability* for all & > 0.

Proor. Since U — P™|l&# is a reverse submartingale [e.g., Nolan and
Pollard (1987)], (i) is equivalent to E||U” — P™||s+~— 0 by Doob’s reversed
submartingale limit theorem [e.g., Dudley (1989), Theorem 10.6.4]. We first
show (i) = (1). In the inequalities that follow ¢ will denote a constant that
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may vary from line to line. We have

E\U; — P&
— !
= c(nn—!m). G E )ezn(f(Xi(ll)""’Xi(r)) a me)”
Trererlm [ F
by Proposition 2.1
(n —m)!
= n!
<E| T (X X = AT 7))
Gyyeooim)EI F

where (Y, )}::1 is an independent copy of { X )}L

m (n—m)!

1

<c
o1 n!
XE| L (f(XD,.., X9, 79, v
(yerig)EIR
_ 1 G- v (m)
FXD, ..., XTI, Y9, 7)) .
by the triangle inequality, after replacing the
X’s by the Y’s, one entry at a time
n—m)l!
< c(——'—)E Y s f(XP,..., XM
n: I =Y £ P
where {,} is a Rademacher sequence independent of { X{}
n—m)!
< ci———)E Y (eghf(Xi(D, o, XY
n! Govooipdell ' "
1 9fm m
+ o +eMF(XD, ., X,-(;”)))’
&
by Jensen’s inequality on the £{/)’s
13
(n —m)!
<c———FE Yy &, F( X X; )
n: Gy, yi)elr
‘.. +simf(Xil,...,Xim)‘ .
by Proposition 2.1 applied to the functions
(yr + -+ +y,) f(xq, ..., x,,), which are sym-
metric in the variables (x;,y,), i < m
(n—m)!
e’ I Y ailf(Xil,...,Xim)‘ .
&

G- yipdeln
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So, (ii) = (i). Now we show (i) = (ii). For simplicity we will consider only the
case m = 2. For ease of notation we will write, in what follows, Pf(X,) instead
of [f(X;,x)dP(x), and Pf(X,) instead of [f(x, X;) dP(x). We have

n—2 Z sif(Xiyxj)
G, Hel} F
T | vBfnt T x|
G, el T @i, )ely F
n™? Y &Pf(X))| +E|n? X emff(X, X))
G, el P G, ely 7

n=? Z &, Pf(X;)

G, pelf pe
n

n~t Y Pf(X;) n? X Ei’n';Zf(Xi,Xj)

Jj=1 G, Helf pe

n~?2 Y eiwizf(Xi,Xj)
(i, pely R

E

<E

+ E

<n VY Pfllg+ 2E

+n"Y2E +E

+E
F

By symmetrization, convexity and decoupling,

1 Y 6, PF(X)) n ! Y e PA(X) ‘sz)"
i=1 = &

1

<0(n"1%) + 2E

n~! i &, Pf(X;)
i=1

E <O0(n"'Y?)+E

F

1
<0(n~'"?) + 2E|n"! i (PF(X;) _sz)N
-1

i

F

<O0(n"V?) + 3E

vt T (1 X) - P

G, j)ely F
<O(n %) + cE||n"2 Y (f(Xi,Xj) —sz)“
G, ely F
We also have, again by decoupling and Jensen’s inequality,
E|ln72 ) si*n';zf(Xi,Xj)‘ <cE|n"2 ) aiw‘;zf(Xi,X;)
G, eIy F G, e} F
=cE|n™? Y wi(f-P¥)X, X))
G, )ely F
<cE|n"? Y (f(Xi,X})—sz)H
G, Nel} F
<cE|n"2 Y (f(Xi,Xj)—P2f)“ .
F

G, Nely
(ii) is proved.
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(ii) = (iii). This part follows from a version of Sudakov’s inequality for
Rademacher processes [Carl and Pajor (1988); see Ledoux and Talagrand
(1991), Corollary 4.14]: If T c RY and r(t) = E sup, TN e,8,l, ¢ =

(¢4,...,¢,), then, for all £ > 0,
N2 1/2
2+ )) ,

r(T)

where d, is Euclidean distance. We apply this result to n/2((n — m)!/n!) -
Yime;, (X, .., X; ), f€ &, noting that the d, distance for this process is
precisely the é, , distance. Hence,

e(log N(T, dy,¢))""* < Kr(T) (log

e(log N, 5(¢, 5))*
(n —m)!
< nl2K E, —'ZEilf(Xil,...,Xim)
A F
l , 1 ) 1/2
X |log|2 + .
E|((n —m)l/n) e F( X s X )| &

Since by (iD), E I((n — m)!/nDLne; f(X;,..., X; )llg— 0 in probability, and
€, 1 < &, 5, (iii) is proved.

(iii) = (ii). Let Sy = {fIz_p: f € F}. Since

(n —m)!

E T Iznﬁilf(Xil, ey Xl"‘)H

F

(n—m)!

<E TZgil(fIFsM)(Xil""7Xim)“ +PmFIFZM
! I -

and P"FI;, 3 — 0 as M — o, it suffices to show

= 0.
Tu

For w fixed, given 8 > 0, let & * be a subset of %, such that #5* =
N, (8, Fy) and sup; ¢ g, Min g« o 5+, ((f, f*) < 8. Then, by (2.14),

(n—m)! z gilf(Xil,...,Xim)Hy

lim limsupE

—> 00 n—oow

(n—m)!
— gsilf(Xiﬂ e X )

n!

<5+ EM(log N, (8, ) 'nm

X max [lZ( Y f(Xil,...,Xim))z]

K
res Ggyoorip): Gy, .o ip)Ell

<8+ K(n 'log N, (8, ?M))l/z'
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Since

én,l( fIFsM,gIFsM) =< é’n,l( f’g) + ZUr:zL(FIFzM)’
it follows that if UZ(FI,, ») < 8/4, then N, (8, %) < N, (6/2, ). Hence

Pr*{n_1 log Nn,l(é, Fu) = a}
<Pr*{n"tlog N, (8/2,F) > &} + Pr{U2(Flp, y) > 8/4} > 0
if EFI,, 3 < 8/4. Thus (ii) holds. O

We should remark that the preceding proof works with N .1 replaced by
N p forany p € [1,2], and also by Nde", p € [1,2]. In the case F<c< o, an
argument in Talagrand [(1987) page 863 reproduced in Dudley, Giné and Z1nn
(1991), page 503] shows that n~'log N, (¢, %) — 0 in probability for all
g > 0 implies n~! log N, (&, &) — 0 in probability for all & > 0; this is the
only nontrivial part of the following statement: For .% uniformly bounded, the
conditions

(3.2) Tim n~'log N, ,(¢, ) = 0 in probability

are all equivalent for p € (0, ], and likewise for N de" . So, in this case, (3.2) [or
(3.2) decoupled] for any 0 < p < = is also necessary and sufficient for the law
of large numbers.

Since ¢, (S, f, S,.&) <e, (f, &), we have the following corollary.

CoroLLARY 3.2. If F is a measurable class, then the conditions P™F < o
and log N, (¢, #)/n — 0 in probability* imply U — P™|#— 0 a.s.

The condition n~"log N, (¢, #) —p, O for all £ > 0 is stronger than the
condition n~'log N, (e, %) —p, 0 for all & > 0. To show this, we exhibit a
class of functions that satisfies the first condition and not the second (for
simplicity, in the case m = 2). First we note that the part (iii) = (ii) in the
proof of Theorem 3.1 shows that n~'log N, (¢, #) —p, 0 for all ¢>0
implies that Elln_221na | (X, X; N ll#— 0. Hence, it is enough to find a class
F such that Elln“zf,,nf(Xl,X )”y-’ 0, but E|ln~ 221na | f(X;, Xl &= 0.
We take S =(—1,1} X [0 1] with the product measure of 1/2)5_, g (1/2)’0‘1
and Lebesgue measure, and X =(g,Y). Let #={h: [0,1]1 > [-1,1]: A is
Borel measurable} and % ={f: S > R: f(x,,x,) = e,85(h(y,) + h(y,)) for
some i € ). Then an argument in the proof of Theorem 3.1 [the last part of
G = (11)] g‘iVeS E”n_zzjélsli f(Xi, XJ)HS"S CE”n—ZZIZ;t f(Xi, XJ)”?, hence’
since

n? Y (X, X)) <2E|n7' Lel|nt L eh(Y))
I P i=1 j=1 v
n
+E|2n"2 ) h(Y,))|| -0,
i=1 >
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it follows that Elln‘2212ns; f(X;, X)lls— 0. We also have that

12
n
E|n"2Y ¢! n? Y ¢
13 i,j=1

h(Y,) + h(Y))]

f(Xi’Xj)|HyZ E

H

-E

n
v aronn]
i=1 G

Conditionally on &' and Y, we take a function i € & such that AY)=(Q1+
£)/2. Then n72%%, (&llh(Y) + h(Y)) = 271 + n'T}_,¢,)% Therefore,

Elln=?L el f(X;, X)) |5+ 0. So, & has the desired properties.
Corollary 3.2 directly gives, by Pollard [(1984), page 27), that:

COROLLARY 3.3. If & is a measurable VC-subgraph class of functions with
P"F < oo, then U — P™||&#— 0 a.s.

For m = 2 this was already observed in Nolan and Pollard (1987).

ExampLE 3.4. Corollary 3.3 provides another proof of Theorem 2.2 in
Helmers, Janssen and Serfling (1988): If A: S™ — R is a Borel symmetric
function and if ¢: (0,1) - R* is continuous, nondecreasing on (0, 8] and
nonincreasing on [1 — 8, 1), for some 0 < 8 < 1/2, and satisfies [{ dt/q(t) < =,
then

(n —m)! Zlh(x,-1 ,,,,, X,m)st_Pm(hSt)

i q(P™(h <t))

In fact the class (I, ., — P(h < £))/q(P(h < #)): t € R} is a VC-subgraph class
and the integrability condition on ¢ gives P"F < o,

-0 a.s.

n!

As another example we obtain the analogue of the Blum—DeHardt law of
large numbers [e.g., Dudley (1984)] for U-statistics. A direct proof is also very
easy to obtain. We recall that N[(]P)(s, &, P™) = min{r: there exist f,,..., f.
and Ay,...,A, € L(P™) st. P™A,” <&P and for all f& F there exists
i <r with |f; — f| <A;}. The set of f’s such that |f, — f| < A, is called the
ith bracket A,.

COROLLARY 3.5. Let F be a measurable class of functions on S™ such that,
for all & > 0, N{(e, #, P™) < . Then U — P™|&— 0 a.s.

Proor. For ¢ > 0 let { fj} and {A j} be a set of functions as in the definition
of N{’(e, #, P™). Then if P™A; <& we have

((n—m)l/n) | b A(X,. . X, ) <e

Gyyeeny t,)elr

for all n > ny(w), for some ny(w) < = a.s. by the law of the large numbers for
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U-statistics. Hence, for each n > ny(w), N, (¢, #) < N{(e, &, P™). Now
Corollary 3.2 gives the result. O

Dudley [(1984), Proposition 6.1.7] shows that if % is the unit ball of the
dual of a separable Banach space B and @ is a Borel probability measure on B
with [[lx||d@ < «, then N (e, &, Q) <oo for all e >0. Let H: S™ > B
satisfy P™||H|| < «, and Iet Q = P™< H . Then Dudley’s observation, to-
gether with Corollary 3.5 applied to 9" ={ f o H: f € B}}, immediately gives
the following theorem.

THEOREM 3.6 (Law of large numbers for B-valued U-statistics). Let B be a

separable Banach space and let H: S™ — B be a measurable function such that
P™||H| < . Then

|Uz(H) - PP(H)| -0 a.s.
ExampLE 3.7. Helmers, Janssen and Serfling (1988) consider a.s. conver-

gence in L, (R, %, 1) p > 1, of the random process U(I, ., P) — P™(h < t),
t € R, for h: 8™ — R symmetric. We prove the following: For p > 1,

E|h["? <o implies |Un(I,.,) = P™{h <t}], > 0 as.

As a consequence of Theorem 3.6 it suffices to show that

1/p

E(fuhs, - P™Mh<t}Pdr|] <.

By Jensen’s inequality in L 510, %),

o0 1/p
(/0 (Pm{IRl > t})" dt) =Bl |, < B[ L) |, = EIWIY? <.

Then [Z.|I,_, — P™h < t})I” dt < 2f5(P™{|h| > t)P dt + |h| and the result
follows.

Conversely, for m = 1, by the LLN, if |UI,_,) — P(h < i, = 0 as.,
then E(f|I,_, — P{h < t}Ip dM)YP <. Since UM, _,) — P{lh <}, <o
implies [J(P{|k| > t})? dt < % and since, for A > 0,

[_ |Ihst—P{hst}|pdt=f0(P{h>t})p+(P{hs —£))" dt

+ [Y((P{h = 8))” = (P{h = 1)) dt
0
(and a similar identity holds for A < 0), we have

lim f|1h<t P(h <t}|Pdt/|lhl=1 and E|r["? < .
|h| =0

ExampLE 3.8. If P is discrete, then any class of functions % on S™ such
that P™F < « satisfies the law of large numbers.
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Proor. We can assume S = N. For reN, let T, = {(n,,...,n,,) € N™:
n;<r} Given &>0, let r be such that [.FdP <e¢/4 and let Z={f:
8™ >R, flre=Flrc or = —Fl|r¢ and, for x € T,, f(x) = ke/2 for some

integer k& such that —1 — 2F(x)/s <k <1 + 2F(x)/¢}. Then ## < » and for
any f € & there are two functions in ¢, say g, and g,, such that g, <f < g,,
&y — &ilr, <e/2 and g, — gylrc = 2F|7:. Hence, Corollary 3.5 applies. O

ExampLE 3.9. If P is'Lebesgue measure (or has a density f with respect to
Lebesgue measure which is bounded and bounded away from zero), then the
class of all the indicator functions of convex sets in [0, 1]™ satisfies the law of
large numbers.

Proor. Bronstein’s theorem (1976) [see also Dudley (1984), 7.3.2] states
that there is a constant ¢ such that log N’ (¢, #, P™) < ce"~"™/%. Hence
Example 3.9 follows from Corollary 3.5. O

ExaMpPLE 3.10. Let F: R™ > R, F > 0, P"F < ». Let, for 0 <a <1 and
c<w, F={g:R" - R:|gx)| < F(x) for all x € R™, |g(x) — g(y)| < clx — y|®
for all x,y € R™}. Then ||[U” — P™||&— 0 a.s.

Proor. Let ®p(x)=x AM V (-=M), M > 0. Then
|f = @po fl < Flp, = FY

so that (U — P™)(f — @y 0 flllg< (U + P™)FM > 0 (as n > » and then
M — «). So, since the modulus of continuity of ®,, > f is not larger than that
of f, we may assume ¥ is uniformly bounded by 1. Let R; be the coordinate
hypercube of side I centered at 0. Then [(U, — P™)flIglls< (U, +
P™)FIp; —> 0 (as n —  and then ! — ®). So we may further assume that the
functions in & are supported by a fixed compact set. But then, by a result of
Kolmogorov [Theorem 7.1.1 in Dudley (1984)] the metric entropy of % with
respect to the sup norm is of the order of ¢ =™/, hence N, (e, &) is at most
of the same order and the law of the large numbers follows from Corollary 3.5.

O

Finally, we consider the LLN for V-processes {V,>(f, P) = P"*f: f € &}. By
decomposition into U-processes and Marcinkiewicz type laws of large numbers
for the diagonals [Sen (1974); see also Giné and Zinn (1992a)] we obtain the
following theorem. Here and elsewhere, given a set C, #C will denote the
cardinality of C.

THEOREM 3.11. If F is measurable with envelope F satisfying the integra-
bility conditions

#{ll ~~~~~ "m)/m

E|F(X,,....X; ) < o,

{(V.2(f): fe F) verifies the LLN if and only if {U(f): f € F} does.
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Proor. We only consider m = 2; the general case is similar. We have
n-—1

n=? f: (f(X;, X;) ~ P*f)

i,j=1

(U (f) —sz)u

F
n

<n"? ¥ F(X,, X,).
i=1

But by the Marcinkiewicz laws of large numbers, n~2L7_,F(X;, X;) - 0 a.s.
a

4. The central limit theorem for nondegenerate U-processes. Asin
the case of a single function f, to prove the CLT for {U(f): f € &} with a
Gaussian limit, we must prove that {n'/?U(w{ , f): f€ F} converges in
() to a Gaussian process and that the processes ||n'/2U(wy . f)ll#— 0 in
probability for 1 < & < m. The first condition is equivalent to the class {Wf wl:
f € F} being P-Donsker, a question that has been thoroughly studied. There-
fore only the second condition must be dealt with. Note that the CLT holds for
& if and only if it holds for S,,.#. So, in this section and in Section 5, only
classes of symmetric functions are considered. In what follows, given a proba-
bility measure P on (S, ), d denotes the pseudodistance on % given by

d*(f,g) =P(P™Y(f-g)),
and then we define
I ={f-g: f,8€ F,d(f,g) <8}
for all 6 > 0.

We begin with a general result similar to Theorem 2.8 in Giné and Zinn
(1986).

THEOREM 4.1. Let & be a measurable class of symmetric functions on S™
such that t2 Pr(F > t} —> 0. Then the following are equivalent:

(a) 7 satisfies the CLT:
(4.1) (nY*UZX(f,P) —P™): fe F} > {mGp-P™"If: fe F}.
(b) (&, d) is totally bounded and

(42) lim lim sup B/ (U3 £, P) = P"f) g = 0

for some (all) 0 <r < 2.
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(0) (&, d) is totally bounded and

n—m+1/2 . Z 8i1f(Xi1""’Xim)

-0

(4.3) lim limsup Pr{

n—ow Gqyenes i€l G
for all A > 0.
(d) (&, d) is totally bounded and
(4.4) lim limsupE||n—m*1/2 N Eilf(Xila cees Xim) =0
-0 poe Gyyenny in)ell? F

for some (all) 0 <r < 2.

ProoF. As observed in the introduction, (a) is equivalent to:
(b") (&%, d) is totally bounded and

lim lim sup Pr{[[n/(Uz(f, P) ~ P"f) |7 2 4) = 0

n—o

for all A > 0.

The equivalence between (d) and (b) is contained in the proof of Theorem
3.1. Hence, we need only prove (c¢) implies (d) and (b’) implies (b). Both proofs
are similar, so we only prove the former. It suffices to show that the sequence

|

is uniformly integrable for small §. This will follow if we show

pomtl2 Y f(Xi,. ., X))

4
< o
9‘;!

n-mt1/2 h Eilf(Xil""’Xim)

Gyyenns i )ell

(4.5) supE

for some p > r, 1 < p < 2. For simplicity we prove (4.5) only for m = 2, the
general case being similar. The constant ¢ in the following inequalities may
vary from line to line. We have, as in the proof of (i) = (ii) in Theorem 3.1,

P
E|n7%% ) & f(X,, X))
G, ey 7
D
<E|n"3%2 Y 8iW§2f(Xi,Xj)
G, Nelp P
n P
+2E|nV2 Y 6, PA(X,)| +0(1).
i=1 F




LIMIT THEOREMS FOR U-PROCESSES 1517

Now,
P
E|n=32 Y siﬂ'izf(Xi,Xj)
G, pely F
P
<cE\n73% Y emi,f(X;, X)) by Proposition 2.1
G, el F
4
<cE|n%? )} eew),f(Xi, X)) by the usual randomization
G, )elp 5
P
<c|E|n32 Y g&m)f(X, X)) )
G, pely F
4
+cEmax|n=%% Y &nf,f(X;, X)) by Proposition 2.8
i=n Jij#i, j<n 2
p
<c|E|n%2% Y si'n'g’zf(Xi,XJ’-) + 0(1)
G, jely F

by randomization and the tail condition on F

n p
Emax| - %< cE'(n”:*/2 Y maxF(Xi,XJ’-))

i<n j=1 i=n

p
< cE(max F(X,, X})/n'?) -0
t<n

p

n¥ Y & f(X,, X)) +0(1)

< c(E
i, ely F

by Jensen’s inequality.
By Hoffmann-Jé¢rgensen’s inequality (Proposition 2.8 with m = 1), the tail
condition on F and Jensen’s inequality,

n P n P
E|n-12 Y 6, Pf(X) sc(E n~2 Y ¢ PF(X,) ) +0(1)
i=1 F i=1 F
p
SC(E 2 Y e f(X,X)| | +o).
G, pelp 7

Therefore, by an argument in the first part of the proof of Theorem 3.1, we
have
p

+0(1).

P

E(n™%% ) & f(X,, X;)

G, pely 7
For § small, this, (4.3) and Paley-Zygmund’s inequality [Kahane (1968), page
6] imply (4.5) and (d) follows. Since this proof involves only expected values

|

n=3% ¥ & f(X,, X;)
G, pelp 7
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(except for the last step which also involves probabilities), it is clear that the
proof of (b’) = (b) is obtained by combining the present proof and that of
(i) < (ii) in Theorem 3.1. O

Note that we also have that (c) and (d) are equivalent to the corresponding
decoupled (c) and (d). Here is an interesting consequence:

CoROLLARY 4.2. Let ¥ c LA(S™, ™, P™) be a measurable class of sym-
metric functions such that t*P™(F > t} > 0. Then the following are equiva-
lent:

(@ & satisﬁes the CLT in (4.1).

(b) P"~'F is a P-Donsker class and ||n*/?U(w, ,, f)”g"—) 0 in probability
and (or) in L, for all (some)0 <r <2, k=2,.

(¢) P" ¥ is a P- Donsker class and

E n—m+1/2 Z (1) (Z)f(X X m)

ll 12

for all (some) 0 <r < 2.
In fact, (¢) or (b) imply (a) without requiring any tail conditions on F.

Proor. It is obvious that (b) implies (a). We prove first that (a) implies (b).
The proof reduces to showing asymptotic equicontinuity for

{nl/ZUk”(w,imf)};l, kE=1,....,m
assuming (a). By Jensen’s inequality and decoupling, for & = 1,..., m,

E n_k+1/2 Zeil,n-}im f(Xi1’ ey Xik)
Iy

y‘;r

< 2*E|n

—m+1/2 23 (X(l) . .,Xi(m))
I "

z
Now Theorem 4.1 (decoupled version) gives the desired asymptotic equiconti-
nuity. Hence (b) holds.

Now, assume (b). We prove (c) in the case m = 2 (the general case is
similar). We have

Ejn=3%2 ¥} i <E|n"3% ¥ .
G, elf P G, jrely 7
+2E(|n"%2 Y
G, pelp p
+E(n"32 Y
G, pel, F

which goes to 0 by (b), symmetrization and decoupling as in previous proofs:
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An argument similar to the one in the last part of the proof of Theorem 4.1
(i.e., Proposition 2.8 and Paley-Zygmund) shows that if [|n*/2U(m,, ,, f)ll&—
0 in probability, then E|n'/2U>(m, ,, f)ll's— 0 forall 0 <r < 2. Now we can
decouple the first summand in the preceding inequality, cancel the £,;’s and ¢)’s
by the usual symmetrization for sums for independent random variables, and
then ““undecouple” to get it dominated by (|n'/2Uy* (1, 5 f)ll s, which tends to
0 by (b). For the second summand, we insert the diagonal, factorize n~/ DY
and compare with n~'U(w;,f). The third summand tends to 0
because [|P*f|ls<  and n™3/?L,e,6; — 0.
Finally we will show that (¢) lmphes (b). We have, for 2 < k <m,

—k+1/2
E n +1/ Z ’Tr]f:mf(Xil,...,Xik)
(ig,...rip)elp 7
< cE|n~k+1/2 Y Thm f(Xfll), e Xi(:)) by decoupling
(iy,....ip)EI} F
< cE|n~k+1/2 Y eePnl (XD, XP)
(ig,..., i€}

by symmetrization

< cE|n—m*1/2 Y ePe@F(XP, ..., X))

Gyyerig)Elr 7
by Jensen’s inequality, repeatedl
Y q Y, rep y
-m+1/2 j j 1
< cE|n ¥V Yy Z eﬁj{ll)eg:)f(Xi(l),...,X{”’:‘))
Gy, .. i)Ell 1<j1<jz<m F
by Jensen’s inequality
- 1/2
< CE n m+1/ Z Z sijlsijzf(Xil"”’Xim)
Gqyevenig)ElR 1< ji<jpg<m F

by decoupling (note that the function

Y yivef(xq,...,%,)of

l<j<k<m
(0, 91) -5 (%, Y) 18 symmetric)
< cElinmtl/2 Z Eilgizf(Xil""’Xim)
Gy,en oty i) F
< cE|n""*2 ) eDePf(X, ..., X,’m)“ by decoupling.
Gy,..ns i)elr 7

The result follows. O
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(a) The case of uniformly bounded &. The following is an analogue for
U-processes of Theorem 2.1.1 in Giné and Zinn (1986).

THEOREM 4.3. Let & be a measurable class of uniformly bounded symmet-
ric functions on S™. If

(i) P™1F is P-pre-Gaussian and

(ii) for some £ > 0,

46 |n2m ¥ silf(Xil,...,Xim)“ 50 inprt,

r—1/4
Fn

then F satisfies the CLT in (4.1).

Proor. Only the changes from the proof in Giné and Zinn [(1986), pages
78-80] are given. Since P™ 1% is P-pre-Gaussian and [|P™f|| &< », (Z, d) is
totally bounded, where d?(f, g) = P(P™~ Y f — g))% Let J be a maximal set
of functions & ; d-separated by more than en~'/% Only the computation of

n 2
Pr{ sup nl7Zm ) Y f(Xil"'-,Xim))

fe# -{0} i1=1\(iy,..., i) Gy,ent, i )Eln
z4Ef(X1,X2,...,Xm)f(Xl,Xé,...,X;n)}

requires a comment, since the rest follows in complete analogy with the
preceding reference. We first note

Pr{ sup nl 2" Zn:( Y f(Xil,---’Xim))z

fe# —{0} i1=1 (g, .0, i): Gy, .., i eln

> 4Ef(X,, X,,..., X,)) f(X,, Xé,...,X;n)}

< (##) sup Pr{nl_z’” h ( )y f(th’--inm))z

feH' —{0} i1=1 \(iy,. .., i) Gyyenns i)l
z4Ef(X1,X2,...,Xm)f(Xl,Xé,...,X;n)}.

Since the class % is uniformly bounded,

1-2m i ( Y f(Xil,...,Xim))z

i1=1\Ggy...rip): Gy,erig)EIR

—pl—2m Z f(Xil’“-’Xim) f(Xil’ Xim+1""’ Xi2m—1)

Gyyeens lom- V€I 1

= 0(n™Y) <en V2 < P(P™1f)”,
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Hence, by the inequality in Proposition 2.3(a) and by Sudakov’s inequality,

(##) sup P{z( x (X %))

feH {0} i1=1 \(ig,..., im): Gy,e.n, in)elr

> 4Ef(X,, X,,..., X)) f(X,, X;,...,X;n)}

< (##)° sup Pr{nl_zm Y (f(Xil,...,Xim)
fe&” —(0}

12nm—1
f(X X oo Xy )
~Ef(Xy, X,,..., X,.) (X, Xp,..., X},))

> 2Ef( X, X,,..., X)) f(X,, X5, ..., X;n)}

2,-1/2 y9|
2m—1]5n /)

Now (4.6) follows as in the reference. O

< exp(chnl/z.e_2 - 3[

Although Theorem 4.3 is theoretically interesting, Corollary 4.2 is more
useful in what follows.

THEOREM 4.4. Let F be a uniformly bounded class of real symmetric
functions on 8™ such that P™~'% is a P-Donsker class and

(4.7) lim E*[n"2log N, ((6n"Y2, F)] =0

n—o

for all 6 > 0. Then
n2(Ur = P™) -, mGpo P™ 1 inl™(F).

Proor. Using inequality (2.10), letting 5#, be a minimal 87~ 1/2 dense set
of (#, e, 1), we have

Blarer R e x,)
(iy,...rig)ell 7
2- D@
<co+ B n2m Y eMe@f(X, ..., Xim)H
Giry..orip)ell .
<c¢bd + cE*|log N, (6n~"% 5)
X max E |nl/2-m Y eDeDf (X, ..., X; )
fe, Gyyernrip)el®

<cd + cE*(n"'?log N, (8n"1%, F)).
Hence Theorem 4.4 follows from Corollary 4.2. O
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The following proposition generalizes Proposition 4.3.1 in Giné and Zinn
(1986) [see Dudley (1984), for the same result for classes of sets].

PropPOSITION 4.5. Let & = {f,}. Then sup,l|f,ll < cand Z5_(E|f,I")° < o
for some r, s > 0 implies that F satisfies the CLT, that is,

(4.8) nY/UR — P™) >, mGpo P""1e S, inl*(F).

Proor. It is easy to see that we may assume r = 2 and the functions f,
symmetric. Also [P™ 'f;ll. <|lfil. and [P™'flz <IIf;llz. So the class
P™ 1 satisfies the CLT (see the above reference).

The argument in Giné and Zinn (1986), using Proposition 2.4 instead of
their bound for binomial probabilities, gives Pr{n~'/?log N, (6n" 2, ) >
g} < e”°" for some ¢ > 0 and n large enough. By considering ( f(X cen X )
(iyy...,1,,) €IF) as points of [0, 1]*V*~™)' it is easy to see that N, 1(8 9’) <
(1/6)” Hence 1/ log N, (6n~ V2% F)<nm 1/2 log(n1/28 b <nm for n
large. It follows that E*(n~ /2 log N, (6n~"2, F)) < & + n™e *". Now The-
orem 4.4 gives the result. O

THEOREM 4.6. Let & be a measurable uniformly bounded class of real
functions on S™ and let P be a probability measure on (S, .#) such that
P™ ¥ is measurable and P-pre-Gaussian. Then &log N{(e, &, P™) - 0
implies that & satisfies the CLT (4.8).

Proor. We can assume F < 1 and that the functions in & are symmetric
(N{e, S, &, P™) < N\Xe, #, P™)). By hypothesis N{P(en~'/2, &, P™) =
ec»n'’?/¢ for some ¢, — 0. Let { £}, and {A,;}}Y, be a set of functions defining
N = N[(]l)(e FP’”)) If |f-fil<A; and |g —fil<A,, then d, (f, g) <
2P,A;. So if 7, = max{2P"(A)): 1 <i < N} we have N, (r,, 9) < e/
and therefore, letting N, denote the measurable envelope of N, ,

Pr{N, (2en~12, F)" > ecn'/7¢)
< Pr*{N, ,(2en"1/%, F) > enn/7¢)
< Pr*{N, ((2en~'2, %) > N, ((7,, F)} < Pr{r, > 2en~1/%}
<N max [Pr{(P" - P™)(4;) > en~'/?}]

1<i<N
< exp{c,n'/%/e — 3n'/% /14m},

where in the last inequality we use Bernstein’s inequality [Proposition 2.3(a)].
Hence, as in the last proof, we obtain

E*(log N, ((en™1'/?, 9))
< (¢,n'%/e) + n™ log(n'/?*/¢)exp{c,n'/?*/e — 3n'/%e/14m}
so that condition (4.7) holds and the result follows from Theorem 4.4. O
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ProposiTiON 4.7. If & is the class of indicator functions of the closed
convex sets in [0,1F and P is Lebesgue measure on [0, 1] (or any probability
with a density f such that 0 <a <f < b < » for some a and b), then the CLT
as in (4.8) holds for & and P.

ProoF. Bronstein’s result mentioned in the proof of Example 3.9 implies
log N\P(e, #, P?) < ce”'/? and in particular [§(log N(e, PF,d)"/?de < x.
So & satisfies the conditions of Theorem 4.6. O

(b) The unbounded case. First we prove an analogue of Nolan and Pollard
[(1988), Theorem 7], with slight improvements. Although this result covers
VC-subgraph classes satisfying P™F?2 < o, a better result for these classes is
possible (Theorem 4.9). We also give an extension of Ossiander’s (1987) CLT
for empirical processes under bracketing conditions to U-processes [although
an extension of the sharper result of Andersen, Giné, Ossiander and Zinn
(1988) is possible, for clarity of exposition we only give Ossiander’s case, which
is in fact quite general].

THEOREM 4.8. If the measurable class F of symmetric functions on S™
satisfies that P™~ 1% is P-Donsker and that

(4.9) E[n""?log N, 5(c, &) ds - 0,
0
then (4.1) holds for & and P.
Proor. We just note that by Proposition 2.7,

E

p-m+1/2 Y e eDf (X5 X))

i1 Tlg

Gyyenns ip)ellr F

< cE* [ n"V210g N, 5(s, F) de.
0
Now, Corollary 4.2 gives the result. O

THEOREM 4.9. Let F be a measurable class of functions on 8™, P"F? <
such that:

(i) P™ 1% is P-pre-Gaussian,
(i) t Pr{P™"'F2 > ¢t} - 0, and
(iii) there exist c,v < © such that for all ¢ >0 and for all probability
measures @ with QF? < o,

(4.10) N(e, 7,1 lzge) < o((QF2)/z) .

Then & satisfies the CLT (4.1).
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Proor. Since Q(P™ I(f - g)? < QP™ '(f — g)?, we have
N(e, P" ' F |l - llye) < N(e, Z, 1 lly@pm-s) < C[(QPm_le) /E] -

Hence, the class P™~ 1% satisfies the entropy condition (iii) with respect to the
envelope (P™ 'F2)!1/2, Then, P™ ' satisfies the central limit theorem by
Alexander’s CLT [Alexander (1987)].

Let « € 2m/(m + 1),2). Condition (ii) implies that for 0 <& < 2, EF2~¢
< P(P™~1F2)2-2)/2 < o, therefore, n™P™(F > n™/%) — 0. So, since
2

1/2

En* " Yoo f( Xy X, )| <n ™ AKX ),
I I

we have

E n1/2_m Iznghgiz f(Xi1’ cre Xim)Ianm/a

F
1/2

\ .
< E(n—m—l ZF2[F5nm/a(Xil,..., X,-m)) } < (n_lEleanm/a)1/2
I

1/2

m/« 1/2 m/a
< [Zn‘lf” “4P{F > 1) dt] < (n—lf” “ett-e dt)
0 0

< (nG-om/e-yl2 g,

This, together with the condition n™P™(F > n™/%) - 0, implies, by the
second part of the proof of Corollary 4.2, that n'?|Uz(w, ,, f)lls— 0 in
probability. Hence, (b) in Corollary 4.2 is satisfied and the result follows. O

Theorem 4.9 applies to VC-subgraph classes of functions by Lemma I1.25 in
Pollard (1984) and Lemma 4.4 in Alexander (1987). This case, under stronger
integrability hypotheses, has been considered before: Schneemeier (1989)
proves the CLT for VC classes of sets in the triangular arrays case, and
Sherman (1991) obtains several results related to Theorem 4.9, and gives some
interesting statistical applications (his work and ours are independent and
approximately simultaneous).

The inequality in Proposition 2.3(a) shows that if Ef = 0, Ef? = o2 and
I £l < ¢, then P{r2U () > &} < e /377" for t < ¢'*n'/2 /¢, exactly the
same breakpoint as for sums of i.i.d. bounded random variables. A conse-
quence of this last fact is that the bracketing CLT for nondegenerate U-
processes can be proved in essentially the same way as for empirical processes,
at least in Ossiander’s (1987) version.

THEOREM 4.10. Let F be a class of functions on S™. If

[ (1og N§(e, &, Pm)) de < o,
0
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then

LU = P ) =y L(mGpe PP) inl5(5).

ProoF. Note that the bracketing condition implies PF2 < . We may
assume, as in Theorem 4.4, that % is a class of symmetric functions. Let
N, = N[(]2)(2‘k). Then by hypothesis, £ 2 (log gN; -+ N,)'/? < w. Let v, =
(log gN, --- N)V2 If B, = L;_, 27%,, we have B, — 0 as g, — ». Also,
Yo/ a8 q 7. Let A RIS Aq N, be an optlmal set of 279 brackets (that we

take to be a partition "of ?) Define for i;<N;,j<q,Agiy....i,= NI 1ANJ
Then, obviously #{A,; . ;: i;< N} < N1 -+ N, < e¥s. Fix a function
faiy...i, ineach Aj; Relabel A A =Ag i i T =Fou. i, 1f
fe Agi,...ip and deﬁne A(f) = supgeA(f)Ig ™, fl Then we have

A(f)~ as g » forevery fe 5’ and EA2(f ) <22, Flnally, define, for any
glven 9o,

Tf= m1n{q>q0 A, f>nl/?22797 1y, +1}

with min & = . Obviously,
{1f>qo} = {AqofS nt/227d0" 17,1_01+1}
(f=q0) = {8, > n/22790 y L),
{rf=q} c {8, f<n/22 9y 1} c (A, f<nl/227 9y

and {rf = ¢} c {n'/?277 Yy 1, <A, f < n'/?27% "}, where we are using that
A, f decreases.
We must prove

(apy A lmsup Pre{n (U2 = P(f =7y, £) | > ) = 0

for all € > 0.
For this we decompose f— m, f as follows [as in Andersen, Giné, Ossiander

and Zinn (1988)]:
[ mgf= (f_ quf)Irf=qo + (f_ quf)Irfqu

g;—1 q1
+ Y (fm ) gt X (mf =7 f) ey
q=qo+1 q=qo+1

This decomposition of f — m, f induces a decomposition of the probability in
(4.11) into four parts that we label (I), (IT), (IT1T) and (IV).
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(1) Taking g, such that B, <&/24m we have

1/2 1 2
n'/ EA‘Z() fIAq0f>2_q°_1"1/27q_01+1 < 2% Yqo+ 1E(A¢I0f)

<270%ly 1 <4B, <&/4

and therefore
Pro{||n/2(Uz: = P™)(F = oy F)Lopagy | > 22
< Pr(|[n/2(Us = P™) (8, Fla, p> 2o twrai) | o> )

2
< e’ Ta)f( Pr{n1/2’(U"': - P'")(Aqo fIAq0f>2'q°'1n1/27;01+1)I > 8}
a0

2.2
< eYoe  “m max Var(Aqo fIAq0f>2'q°'1n1/27;01+1) - 0,
a0

as n — » for all q,.
(II) Taking g, such that n'/227% < ¢ /4 we have that

1/2
1/2 1/2 2
n'2|EAy fly, ¢ < wiiz-anyzi| < nV/2(EA, £2)

<nl/22 1 <g/4
and

EAzq1 fIAqlfsnl/zz““y;ll < 82_‘71_2’}/;11.
Now we can replace f— m, f by A, fin

Pr{lint/2 (U = P™)((f = g, ) Lofog, s> 26},

and center, as in (I), and then apply Bernstein’s inequality [Proposition 2.3(a)]
to obtain

Pr*{“nl/z(U”r: - Pm)(f_ WQlf)ITf=Q1||.7> 28}

< Pr{” n/?(Uy — P™)(4,, fIAq1f<n1/22"I1—17q_11)

o)
< ew{x}, - ¢/ (2m[ea 7yt + (2/3)e27 0, 1))
< ey - 5/1m)ezeoy

s exp{ - m_182q1_27q1}

since 277y, < B, <e&/24m.
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(IID) Since n'/?EA, fI.;_, < 2%y, E(A,f)? < 27y, and since B, - 0, we
have, using Bernstein’s inequality once more,

fq—1
Pr* n1/2(U,;‘ - P™) Yy (f—— wqf)I,f=q > 2¢
9=q9ot1 F
q1—1
< L Pr{|nA U~ P™Y(f =~ o ) opeg| o> 227975185,
9=qo+1
q—-1
< L Pr([nA(Uz - P (A ML) 5> 2270 B0
g=qo+1
q-1
< Y exp{yq2 — 822_2‘1_273 q_oz (2m[2_2q+1 + (2/3)82_2‘1_1[3,;,1])}
g=qo+1
q-1 ¢:—1
< ¥ ep{yi-27m7leyBl} < L exp-27%m7ey]B. ).
g=go+1 g=go+1

(IV) We just recall that g€ A (f) implies 7 (g) =7 (f), 7,_(g) =
m,—(f) and {rf=gq}={rg =q} because A, f=A g for all r<gq. So,
#Hm, f— 7,1 .} < e”. Also, E"(‘n"q f - 17-q_.1f)2 < 2-2@-D because m f
€ A,_{(f). We then have, by Bernstein’s inequality,

S }
F

Pr*{
@
Z Pr<|| nl/z(Urz - Pm)("qf— "q—lf)Irfzqu.?> gz_q'yqﬁt;ol}
g=qo+1
a
Y exp{yf - 322“2q7(123;02/(2m[2‘2q+3 + (2/3)52_2‘1[3;01])}
—go+1
T 1
Y exp{y? - (2m) 'eBylv2)
g=qo+1
%1: exp{—(l/4m)aB;olyf} if B, < &/24m.

g=qo+1

q1
n'/2 Y (Ur _Pm)(ﬂ'qf_ 77'q—lf)Irfzq

g=go+1

IA

IA

IA

IA

CONCLUSION.
lim limsup ((I) + (II) + (III) + (IV))
go—> n

IA

im Y 2exp{-(e/8mB, )y2}

9o7%® g=go+1
o0
: -3 _
< lim Y 2¢7%=0,
907% g=go+1

since y? > log ¢ and B, <&/24m. O
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The preceding proof, adapted from Andersen, Giné, Ossiander and Zinn
(1988), provides, for m = 1, a streamlined approach to Ossiander’s (1987)
theorem.

5. The CLT for canonical classes of functions. A blanket assumption
on classes & of canonical functions f: S™ — R in this section will be

(5.1) [ (log N(s, #,ep.,,))"" de < .
0

It ensures that the paths of a version of the limit process {K pnlf) fe F)
are bounded and uniformly continuous on (&, ep ,,) by Proposition 2.7. In this
section ;' will denote the set of functions {f — g: f,g € F, ep ,,(f, 8) < 8}.

(a) The case of uniformly bounded &. If & is uniformly bounded, then
condition (5.1) allows us to weaken the asymptotic equicontinuity condition
(1.7), just as in Giné and Zinn [(1984), Theorem 3.1]. Instead of Bernstein’s
inequality one uses here inequality (¢) in Proposition 2.3, and the proof
consists of a partial chaining up to the level where the bound in this inequality
stops being of the order exp(—(¢/a)?/™), in complete analogy with the empiri-
cal process case. The proof is omitted.

THEOREM 5.1. Let ¥ be a measurable uniformly bounded class of canoni-
cal functions f: S™ — R satisfying (56.1) and

lim lim sup Pr sup n-m/2

5—0 noow eP’m(f,g)San—m/Z(m+l)
(5.2)
X . Z (f—g)(Xil,...,X.)

im

>s}=0

for all ¢ > 0. Then F satisfies the CLT, that is,
(5.3) n"™/2Ur = o Kp o Su(f) inl™(F).

With Theorem 5.1 we can obtain sufficient conditions for the CLT in terms
of random entropies.

THEOREM 5.2. Let ¥ be a measurable uniformly bounded class of symmet-
ric canonical functions satisfying the entropy condition (5.1). If
(@ [glog N, (e, F))"/?de is uniformly integrable and
(b)  lim limsup E* [ "7
0

6—0 n—oo

then (5.3) holds.

(log N, (s, %)) *de = 0,
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Proor. Set % ,={f-g: f,8 € F, ep,(f, 8 <dn m/Am+D} By
Propositions 2.1 and 2.6 we have

E|n"*Un(f)|5;, < E

n_m/2 Zb‘il vt Eimf(Xil,...’Xim)“
In ggn

< E* ([:(log N, o(e, F))"™* ds)

< E* ([5”2‘*”"'””("‘“’(1og N, o(e, F))™ ds)
0

B (—[ (log N, »(e, ‘7))”1/2 de ID%(5)>532n—m/(m+1’),
0

where

Since e, (f? g% < 2e, ,(f,g), hypothesis (a) gives convergence to 0 of
E*(n"'log N, 1(5 (F)%). Hence the law of large numbers (Corollary 3.2)
applied to (T2 gives Pr{D2(8) > 582n~™/(m*D} - 0 for all & > 0. So, the
hypotheses imply that the equicontinuity condition (5.2) is satisfied and Theo-
rem 5.1 applies. O

Next we restrict our attention to the case m = 2, which admits a better
development because of the following proposition. (Here %, is as defined in
the proof of Theorem 5.2.)

ProrosiTiON 5.3. Let % be a measurable class of symmetric canonical
uniformly bounded functions on S?, and let P be such that & and P satisfy
condition (5.1). Then the following are equivalent:

(a) & satisfies the CLT (5.3).

() lim;_, . limsup, . Pr{llnUs(f, P)lls, > &} = 0 forall & > 0.

(¢) lim,_,, limsup, ., EllnUS (f, P)llz, = 0 for all (some) r < .

(d lim,_, limsup, . Pr{ln~ Z‘,Ine g; f(X,, X, > et =0 forall e > 0.

(e) lim,_,, limsup, ., Elln~ ):Ins f(X,, X )||9¢'5n 0 for all (some)
r < o,

(f) Any of the decoupled versions of (d) and (e).
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Proor. By Proposition 2.8,
EHn~1 Yeei (X, X))
13

P

< Emax
i<n

P

n~t 28} f(X;, X})
17

+c|E

)P
By Proposition 2.1, these same inequalities hold for n™ 'L z¢;¢; f(X;, X;) and

nUZ(f, P). Now, by Theorem 5.1, Paley—Zygmund’s inequality [Kahane (1968),
page 6] gives all the equivalences. O

n1 Zsis}f(Xi, XJ’)
17

Proposition 2.8 does not seem to provide enough uniform integrability to
deduce the analogue of Proposition 5.3 for m > 2. It would be surprising,
however, if 5.3 did not extend to m > 2.

THEOREM 5.4. Let & be a measurable uniformly bounded class of symmet-
ric canonical functions on S? satisfying the entropy condition (5.1).

(@) Under the hypotheses (i) n="3log N3(en™1, %) - 0 in pr* for all
e > 0,and (i) n~?log N(en 173, F, || - | Lyp,xp)) = O in probability* for all
g > 0, F satisfies the CLT (5.3).
) If
lim lim supE*fan_l/3 log N, 5(e, ¥ )de =0,
0

820 55w

then  satisfies the CLT (5.3).

Proor oF THEOREM 5.4(a). It suffices to show

) £,8; f(X;, X7)

G, pely

820 e

(5.2") lim lim sup Pr{n‘1 > s} =0
Fon

for all £ > 0. We decompose these probabilities as follows:

Pr{ Yy sis}f(Xi,XJ’-)
'7/

G, Nely o
< Pr{n 13 log N¥(en™!, &) > 1}

> 48n,}

+ Pr{ Y FA(X, X)) > 25662n4/3}
G, )ely F
+ Pr{ Y. &eif(X, X)) > 4zn,log N¥(en™!, ) < nl/3,
G, pely F
Y fz(Xi, X3) < 25662n4/3}
G, el Fs

= (I) + (II) + (III).
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By Proposition 2.2, Pr(Z; . pe,65a;; > t} < exp(2 — e 't(Za?)"1%). We
can apply this bound to (III) conditionally on {X;, X} and obtain (III) <
exp(2n'/® + 2 — (sn'/3/88¢)). [Note N(2en™!, F5n) < (N2(en™1, F))2)]
Hence lim; _, , limsup,, .. (III) = 0 for all £ > 0.

By hypothesis (i) we also have lim, _, (I) = 0 for all £ > 0.

In order to estimate (II) we twice apply the version of Le Cam’s ““square
root trick” inequality in Lemma 5.2 in Giné and Zinn (1984). First we
need to symmetrize. Since SUp g Pr{X? ;. FA(X;, X)) > 1286%n%/%} < 1/2,
the symmetrization Lemma 2.5 in Giné and Zinn (1984) gives (II) <
Pr{lZ? ;o (FA(X;, X)) — f2(Y, Y/l 5y, > 25652n%/3), where {Y;, Y/} is an in-
dependent copy of {X,, X’}. By adding and subtacting ¥ f X, Y/) the sums
become conditionally symmetric and Rademacher randomization can be intro-
duced. Assuming as we can that the functions f are symmetric, we conclude

(IT) < 8Pr{

Z E gifz(Xi’ XJI)
i=1j=1

> 3262nY 3} .

Fsn

Let Ex and Ey, denote conditional expectation with respect to {X,} and (X},
respectively. Thus

n n
(II) < 8Pr{ Y Y fiX, X)) > 326%n%/3,
i=1j=1 7,
n
Exf¥(X, X))| <6621/
j=1 Foon

J

+8Pr{

Ex f*(X,, X;)
=1

> 652n1/3} = (II), + (II),.
Fin

We can apply Lemma 5.2 in the cited reference to (II); conditionally on {X )
with ¢ = 826%n°/5, M, = 65%n°%, m = exp(27952n1/%), p = 2-35n5/12, ) =
8272n5/12 and r = n (we assume F < 1/2) to get

(ID), < Pr*{Nn,z(z-sanlfﬁ), {Zfz(xi, X)): fe 9’)} > exp(z~662n1/3)}
J

+ 64 exp(—27%52n1/3),
Because of the inequality
1/2

J

et T

n 1/2
s(n-l z (f»g)z(X,-,X;)) < (ned(f,8) +1)"%,

i,j=1
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the above covering number is dominated as follows:
Ni(2786%n728 — n71, F ) < NJ§(2778%n%3, 7))
< (Nde(2788%n 23, 7))

So lim; _, , lim sup,, _,, (I); = 0 by condition (i). Now we apply the square root
trick to bound (II),. In this case we take ¢ = 68%n~ /6, M, = 62126, m =
exp(27862n1/%), p = 2720 1/12 A =220/ and r = 1 and, since

i )\ 1/2
[t £ (B, 1) - (Bxs(x, )] |

1/2
< (n”l Y Ex(f-8)"(Xy, X’))

= [P.xP(f-2) ]
condition (ii) and the cited lemma imply the result.
Proor or THEOREM 5.4(b). This follows as in Theorem 5.2 by computing

probabilities instead of expected values, which is possible by Proposition 5.3.
O

We define the following bracketing numbers which are appropriate for the
canonical case:

NP, ) = min{r: there exist f1,..., f,
and Ay,..., A, € L,(P?) such that (P™AP)"P < ¢
and such that for all f € & thereexists i <r
with | f; — fI < A, and A; — P™A; are P-canonical}.

This definition is slightly weaker than the usual one with the extra require-
ment that the brackets [ f;, f;]1 be defined by functions f;, f; from the class &.
From Theorem 5.3, using the method of proof of Theorem 4.6, and Proposition
2.3(c) instead of Bernstein’s inequality, it is possible to obtian the following
corollary.

COROLLARY 5.5. Let F be a measurable uniformly bounded class of canon-
ical functions. If (5.1) holds and
(5.4) % log Nu(e, 7) - 0,
then

{n_1 3 f(XL-,X,-)} o AKpo(F)) inlf F).

G, ))ely
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(b) The unbounded case. We prove a CLT under random entropy condi-
tions [see Section 8 in Giné and Zinn (1984) for an analogue in the empirical
process case and Nolan and Pollard (1988) for a related result for U-processes].

THEOREM 5.6. Let F be a measurable family of real P-canonical functions
on 8™ such that (%;)? is also measurable for all § > 0, satisfying:

(a) P"F? < w,
(b) The sequence {[3(log N, (e, FN"/* del;_; is uniformly integrable, and
(c) lim, , o limsup, ., E*(f{(log N, ,(s, F)™/?de) = 0.

Then
(nm2Urfife F) » K, o(F):f€ F} inl F).

Proor. By the law of large numbers we have N(e, &, ep ) <
liminf N, ,(¢ /2, ). Hence Fatou’s lemma gives

(log N(e, F,ep ,))"™* < liminf E*(log N, 5(¢/2, %))/

< limsup (2/¢) E* [ *(log N, 5(7/2, %)) dx,
0

n—w

which is finite by condition (c). Hence (#, ep ,,) is totally bounded and we need
only prove the asymptotic equicontinuity condition. We have, as in Theo-
rem 5.2,

(5.5) E|nm U ()7 < B* [ (log N, o(7, %)) dr.
0
Let, as before,

D3(5) = sup [n—m Z (f_g)z(Xi17"-’Xim):|
f.ge F (i, i
(5.6)

For f: g € ‘9;"7 en,l(f27 g2) = zen,Z( f7 g)(n_mzl,',‘LFz(Xil7 st Xim))l/z by
Schwarz’s inequality. By (a) the last factor converges a.s. to (EF?)/? < o,
Then
o\ \ /2
Pr*{s(log N, (e, (%) > T}

(5.7) < Pr{n_’" ' S F2(Xi1,...,Xim) > 4EF2}

+ Pr*{e(log N, o(e/4(EF®), 7)) > T}.
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Note first that log N, (¢, #;) < 2log N, 4(27 ', %) and then apply condition
(c) together with inequality (5.7) to get

lim lim sup Pr{s(log N, (e, ()" > T} ~0

for all 7,6 > 0. Hence lim, . Pr{n~'log N, {(¢,(%)*) > 1} =0 for all
g, 7,8 > 0. So, by Theorem 3.1 and (5.6),

(5.8) lim sup Pr{D2(8) > 5582} = 0.

n-—ow

n—ox

By (5.5),
E|nm?Ur( )|

< E* ([51/23(10g N, (e, F))™ de)
0

+ E*(/:(log N, o(¢, 7)™ de)ID3(5)>552, *

and the equicontinuity condition for n™/2U follows from (5.8) and hypothe-
ses (b) and (c). O

Theorem 5.6 has the following interesting corollary:

CoroLLARY 5.7. If F is an image admissible Suslin VC subgraph class of
functions on 8™ such that P™F? < », then all the projections Thom =
(T [: F€ FY, k=1,...,m, satisfy the central limit theorem, that is,

{n*?U3 (74, ): f € F) > AKp (T F): [ € F)
in I°(F).
Proor. If & is image admissible Suslin so is 7, ,, as mentioned in the
Introduction. It also follows directly from the definitions that (%;)? and

[(7y, nF ;) are image admissible Suslin. So, the measurability hypotheses of
Theorem 5.6 hold for the P-canonical classes , ,, . Next we note that

&2 o(Thm FrTh m&) = UP([m4, (£ — &)]°)

XP™ " (f—g)%i5---» xir)] )

IA

k
Y e UP" " (f-g)*
r=0
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for constants c,, . depending only on % and r. Hence,

e E

Nn,Z(T7 Trk,ng) =

r

’ y, ” : IILZ(U,me_r)) .

o\ (k+1) %,

Since & is a VC subgraph, there are constants ¢,v > 0 such that for all
probability measures @ on S™ with QF? < w and all £ > 0,

N(r, Z, | lleye) < C[(QFz) /T]v

[Pollard (1984), Lemma 2.5 and Alexander (1987), Lemma 4.4]. It follows
easily from the last two inequalities that the classes m, , satisfy the
hypotheses (b) and (¢) of Theorem 5.6 (with % instead of m). Since they
obviously satisfy (a), the result follows from Theorem 5.6. O

1/2

This result contains Corollary 8 in Sherman (1991).

In Corollary 5.7 the hypothesis that % is a VC subgraph can obviously be
replaced by: There is a function A: [0, %) — [0, ®) with [fA™/%(e) de < » such
that for all probability measures @ on (S, ) with QF? < ,

log N(¢(QF?)*, #,Q) < A(e), £>0.

6. Additional examples.

(a) Discrete probabilities. It is known [see, e.g., Dudley (1984), Theorem
6.3.1] that for discrete probabilities P = {p,}_, the empirical process indexed
by the class of all subsets satisfies the CLT if and only if ¥pi/? < «. We will
see that this last condition implies the CLT for any uniformly bounded class,
even in the degenerate case.

ProposITION 6.1. Let P be a probability measure on N and let p, = P{k}.

() If T,p;/? < ©and F is a uniformly bounded class of functions on N™,
then

(6.1) n2(Ur — P™) —»_, mGp°S,, inl™(F).

(b) Conversely if (6.1) holds for the class of indicator functions of all the
finite subsets of N™, then

(6.2) Y pi/? <=,
k=1

Proor orF ProrosITION 6.1(a). By Proposition 1.2, it suffices to show that
the class of indicators of all the subsets of N™ satisfies the CLT. By Corollary
4.2, we only need to prove

(6.3) n1/2U1n(77'1,mSmIA) .z mGP("T1,mSmIA) in I"(#)
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and
(64) |7 208 (S I) | —p: 0, 2 <k <m.

Note that n'/?UNw, .S, 1) = v (P™7'S,,1,) and {P™"1S I, A CN™}is
in the convex hull of {I;: B c N}. Hence (6.3) holds by the CLT for discrete
measures in Dudley (1984) since the convex hull of a P-Donsker class is a
P-Donsker class. As for (6.4), we just need to show

sup nl/lekn("Tk,mIA)l —p: 0.

AcCN™
Note that
E sup lnl/zUkn(Trk,mIA)l
ACN™
= Esljp ) n2UM T4, m LG, on)

Gise- oy Jm)EA

s ¥ ERUM(mml,.. i)

J1seoes Jm=1
* L2 oy 1/2
< X (E|n U (T m iy io)| )
FATEERE jm=1

[(BY(n = k) /(n = DY P((frs s du)}]

IA
7

(kl(n —Ek)/(n — 1)!)1/2( f; p}/z) - .. 0. o
j=1

Proor or ProposiTioN 6.1(b). If A=B X N""! with B cN, then
/AUy — P™), = n/*(n"'L7_ Iy .5 — P(B)). So (6.1) implies {v,(Ip):
B c N, B finite} —_, {Gp(Ig): B C N, B finite}. Hence ©, pi/? < o by Proposi-
tion 6.3.1 in Dudley (1985). O

PROPOSITION 6.2. Let P be a probability measure on N and let p, = P{k}.

(@) If L,pt/? < »and & is a uniformly bounded class of real functions on
N™, then

nmPur e, =, Kp om, o8, uniformlyinl*(F).

(b) Conversely, if {Kp ,, o, ,°8S,,I,): A CN™} has bounded paths a.s.,
then (6.2) holds.

Proor or PROPOSITION 6.2(a). By the argument in Proposition 6.1 it is
enough to consider the case {m, , °S,(I,): A cN™}. We need to prove the
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usual equicontinuity condition
lim lim supP{ sup [n"2URm,, (14 — I)| > e} =0
8=0 noo e(A, B)<$

for each £ > 0, where e%(A, B) = P™(A a B). Note that this condition is
implied by

(6.5) lim limsupE sup |n™ 20U (0 Ia) | = 0.
M-e now  AcNm-[1, M]™
We have
E  sup  [n"PUn(m,, nls)]
AcN™—[1,NT"
<mE sup 0™ 2U (T da) |
ACN™N[1,0)™ "1 X[N, o)
=mE X L [P0, mIy, i)
ityeeerimoy=1i,=N
- - m/21Tn 2\1/2
S DY )» (E|n Ui (o, m i, i) )
iryeerrimo1=1ip=N
1/2 s > 1/2
<m(n™(n - m)!/nt)" ) (pi, - p; )%
ityeerrimoy=1i,=N

Condition (6.5) follows from this estimate. O

PROOF OF PROPOSITION 6.2(b). As mentioned in the introduction,

n"/2Urh > (Var(¢))™*(mY) "*H,,(Gp($)(Var(¢)) ~%).
If ¢ =1 — PB, B Cc N, we have

Kp, n(h?5) = (Var( IB))'"”(m!)‘”sz( Y. pi/%24(8), — P) Iy(Var( IB))‘”)
k

since Gp(Ig) = ¥, pi/%8,(8, — P)Ig, with {g,} iid. N(0,1). Therefore, since
H,, is a polynomial of degree m, the a.s. sample boundedness of {Kp ,, (h?#):
B c N} implies that of {¥, p;/?g,(8, — P)Iz: B c N}. Therefore ¥_,pi/? < =,

O

(b) Sequences of functions. Next we will give a result for U-processes that
generalizes a well-known result for empirical processes.

ProOPOSITION 6.3. Let {h,);_, be a sequence of uniformly bounded func-
tions from 8™ into R. Assume Eh, = 0 and

(6.6) I 4]l = 0((1/1og k)?).
Then (n'2Uh,): k € N} >, {mGpo P™" 10 8, (h)): k € N} in I°(N).
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Proor. Let & ={h,};_;. Since F is totally bounded with respect to the
pseudometric ep ,,, we just need to check the equicontinuity condition

lim hmsupP{ supn1/2[U (hp)| > e} =0.

Now 5, 4,0

By Proposition 2.3(c) and (6.6),

IA
Il Mg

P{ sup n'/2|U(h,)] >6} P{n'2|U (k)| > &}
k>N

k=N

IA
3

¢ exp(—c'ezllhkll_z),

k=N

which converges to zero. O

In the canonical case an analogous result can be obtained using (d) of
Proposition 2.3:

ProposITION 6.4. Let {h,);_; be a sequence of canonical functions from S™
into R. Assume Eh;, = 0 and ||h,|l. = o((1/log k)™/?). Then

{(nm72U2(hy): k €N} 5 {Kp 0 Su(hy): k €N} inl=(N).

REMARK 6.5. As in the empirical process case these two propositions are
best possible. Consider a double sequence {s; }j" i_p of iid. r.v.’s with Ple,

1} =Ple;, ;= -1} =1/2. TakeStobetheumtballofl X, = (Eufm---)
for each 7. Define forhy: 8™ = Rby filxy,...,x,,) = x(k)(log BV E > 2,
flxy, ..o, %,) =0, hylxy,...,x,)=2x® - x(k)(log E)™™/? if k>2 and

h{xy,...,x,) =0, where xj(k) is the kth coordinate of x;. Then {f,J;_; is a

sequence of umformly bounded functions from S™ 1nto R with Ef, =0,
Il fille = (log k)~'/2, k > 2, and we claim that { f,};_, does not satisfy the CLT.
Since n'/2U"(f,) = (log k) 12p-17232 g, for k > 2, with {g,};_, iid. r.v.’s
with law N(0, 1) and g, = 0, the finite-dimensional d1str1butlons of the process
{n*2UR(f, N5 _, converge to {(log k v 2)~1%g,};_, = {G(R)};_,. But the paths
of this process are not continuous at 2 = 1: e(k 1) > 0 as &k — =, however,
since |G(k) — G(1)| = (log k)"/?|g,| and lim,_ .t 2log P{gl=1t} = —1/2,
the Borel-Cantelli lemma gives lim sup(log k)~ '/?|g,| = 21/2 a.s.

The situation for {A,};_, is similar. Let H, be the kth Hermite polynomial.
By the CLT for degenerate U-statistics in Rubin and Vitale (1980),
n™2Ur(h,) =, H,(g,)log &)""/*(m!)~1/% for k > 2. Since H,(g,) is a
polynomial in m variables with leading coefficient equal to 1,

lim ¢t~2/™ log P{|H,(g,) =t} = —1/2.

t—->00

Hence lim sup(log k)~ /?H, (g,)(m!)~1/2 = 2m/2(m!)~1/2 a5,

(c) The simplicial depth process. Given a probability measure P on R*, the
simplicial depth process on R* is defined by Liu (1990) as D,(x) = P**{x €
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S(xy,...,x,, )}, where S(x,...,x,,,) is the closed simplex determined by
the points xi,...,x,,; € R*. The empirical simplicial depth for a sample
X,,..., X, from P is

So, for each x, C, is a function defined on (R*)**! or more specifically, on
simplices of R*. We first observe that &% = {C,: xe R*} is the collection of
indicators of a measurable Vapnik-Cervonenkis class of sets. To this end we
recall a well-known lemma [Vapnik and Cervonenkis (1971)).

LeEMMA 6.6.  If P,(n) denotes the number of sets of the form An--nNA,
where A, is either A; or AS and A, ..., A, are n halfspaces of R, then

(6.7) Py(n) < k}ﬁn(;‘)

j=0

COROLLARY 6.7. & is the collection of indicator functions of a measurable
Vapnik—Cervonenkis class of sets.

Proor. Obviously the map (x,xy,...,%4.,1) = Io(xy,..., X, ) is jointly
Borel measurable, hence . is image admissible Suslin and therefore, measur-
able. Let S,,..., S, be n simplices in R*. Each is defined by £ + 1 halfspaces,
therefore they divide R* into at most P,(k + 1)n) subsets. But
A*(S,,...,8,) = #[{S,,...,8,} N C: I, € F]is precisely the number of sub-
sets that Sy,..., S, determine on R*, that is, A”(S,,..., S,) < P,(k + Dn).
By Lemma 6.6, P,((k + 1)n) is a polynomial in n of degree k. So, ¥ is VC
[see, e.g., Dudley (1986) for the definition of a VC class]. [I

Now we can state the law of large numbers and the central limit theorem
for the simplicial depth process. Diimbgen (1990) proved the LLN and the CLT
for simplicial depth processes under slightly less generality and Liu (1990) has
an earlier version of the LLN under additional hypotheses.

COROLLARY 6.8. For all P in R,
sup|D,(x) — Dp(x)| > 0 a.s.,
X
and

Z(n'*(D,(x) — Dp(x))) =, ZL(kGpo P*71) inI®(R*).

Proor. This follows from Corollaries 3.3 and 4.9, together with Corollary
6.7. O

The law of large numbers in Corollary 6.8 yields consistency of the empirical
simplicial median under minimal conditions [see Liu (1990), Theorem 5, for a
less general version].
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THEOREM 6.9. Let P be a probability measure on R* satisfying:

(a) D(-) is uniquely maximized at .
(b) u, is a sequence of random variables with D,(u,) = sup, D, (x).

Then

K, =M a.s.

Proor. First we see that D(-) is an upper semicontinuous function: If
y, = ¥, then limsup D(y,) < P**[limsup{y, € S(x,,...,x,, N} < P**{y e
S(xq,...,%,,.1)). Since D(-) is an upper semicontinuous function and
lim,, ., D(x) =0 [Theorem 1, Liu (1990)] it follows that & = D(u) —
SUP|; = D(x) > 0. Hence,

P{ suplp, — pl> s} < P{ sup(D(p) — D(n,)) = 6}

nx>l nx>l

< P{ sup (D(4) = Dy(1)) + 5up (D) = D)) = 5}

nx=1! n

< ZP{ sup sup|D, (x) — D(x)| = 6/2} -0

n=l x

as [ - « by Corollary 6.8. O

If the simplices S(x;,..., x,, ) in the definition of & are taken to be open,
then & is still a measurable VC class and Corollary 6.8 holds. Theorem 6.9
also holds for the corresponding definitions of u and pu, if it is further
assumed that P gives zero mass to hyperplanes: Under this hypothesis the
function D is the same as for closed simplices, hence, upper semicontinuous.
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