HOKKAIDO UNIVERSITY

Title	Limit theorems in bilfree probability theory
Authorlis]	H asebellakahiralHuangIH aolW eilw ang[Jinichau
C itation	Probability theory and related fieds 1 172RBLAT108111119
Issue Date	2018012
Doc URL	
Rights	This is a posttpeerfeview पpreCcopyeditversion of an article published in Probability Theory and Related FiedsllThe final authenticated version is available online atthtplildx
Type	article [authorversion]
Fip hform ation	C lassicalprob vs bifire problver33pdf

Instructions foruse

LIMIT THEOREMS IN BI-FREE PROBABILITY THEORY

TAKAHIRO HASEBE, HAO-WEI HUANG AND JIUN-CHAU WANG

Abstract

In this paper additive bi-free convolution is defined for general Borel probability measures, and the limiting distributions for sums of bi-free pairs of self-adjoint commuting random variables in an infinitesimal triangular array are determined. These distributions are characterized by their bi-freely infinite divisibility, and moreover, a transfer principle is established for limit theorems in classical probability theory and Voiculescu's bi-free probability theory. Complete descriptions of bi-free stability are given and fullness of planar probability distributions are studied. All these results reveal one important feature about the theory of bi-free probability that it parallels the classical theory perfectly well. The emphasis in the whole work is not on the tool of bi-free combinatorics but only on the analytic machinery.

1. INTRODUCTION

The purpose of this paper is to establish an explicit connection between the families of infinitely divisible laws in classical probability theory and bi-free probability theory. As in free probability theory, it is shown that some classical limit theorem has a nice analogue in the bi-free framework.

Denote by $\mathscr{P}_{\mathbb{R}^{d}}$ the family of Borel probability measures on \mathbb{R}^{d}. The classical convolution $\mu * \nu$ of μ and ν in $\mathscr{P}_{\mathbb{R}^{d}}$ is the probability distribution of the sum of two independent random vectors whose respective distributions are μ and ν. In the theory of free probability, freeness and free convolution \boxplus are treated as analogues of classical notion of independence and classical convolution for non-commutative random variables, respectively [2:3]. The latter theory has a twofaced extension, which was invented to study pairs of left and right random variables (also called left and right faces) on a free product of complex Hilbert spaces simultaneously [2T]. An independence relation put among these pairs is called bi-freeness, which gives rise to bi-free probability theory. This fascinating theory has grown rapidly and included several interesting findings based on the foundation of free probability theory.

Since the introduction of bi-free probability by Voiculescu in 2013 , combinatorial and analytical approaches have been the main research focuses so far $[7, \boxed{\nabla}, \boxed{\pi 2}, \boxed{14}, \boxed{1, ~[20] ~ . ~ G i v e n ~ a ~ t w o-f a c e d ~}$ pair (a, b) in a C^{*}-probability space (\mathcal{A}, φ), its bi-free partial R-transform is defined through its Cauchy transform $G_{(a, b)}(z, w)=\varphi\left((z-a)^{-1}(w-b)^{-1}\right)$ as

$$
R_{(a, b)}(z, w)=z R_{a}(z)+w R_{b}(w)+1-\frac{z w}{G_{(a, b)}\left(R_{a}(z)+1 / z, R_{b}(w)+1 / w\right)}
$$

for complex values z and w in a neighborhood of zero, where R_{a} and R_{b} are the usual R-transforms of a and b, respectively [22$]$. This transform plays the same role as the usual R-transform does in the free case. The bi-freeness of (a, b) and (c, d) yields the freeness of the left faces a, c and the freeness of the right ones $b, d[2 \pi]$. The reader is referred to [$2, ~[3]$ for some recent developments.

[^0]In the present paper，we continue the previous work［14］and contribute to the research of bi－ free harmonic analysis without any emphasis on Voiculescu＇s original motivation．To accommodate objects like planar probability distributions or integral representations，it is natural to constrain ourselves to commuting and self－adjoint pairs (a, b) in a certain C^{*}－probability space，i．e．a, b are self－adjoint elements whose commutator $a b-b a=0$ ．This yields an analytic perspective to bi－free probability theory．More precisely，in such a circumstance the Cauchy transform of（ a, b ）admits an integral form with the joint distribution of (a, b) as its underlying measure．Any measure in $\mathscr{P}_{\mathbb{R}^{2}}$ with compact support arises in this manner，i．e．it serves as the joint distribution of such a pair．The starting point of relating bi－free probability to the classical situation is that by realizing two given compactly supported $\mu, \nu \in \mathscr{P}_{\mathbb{R}^{2}}$ as joint distributions of two bi－free and commuting pairs，the bi－free partial R－transform linearizes the bi－free convolution $\boxplus \boxplus$ ：for (z, w) near $(0,0)$ ，

$$
R_{\mu \boxplus \boxplus \nu}(z, w)=R_{\mu}(z, w)+R_{\nu}(z, w) .
$$

An important concept in the study of limit theorems in probability theory is the infinite divis－ ibility．A probability distribution on \mathbb{R}^{d} is infinitely divisible with respect to a binary operation \star on $\mathscr{P}_{\mathbb{R}^{d}}$ if it can be expressed as the \star－convolution of an arbitrary number of copies of iden－ tical measures from $\mathscr{P}_{\mathbb{R}^{d}}$ ．When $d=1$ ，this subject has been thoroughly studied by de Finetti， Kolmogorov，Lévy and Hinčin in classical probability［■］，［8］．The free counterpart is also well studied［5］．The theory of infinitely divisible distributions generalizes（free）central limit theorem as they serve as the limit laws for sums of（freely）independent and identically distributed random variables．（Free）Gaussian and（free）Poisson distributions are typical examples of（ $\boxplus-$ ）＊－infinitely divisible distributions．Distributions of this kind are determined by their characteristic functions or free R－transforms，the so－called Lévy－Hinčin type representations．Measures in $\mathscr{P}_{\mathbb{R}^{2}}$ which are $\boxplus \boxplus$－infinitely divisible were first studied in［I2］in the case when they are compactly supported and considered in the general case in［［4］］．

The question under investigation in this paper is to provide the criteria for the weak convergence of the sequence

$$
\begin{equation*}
\mu_{n 1} \boxplus \boxplus \mu_{n 2} \boxplus \boxplus \cdots \boxplus \boxplus \mu_{n k_{n}} \boxplus \boxplus \delta_{\mathbf{v}_{n}}, \tag{1.1}
\end{equation*}
$$

where $\left\{k_{n}\right\}_{n=1}^{\infty}$ is a sequence of strictly increasing positive integers，$\left\{\mu_{n k}\right\}_{n \geq 1,1 \leq k \leq k_{n}}$ is an infinites－ imal triangular array of measures in $\mathscr{P}_{\mathbb{R}^{2}}$ and $\delta_{\mathbf{v}_{n}}$ denotes the dirac measure at the vector \mathbf{v}_{n} in \mathbb{R}^{2} ．Here the infinitesimal condition of a triangular array $\left\{\mu_{n k}\right\}$ in $\mathscr{P}_{\mathbb{R}^{d}}$ means that for any $\epsilon>0$ ，

$$
\lim _{n \rightarrow \infty} \max _{1 \leq k \leq k_{n}} \mu_{n k}\left(\left\{\mathbf{x} \in \mathbb{R}^{d}:\|\mathbf{x}\| \geq \epsilon\right\}\right)=0
$$

where $\|\cdot\|$ is the Euclidean norm on \mathbb{R}^{d} ．When $d=1$ ，there is a one－to－one correspondence between the sets of $*$－infinitely divisible laws and $⿴ 囗 十$－infinitely divisible laws．Such a correspondence is characterized by the same parameters，a real number and a positive Borel measure on the real line，in the Lévy－Hinčin type formulas［3，鸟］．We show in Theorem 5.5 that under the hypotheses mentioned above the weak convergence of the sequence in（L．ل（））is equivalent to that of the sequence

$$
\begin{equation*}
\mu_{n 1} * \mu_{n 2} * \cdots * \mu_{n k_{n}} * \delta_{\mathbf{v}_{n}} . \tag{1.2}
\end{equation*}
$$

Moreover，the limit distribution of（［．］）is shown to be bi－freely infinitely divisible，and the param－ eters of its bi－free Lévy－Hinčin formula coincide with those in the Lévy－Hinčin formula of the limit

$$
\begin{equation*}
\phi_{\mu}(\bar{z}, \bar{w})=\overline{\phi_{\mu}(z, w)} \tag{2.4}
\end{equation*}
$$

he free Voiculescu transform linearizes the free convolution of probability distributions on \mathbb{R}.
For a given $\mu \in \mathscr{P}_{\mathbb{R}^{2}}$, the probability measures defined as $\mu^{(1)}(B)=\mu(B \times \mathbb{R})$ and $\mu^{(2)}(B)=$ $\mu(\mathbb{R} \times B)$ for Borel sets $B \subset \mathbb{R}$ are called the marginal laws of μ. The bi-free ϕ-transform of μ defined as

$$
\begin{equation*}
\phi_{\mu}(z, w)=\frac{\phi_{\mu^{(1)}}(z)}{z}+\frac{\phi_{\mu^{(2)}}(w)}{w}+1-\frac{1}{z w G_{\mu}\left(F_{\mu^{(1)}}^{-1}(z), F_{\mu^{(2)}}^{-1}(w)\right)} \tag{2.3}
\end{equation*}
$$

is an analytic function and satisfies the relation

$$
\begin{equation*}
\phi_{\mu \boxplus \boxplus \nu}(z, w)=\phi_{\mu}(z, w)+\phi_{\nu}(z, w) \tag{2.5}
\end{equation*}
$$

for (z, w) in the common domain of these transforms. The marginal laws of the bi-free convolution of compactly supported probability measures on \mathbb{R}^{2} can be expressed in terms of the free convolution of their marginal laws [[12]]: for $j=1,2$,

$$
\begin{equation*}
(\mu \boxplus \boxplus \nu)^{(j)}=\mu^{(j)} \boxplus \nu^{(j)} . \tag{2.6}
\end{equation*}
$$

A sequence $\left\{\nu_{n}\right\}_{n=1}^{\infty} \subset \mathscr{P}_{\mathbb{R}^{d}}$ is said to converge weakly to $\nu \in \mathscr{P}_{\mathbb{R}^{d}}$, denoted by $\nu_{n} \Rightarrow \nu$, if

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{d}} f d \nu_{n}=\int_{\mathbb{R}^{d}} f d \nu
$$

for any bounded and continuous function f on \mathbb{R}^{d}. For any sequence $\left\{\mu_{n}\right\}_{n=1}^{\infty} \subset \mathscr{P}_{\mathbb{R}^{2}}$ converging weakly to $\mu \in \mathscr{P}_{\mathbb{R}^{2}}$, we have for $j=1,2$,

$$
\begin{equation*}
\mu_{n}^{(j)} \Rightarrow \mu^{(j)} . \tag{2.7}
\end{equation*}
$$

A family \mathcal{F} of Borel probability measures on \mathbb{R}^{d} is called tight if

$$
\lim _{r \rightarrow \infty} \sup _{\mu \in \mathcal{F}} \mu\left(\left\{\mathbf{x} \in \mathbb{R}^{d}:\|\mathbf{x}\|>r\right\}\right)=0 .
$$

The correlation of the tightness (or weak convergence) of Borel probability measures on \mathbb{R} and \mathbb{R}^{2} and the convergence properties of their free and bi-free ϕ-transforms are well known $[3,1[4]$. To make the presentation accessible for readers of different backgrounds, some results with their proofs in this direction are provided below. Recall that points z in $\mathbb{C} \backslash \mathbb{R}$ are said to tend to infinity non-tangentially, which is denoted by $z \rightarrow_{\varangle} \infty$, if $z \rightarrow \infty$ with $|\Re z / \Im z|$ uniformly bounded.

Proposition 2.1. A family $\mathcal{F} \subset \mathscr{P}_{\mathbb{R}^{2}}$ is tight if and only if $z w G_{\mu}(z, w)-1=o(1)$ uniformly for $\mu \in \mathcal{F}$ as $z, w \rightarrow{ }_{\varangle} \infty$.

Proof. First suppose that \mathcal{F} is tight. If $\xi \in \mathbb{C} \backslash \mathbb{R}$ with $|\Re \xi / \Im \xi|$ bounded by $\theta>0$, then

$$
\left|\frac{c}{\xi-c}\right| \leq \sqrt{1+\theta^{2}}, \quad c \in \mathbb{R},
$$ the decomposition

$$
\frac{z w}{(z-s)(w-t)}-1=\frac{s}{z-s}+\frac{t}{w-t}+\frac{s t}{(z-s)(w-t)}
$$

108
shows the existence of some constant $c_{\theta}>0$ depending on θ only so that for $|\Re z / \Im z|,|\Re w / \Im w| \leq \theta$,

$$
\left|\frac{z w}{(z-s)(w-t)}-1\right| \leq c_{\theta}, \quad(s, t) \in \mathbb{R}^{2} .
$$

109

$$
\left|z w G_{\mu}(z, w)-1\right| \leq \frac{r}{|\Im z|}+\frac{r}{|\Im w|}+\frac{r^{2}}{|\Im z||\Im w|}+c_{\theta} \mu(\{\|\mathbf{x}\|>r\}),
$$

$$
\begin{equation*}
\mu(\{\|(s, t)\| \geq r\}) \leq \mu^{(1)}(\{s:|s| \geq r / \sqrt{2}\})+\mu^{(2)}(\{t:|t| \geq r / \sqrt{2}\}) . \tag{2.9}
\end{equation*}
$$

which clearly yields the necessity.
Now we prove the sufficiency. Given any $\epsilon>0$, let $M>1$ be large enough so that

$$
\begin{equation*}
\sup _{\mu \in \mathcal{F}}\left|(i y)(i v) G_{\mu}(i y, i v)-1\right|<\epsilon \tag{2.8}
\end{equation*}
$$

whenever $|y|,|v| \geq M$. Since the inequality

$$
\left|\frac{i v}{(i y-s)(i v-t)}\right| \leq 1
$$

holds for $(s, t) \in \mathbb{R}^{2}$ and $|y|,|v| \geq M$, it follows that for all $\mu \in \mathcal{F}$,

$$
i v G_{\mu}(i y, i v)=\int_{\mathbb{R}^{2}} \frac{i v d \mu(s, t)}{(i y-s)(i v-t)} \rightarrow \int_{\mathbb{R}^{2}} \frac{d \mu(s, t)}{i y-s}=G_{\mu^{(1)}}(i y)
$$

as $|v| \rightarrow+\infty$ by Dominated Convergence Theorem. Consequently, $i y G_{\mu^{(1)}}(i y) \rightarrow 1$ uniformly for $\mu \in \mathcal{F}$ as $|y| \rightarrow+\infty$ by letting $|v| \rightarrow+\infty$ in (2.8). This yields the tightness of the marginal sequence $\left\{\mu^{(1)}: \mu \in \mathcal{F}\right\}$ (cf. [5, Proposition 5.1]). The tightness of $\left\{\mu^{(2)}: \mu \in \mathcal{F}\right\}$ can be obtained in a similar way. Now the sufficiency follows since for any $r>0$,

Proposition 2.2. Let $\mathcal{F} \subset \mathscr{P}_{\mathbb{R}^{2}}$ be a tight family. Then $F_{\mu^{(j)}}$ is univalent on some common truncated cone Γ in \mathbb{C} with image $F_{\mu^{(j)}}(\Gamma)$ containing some contracted cone $\Gamma_{\alpha, L}$ for every $\mu \in \mathcal{F}$ and $j=1,2$. Moreover, $F_{\mu^{(j)}}^{-1}(\xi)=(1+o(1)) \xi$ uniformly for $\mu \in \mathcal{F}$ and $F_{\mu^{(j)}}^{-1}(\xi) \rightarrow_{\varangle} \infty$ as $\xi \rightarrow \infty$ with ξ staying in $\Gamma_{\alpha, L}$.

Proof. The existence of such a truncated cone $\Gamma_{\alpha, L}$ and the asymptotic behaviors can be shown by the statements and techniques of [5, Proposition 5.4] (see also [3, Proposition 2.6].

In the following the weak convergence of measures in $\mathscr{P}_{\mathbb{R}^{2}}$ is translated into the asymptotic properties of their bi-free ϕ-transforms. Recall that the simplified form Γ^{2} denotes the domain of the bi-free ϕ-transform of a planar probability measure on which (2.4) holds.

Proposition 2.3. Let $\left\{\mu_{n}\right\}_{n=1}^{\infty} \subset \mathscr{P}_{\mathbb{R}^{2}}$. Then the following assertions are equivalent.
(1) The sequence $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ converges weakly to a planar Borel probability measure μ.
(2) Functions in the sequence $\left\{\phi_{\mu_{n}}\right\}_{n=1}^{\infty}$ are defined on some fixed domain Γ^{2}, converge uniformly on compact sets of Γ^{2} to a function ϕ, and $\phi_{\mu_{n}}(z, w)=o(1)$ uniformly in n as $z, w \rightarrow \infty$ with $(z, w) \in \Gamma^{2}$.
(3) Functions in the sequence $\left\{\phi_{\mu_{n}}\right\}_{n=1}^{\infty}$ are defined on some fixed domain $\Gamma^{2}, \lim _{n \rightarrow \infty} \phi_{\mu_{n}}(i y, i v)$ exists for $(i y, i v) \in \Gamma^{2}$, and $\phi_{\mu_{n}}(i y, i v)=o(1)$ uniformly in n as $|y|,|v| \rightarrow \infty$.
Moreover, if (\mathbb{T}) and (\mathbb{Z}) are satisfied, then $\phi=\phi_{\mu}$ in Γ^{2}.
Proof. Throughout the proof, we will use the notations $G_{n}=G_{\mu_{n}}, G_{j n}=G_{\mu_{n}^{(j)}}, F_{j n}=F_{\mu_{n}^{(j)}}$, $F_{j}=F_{\mu^{(j)}}, \phi_{j n}=\phi_{\mu_{n}^{(j)}}$, and $\phi_{j}=\phi_{\mu^{(j)}}$ for all n and for $j=1,2$.

First, suppose $\mu_{n} \Rightarrow \mu$. According to (2.7) and [5, Proposition 5.7], there exist $\theta, M>0$ so that every $\phi_{j n}$ is defined on $\Gamma:=\Gamma_{\theta, M}, \phi_{j n} \rightarrow \phi_{j}$ uniformly on compact sets of Γ as $n \rightarrow \infty$, and $\phi_{j n}(\xi)=o(|\xi|)$ uniformly in n as $\xi \rightarrow \infty$ with $\xi \in \Gamma$ for $j=1,2$. Hence each $\phi_{\mu_{n}}$ is defined on Γ^{2}. On the other hand, the integrands in G_{n} are uniformly bounded functions of (s, t) for points
(z, w) lying in compact sets of $(\mathbb{C} \backslash \mathbb{R})^{2}$. This yields the normality of $\left\{G_{n}\right\}$ by Montel's theorem in complex analysis of several variables. Hence $G_{n}\left(F_{1 n}^{-1}, F_{2 n}^{-1}\right) \rightarrow G_{\mu}\left(F_{1}^{-1}, F_{2}^{-1}\right)$ uniformly on compact sets of Γ^{2} as $n \rightarrow \infty$ and $\phi=\phi_{\mu}$. To finish the proof of $(1) \Rightarrow(2)$, it remains to show that

$$
\frac{z w G_{n}\left(F_{1 n}^{-1}(z), F_{2 n}^{-1}(w)\right)-1}{z w G_{n}\left(F_{1 n}^{-1}(z), F_{2 n}^{-1}(w)\right)}=o(1)
$$

$$
\begin{equation*}
z w G_{n}\left(F_{1 n}^{-1}(z), F_{2 n}^{-1}(w)\right)=F_{1 n}^{-1}(z) F_{2 n}^{-1}(w) G_{n}\left(F_{1 n}^{-1}(z), F_{2 n}^{-1}(w)\right) \cdot \frac{z}{F_{1 n}^{-1}(z)} \cdot \frac{w}{F_{2 n}^{-1}(w)} . \tag{2.10}
\end{equation*}
$$

Clearly, (22) implies (3). To show (3) $\Rightarrow(1)$, it suffices to verify that the sequence $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ is tight by the established result $(1) \Rightarrow(2)$. To conclude the proof, observe that

$$
\begin{aligned}
\phi_{\mu_{n}}(i y, i v) & =\frac{\phi_{1 n}(i y)}{i y}+\frac{\phi_{2 n}(i v)}{i v}+1-\frac{1}{(i y) \frac{i v}{F_{2 n}^{-1}(i v)} F_{2 n}^{-1}(i v) G_{n}\left(F_{1 n}^{-1}(i y), F_{2 n}^{-1}(i v)\right)} \\
& \rightarrow \frac{\phi_{1 n}(i y)}{i y}+1-\frac{1}{(i y) G_{1 n}\left(F_{1 n}^{-1}(i y)\right)} \quad \text { as } \quad|v| \rightarrow \infty \\
& =\frac{\phi_{1 n}(i y)}{i y}
\end{aligned}
$$

where Proposition $\left[2.2\right.$ and the fact that $w G_{n}(z, w) \rightarrow G_{1 n}(z)$ for any $z \in \mathbb{C} \backslash \mathbb{R}$ as $w \rightarrow \infty$ nontangentially are used in the limit. This implies that $\phi_{1 n}(i y)=o(|y|)$ uniformly in n as $|y| \rightarrow \infty$. Similarly, $\left\{\phi_{2 n}\right\}$ has the same asymptotic property. Hence $(i y)(i v) G_{n}\left(F_{1 n}^{-1}(i y), F_{2 n}^{-1}(i v)\right)-1=o(1)$ uniformly in n as $|y|,|v| \rightarrow \infty$ by (2.10), which yields the tightness of $\left\{\mu_{n}\right\}$ by Proposition [.]. The proof is complete.

We can now define the bi-free convolution of arbitrary planar Borel probability measures μ and ν. Choose two sequences $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ and $\left\{\nu_{n}\right\}_{n=1}^{\infty}$ of planar Borel probability measures with compact support converging to μ and ν weakly, respectively. Then Proposition [2.3 shows that $\mu_{n} \boxplus \boxplus \nu_{n}$ weakly converges to a probability measure ρ on \mathbb{R}^{2} which satisfies

$$
\begin{equation*}
\phi_{\rho}(z, w)=\phi_{\mu}(z, w)+\phi_{\nu}(z, w) \tag{2.11}
\end{equation*}
$$

on some Γ^{2}. We further deduce from [[4], Proposition 2.5] the uniqueness of ρ. These discussions lead into the following definition:

Definition 2.4. For any $\mu, \nu \in \mathscr{P}_{\mathbb{R}^{2}}$, the unique probability measure ρ satisfying the additive identity in (L. TI) is called the bi-free additive convolution of μ and ν, and is also denoted by $\mu \boxplus \boxplus \nu$.

Remark 2.5. Our approach to the generalization of bi-free additive convolution is based on analytic tools. An (unbounded) operator model for the bi-free convolution of arbitrary probability measures on \mathbb{R}^{2} is unknown.

We can also show by Proposition [2.3] that the operation of bi-free convolution is weakly continuous, namely, if $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ and $\left\{\nu_{n}\right\}_{n=1}^{\infty}$ are in $\mathscr{P}_{\mathbb{R}^{2}}$ weakly converging to μ and ν, respectively,

169 Proposition 2.6. Let $\mu, \nu \in \mathscr{P}_{\mathbb{R}^{2}}$. Then for $j=1,2$,

$$
(\mu \boxplus \boxplus \nu)^{(j)}=\mu^{(j)} \boxplus \nu^{(j)} .
$$

Proof. Choose two sequences $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ and $\left\{\nu_{n}\right\}_{n=1}^{\infty}$ of planar Borel probability measures with compact support converging to μ and ν weakly, respectively. Since the projections onto marginals and bi-free convolution are weakly continuous, the result (2.6) passes to the conclusion.

3. Bi-free infinite divisibility and Lévy-Hinčin Representation

Throughout the remaining part of the paper, points (s, t) in \mathbb{R}^{2} will be denoted by the bold letter \mathbf{x} and the origin $(0,0)$ will be written as $\mathbf{0}$. We will also denote by the real numbers $\mathbf{v}^{(1)}$ and $\mathbf{v}^{(2)}$ the s - and t-coordinate of a given vector $\mathbf{v} \in \mathbb{R}^{2}$.

In classical probability theory, a Borel probability measure μ on \mathbb{R}^{2} is $*$-infinitely divisible if and only if its characteristic function is of the form (called the Lévy-Hinčin representation)

$$
\begin{equation*}
\widehat{\mu}(\mathbf{u})=\exp \left[i\langle\mathbf{u}, \mathbf{v}\rangle-\frac{1}{2}\langle\mathbf{A} \mathbf{u}, \mathbf{u}\rangle+\int_{\mathbb{R}^{2}}\left(e^{i\langle\mathbf{u}, \mathbf{x}\rangle}-1-\frac{i\langle\mathbf{u}, \mathbf{x}\rangle}{1+\|\mathbf{x}\|^{2}}\right) d \tau(\mathbf{x})\right] \tag{3.12}
\end{equation*}
$$

179 for some vector $\mathbf{v} \in \mathbb{R}^{2}$, real positive semi-definite matrix \mathbf{A} and some positive Borel measure τ

be expressed as an n-fold bi-free convolution of some $\mu_{n} \in \mathscr{P}_{\mathbb{R}^{2}}$:

$$
\mu=\underbrace{\mu_{n} \boxplus \boxplus \cdots \boxplus \boxplus \mu_{n}}_{n \text { terms }}:=\mu_{n}^{\boxplus \boxplus n} .
$$

187
Such a measure is characterized in terms of the functional properties of its bi-free ϕ-transform [4], Theorem 4.3]: μ is $\boxplus \boxplus$-infinitely divisible if and only if ϕ_{μ} extends analytically to $(\mathbb{C} \backslash \mathbb{R})^{2}$ and admits an integral representation of the form

$$
\phi_{\mu}(z, w)=\frac{1}{z}\left(\gamma_{1}+\int_{\mathbb{R}^{2}} \frac{1+z s}{z-s} d \sigma_{1}(\mathbf{x})\right)+\frac{1}{w}\left(\gamma_{2}+\int_{\mathbb{R}^{2}} \frac{1+w t}{w-t} d \sigma_{2}(\mathbf{x})\right)+\widetilde{D}(z, w),
$$

190 where $\left(\gamma_{1}, \gamma_{2}\right) \in \mathbb{R}^{2}, \sigma_{j}$ is a finite, positive Borel measure on \mathbb{R}^{2} for $j=1,2$, and

$$
\widetilde{D}(z, w)=\int_{\mathbb{R}^{2}} \frac{\sqrt{1+s^{2}} \sqrt{1+t^{2}}}{(z-s)(w-t)} d \widetilde{\sigma}(\mathbf{x})
$$

191 for some finite Borel signed measure $\widetilde{\sigma}$ on \mathbb{R}^{2} satisfying the relations

$$
\left\{\begin{array}{l}
\frac{t}{\sqrt{1+t^{2}}} \sigma_{1}=\frac{s}{\sqrt{1+s^{2}}} \widetilde{\sigma} \tag{3.13}\\
\frac{s}{\sqrt{1+s^{2}}} \sigma_{2}=\frac{t}{\sqrt{1+t^{2}}} \widetilde{\sigma} \\
\widetilde{\sigma}(\{\mathbf{0}\})^{2} \leq \sigma_{1}(\{\mathbf{0}\}) \sigma_{2}(\{\mathbf{0}\}) .
\end{array}\right.
$$

$$
\mathbf{A}=\left(\begin{array}{ll}
a & c \tag{3.14}\\
c & b
\end{array}\right)
$$

In order to get more insights into $\boxplus \boxplus$-infinitely divisible distributions, we will derive another integral representation for them. The representing measure is no longer required to be finite but only positive. First of all, define the positive measure τ on \mathbb{R}^{2} as

$$
\tau= \begin{cases}\frac{1+s^{2}}{s^{2}} \sigma_{1} & \text { on } \quad\left\{(s, t) \in \mathbb{R}^{2}: s \neq 0\right\} \tag{3.15}\\ \frac{1+t^{2}}{t^{2}} \sigma_{2} & \text { on } \quad\left\{(s, t) \in \mathbb{R}^{2}: t \neq 0\right\}\end{cases}
$$ Moreover, the restriction of τ to the set $\left\{(s, t) \in \mathbb{R}^{2}: s t \neq 0\right\}$ is equal to

$$
\frac{\sqrt{1+s^{2}} \sqrt{1+t^{2}}}{s t} \chi_{\{s t \neq 0\}}(s, t) \widetilde{\sigma}
$$

$$
\begin{equation*}
\phi_{\mu}(z, w)=\frac{\mathbf{v}^{(1)}}{z}+\frac{\mathbf{v}^{(2)}}{w}+\left(\frac{a}{z^{2}}+\frac{c}{z w}+\frac{b}{w^{2}}\right)+\mathcal{P}(z, w) \tag{3.16}
\end{equation*}
$$

203 where $\mathbf{v} \in \mathbb{R}^{2}$ and

$$
\mathcal{P}(z, w)=\int_{\mathbb{R}^{2}}\left[\frac{z w}{(z-s)(w-t)}-1-\frac{s z^{-1}+t w^{-1}}{1+s^{2}+t^{2}}\right] d \tau(s, t) .
$$

204

$$
\begin{equation*}
\frac{z s}{z-s}=\frac{1+z s}{z-s} \frac{s^{2}}{1+s^{2}}+\frac{s}{1+s^{2}} \tag{3.17}
\end{equation*}
$$

205 and

$$
\frac{s}{1+s^{2}}=\frac{s}{1+s^{2}+t^{2}}+\frac{s}{1+s^{2}} \frac{t^{2}}{1+s^{2}+t^{2}}
$$

$$
\begin{equation*}
\gamma_{1}+\int_{\mathbb{R}^{2}} \frac{1+z s}{z-s} d \sigma_{1}(\mathbf{x})=\phi_{\mu^{(1)}}(z)=\mathbf{v}^{(1)}+\frac{a}{z}+\int_{\mathbb{R}^{2}}\left[\frac{z s}{z-s}-\frac{s}{1+s^{2}+t^{2}}\right] d \tau(\mathbf{x}) \tag{3.18}
\end{equation*}
$$

$$
\begin{equation*}
\gamma_{2}+\int_{\mathbb{R}^{2}} \frac{1+w t}{w-t} d \sigma_{2}(\mathbf{x})=\phi_{\mu^{(2)}}(w)=\mathbf{v}^{(2)}+\frac{b}{w}+\int_{\mathbb{R}^{2}}\left[\frac{w t}{w-t}-\frac{t}{1+s^{2}+t^{2}}\right] d \tau(\mathbf{x}) \tag{3.19}
\end{equation*}
$$

Combining the identities (3.I8) and (3.1 T) with

$$
\widetilde{D}(z, w)=\frac{c}{z w}+\int_{\mathbb{R}^{2}} \frac{s t}{(z-s)(w-t)} d \tau(s, t)
$$

yields the desired expression (3.16). Conversely, a function admitting such an integral form (3.16) with the required properties stated above can be shown to be the bi-free ϕ-transform of some bi-freely infinitely divisible measure. These observations lead to the following result.

$$
\begin{equation*}
\phi_{\mu}(z, w)=\lambda \int_{\mathbb{R}^{2}}\left[\frac{z w}{(z-s)(w-t)}-1\right] d \nu(\mathbf{x}) . \tag{3.21}
\end{equation*}
$$

Theorem 3．1．（Bi－free Lévy－Hinčin representation）A probability distribution μ on \mathbb{R}^{2} is bi－freely infinitely divisible if and only if its bi－free ϕ－transform extends analytically to $(\mathbb{C} \backslash \mathbb{R})^{2}$ and admits the integral representation（3．16），where $\mathbf{v} \in \mathbb{R}^{2}$ ，the matrix \mathbf{A} given as in（3．14）is positive semi－ definite，and τ is a positive measure on \mathbb{R}^{2} with the properties $\tau(\{\mathbf{0}\})=0$ and $1 \wedge\|\mathbf{x}\|^{2} \in L^{1}(\tau)$ ． Moreover，the triplet $(\mathbf{v}, \mathbf{A}, \tau)$ in（3．76）is unique．Conversely，given such a triplet $(\mathbf{v}, \mathbf{A}, \tau)$ there exists a probability measure μ for which（［．］6）holds．

Theorem［3．］shows that the set $\mathcal{I D}(\boxplus \boxplus)$ of bi－freely infinitely divisible distributions is completely parameterized by the triplet $(\mathbf{v}, \mathbf{A}, \tau)$ ．In the sequel，a probability measure μ in $\mathcal{I D}(\boxplus \boxplus)$ having the representation（B．／6）will be denoted by $\mu_{\mathrm{H} \mathbf{\boxplus}}^{(\mathbf{v}, \mathbf{A}, \tau)}$ ，in which τ is called the bi－free Lévy measure and $(\mathbf{v}, \mathbf{A}, \tau)$ is called the bi－free characteristic triplet of $\mu_{\boxplus ⿴ 囗 十}^{(\mathbf{v}, \mathbf{A}, \tau)}$ ．The classical and bi－free Lévy－ Hinčin representations（B．I2）and（3．T6）have exactly the same characteristic triplets．As a matter of fact，such a one－to－one correspondence also holds true in general limit theorems，see Theorem 5.5.

Example 3．2．Let μ be $\boxplus \boxplus$－infinitely divisible and let $(\mathbf{v}, \mathbf{A}, \tau)$ be its bi－free characteristic triplet． （1）Then μ is called a bi－free Gaussian distribution if $\tau=0$ ．
（2）If τ satisfies

$$
\int_{\mathbb{R}^{2}} \frac{\|\mathbf{x}\|}{1+\|\mathbf{x}\|^{2}} d \tau(\mathbf{x})<\infty
$$

then（3．16）is reduced to the form

$$
\phi_{\mu}(z, w)=\frac{\mathbf{u}^{(1)}}{z}+\frac{\mathbf{u}^{(2)}}{w}+\left(\frac{a}{z^{2}}+\frac{c}{z w}+\frac{b}{w^{2}}\right)+\int_{\mathbb{R}^{2}}\left[\frac{z w}{(z-s)(w-t)}-1\right] d \tau(s, t)
$$

for some vector $\mathbf{u} \in \mathbb{R}^{2}$ called the drift of μ ．
（3）Let ν be in $\mathscr{P}_{\mathbb{R}^{2}}$ with $\nu(\{\mathbf{0}\})=0$ ．Then μ is called a bi－free compound Poisson distribution with rate $\lambda>0$ and jump distribution ν if

$$
\begin{equation*}
\mathbf{v}=\int_{\mathbb{R}^{2}} \frac{\lambda \mathbf{x}}{1+\|\mathbf{x}\|^{2}} d \nu(\mathbf{x}) \tag{3.20}
\end{equation*}
$$

$\mathbf{A}=\mathbf{0}$ and $\tau=\lambda \nu$ ，and in such a case its bi－free ϕ－transform is given as

If $\nu=\delta_{\mathbf{p}}$ with $\mathbf{p} \in \mathbb{R}^{2} \backslash\{\mathbf{0}\}$ ，then μ is referred to as a bi－free Poisson distribution with rate λ and jump distribution $\delta_{\mathbf{p}}$ ．

4．Asymptotic behaviors of bi－free convolutions

This section treats the asymptotic behavior of the measures

$$
\begin{equation*}
\mu_{n}:=\mu_{n 1} \boxplus \boxplus \mu_{n 2} \boxplus \boxplus \cdots \boxplus \boxplus \mu_{n k_{n}} \boxplus \boxplus \delta_{\mathbf{v}_{n}}, \tag{4.22}
\end{equation*}
$$

where $\left\{k_{n}\right\}_{n=1}^{\infty}$ is a sequence of strictly increasing positive integers，$\left\{\mu_{n k}\right\}_{n \geq 1,1 \leq k \leq k_{n}}$ is an infini－ tesimal triangular array in $\mathscr{P}_{\mathbb{R}^{2}}$ ，and $\mathbf{v}_{n} \in \mathbb{R}^{2}$ ．In order to cope with the problem，we begin with carrying out the investigation on the asymptotic behavior of the bi－free transforms of $\mu_{n k}$ ．It turns out that they satisfy certain asymptotic property due to the infinitesimality of $\left\{\mu_{n k}\right\}_{n, k}$ ．

$$
\begin{equation*}
\left\{z w G_{n k}(z, w)-1\right\}_{n \geq 1,1 \leq k \leq k_{n}} \in \mathcal{U}\left(\Gamma^{\prime 2}\right), \tag{4.24}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{v}_{n k}=\int_{\{\|\mathbf{x}\|<L\}} \mathbf{x} d \mu_{n k}(\mathbf{x}) \tag{4.25}
\end{equation*}
$$

where Γ^{\prime} is some truncated cone in \mathbb{C} on which $F_{\mu_{n k}^{(j)}}$ is univalent. Making use of the techniques in the proof of Proposition [.] again one can easily obtain (4.24$)$. The proof is complete. asymptotic properties of μ_{n} defined in (4.22). Let
and define a triangular array $\left\{\dot{\mu}_{n k}\right\}_{n \geq 1,1 \leq k \leq k_{n}} \subset \mathscr{P}_{\mathbb{R}^{2}}$ as

Let S be an unbounded subset of \mathbb{C}, and denote by $\mathcal{U}\left(S^{d}\right)$ the collection of triangular arrays of functions $\left\{\epsilon_{n k}\right\}_{n \geq 1,1 \leq k \leq k_{n}}$ defined on S^{d} with the following asymptotic properties: the functions

$$
\epsilon_{n}\left(z_{1}, \ldots, z_{d}\right)=\max _{1 \leq k \leq k_{n}}\left|\epsilon_{n k}\left(z_{1}, \ldots, z_{d}\right)\right|, \quad\left(z_{1}, \ldots, z_{d}\right) \in S^{d}
$$

satisfy that $\lim _{n \rightarrow \infty} \epsilon_{n}\left(z_{1}, \ldots, z_{d}\right)=0$ for any $\left(z_{1}, \ldots, z_{d}\right) \in S^{d}$ and $\epsilon_{n}\left(z_{1}, \ldots, z_{d}\right)=o(1)$ uniformly in n as $z_{1}, \ldots, z_{d} \rightarrow \infty$ with $\left(z_{1}, \ldots, z_{d}\right) \in S^{d}$.

Lemma 4.1. Let $\left\{\mu_{n k}\right\}_{n \geq 1,1 \leq k \leq k_{n}} \subset \mathscr{P}_{\mathbb{R}^{2}}$ be infinitesimal. The following statements hold.
(1) For any $\theta>0$, there exists a number $M>1$ so that each $\phi_{\mu_{n k}^{(j)}}$ is defined and satisfies the relation $\phi_{\mu_{n k}^{(j)}}(\bar{\xi})=\overline{\phi_{\mu_{n k}^{(j)}(\xi)}}$ on $\Gamma:=\Gamma_{\theta, M}$.
(2) For $j=1,2$,

$$
\left\{\frac{\phi_{\mu_{n k}^{(j)}}(\xi)}{\xi}\right\}_{n \geq 1,1 \leq k \leq k_{n}} \in \mathcal{U}(\Gamma) \quad \text { and } \quad\left\{\phi_{\mu_{n k}}\right\}_{n \geq 1,1 \leq k \leq k_{n}} \in \mathcal{U}\left(\Gamma^{2}\right)
$$

Proof. For notational convenience, write $G_{n k}=G_{\mu_{n k}}, F_{j n k}=F_{\mu_{n k}^{(j)}}, \phi_{j n k}=\phi_{\mu_{n k}^{(j)}}$ and $\phi_{n k}=\phi_{\mu_{n k}}$ for all j, k, n. Let $\theta>0$. Then the existence of the number $M>1$ with the stated properties in (IT) is guaranteed by the infinitesimality of $\left\{\mu_{n k}\right\}_{n, k}\left[\right.$ [4] Lemma 5]. The relation $\phi_{j n k}(\bar{z})=\overline{\phi_{j n k}(z)}$ holds for $z \in \Gamma$ because $F_{j n k}(\bar{z})=\overline{F_{j n k}(z)}$ for $z \in \mathbb{C} \backslash \mathbb{R}$.

Recall from [6, Proposition 2.3] that we can express $\phi_{1 n k}$ as

$$
\begin{equation*}
\frac{\phi_{1 n k}(z)}{z}=\left[1+v_{n k}(z)\right] \int_{\mathbb{R}} \frac{s}{z-s} d \mu_{n k}^{(1)}(s) \tag{4.23}
\end{equation*}
$$

where $\left\{v_{n k}\right\}_{n \geq 1,1 \leq k \leq k_{n}} \in \mathcal{U}(\Gamma)$. Applying the techniques used in the proof of Proposition [.] to the sequence of functions

$$
\epsilon_{n}(z):=\max _{1 \leq k \leq k_{n}}\left|\int_{\mathbb{R}} \frac{s}{z-s} d \mu_{n k}^{(1)}(s)\right|
$$

along with the infinitesimality of $\left\{\mu_{n k}\right\}_{n, k}$, yields that $\lim _{n \rightarrow \infty} \epsilon_{n}(z)=0$ for $z \in \Gamma$ and $\epsilon_{n}(z)=o(1)$ uniformly in n as $z \rightarrow \infty$ with $z \in \Gamma$. Hence the triangular array $\left\{\phi_{1 n k}(z) / z\right\}_{n, k}$, as well as $\left\{\phi_{2 n k}(w) / w\right\}_{n, k}$, is shown to belong to $\mathcal{U}(\Gamma)$.

Finally, in order to show that $\left\{\phi_{n k}\right\}_{n \geq 1,1 \leq k \leq k_{n}} \in \mathcal{U}\left(\Gamma^{2}\right)$, it suffices to show that $\left\{\left(H_{n k}-\right.\right.$ 1) $\left./ H_{n k}\right\}_{n \geq 1,1 \leq k \leq k_{n}} \in \mathcal{U}\left(\Gamma^{2}\right)$, where $H_{n k}(z, w)=z w G_{n k}\left(F_{1 n k}^{-1}(z), F_{2 n k}^{-1}(w)\right)$ for $(z, w) \in \Gamma^{2}$. This is equivalent to showing that $\left\{H_{n k}-1\right\}_{n, k} \in \mathcal{U}\left(\Gamma^{2}\right)$. We further see from Proposition [2.2 that the condition $\left\{H_{n k}-1\right\}_{n, k} \in \mathcal{U}\left(\Gamma^{2}\right)$ is the same as

Let $L>0$ be a fixed number. We will use the following functions and measures to study

$$
\begin{equation*}
\stackrel{\circ}{\mu}_{n k}(B)=\mu_{n k}\left(B+\mathbf{v}_{n k}\right) \tag{4.26}
\end{equation*}
$$

$$
\begin{equation*}
\tau_{n}=\sum_{k=1}^{k_{n}} \stackrel{\circ}{\mu}_{n k} \tag{4.27}
\end{equation*}
$$

270

$$
\begin{equation*}
\phi_{\mu_{n k}^{(1)}}(i y)-\mathbf{v}_{n k}^{(1)}=\phi_{\hat{\mu}_{n k}^{(1)}}(i y)=f_{1 n k}(i y)\left[1+v_{n k}(i y)\right] \tag{4.28}
\end{equation*}
$$

for $i y \in \Gamma$. Then the desired result in ($\mathbb{(1)}$ follows from [6, Lemma 2.4] by choosing $z_{n k}=\phi_{\mu_{n k}^{(1)}}(i y)-$ $\mathbf{v}_{n k}^{(1)}, w_{n k}=f_{1 n k}(i y)$ and $r_{n}=\mathbf{v}_{n}^{(1)}+\sum_{k=1}^{k_{n}} \mathbf{v}_{n k}^{(1)}$.

For assertion (Z), define

$$
b_{1 n k}(y)=\mathbf{v}_{n k}^{(1)} \int_{\{\|\mathbf{x}\| \geq L\}} d \mu_{n k}(\mathbf{x})+\int_{\left\{\left\|\mathbf{x}+\mathbf{v}_{n k}\right\| \geq L\right\}} \frac{y^{2} s}{y^{2}+s^{2}} d \AA_{n k}(\mathbf{x})
$$

Observe that we have

$$
\mathbf{v}_{n k}^{(1)} \int_{\{\|\mathbf{x}\| \geq L\}} d \mu_{n k}(\mathbf{x})=\int_{\{\|\mathbf{x}\|<L\}}\left(s-\mathbf{v}_{n k}^{(1)}\right) d \mu_{n k}(\mathbf{x})=\int_{\left\{\left\|\mathbf{x}+\mathbf{v}_{n k}\right\|<L\right\}} s d \circ_{n k}(\mathbf{x})
$$

287 and

$$
f_{1 n k}(i y)=\int_{\mathbb{R}^{2}} \frac{y^{2} s}{y^{2}+s^{2}} d \stackrel{\circ}{\mu}_{n k}(\mathbf{x})-i \int_{\mathbb{R}^{2}} \frac{y s^{2}}{y^{2}+s^{2}} d \stackrel{\circ}{\mu}_{n k}(\mathbf{x}) .
$$

$$
\begin{equation*}
\left|\Re f_{1 n k}(i y)-b_{1 n k}(y)\right|=\left|\int_{\left\{\left\|\mathbf{x}+\mathbf{v}_{n k}\right\|<L\right\}} \frac{s^{3}}{y^{2}+s^{2}} d \check{\mu}_{n k}(\mathbf{x})\right| \leq 2 L\left|\Im f_{1 n k}(i y)\right|, \tag{4.29}
\end{equation*}
$$

Now let $N \in \mathbb{N}$ be big enough so that $\sup _{1 \leq k \leq k_{n}}\left\|\mathbf{v}_{n k}\right\| \leq L / 2$ for all $n \geq N$. Then for $|y|>1$ and $n \geq N$ we have

$$
\begin{align*}
\sum_{k=1}^{k_{n}}\left|b_{1 n k}(y)\right| & \leq \sum_{k=1}^{k_{n}} \frac{L}{2} \int_{\{\|\mathbf{x}\| \geq L / 2\}} d \grave{\mu}_{n k}(\mathbf{x})+|y| \sum_{k=1}^{k_{n}} \int_{\{\|\mathbf{x}\| \geq L / 2\}} \frac{|y s|}{y^{2}+s^{2}} d \grave{\mu}_{n k}(\mathbf{x}) \\
& \leq|y| \sum_{k=1}^{k_{n}} \int_{\{\|\mathbf{x}\| \geq L / 2\}} \frac{1+L}{2} d \grave{\mu}_{n k}(\mathbf{x}) \tag{4.30}\\
& =|y|(1+L)\left(4+L^{2}\right)\left(2 L^{2}\right)^{-1} \int_{\{\|\mathbf{x}\| \geq L / 2\}} \frac{L^{2} / 4}{1+L^{2} / 4} d \tau_{n}(\mathbf{x}) \\
& \leq|y|(1+L)\left(4+L^{2}\right)\left(2 L^{2}\right)^{-1} \int_{\{\|\mathbf{x}\| \geq L / 2\}} \frac{\|\mathbf{x}\|^{2}}{1+\|\mathbf{x}\|^{2}} d \tau_{n}(\mathbf{x}) .
\end{align*}
$$

Moreover, the estimate

$$
\begin{equation*}
\sup _{n \geq 1} \sum_{k=1}^{k_{n}}\left|\Im f_{1 n k}(i y)\right|=|y| \sup _{n \geq 1} \sum_{k=1}^{k_{n}} \int_{\mathbb{R}^{2}} \frac{s^{2}}{y^{2}+s^{2}} d \grave{\mu}_{n k}(s, t) \leq V|y| \tag{4.31}
\end{equation*}
$$

$$
\begin{equation*}
H_{n k}(z, w)=z w G_{\mu_{n k}}\left(F_{\mu_{n k}^{(1)}}^{-1}(z), F_{\mu_{n k}^{(2)}}^{-1}(w)\right), \quad(z, w) \in \Gamma^{2} . \tag{4.32}
\end{equation*}
$$

Then $H_{n k}-1$ can be expressed as

$$
\epsilon_{1 n k} \int_{\mathbb{R}^{2}} \frac{s}{z-s} d \grave{\mu}_{n k}(s, t)+\epsilon_{2 n k} \int_{\mathbb{R}^{2}} \frac{t}{w-t} d \grave{\mu}_{n k}(s, t)+\left(1+\epsilon_{n k}\right) \int_{\mathbb{R}^{2}} \frac{s t}{(z-s)(w-t)} d \grave{\mu}_{n k}(s, t),
$$

298 where $\left\{\epsilon_{1 n k}(z, w)\right\}_{n, k},\left\{\epsilon_{2 n k}(z, w)\right\}_{n, k}$ and $\left\{\epsilon_{n k}(z, w)\right\}_{n, k}$ are triangular arrays of functions in $\mathcal{U}\left(\Gamma^{2}\right)$.
299 Consequently, $\left\{H_{n k}-1\right\} \in \mathcal{U}\left(\Gamma^{2}\right)$.
Proof. For notational convenience, write $\dot{G}_{n k}=G_{\tilde{\mu}_{n k}}, \stackrel{\circ}{F}_{j n k}=F_{\dot{\mu}_{n k}^{(j)}}$ and $\dot{\circ}_{j n k}=\phi_{\dot{\mu}_{n k}^{(j)}}$ for any j, n and k. Then a simple argument of change of variables shows that

$$
H_{n k}(z, w)=z w \dot{G}_{n k}\left(\stackrel{\circ}{F}_{1 n k}^{-1}(z), \stackrel{\circ}{F}_{2 n k}^{-1}(w)\right), \quad(z, w) \in \Gamma^{2}
$$

302 To conclude the proof, we first analyze the function

$$
H_{n k}(z, w)-1=\int_{\mathbb{R}^{2}}\left[\frac{z}{\dot{\phi}_{1 n k}(z)+z-s} \frac{w}{\stackrel{\phi}{2 n k}(w)+w-t}-1\right] d \check{\mu}_{n k}(s, t) .
$$

303
Using the identity

$$
\frac{\xi}{\grave{\phi}_{j n k}(\xi)+\xi-r}=\frac{\xi}{\xi-r}\left[1-\frac{\grave{\phi}_{j n k}(\xi)}{\grave{F}_{j n k}^{-1}(\xi)-r}\right],
$$

304 the function $H_{n k}-1$ can be rewritten as the sum of functions $I_{1 n k}, I_{2 n k}$ and $I_{3 n k}$, where

305

$$
I_{1 n k}(z, w)=\int_{\mathbb{R}^{2}}\left[\frac{z w}{(z-s)(w-t)}-1\right] d \grave{\mu}_{n k}(s, t)
$$

$$
I_{2 n k}(z, w)=-\int_{\mathbb{R}^{2}} \frac{z w}{(z-s)(w-t)}\left[\frac{\grave{\phi}_{1 n k}(z)}{\stackrel{F}{1 n k}_{-1}(z)-s}+\frac{\stackrel{\circ}{\phi}_{2 n k}(w)}{\stackrel{F}{2 n k}_{-1}(w)-t}\right] d \circ_{n k}(s, t),
$$

306 and

$$
I_{3 n k}(z, w)=\int_{\mathbb{R}^{2}} \frac{z w}{(z-s)(w-t)} \frac{\grave{\phi}_{1 n k}(z)}{\dot{F}_{1 n k}^{-1}(z)-s} \frac{\grave{\phi}_{2 n k}(w)}{\dot{F}_{2 n k}^{-1}(w)-t} d \grave{\mu}_{n k}(s, t) .
$$

307
For any $z \in \Gamma$ with $|z|$ large enough, $s \in \mathbb{R}$, and n, k, Lemma $\mathbb{4}$. ${ }^{\text {d }}$ shows that

$$
\left|\frac{\stackrel{\circ}{F}_{1 n k}^{-1}(z)-s}{z}\right|=\left|\frac{z-s}{z}+\frac{\grave{\phi}_{1 n k}(z)}{z}\right| \geq \frac{|\Im z|}{|z|}-\left|\frac{\grave{\phi}_{1 n k}(z)}{z}\right| \geq \frac{1}{\sqrt{1+\theta^{2}}}-\left|\frac{\AA_{1 n k}(z)}{z}\right| \geq c_{\theta},
$$

308 where $c_{\theta}=1 /\left(2 \sqrt{ } 1+\theta^{2}\right)$. This implies that

$$
\begin{equation*}
\frac{1}{\dot{F}_{1 n k}^{-1}(z)-s}=\frac{1}{z-s}\left[1-\frac{\grave{\phi}_{1 n k}(z)}{\dot{F}_{1 n k}^{-1}(z)-s}\right]=\frac{1}{z-s}\left[1+\delta_{1 n k}(z, s)\right], \tag{4.33}
\end{equation*}
$$

309 where

$$
\max _{1 \leq k \leq k_{n}}\left|\delta_{1 n k}(z, s)\right|=\max _{1 \leq k \leq k_{n}}\left|\frac{\dot{\phi}_{1 n k}(z)}{\dot{F}_{1 n k}^{-1}(z)-s}\right| \leq c_{\theta}^{-1} \max _{1 \leq k \leq k_{n}}\left|\frac{\dot{\phi}_{1 n k}(z)}{z}\right|:=\delta_{1 n}(z) .
$$

310 We further obtain from the estimate (4.331) that

$$
\begin{align*}
& \max _{1 \leq k \leq k_{n}}\left|\int_{\mathbb{R}^{2}} \frac{z^{2} w}{(z-s)(w-t)} \frac{1}{\stackrel{\circ}{F}_{1 n k}^{-1}(z)-s} d \stackrel{\circ}{\mu}_{n k}(s, t)-1\right| \\
= & \max _{1 \leq k \leq k_{n}}\left|\int_{\mathbb{R}^{2}} \frac{z^{2} w}{(z-s)^{2}(w-t)}\left[1+\delta_{1 n k}(z, s)\right] d \stackrel{\mu}{\mu}_{n k}(s, t)-1\right| \tag{4.34}\\
= & \max _{1 \leq k \leq k_{n}}\left|\int_{\mathbb{R}^{2}}\left\{\left[\frac{z^{2} w}{(z-s)^{2}(w-t)}-1\right]\left[1+\delta_{1 n k}(z, s)\right]+\delta_{1 n k}(z, s)\right\} d \check{\mu}_{n k}(s, t)\right| \\
\leq & \delta_{1 n}(z)+\left[1+\delta_{1 n}(z)\right] M_{n}(z, w),
\end{align*}
$$

311 where

$$
M_{n}(z, w)=\max _{1 \leq k \leq k_{n}} \int_{\mathbb{R}^{2}}\left|\frac{z^{2} w}{(z-s)^{2}(w-t)}-1\right| d \grave{\mu}_{n k}(s, t) .
$$

312 Note that the function $\delta_{1 n}(z)+\left[1+\delta_{1 n}(z)\right] M_{n}(z, w)=o(1)$ as $n \rightarrow \infty$ for $(z, w) \in \Gamma^{2}$ and uniformly 313 in n as $z, w \rightarrow \infty$ with $(z, w) \in \Gamma^{2}$. Indeed, this can be easily obtained by using Lemma 1.1$]$ and
314 applying the techniques employed in the proof of Proposition $[. .1$ to the identity

$$
\frac{z^{2} w}{(z-s)^{2}(w-t)}-1=\frac{z}{z-s}\left[\frac{z w}{(z-s)(w-t)}-1\right]+\frac{s}{z-s} .
$$

Now applying the formula (4.2.3) to the triangular array $\left\{\stackrel{\circ}{\mu}_{n k}\right\}_{n \geq 1,1 \leq k \leq k_{n}}$ and using (4.34) give

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} \frac{z w}{(z-s)(w-t)} \frac{\grave{\phi}_{1 n k}(z)}{\stackrel{\circ}{1 n k}_{-1}(z)-s} d \check{\mu}_{n k}(s, t) & =\frac{\grave{\phi}_{1 n k}(z)}{z} \int_{\mathbb{R}^{2}} \frac{z^{2} w}{(z-s)(w-t)} \frac{d \grave{\mu}_{n k}(s, t)}{\stackrel{\mu}{1 n k}_{-1}(z)-s} \\
& =\left[1+v_{1 n k}(z, w)\right] \int_{\mathbb{R}^{2}} \frac{s}{z-s} d \stackrel{\mu}{n k}(s, t),
\end{aligned}
$$

where $\left\{v_{1 n k}\right\}_{n, k}$ is a triangular array in $\mathcal{U}\left(\Gamma^{2}\right)$. Similarly, the identity

$$
\int_{\mathbb{R}^{2}} \frac{z w}{(z-s)(w-t)} \frac{\grave{\phi}_{2 n k}(w)}{\stackrel{F}{2 n k}_{-1}(w)-t} d \grave{\mu}_{n k}(s, t)=\left[1+v_{2 n k}(z, w)\right] \int_{\mathbb{R}^{2}} \frac{t}{w-t} d \check{\mu}_{n k}(s, t)
$$

is valid for some triangular array $\left\{v_{2 n k}\right\}_{n, k} \in \mathcal{U}\left(\Gamma^{2}\right)$. By similar arguments, one can also show that

$$
I_{3 n k}=v_{3 n k} \int_{\mathbb{R}^{2}} \frac{s}{z-s} d \stackrel{\mu}{n k}(s, t)+v_{4 n k} \int_{\mathbb{R}^{2}} \frac{t}{w-t} d \grave{\mu}_{n k}(s, t)+v_{5 n k} \int_{\mathbb{R}^{2}} \frac{s t d \grave{\mu}_{n k}(s, t)}{(z-s)(w-t)}
$$

(2) For $(i y, i v) \in \Gamma^{2}$, the limit in Proposition [.工. This finishes the proof.
are uniformly bounded and tight.
exists if and only if the limit
(3) The function
uniformly in n as $|y|,|v| \rightarrow \infty$.
for some triangular arrays $\left\{v_{3 n k}\right\}_{n, k},\left\{v_{4 n k}\right\}_{n, k}$ and $\left\{v_{5 n k}\right\}_{n, k}$ in $\mathcal{U}\left(\Gamma^{2}\right)$. Finally, let $\epsilon_{1 n k}=v_{3 n k}-v_{1 n k}$, $\epsilon_{2 n k}=v_{4 n k}-v_{2 n k}$, and $\epsilon_{n k}=v_{5 n k}$. Then we conclude the proof of the first assertion by using the integral representations of $I_{2 n k}$ and $I_{3 n k}$ provided above and the identity

$$
I_{1 n k}(z, w)=\int_{\mathbb{R}^{2}}\left[\frac{s}{z-s}+\frac{t}{w-t}+\frac{s t}{(z-s)(w-t)}\right] d \dot{\mu}_{n k}(s, t) .
$$

The fact that $\left\{H_{n k}-1\right\} \in \mathcal{U}\left(\Gamma^{2}\right)$ can be proved by the infinitesimality of $\left\{\dot{\mu}_{n k}\right\}$ and the techniques

Lemma 4.4. Suppose that the marginal laws of μ_{n} in (4.22) converge weakly. With the notations $\AA_{n k}, \tau_{n}, \Gamma$ as before and $H_{n k}$ as in (4.32), the following statements hold.
(1) The positive planar measures $\left\{\sigma_{1 n}\right\}_{n=1}^{\infty}$ and $\left\{\sigma_{2 n}\right\}_{n=1}^{\infty}$ defined as

$$
\sigma_{1 n}=\frac{s^{2}}{1+s^{2}} \tau_{n} \quad \text { and } \quad \sigma_{2 n}=\frac{t^{2}}{1+t^{2}} \tau_{n}
$$

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{k_{n}} \frac{H_{n k}(i y, i v)-1}{H_{n k}(i y, i v)}
$$

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{k_{n}} \int_{\mathbb{R}^{2}} \frac{s t}{(i y-s)(i v-t)} d \stackrel{\mu}{\mu}_{n k}(s, t)
$$

exists, in which case these two limits are equal.

$$
\sum_{k=1}^{k_{n}} \frac{H_{n k}(i y, i v)-1}{H_{n k}(i y, i v)}=o(1)
$$

uniformly in n as $|y|,|v| \rightarrow \infty$ if and only if

$$
\sum_{k=1}^{k_{n}} \int_{\mathbb{R}^{2}} \frac{s t}{(i y-s)(i v-t)} d \stackrel{\circ}{\mu}_{n k}(s, t)=o(1)
$$

Proof. For any $\epsilon>0$, choose a large positive number $y_{0}>1$ so that $\left|\phi_{\mu_{n}^{(1)}}\left(i y_{0}\right)\right|<\epsilon y_{0}$ for all n by Proposition [2.3. Then we deduce from Lemma $\mathbb{L . 2 (\mathbb { T }) \text { and the identity }}$

$$
\int_{\mathbb{R}^{2}} \frac{s^{2}}{y_{0}^{2}+s^{2}} d \tau_{n}(s, t)=-\frac{1}{y_{0}} \Im\left(\mathbf{v}_{n}^{(1)}+\sum_{k=1}^{k_{n}}\left[\mathbf{v}_{n k}^{(1)}+f_{1 n k}\left(i y_{0}\right)\right]\right)
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=1}^{k_{n}}\left[H_{n k}(i y, i v)-1\right] \tag{4.38}
\end{equation*}
$$

and show that they are equal. We shall use the integral representation of $H_{n k}-1$ given in Lemma 4.3 to accomplish this goal. Observe first that the quantity V defined in Lemma $4.2(\mathbb{Z})$ is finite by the established result (\mathbb{I}). Hence for $(i v, i y) \in \Gamma^{2}$ and all large n, we have

$$
\begin{aligned}
\left|\sum_{k=1}^{k_{n}} \epsilon_{1 n k}(i y, i v) \int_{\mathbb{R}^{2}} \frac{s}{i y-s} d \stackrel{\circ}{\mu}_{n k}(s, t)\right| & \leq\left[\max _{1 \leq k \leq k_{n}}\left|\epsilon_{1 n k}(i y, i v)\right|\right] \frac{1}{|y|} \sum_{k=1}^{k_{n}}\left|f_{1 n k}(i y)\right| \\
& \leq C_{L} V \max _{1 \leq k \leq k_{n}}\left|\epsilon_{1 n k}(i y, i v)\right|
\end{aligned}
$$

the existence of a large number $N \in \mathbb{N}$ so that

$$
\int_{\mathbb{R}^{2}} \frac{s^{2}}{y_{0}^{2}+s^{2}} d \tau_{n}(s, t)<2 \epsilon, \quad n \geq N
$$

which hold true for $s \in \mathbb{R}$ and $|s| \geq y_{0}$, respectively, yields the uniform boundedness and tightness of $\left\{\sigma_{1 n}\right\}$. Similarly, $\left\{\sigma_{2 n}\right\}$ is uniformly bounded and tight. This proves (1).

To prove (Z), we first argue that the limit in (4.36) exists if and only if so does the limit

$$
\frac{s^{2}}{1+s^{2}} \leq \frac{y_{0}^{2} s^{2}}{y_{0}^{2}+s^{2}} \quad \text { and } \quad \frac{s^{2}}{1+s^{2}} \leq \frac{2 s^{2}}{y_{0}^{2}+s^{2}}
$$

which yields that

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{k_{n}} \epsilon_{1 n k}(i y, i v) \int_{\mathbb{R}^{2}} \frac{s}{i y-s} d \grave{\mu}_{n k}(s, t)=0
$$

as well as

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{k_{n}} \epsilon_{2 n k}(i y, i v) \int_{\mathbb{R}^{2}} \frac{t}{i v-t} d \stackrel{\circ}{\mu}_{n k}(s, t)=0
$$

by similar arguments. Next notice that the inequality

$$
\left|\frac{s t}{(i y-s)(i v-t)}\right| \leq \frac{2 s^{2}}{1+s^{2}}+\frac{2 t^{2}}{1+t^{2}}, \quad|y|,|v| \geq 1, s, t \in \mathbb{R}
$$

along with the established result (1), allows us to obtain that

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{k_{n}} \epsilon_{n k}(i y, i v) \int_{\mathbb{R}^{2}} \frac{s t}{(i y-s)(i v-t)} d \stackrel{\circ}{\mu}_{n k}(s, t)=0
$$

for any point $(i y, i v) \in \Gamma^{2}$. Hence we have proved that the pointwise convergence of (4.361) is equivalent to that of (4.38), and both limits are the same. These discussions also indicate that $\sum_{k=1}^{k_{n}}\left|H_{n k}(i y, i v)-1\right|$ is uniformly bounded in n for fixed $(i y, i v) \in \Gamma^{2}$. Since $\left\{H_{n k}-1\right\}_{n k} \in \mathcal{U}\left(\Gamma^{2}\right)$, one can see that (4.35) converges pointwise if and only if so does (4.38), and they have the same limit. This yields assertion (Z). The preceding discussions with a little effort yield assertion (B) .

Before stating the main theorem of this section, let us introduce the following conditions, which play an important role in the asymptotic problem under investigation.

Condition 4.5. Let $\left\{\tau_{n}\right\}_{n=1}^{\infty}$ be a sequence of finite positive Borel measures on \mathbb{R}^{2}.
(I) The sequences of measures

$$
\sigma_{1 n}=\frac{s^{2}}{1+s^{2}} \tau_{n} \quad \text { and } \quad \sigma_{2 n}=\frac{t^{2}}{1+t^{2}} \tau_{n}
$$

$$
\begin{equation*}
\mathbf{v}_{n}+\sum_{k=1}^{k_{n}}\left[\mathbf{v}_{n k}+\int_{\mathbb{R}^{2}} \frac{\mathbf{x}}{1+\|\mathbf{x}\|^{2}} d \check{\mu}_{n k}(\mathbf{x})\right] \tag{4.39}
\end{equation*}
$$

of vectors in \mathbb{R}^{2} converges to some vector \mathbf{v}.
Proof. We take the set Γ given in Lemma [.]. Suppose that assertion (\mathbb{T}) holds. By Lemma L.4(II), let $\sigma_{1 j_{n}} \Rightarrow \sigma_{1}$ and $\sigma_{2 j_{n}} \Rightarrow \sigma_{2}$ for some subsequences $\left\{\sigma_{1 j_{n}}\right\},\left\{\sigma_{2 j_{n}}\right\}$ and for some finite positive Borel measures σ_{1}, σ_{2}. Observe next that the limit in (4.36) exists. Denote this limit by $\widetilde{K}(i y, i v)$. Then using the decomposition (3.17) we see that that the limit

$$
\gamma^{\prime}:=\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{2}} \frac{s t}{\left(1+s^{2}\right)\left(1+t^{2}\right)} d \tau_{j_{n}}(s, t)
$$

must exist and \widetilde{K} has an analytic extension (still denoted by $\widetilde{K})$ to $(\mathbb{C} \backslash \mathbb{R})^{2}$. More precisely, the analytic extension $K(z, w):=z w \widetilde{K}(z, w)$ can be expressed as the sum of integrals:

$$
K(z, w)=\gamma^{\prime}+\int_{\mathbb{R}^{2}} \frac{1+z s}{z-s}\left[\frac{t}{1+t^{2}}+\frac{1+w t}{w-t} \frac{t^{2}}{1+t^{2}}\right] d \sigma_{1}(s, t)+\int_{\mathbb{R}^{2}} \frac{1+w t}{w-t} \frac{s}{1+s^{2}} d \sigma_{2}(s, t)
$$

A simple calculation then shows that for any $z=x+i y$ and $w=u+i v$ in \mathbb{C}^{+},

$$
-\frac{1}{2} \Re[K(z, w)-K(\bar{z}, w)]=\int_{\mathbb{R}^{2}} \frac{y v}{\left[(s-x)^{2}+y^{2}\right]\left[(t-u)^{2}+v^{2}\right]}\left(1+s^{2}\right) t^{2} d \sigma_{1}(s, t)
$$

$$
\begin{equation*}
\frac{t^{2}}{1+t^{2}} \sigma_{1}=\frac{t^{2}}{1+t^{2}} \sigma_{1}^{\prime} \tag{4.40}
\end{equation*}
$$

369 On the other hand, according to Lemma $1.2(\mathbb{I T})$ the sequence

$$
\begin{equation*}
\gamma_{1 n}:=\mathbf{v}_{n}^{(1)}+\sum_{k=1}^{k_{n}}\left[\mathbf{v}_{n k}^{(1)}+\int_{\mathbb{R}^{2}} \frac{s}{1+s^{2}} d \grave{\mu}_{n k}(s, t)\right] \tag{4.41}
\end{equation*}
$$

converges to some γ_{1} and

$$
\phi_{\mu_{\boxplus \boxplus}^{(1)}}(z)=\gamma_{1}+\int_{\mathbb{R}^{2}} \frac{1+z s}{z-s} d \sigma_{1}(s, t), \quad z \in \mathbb{C} \backslash \mathbb{R}
$$

shows that the vector defined in ((4.39) converges. Hence the proof of $(1) \Rightarrow(2)$ is complete.
Conversely, suppose that assertion (Z) holds. Then $\mathbf{v}_{n}^{(j)}+\sum_{k=1}^{k_{n}}\left[\mathbf{v}_{n k}^{(j)}+f_{j n k}(i \ell)\right]$ converges as $n \rightarrow \infty$ for any $i \ell \in \Gamma$ and $j=1,2$, and hence so does $\phi_{\mu_{n}^{(j)}}(i \ell)$ by Lemma $\mathbb{L} .2(\mathbb{I})$. Employing

 $\phi_{\mu_{n}^{(1)}}(i y)=o(|y|), \phi_{\mu_{n}^{(2)}}(i v)=o(|v|)$ and $\sum_{k=1}^{k_{n}}\left[H_{n k}(i y, i v)-1\right] / H_{n k}(i y, i v)=o(1)$ uniformly in n as

$$
\begin{equation*}
\phi_{\mu_{n}^{(1)}}(i y)=\gamma_{1 n}+\int_{\mathbb{R}^{2}} \frac{1+i y s}{i y-s} d \sigma_{1 n}(s, t)+\sum_{k=1}^{k_{n}} v_{n k}(i y) f_{1 n k}(i y), \tag{4.42}
\end{equation*}
$$

where $\gamma_{1 n}$ is defined as in ($\mathbb{4 . 4 \square) \text { and } v _ { n k } \in \mathcal { U } (\Gamma) \text { . Since } \{ \gamma _ { 1 n } \} \text { and } \{ y ^ { - 1 } \sum _ { k = 1 } ^ { k _ { n } } | f _ { 1 n k } (i y) | : i y \in \Gamma \} , ~ (i y)}$ are bounded for all large n by the hypotheses in (Z) and Lemma $\mathbb{L} .2(\mathbb{Z})$, it suffices to show that the second term in (4.42) equals $o(|y|)$ uniformly in n as $|y| \rightarrow \infty$. Notice that for any $r>0$ and $|y| \geq 1$, we have

$$
\begin{aligned}
\frac{1}{|y|} \int_{\mathbb{R}^{2}}\left|\frac{1+i y s}{i y-s}\right| d \sigma_{1 n}(s, t) & \leq \frac{1}{|y|} \int_{\{\|\mathbf{x}\| \leq r\}} \frac{1+|s y|}{\sqrt{y^{2}+s^{2}}} d \sigma_{1 n}(s, t)+\sigma_{1 n}(\{\|\mathbf{x}\|>r\}) \\
& \leq \frac{1}{|y|^{2}}(1+r|y|) \sup _{n} \sigma_{1 n}\left(\mathbb{R}^{2}\right)+\sigma_{1 n}(\{\|\mathbf{x}\|>r\}),
\end{aligned}
$$

which yields the desired result by the uniform boundedness and tightness of $\left\{\sigma_{1 n}\right\}$. Similarly, $\phi_{\mu_{n}^{(2)}}(i v)=o(|v|)$ uniformly in n as $|v| \rightarrow \infty$. The last desired result is equivalent to the uniform
 be proved by using Condition $6.5(\mathrm{II})$ and applying the techniques shown above to the integral in (4.37), which is rewritten as

$$
-\frac{1}{y v} \sum_{k=1}^{k_{n}} \int_{\mathbb{R}^{2}}\left[\frac{1+i y s}{i y-s} \frac{s^{2}}{1+s^{2}}+\frac{s}{1+s^{2}}\right]\left[\frac{1+i v t}{i v-t} \frac{t^{2}}{1+t^{2}}+\frac{t}{1+t^{2}}\right] d \dot{\mu}_{n k}(s, t) .
$$

This finishes the proof of $(2) \Rightarrow(1)$.
Let \mathbf{u}_{n} be the vector defined in (4.39). From the proof of Theorem [4.6, one can see that for large $|y|, \phi_{\mu_{n}^{(1)}}(i y)$ can also be expressed as

$$
\phi_{\mu_{n}^{(1)}}(i y)=\mathbf{u}_{n}^{(1)}+\sum_{k=1}^{k_{n}}\left[\left(1+v_{n k}(i y)\right) f_{1 n k}(i y)-\int_{\mathbb{R}^{2}} \frac{s}{1+s^{2}+t^{2}} d \grave{\mu}_{n k}(s, t)\right] .
$$

A similar expression also holds for $\phi_{\mu_{n}^{(2)}}(i v)$ when $|v|$ is large．Since

$$
\phi_{\mu_{\text {田 }}}(i y, i v)=\lim _{n \rightarrow \infty}\left[\frac{\phi_{\mu_{n}^{(1)}}(i y)}{i y}+\frac{\phi_{\mu_{n}^{(2)}}(i v)}{i v}+\sum_{k=1}^{k_{n}} \int_{\mathbb{R}^{2}} \frac{s t}{(i y-s)(i v-t)} d \stackrel{\mu}{\mu}_{n k}(s, t)\right],
$$

$$
\begin{equation*}
\phi_{\mu_{\boxplus \boxplus}}(i y, i v)=\frac{\mathbf{v}^{(1)}}{i y}+\frac{\mathbf{v}^{(2)}}{i v}+\mathcal{S}(i y, i v) \tag{4.43}
\end{equation*}
$$

for $(i y, i v) \in \Gamma^{2}$ ，where

$$
\mathcal{S}(i y, i v)=\lim _{n \rightarrow \infty} \sum_{k=1}^{k_{n}} \int_{\mathbb{R}^{2}}\left[\frac{(i y)(i v)}{(i y-s)(i v-t)}-1-\frac{(i y)^{-1} s+(i v)^{-1} t}{1+s^{2}+t^{2}}\right] d \dot{\mu}_{n k}(s, t)
$$

In the next section we shall use（4．4．3）to show that the function $\phi_{\mu_{\boxplus ⿴ 囗}}$ extends analytically to $(\mathbb{C} \backslash \mathbb{R})^{2}$ and the analytic extension admits an integral representation of the from（3．16）．As a consequence of Theorem［．］ $\boldsymbol{\mu}_{\text {田 }}$ is bi－freely infinitely divisible．

5．Transfer principle for limit theorems and bijection between $\mathcal{I D}(*)$ and $\mathcal{I D}(\boxplus \boxplus)$

This section is mainly devoted to studying the relation between the sets $\mathcal{I D}(*)$ and $\mathcal{I D}(\boxplus \boxplus)$ in terms of classical and bi－free limit theorems．We first introduce another type of convergence on the set of positive Borel measures on \mathbb{R}^{2} ．

Definition 5．1．Denote by $\mathcal{M}_{\mathbb{R}^{2}}^{0}$ the set of positive Borel（not necessarily finite）measures τ on \mathbb{R}^{2} for which $\tau(B)<\infty$ for any Borel set $B \subset \mathbb{R}^{2}$ bounded away from zero，i．e． $\inf _{x \in B}\|x\|>0$ ．For a measure τ and a sequence of measures $\left\{\tau_{n}\right\}_{n=1}^{\infty}$ in $\mathcal{M}_{\mathbb{R}^{2}}^{0}$ ，the convergent situation that $\tau_{n}(B) \rightarrow \tau(B)$ for any Borel set B which is bounded away from zero and satisfies $\tau(\partial B)=0$ is denoted by $\tau_{n} \Rightarrow_{\mathbf{0}} \tau$ ．

We remark here that any finite positive Borel measure on \mathbb{R}^{2} belongs to $\mathcal{M}_{\mathbb{R}^{2}}^{0}$ ．Also note that the limiting measure τ in the convergence $\tau_{n} \Rightarrow_{\mathbf{0}} \tau$ is not necessarily unique since an arbitrary mass at $\mathbf{0}$ can be added to it．Portmanteau theorem for measures in $\mathcal{M}_{\mathbb{R}^{2}}^{0}$ is stated below（see［I］］）．

Proposition 5．2．Given $\left\{\tau_{n}\right\}_{n=1}^{\infty}$ and τ in $\mathcal{M}_{\mathbb{R}^{2}}^{0}$ ，the following are equivalent：
（1）$\tau_{n} \Rightarrow_{\mathbf{o}} \tau$ ；
（2）for any bounded and continuous function f on \mathbb{R}^{2} with support bounded away from zero，

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{2}} f d \tau_{n}=\int_{\mathbb{R}^{2}} f d \tau
$$

（3）for any bounded and continuous function f on \mathbb{R}^{2} and for any Borel set $B \subset \mathbb{R}^{2}$ which is bounded away from zero and satisfies $\tau(\partial B)=0$ ，

$$
\lim _{n \rightarrow \infty} \int_{B} f d \tau_{n}=\int_{B} f d \tau
$$

（4）for every closed subset C and open subset O of \mathbb{R}^{2} that are bounded away from zero，

$$
\limsup _{n \rightarrow \infty} \tau_{n}(C) \leq \tau(C) \quad \text { and } \quad \liminf _{n \rightarrow \infty} \tau_{n}(O) \geq \tau(O)
$$

$$
\begin{equation*}
c=\gamma-\int_{\mathbb{R}^{2}} \frac{s t}{\left(1+s^{2}\right)\left(1+t^{2}\right)} d \tau(s, t) \tag{5.45}
\end{equation*}
$$

is a finite number, the matrix

$$
\mathbf{A}=\left(\begin{array}{cc}
\sigma_{1}(\{\mathbf{0}\}) & c \tag{5.46}\\
c & \sigma_{2}(\{\mathbf{0}\})
\end{array}\right)
$$

We next introduce two conditions that are used in characterizing the classical limit theorem in multidimensional spaces (see [T6]).

Condition 5.3. Let $\left\{\tau_{n}\right\}_{n=1}^{\infty}$ be a sequence of measures in $\mathcal{M}_{\mathbb{R}^{2}}^{0}$.
(III) $\tau_{n} \Rightarrow_{\mathbf{0}} \tau$ for some measure $\tau \in \mathcal{M}_{\mathbb{R}^{2}}^{\mathbf{0}}$ with $\tau(\{\mathbf{0}\})=0$;
(IV) for every vector $\mathbf{u} \in \mathbb{R}^{2}$, the limits

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0^{+}} \limsup _{n \rightarrow \infty} \int_{\|\mathbf{x}\|<\epsilon}\langle\mathbf{u}, \mathbf{x}\rangle^{2} d \tau_{n}(\mathbf{x}) \quad \text { and } \quad \lim _{\epsilon \rightarrow 0^{+}} \liminf _{n \rightarrow \infty} \int_{\|\mathbf{x}\|<\epsilon}\langle\mathbf{u}, \mathbf{x}\rangle^{2} d \tau_{n}(\mathbf{x}) \tag{5.44}
\end{equation*}
$$

> exist (as finite numbers), and they are equal.

In the following, we show the equivalence between Condition 4.5 and Condition 5.3 , which will play an important role in clarifying the relation between $\mathcal{I D}(*)$ and $\mathcal{I D}(\boxplus \boxplus)$.

Lemma 5.4. Let $\left\{\tau_{n}\right\}_{n=1}^{\infty}$ be a sequence of finite positive Borel measures on \mathbb{R}^{2}. Then ($\mathbb{(1)}$ and (피) in Condition 4.5 hold if and only if (ШШ区) and (IV) in Condition 5.3 are satisfied, in which case
is positive semi-definite and the limits in (5.44) define a non-negative quadratic form $\langle\mathbf{A u}, \mathbf{u}\rangle$.
Proof. Suppose that (\mathbb{I}) and (\mathbb{I}) in Condition 0.5 are satisfied. With σ_{1} and σ_{2} at hand, one can define the positive measure τ as in (3.5) with $\tau(\{0\}$). Then the relation

$$
\frac{t^{2}}{1+t^{2}} \sigma_{1}=\frac{s^{2}}{1+s^{2}} \sigma_{2},
$$

which is obtained from the definition of $\sigma_{1 n}$ and $\sigma_{2 n}$, ensures that τ is well defined. It is also easy to verify that $\tau(\{\|\mathbf{x}\| \geq \epsilon\})<\infty$ for any $\epsilon>0$, whence $\tau \in \mathcal{M}_{\mathbb{R}^{2}}^{0}$. Now we claim $\tau_{n} \Rightarrow_{\mathbf{0}} \tau$. Pick any bounded and continuous function f on \mathbb{R}^{2} whose support is contained in $\{\|\mathbf{x}\| \geq r\}$ for some $r>0$. This induces two bounded and continuous functions on \mathbb{R}^{2} defined as

$$
f_{1}(\mathbf{x})=\frac{\operatorname{dist}\left(\mathbf{x}, U_{1}\right)}{\operatorname{dist}\left(\mathbf{x}, U_{1}\right)+\operatorname{dist}\left(\mathbf{x}, U_{2}\right)} f(\mathbf{x}) \quad \text { and } \quad f_{2}(\mathbf{x})=\frac{\operatorname{dist}\left(\mathbf{x}, U_{2}\right)}{\operatorname{dist}\left(\mathbf{x}, U_{1}\right)+\operatorname{dist}\left(\mathbf{x}, U_{2}\right)} f(\mathbf{x})
$$

for $\mathbf{x} \in\left(U_{1} \cap U_{2}\right)^{c}$, and $f_{1}(\mathbf{x})=0=f_{2}(\mathbf{x})$ for $\mathbf{x} \in U_{1} \cap U_{2}$, where $U_{1}=\left\{\mathbf{x}:\left|\mathbf{x}^{(1)}\right| \leq r / 2\right\}$ and $U_{2}=\left\{\mathbf{x}:\left|\mathbf{x}^{(2)}\right| \leq r / 2\right\}$. Clearly, $f=f_{1}+f_{2}$, and the supports of f_{1} and f_{2} are bounded away from the s - and t-axis, respectively. Then the weak convergence of $\left\{\sigma_{1 n}\right\}$ and $\left\{\sigma_{2 n}\right\}$ yields that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{2}} f(s, t) d \tau_{n}(s, t) & =\lim _{n \rightarrow \infty}\left(\int_{\mathbb{R}^{2}} f_{1}(s, t) d \tau_{n}(s, t)+\int_{\mathbb{R}^{2}} f_{2}(s, t) d \tau_{n}(s, t)\right) \\
& =\lim _{n \rightarrow \infty}\left(\int_{\mathbb{R}^{2}} f_{1}(s, t) \frac{1+s^{2}}{s^{2}} d \sigma_{1 n}(s, t)+\int_{\mathbb{R}^{2}} f_{2}(s, t) \frac{1+t^{2}}{t^{2}} d \sigma_{2 n}(s, t)\right) \\
& =\int_{\mathbb{R}^{2}} f_{1}(s, t) \frac{1+s^{2}}{s^{2}} d \sigma_{1}(s, t)+\int_{\mathbb{R}^{2}} f_{2}(s, t) \frac{1+t^{2}}{t^{2}} d \sigma_{2}(s, t) \\
& =\int_{\mathbb{R}^{2}} f d \tau,
\end{aligned}
$$

$$
b:=\lim _{\epsilon \rightarrow 0^{+}} \limsup _{n \rightarrow \infty} \int_{\|\mathbf{x}\|<\epsilon} t^{2} d \tau_{n}(s, t)=\lim _{\epsilon \rightarrow 0^{+}} \liminf _{n \rightarrow \infty} \int_{\|\mathbf{x}\|<\epsilon} t^{2} d \tau_{n}(s, t),
$$

$$
\begin{equation*}
c:=\lim _{\epsilon \rightarrow 0^{+}} \limsup _{n \rightarrow \infty} \int_{\|\mathbf{x}\|<\epsilon} \text { st } d \tau_{n}(s, t)=\lim _{\epsilon \rightarrow 0^{+}} \liminf _{n \rightarrow \infty} \int_{\|\mathbf{x}\|<\epsilon} \text { st } d \tau_{n}(s, t) \text {. } \tag{5.49}
\end{equation*}
$$

First of all, the limits

$$
\lim _{\epsilon \rightarrow 0^{+}} \limsup _{n \rightarrow \infty} \int_{\|\mathbf{x}\|<\epsilon} \frac{s^{2}}{1+s^{2}} d \tau_{n}(s, t)=\lim _{\epsilon \rightarrow 0^{+}} \liminf _{n \rightarrow \infty} \int_{\|\mathbf{x}\|<\epsilon} \frac{s^{2}}{1+s^{2}} d \tau_{n}(s, t)
$$

exist and equal $\sigma_{1}(\{\mathbf{0}\})$ by the weak convergence of $\sigma_{1 n}$ to σ_{1}. For any $\epsilon>0$, picking an $\epsilon^{\prime} \in[\epsilon, 2 \epsilon]$ so that $\sigma_{1}\left(\left\{\|\mathbf{x}\|=\epsilon^{\prime}\right\}\right)=0$ (such an ϵ^{\prime} exists because σ_{1} is a finite measure), we then have

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \int_{\|\mathbf{x}\|<\epsilon}\left(s^{2}-\frac{s^{2}}{1+s^{2}}\right) d \tau_{n}(s, t) & =\limsup _{n \rightarrow \infty} \int_{\|\mathbf{x}\|<\epsilon} s^{2} d \sigma_{1 n}(s, t) \\
& \leq \limsup _{n \rightarrow \infty} \int_{\|\mathbf{x}\|<\epsilon^{\prime}} s^{2} d \sigma_{1 n}(s, t) \\
& =\int_{\|\mathbf{x}\|<\epsilon^{\prime}} s^{2} d \sigma_{1}(s, t) \leq \epsilon^{\prime 2} \sigma_{1}\left(\mathbb{R}^{2}\right) \rightarrow 0 \text { as } \epsilon \rightarrow 0^{+} .
\end{aligned}
$$

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0^{+}} \limsup _{n \rightarrow \infty} \int_{\|\mathbf{x}\|<\epsilon} \frac{s t d \tau_{n}(s, t)}{\left(1+s^{2}\right)\left(1+t^{2}\right)}=\lim _{\epsilon \rightarrow 0^{+}} \liminf _{n \rightarrow \infty} \int_{\|\mathbf{x}\|<\epsilon} \frac{s t d \tau_{n}(s, t)}{\left(1+s^{2}\right)\left(1+t^{2}\right)}, \tag{5.50}
\end{equation*}
$$

440 and all limits are the same if they exist. Next notice that $1 \wedge\|\mathbf{x}\|^{2} \in L^{1}(\tau)$ according to the 441 definition of τ, and therefore

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} \frac{|s t|}{\left(1+s^{2}\right)\left(1+t^{2}\right)} d \tau(s, t) \leq \frac{1}{2} \int_{\mathbb{R}^{2}} \frac{s^{2}+t^{2}}{\left(1+s^{2}\right)\left(1+t^{2}\right)} d \tau(s, t)<\infty . \tag{5.51}
\end{equation*}
$$

442 We now show that the limits in (5.50) do exist and that the relation of c and γ in (5.45) holds.
443 For any $\epsilon>0$, choose an $\epsilon^{\prime} \in(\epsilon, 2 \epsilon]$ with the property $\tau\left(\left\{\|\mathbf{x}\|=\epsilon^{\prime}\right\}\right)=0$ (such an ϵ^{\prime} exists because $444\|\mathbf{x}\|^{2} \chi_{\{\|\mathbf{x}\| \leq 1\}} \tau$ is a finite positive measure). Consider the difference

$$
I_{n}(\epsilon):=\int_{\mathbb{R}^{2}} \frac{s t d \tau_{n}(s, t)}{\left(1+s^{2}\right)\left(1+t^{2}\right)}-\int_{\mathbb{R}^{2}} \frac{s t d \tau(s, t)}{\left(1+s^{2}\right)\left(1+t^{2}\right)}-\int_{\{\|\mathbf{x}\|<\epsilon\}} \frac{s t d \tau_{n}(s, t)}{\left(1+s^{2}\right)\left(1+t^{2}\right)}
$$

445
and decompose it into the sum of $J_{1 n}(\epsilon)$ and $J_{2}(\epsilon)$, where

$$
J_{1 n}(\epsilon)=\int_{\{\|\mathbf{x}\| \geq \epsilon\}} \frac{s t}{\left(1+s^{2}\right)\left(1+t^{2}\right)} d \tau_{n}(s, t)-\int_{\{\|\mathbf{x}\| \geq \epsilon\}} \frac{s t}{\left(1+s^{2}\right)\left(1+t^{2}\right)} d \tau(s, t)
$$

446 and

$$
J_{2}(\epsilon)=-\int_{\{\|\mathbf{x}\|<\epsilon\}} \frac{s t}{\left(1+s^{2}\right)\left(1+t^{2}\right)} d \tau(s, t)
$$

Denoting by C_{ϵ} the closed set $\left\{\epsilon \leq\|\mathbf{x}\| \leq \epsilon^{\prime}\right\}$, we have

$$
\begin{aligned}
\lim _{\epsilon \rightarrow 0^{+}} \limsup _{n \rightarrow \infty}\left|\int_{C_{\epsilon}} \frac{s t}{\left(1+s^{2}\right)\left(1+t^{2}\right)} d \tau_{n}\right| & \leq \lim _{\epsilon \rightarrow 0^{+}} \limsup _{n \rightarrow \infty} \int_{C_{\epsilon}} \frac{|s t|}{\sqrt{1+s^{2}} \sqrt{1+t^{2}}} d \tau_{n} \\
& \leq \lim _{\epsilon \rightarrow 0^{+}} \limsup _{n \rightarrow \infty}\left(\int_{C_{\epsilon}} \frac{s^{2}}{1+s^{2}} d \tau_{n}\right)^{1 / 2}\left(\int_{C_{\epsilon}} \frac{t^{2}}{1+t^{2}} d \tau_{n}\right)^{1 / 2} \\
& =\lim _{\epsilon \rightarrow 0^{+}} \limsup _{n \rightarrow \infty} \sigma_{1 n}\left(C_{\epsilon}\right)^{1 / 2} \sigma_{2 n}\left(C_{\epsilon}\right)^{1 / 2} \\
& \leq \lim _{\epsilon \rightarrow 0^{+}} \sigma_{1}\left(C_{\epsilon}\right)^{1 / 2} \sigma_{2}\left(C_{\epsilon}\right)^{1 / 2}=0
\end{aligned}
$$

448

where the Cauchy-Schwarz inequality was used in the second inequality and the assumption that $\sigma_{j n} \Rightarrow \sigma_{j}$ for $j=1,2$ was used in the last one. Moreover, by Proposition 5.2 we have

$$
\lim _{n \rightarrow \infty} \int_{\left\{\|\mathbf{x}\|>\epsilon^{\prime}\right\}} \frac{s t}{\left(1+s^{2}\right)\left(1+t^{2}\right)} d \tau_{n}(s, t)=\int_{\left\{\|\mathbf{x}\|>\epsilon^{\prime}\right\}} \frac{s t}{\left(1+s^{2}\right)\left(1+t^{2}\right)} d \tau(s, t)
$$

We now can conclude from the above discussions and (5.5]) that $\lim _{\epsilon \rightarrow 0^{+}} \lim \sup _{n \rightarrow \infty}\left|J_{1 n}(\epsilon)\right|=0$, whence $\lim _{\epsilon \rightarrow 0^{+}} \lim \sup _{n \rightarrow \infty}\left|I_{n}(\epsilon)\right|=0$ by (5.51) again. Finally, the assumption that the first integral in $I_{n}(\epsilon)$ converges to γ as $n \rightarrow \infty$ yields that the limits in (5.50) exist and equal, and the relation (5.45) holds. Hence (5.44) is proved.

The positive semi-definiteness of the matrix \mathbf{A} is an easy application of the Cauchy-Schwarz inequality to (5.47), (5.48) and (5.49). It is easy to verify that the limits in (IVI) define a nonnegative quadratic form $\langle\mathbf{A u}, \mathbf{u}\rangle$ for any $\mathbf{u} \in \mathbb{R}^{2}$.

Conversely, suppose that (III) and (IV) in Condition 5.3 hold. Denote by $Q(\mathbf{u})$ the finite quantity in (IVI) for any $\mathbf{u} \in \mathbb{R}^{2}$, and define positive planar measures σ_{1} and σ_{2} as

$$
\sigma_{1}=\frac{s^{2}}{1+s^{2}} \tau+Q((1,0)) \delta_{\mathbf{0}} \quad \text { and } \quad \sigma_{2}=\frac{t^{2}}{1+t^{2}} \tau+Q((0,1)) \delta_{\mathbf{0}}
$$

Note that measures σ_{1} and σ_{2} are both finite. To see this, it suffices to show that $\chi_{\{\|\mathbf{x}\| \leq 1\}}\|\mathbf{x}\|^{2} \in$ $L^{1}(\tau)$. Take a sequence $\left\{\epsilon_{k}\right\}_{k \geq 1}$ such that $\epsilon_{k} \downarrow 0$ as $k \rightarrow \infty$ and $\tau\left(\left\{\|\mathbf{x}\|=\epsilon_{k}\right\}\right)=0$ for each k. Then condition (ㅍV) shows that for all $k<j$ large enough, one has

$$
\limsup _{n \rightarrow \infty} \int_{\left\{\epsilon_{j}<\|\mathbf{x}\|<\epsilon_{k}\right\}} s^{2} d \tau_{n}(s, t) \leq Q((1,0))+1
$$

which gives

$$
\int_{\left\{\epsilon_{j}<\|\mathbf{x}\|<\epsilon_{k}\right\}} s^{2} d \tau(s, t) \leq Q((1,0))+1
$$

by Proposition 5.2. Letting $j \rightarrow \infty$ allows us to obtain that

$$
\int_{\left\{\|\mathbf{x}\|<\epsilon_{k}\right\}} s^{2} d \tau(s, t) \leq Q((1,0))+1
$$

by monotone convergence theorem. This shows that $\chi_{\{\|\mathbf{x}\| \leq 1\}} s^{2} \in L^{1}(\tau)$, as well as $\chi_{\{\|\mathbf{x}\| \leq 1\}} t^{2} \in$ $L^{1}(\tau)$, as desired. Now we are ready to prove that $\sigma_{1 n}$ converges to σ_{1} weakly. Let f be a bounded
and continuous function on \mathbb{R}^{2}. Then we have the following estimate

$$
\begin{aligned}
& \left|\int_{\mathbb{R}^{2}} f(\mathbf{x}) d \sigma_{1 n}(\mathbf{x})-\int_{\mathbb{R}^{2}} f(\mathbf{x}) d \sigma_{1}(\mathbf{x})\right| \\
\leq & \int_{\left\{\|\mathbf{x}\|<\epsilon_{k}\right\}}|f(\mathbf{x})-f(\mathbf{0})| d \sigma_{1 n}(\mathbf{x})+|f(\mathbf{0})|\left|\sigma_{1 n}\left(\left\{\|\mathbf{x}\|<\epsilon_{k}\right\}\right)-Q((1,0))\right| \\
+ & \int_{\left\{0<\|\mathbf{x}\|<\epsilon_{k}\right\}}|f(\mathbf{x})| d \sigma_{1}(\mathbf{x})+\left|\int_{\left\{\|\mathbf{x}\| \geq \epsilon_{k}\right\}} f(\mathbf{x}) d \sigma_{1 n}(\mathbf{x})-\int_{\left\{\|\mathbf{x}\| \geq \epsilon_{k}\right\}} f(\mathbf{x}) d \sigma_{1}(\mathbf{x})\right| \\
= & I_{1 n}(k)+I_{2 n}(k)+I_{3}(k)+I_{4 n}(k),
\end{aligned}
$$

463
First choosing $\mathbf{u}=(1,0)$ in (5.44) gives that

$$
\lim _{k \rightarrow \infty} \limsup _{n \rightarrow \infty} I_{1 n}(k) \leq \lim _{k \rightarrow \infty}\left[\max _{\|\mathbf{x}\|<\epsilon_{k}}|f(\mathbf{x})-f(\mathbf{0})|\right] \cdot\left(\limsup _{n \rightarrow \infty} \int_{\left\{\|\mathbf{x}\|<\epsilon_{k}\right\}} s^{2} d \tau_{n}(s, t)\right)=0
$$

Since

$$
\lim _{k \rightarrow \infty} \limsup _{n \rightarrow \infty}\left|\int_{\left\{\|\mathbf{x}\|<\epsilon_{k}\right\}} \frac{s^{2}}{1+s^{2}} d \tau_{n}-\int_{\left\{\|\mathbf{x}\|<\epsilon_{k}\right\}} s^{2} d \tau_{n}\right| \leq \lim _{k \rightarrow \infty} \epsilon_{k}^{2} \cdot\left(\limsup _{n \rightarrow \infty} \int_{\left\{\|\mathbf{x}\|<\epsilon_{k}\right\}} s^{2} d \tau_{n}\right)=0
$$

it follows that

$$
\lim _{k \rightarrow \infty} \limsup _{n \rightarrow \infty}\left|\sigma_{1 n}\left(\left\{\|\mathbf{x}\|<\epsilon_{k}\right\}\right)-Q((1,0))\right|=0
$$

whence $\lim _{k \rightarrow \infty} \lim \sup _{n \rightarrow \infty} I_{2 n}(k)=0$. We also have $\limsup _{k \rightarrow \infty} I_{3}(k) \leq\|f\|_{\infty} \lim _{k \rightarrow \infty} \sigma_{1}(\{0<$ $\left.\left.\|\mathbf{x}\|<\epsilon_{k}\right\}\right)=0$ and $\lim \sup _{n \rightarrow \infty} I_{4 n}(k)=0$ because σ_{1} is a finite measure and $\tau_{n} \Rightarrow_{\mathbf{0}} \tau$. Thus we have shown the weak convergence of the sequence $\left\{\sigma_{1 n}\right\}$ in condition (\mathbb{W}). Similarly, $\sigma_{2 n} \Rightarrow \sigma_{2}$.

Finally, we decompose the desired integral in condition (II) into the sum

$$
\int_{\|\mathbf{x}\|<\epsilon_{k}} \frac{s t}{\left(1+s^{2}\right)\left(1+t^{2}\right)} d \tau_{n}(s, t)+\int_{\|\mathbf{x}\| \geq \epsilon_{k}} \frac{s t}{\left(1+s^{2}\right)\left(1+t^{2}\right)} d \tau_{n}(s, t) .
$$

As $n \rightarrow \infty$ and $k \rightarrow \infty$, the first integral tends to $[Q((1,1))-Q((1,0))-Q((0,1))] / 2$, while the second integral tends to

$$
\int_{\mathbb{R}^{2}} \frac{s t}{\left(1+s^{2}\right)\left(1+t^{2}\right)} d \tau(s, t)
$$

by Proposition 5.2 and the fact that $1 \wedge\|\mathbf{x}\|^{2} \in L^{1}(\tau)$. Hence condition (ㄸII) is verified and the proof is complete.

We are in a position to prove the equivalence between classical and bi-free limit theorems for non-identical distributions.

Theorem 5.5. Let $\left\{k_{n}\right\}_{n=1}^{\infty} \subset \mathbb{N}$ be strictly increasing, $\left\{\mu_{n k}\right\}_{1 \leq n, 1 \leq k \leq k_{n}} \subset \mathscr{P}_{\mathbb{R}^{2}}$ be an infinitesimal triangular array and $\left\{\mathbf{v}_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R}^{2}$. With the notations in (4.2.5), (4.26), and (4.27), the following are equivalent.
(1) The sequence
(3) Condition $4.5(\mathbb{I})$ and (피) hold, and the vector in (4.39) converges to some vector $\mathbf{v} \in \mathbb{R}^{2}$.

$$
\mu_{n 1} * \mu_{n 2} * \cdots * \mu_{n k_{n}} * \delta_{\mathbf{v}_{n}}
$$

converges weakly to some probability measure μ_{*} on \mathbb{R}^{2}.
(2) The sequence

$$
\mu_{n 1} \boxplus \boxplus \mu_{n 2} \boxplus \boxplus \cdots \boxplus \boxplus \mu_{n k_{n}} \boxplus \boxplus \delta_{\mathbf{v}_{n}}
$$

converges weakly to some probability measure $\mu_{\boxplus \boxplus}$ on \mathbb{R}^{2}.
The sequence
and

$$
\mathcal{G}_{n}(z, w, \epsilon)=\int_{\{\|\mathbf{x}\|<\epsilon\}}\left[\frac{z w}{(z-s)(w-t)}-1-\frac{z^{-1} s+w^{-1} t}{1+s^{2}+t^{2}}\right] d \tau_{n}(s, t)
$$

494
Notice that the integrand in the integral can be rewritten as

$$
\frac{1}{z(z-s)} \frac{s^{2}}{1+s^{2}+t^{2}}+\frac{1}{w(w-t)} \frac{t^{2}}{1+s^{2}+t^{2}}+\frac{s t}{(z-s)(w-t)}
$$

(4) Condition $5.3(\mathbb{W})$ and (IV) hold, and the vector in (4.39) converges to some vector $\mathbf{v} \in \mathbb{R}^{2}$. If assertions $(\mathbb{T})-(\mathbb{H})$ hold, then μ_{*} and $\mu_{\boxplus \boxplus}$ are $*$-infinitely divisible and $\boxplus \boxplus$-infinitely divisible distributions with $(\mathbf{v}, \mathbf{A}, \tau)$ as the classical and bi-free characteristic triplet, respectively, where \mathbf{A} is defined as in (5.461).

Proof. The equivalences $(2) \Leftrightarrow(3)$ and $(3) \Leftrightarrow(4)$ were already respectively proved in Theorem $4.6]$ and Lemma [5.4, while the equivalence $(1) \Leftrightarrow(4)$ can be obtained by [16, Theorem 3.2.2 and $(3.52),(3.53),(3.54)]$. We remark here that some results cited from [16] contain errors, and the reader is referred to the list of errata of the book put on the webpage of one of the authors.
It remains to show that $\phi_{\mu_{\boxplus \boxplus}}$ extends analytically to $(\mathbb{C} \backslash \mathbb{R})^{2}$ and admits an integral representation of the form (3.76). For any $\epsilon>0$ and $(z, w) \in(\mathbb{C} \backslash \mathbb{R})^{2}$, let

$$
\mathcal{P}_{n}(z, w, \epsilon)=\int_{\{\|\mathbf{x}\| \geq \epsilon\}}\left[\frac{z w}{(z-s)(w-t)}-1-\frac{z^{-1} s+w^{-1} t}{1+s^{2}+t^{2}}\right] d \tau_{n}(s, t)
$$

495
Then choosing ϵ so that $\tau(\{\|\mathbf{x}\|=\epsilon\})=0$ shows that

$$
\mathcal{P}(z, w):=\lim _{\epsilon \rightarrow 0^{+}} \lim _{n \rightarrow \infty} \mathcal{P}_{n}(z, w, \epsilon)=\int_{\mathbb{R}^{2}}\left[\frac{z w}{(z-s)(w-t)}-1-\frac{z^{-1} s+w^{-1} t}{1+s^{2}+t^{2}}\right] d \tau(s, t)
$$

Then according to (4.4.3), $\phi_{\mu_{\text {田 }}}(z, w)$ agrees with

$$
\frac{\mathbf{v}^{(1)}}{z}+\frac{\mathbf{v}^{(2)}}{w}+\mathcal{G}(z, w)+\mathcal{P}(z, w)
$$

when $z=i y$ and $w=i v$ with $|y|$ and $|v|$ large, and hence they agree on $(\mathbb{C} \backslash \mathbb{R})^{2}$ by analytic

The classical and bi-free Lévy-Hinčin representations (3.12) and (3.76) establish a bijective relation Λ between the sets $\mathcal{I D}(*)$ and $\mathcal{I D}(\boxplus \boxplus)$:

$$
\begin{equation*}
\Lambda\left(\mu_{*}^{(\mathbf{v}, \mathbf{A}, \tau)}\right)=\mu_{\boxplus \boxplus}^{(\mathbf{v}, \mathbf{A}, \tau)} \tag{5.52}
\end{equation*}
$$

where we used Proposition 5.2 and the fact that $1 \wedge\|\mathbf{x}\|^{2} \in L^{1}(\tau)$. On the other hand, (5.47), (5.48) and (5.49) yield that

$$
\mathcal{G}(z, w):=\lim _{\epsilon \rightarrow 0^{+}} \lim _{n \rightarrow \infty} \mathcal{G}_{n}(z, w, \epsilon)=\frac{\sigma_{1}(\{\mathbf{0}\})}{z^{2}}+\frac{c}{z w}+\frac{\sigma_{2}(\{\mathbf{0}\})}{w^{2}} .
$$

for any infinitely divisible law $\mu_{*}^{(\mathbf{v}, \mathbf{A}, \tau)}$ with classical characteristic triplet $(\mathbf{v}, \mathbf{A}, \tau)$. Under this bijection, classical Gaussian and (compound) Poisson distributions are respectively mapped to bi-free Gaussian and bi-free (compound) Poisson distributions (see Example [3.2). Furthermore, Theorem 5.5 and this bijection establish a transfer principle for limit theorems.

The limit theorem for the identically distributed random variables is formulated below.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} k_{n} \int_{\mathbb{R}^{2}} \frac{\mathbf{x}}{1+\|\mathbf{x}\|^{2}} d \mu_{n}(\mathbf{x})=\mathbf{v} \tag{5.53}
\end{equation*}
$$

exists．
（4）Condition $5.3(\mathbb{W})$ and（IV）hold with $\tau_{n}=k_{n} \mu_{n}$ ，and the limit in（5．53）exists．
If assertions（ $\mathbb{(T)}$ through（ $\mathbb{(T)}$ hold，then μ_{*} and $\mu_{\boxplus ⿴ 囗 十}$ are $*$－infinitely divisible and $\boxplus \boxplus$－infinitely divisible distributions with $(\mathbf{v}, \mathbf{A}, \tau)$ as the classical and bi－free characteristic triplet，respectively， where \mathbf{A} is defined as in（5．46）．

Remark 5．7．Due to the recent work of Gu and Skoufranis［13，Theorem 5．12］，the above condi－ tions（ $\mathbb{I})-(\mathbb{T})$ are further equivalent to the statement that the sequence $\mu_{n}^{\uplus \uplus k_{n}}$ converges weakly to some probability measure $\mu_{\uplus \uplus}$ on \mathbb{R}^{2} ，where $\uplus \uplus$ is the bi－boolean convolution．The limit distribu－ tion $\mu_{\uplus \uplus}$ may also be characterized by a bi－boolean characteristic triplet．

Proof．The equivalence（1）$\Leftrightarrow(2)$ will follow immediately by choosing $\mu_{n k}=\mu_{n}$ for $k=1, \ldots, k_{n}$ and $\mathbf{v}_{n}=\mathbf{0}$ in Theorem 5．5 once the infinitesimality of $\left\{\mu_{n}\right\}$ is verified in（1）and（2）．In（1）， we have $\mu_{n}^{(j)} \Rightarrow \delta_{0}$ for $j=1,2$ by［II］（ $\S 14$ ，Theorem 4），whence $\mu_{n} \Rightarrow \delta_{0}$ by（ㄹ．Y）．In（2），we see that $\phi_{\mu_{n}} \rightarrow 0=\phi_{\delta_{0}}$ uniformly on compact sets of Γ^{2} and $\phi_{\mu_{n}}(z, w)=o(1)$ uniformly in n as $z, w \rightarrow \infty$ with $(z, w) \in \Gamma^{2}$ by Proposition［2．3］，whence $\mu_{n} \Rightarrow \delta_{0}$ by Proposition［2．3］again．Hence the infinitesimality is verified in both situations．

The equivalence $(2) \Leftrightarrow(3)$ was already proved in［14，Theorem 3．2］，while the equivalence $(3) \Leftrightarrow$ （4）can be obtained by applying Lemma 5.4 to the positive measures $\tau_{n}=k_{n} \mu_{n}$ ．That the limiting distribution $\mu_{\boxplus \boxplus}$ is $\boxplus \boxplus$－infinitely divisible distributions with the desired bi－free characteristic triplet follows from the last part of the proof of Theorem 5．5．

Remark 5．8．In the proof of $(\mathbb{Z}) \Leftrightarrow(\mathbb{Z})$ in Theorem［5．6，a bi－free limit theorem on identical distributions was employed［14］．As one might expect，a more direct proof based on Theorem 5.5 without referring to any other type of limit theorems exists，but it is not a short one．More precisely，what one really needs to show is the equivalence of the following two statements：
（i）Condition 5.3 holds with $\tau_{n}=k_{n} \mu_{n}$ and there exists some $\mathbf{v} \in \mathbb{R}^{2}$ so that（5．53）holds；
（ii）Condition［5．3 holds with $\tau_{n}=k_{n} \check{\mu}_{n}$ and there exists some $\mathbf{v} \in \mathbb{R}^{2}$ so that

$$
\lim _{n \rightarrow \infty} k_{n}\left[\mathbf{u}_{n}+\int_{\mathbb{R}^{2}} \frac{\mathbf{x}}{1+\|\mathbf{x}\|^{2}} d \check{\mu}_{n}(\mathbf{x})\right]=\mathbf{v}
$$

where $\check{\mu}_{n}$ is the shift of μ_{n} by the vector $\mathbf{u}_{n}:=\int_{\|\mathbf{x}\|<L} \mathbf{x} d \mu_{n}(\mathbf{x})$ ．Some elaboration and techniques are needed to show this equivalence．We leave the proof to the interested reader．

$$
\begin{equation*}
\left(D_{a} \mu^{(1)}\right) *\left(D_{b} \mu^{(1)}\right)=\left[\left(D_{a} \mu\right) *\left(D_{b} \mu\right)\right]^{(1)}=\left[\left(D_{c} \mu\right) * \delta_{\mathbf{u}}\right]^{(1)}=\left(D_{c} \mu^{(1)}\right) * \delta_{\mathbf{u}^{(1)}} \tag{6.54}
\end{equation*}
$$

This shows that $\mu^{(1)}$ is $*$-stable, and hence its Lévy measure is either a zero measure or of the form $d \rho(x):=c_{1} x^{-\alpha-1} \chi_{(0, \infty)}(x) d x+c_{2}|x|^{-\alpha-1} \chi_{(-\infty, 0)}(x) d x$ for some $\alpha \in(0,2)$ and $c_{1}, c_{2} \geq 0$ with $c_{1}+c_{2}>0$ (see $\S 34$ in [TI]). If $\rho \neq 0$, one can check from characteristic functions that the constant c is uniquely determined by the relation $c^{\alpha}=a^{\alpha}+b^{\alpha}$. In the first case, $\mu^{(1)}$ is Gaussian, and hence $c^{2}=a^{2}+b^{2}$ from characteristic functions again, which is realized as $\alpha=2$.

To obtain the desired result, let $\alpha \in(0,2]$ be fixed and consider the family $\left(\mu_{\lambda}\right)_{\lambda>0}$, where $\mu_{\lambda}=D_{\lambda^{1 / \alpha}} \mu$. Then using the $*$-stability of μ and the relation $a^{\alpha}+b^{\alpha}=c^{\alpha}$ shows that

$$
\begin{equation*}
\mu_{\lambda_{1}+\lambda_{2}}=\mu_{\lambda_{1}} * \mu_{\lambda_{2}} * \delta_{\mathbf{u}\left(\lambda_{1}, \lambda_{2}\right)} \tag{6.55}
\end{equation*}
$$

for some $\mathbf{u}\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}^{2}$, which clearly gives the $*$-infinite divisibility of μ and each μ_{λ}. Let $(\mathbf{v}, \mathbf{A}, \tau)$ be the $*$-characteristic triplet of μ. Then μ_{λ} admits the $*$-characteristic triplet $\left(\mathbf{v}(\lambda), \lambda^{2 / \alpha} \mathbf{A}, D_{\lambda^{1 / \alpha}} \tau\right)$ for some $\mathbf{v}(\lambda) \in \mathbb{R}^{2}$. Moreover, (6.5 .5$)$ yields the following two relations for any $\lambda_{1}, \lambda_{2}>0$:

$$
\begin{equation*}
\left(\lambda_{1}+\lambda_{2}\right)^{2 / \alpha} \mathbf{A}=\lambda_{1}^{2 / \alpha} \mathbf{A}+\lambda_{2}^{2 / \alpha} \mathbf{A} \tag{6.56}
\end{equation*}
$$

$$
\begin{equation*}
D_{\left(\lambda_{1}+\lambda_{2}\right)^{1 / \alpha}} \tau=D_{\lambda_{1}^{1 / \alpha}} \tau+D_{\lambda_{2}^{1 / \alpha}} \tau \tag{6.57}
\end{equation*}
$$

To continue the proof，let $\Omega \subset \mathbb{T}$ be a fixed Borel set．By restricting the measures appearing in （6．57）on the set $\{r \Omega: r \geq 1\}$ ，one can infer that the function $f(\lambda)=\tau\left(\left\{r \Omega: r \geq \lambda^{-1 / \alpha}\right\}\right)$ satisfies Cauchy＇s functional equation $f\left(\lambda_{1}+\lambda_{2}\right)=f\left(\lambda_{1}\right)+f\left(\lambda_{2}\right)$ ．Since f is increasing on $(0, \infty)$ ，it is measurable there，and hence $f(\lambda)=\lambda f(1)$ for any $\lambda>0$ ．This allows us to obtain that

$$
\tau(\{r \Omega: r \geq \lambda\})=\lambda^{-\alpha} \tau(\{r \Omega: r \geq 1\})
$$

for any $\lambda>0$ and any Borel set $\Omega \subset \mathbb{T}$ ．Hence the finite positive measure

$$
\Theta(\Omega)=\alpha \int_{[1, \infty) \times \Omega} d \tau(r, \omega), \quad \Omega \subset \mathbb{T}
$$

gives us the desired one．If $\alpha=2$ ，then only $\tau=0$ is allowed in order to fit the condition $1 \wedge\|\mathbf{x}\|^{2} \in L^{1}(\tau)$ ，in which case μ is a Gaussian．If $\alpha<2$ ，then（5．5）holds for any $\lambda_{1}, \lambda_{2}>0$ if and only if $\mathbf{A}=0$ ．For the converse，it is clear that μ is $*$－stable either in the case（ $\mathbb{(})$ or（ $\mathbb{Z})$ ．

The $⿴ 囗 十$－stable distributions are classified as follows．
Theorem 6．3．A non－trivial planar probability measure is $\boxplus \boxplus$－stable if and only if either
（1）it is a bi－free Gaussian distribution or
（2）it is $\boxplus \boxplus$－infinitely divisible and it has a 田－characteristic triplet $(\mathbf{v}, \mathbf{0}, \tau)$ with τ of the form

$$
d \tau(\mathbf{x})=\frac{1}{r^{1+\alpha}} d r d \Theta(\omega),
$$

where $\alpha \in(0,2), \Theta$ is a finite positive measure on the unit circle \mathbb{T} and $\mathbf{x}=r \omega$ with $r>0$ and $\omega \in \mathbb{T}$ ．

Proof．Suppose that μ is non－trivial and $\boxplus \boxplus$－stable．Further suppose that $\mu^{(1)}$ is non－trivial． Then it follows from Proposition［2．65 that

$$
\left(D_{a} \mu^{(1)}\right) \boxplus\left(D_{b} \mu^{(1)}\right)=\left[\left(D_{a} \mu\right) \boxplus \boxplus\left(D_{b} \mu\right)\right]^{(1)}=\left[\left(D_{c} \mu\right) \boxplus \boxplus \delta_{\mathbf{u}}\right]^{(1)}=\left(D_{c} \mu^{(1)}\right) \boxplus \delta_{\mathbf{u}^{(1)}} .
$$

This gives the \boxplus－stability of $\mu^{(1)}$ ，and hence $\phi_{\mu^{(1)}}^{\prime}(z)=\beta z^{-\alpha}$ for some $\alpha \in(0,2]$ and $\beta \in \mathbb{C} \backslash\{0\}$ by Lemma 7.4 and Theorem 7.5 of $[5] .5$ ．Since $\phi_{D_{\lambda} \mu^{(1)}}(z)=\lambda \phi_{\mu^{(1)}}(z / \lambda)$ for any $\lambda>0$ ，one can conclude that a, b and c satisfy the relation $c^{\alpha}=a^{\alpha}+b^{\alpha}$ ．
As in the proof of Theorem［．2．2，we consider the measures $\mu_{\lambda}=D_{\lambda^{1 / \alpha}} \mu, \lambda>0$ ．Then the $⿴ 囗 十$－ stability of μ shows that $\mu_{\lambda_{1}+\lambda_{2}}=\mu_{\lambda_{1}} \boxplus \boxplus \mu_{\lambda_{2}} \boxplus \boxplus \delta_{\mathbf{u}\left(\lambda_{1}, \lambda_{2}\right)}$ for some vector $\mathbf{u}\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}^{2}$ ，which gives the infinite divisibility of μ and each μ_{λ} ．If $(\mathbf{v}, \mathbf{A}, \tau)$ is the bi－free characteristic triplet of μ ，then the identity $\phi_{D_{\lambda} \mu}(z, w)=\phi_{\mu}(z / \lambda, w / \lambda)$ ，which holds for (z, w) in the common domain of these transforms，yields that μ_{λ} admits the bi－free characteristic triplet $\left(\mathbf{v}(\lambda), \lambda^{2 / \alpha} \mathbf{A}, D_{\lambda^{1 / \alpha}} \tau\right)$ for some $\mathbf{v}(\lambda) \in \mathbb{R}^{2}$ ．Then the remaining proof is similar to that of Theorem $\lessdot \cdot 2$ ．
All $\boxplus \boxplus$－stable distributions are $\boxplus \boxplus$－infinitely divisible．The number $\alpha \in(0,2]$ is called stability index of μ_{*} and $\mu_{\text {田．}}$ ．It is shown in the proof that μ_{*} and $\Lambda\left(\mu_{*}\right)$ have the same stability index， particularly，the stability index of Gaussian and bi－free Gaussian are both two．
In［T7］，Rvačeva investigated the limiting distribution of random vectors

$$
\begin{equation*}
\frac{X_{1}+\cdots+X_{n}}{b_{n}}+\mathbf{u}_{n} \tag{6.58}
\end{equation*}
$$

$$
\begin{equation*}
(\alpha z+\beta w+\gamma) G_{\mu}(z, w)=\beta G_{\mu^{(1)}}(z)+\alpha G_{\mu^{(2)}}(w) \tag{7.59}
\end{equation*}
$$

where $\left\{X_{n}\right\}_{n \geq 1}$ are i．i．d．random vectors，$b_{n}>0$ and $\mathbf{u}_{n} \in \mathbb{R}^{2}$ ．It turns out that the set of all possible limiting distributions in（6．58）equals the set of $*$－stable distributions from the arguments in［II，§33］．The limit theorem of this type in the bi－free setting is considered as follows．

Theorem 6．4．Let ν be a planar probability distribution，$b_{n}>0$ and $\mathbf{u}_{n} \in \mathbb{R}^{2}$ for $n=1,2, \ldots$ ． Then the following statements are equivalent．
（1）The measures $\left(D_{1 / b_{n}} \nu^{* n}\right) * \delta_{\mathbf{u}_{n}}$ converge weakly to a probability distribution μ_{*} on \mathbb{R}^{2} ．
（2）The measures $\left(D_{1 / b_{n}} \nu^{\boxplus ⿴ n}\right) * \delta_{\mathbf{u}_{n}}$ converge weakly to a probability distribution $\mu_{\boxplus \boxplus}$ on \mathbb{R}^{2} ． If（四）and (\mathbb{Z}) hold，then μ_{*} and $\mu_{\boxplus \boxplus}$ are $*$－stable and $\boxplus \boxplus$－stable，respectively，whose respective ＊－characteristic triplet and $\boxplus ⿴ 囗 十$－characteristic triplet coincide．

Proof．Applying Theorem［5．6 to the positive integers $k_{n}=n$ and the measures $\mu_{n}=\left(D_{1 / b_{n}} \nu\right) *$ $\delta_{\mathbf{u}_{n} / n}$ and $\mu_{n}=\left(D_{1 / b_{n}} \nu\right) \boxplus \boxplus \delta_{\mathbf{u}_{n} / n}$ in（1）and（2），respectively，yields the desired equivalence． The last statement is a direct consequence of the mentioned results around（6．58）and the fact $\mu_{\text {田 }}=\Lambda\left(\mu_{*}\right)$ established in Theorem 5．6．）．

Definition 6．5．A measure $\nu \in \mathscr{P}_{\mathbb{R}^{2}}$ is said to belong to the \star－domain of attraction of a \star－stable law μ_{\star} if there exist a sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ of positive numbers and a sequence $\left\{\mathbf{u}_{n}\right\}_{n=1}^{\infty}$ of vectors in \mathbb{R}^{2} so that $\left(D_{1 / b_{n}} \nu^{\star n}\right) \star \delta_{\mathbf{u}_{n}} \Rightarrow \mu_{\star}$ ．Denote by $\mathbf{D}_{\star}\left(\mu_{\star}\right)$ the \star－domain of attraction of a give \star－stable law μ_{\star} ．

The $*$－domain of attraction was studied in great detail in［［7］．One can immediately conclude the following result from Theorem［6．4．

Corollary 6．6．For any $*$－stable law μ_{*} on $\mathbb{R}^{2}, \mathbf{D}_{*}\left(\mu_{*}\right)=\mathbf{D}_{\text {田 }}\left(\Lambda\left(\mu_{*}\right)\right)$ ．

7．Full distributions

We will discuss in this section the concept of fullness which regards the supports of probability distributions introduced below：

Definition 7．1．A Borel measure ρ on \mathbb{R}^{2} is said to be full if it is not supported on a straight line，while ρ is called $\mathcal{M}_{\mathbb{R}^{2}}^{0}$－full if it is in $\mathcal{M}_{\mathbb{R}^{2}}^{0}$ and not supported on a line through the origin．

A bivariate normal distribution is full if and only if its symmetric covariance matrix is strictly positive definite，in which case the distribution has a density．If the covariance matrix is not of full rank，then the bivariate normal distribution is non－full and does not have a density．

In the following we relate the fullness of measures in $\mathscr{P}_{\mathbb{R}^{2}}$ to their Cauchy transforms and bi－free ϕ－transforms．

Lemma 7．2．A measure $\mu \in \mathscr{P}_{\mathbb{R}^{2}}$ is non－full if and only if there exist $\alpha, \beta, \gamma \in \mathbb{R}$ so that
holds for any $(z, w) \in(\mathbb{C} \backslash \mathbb{R})^{2}$ ，in which case it is supported on the line $\alpha s+\beta t+\gamma=0$ ．

Proof．First notice that for $\alpha, \beta, \gamma \in \mathbb{R}$ and $(z, w) \in(\mathbb{C} \backslash \mathbb{R})^{2}$ ，we have

$$
\begin{aligned}
G(z, w): & =\int_{\mathbb{R}^{2}} \frac{\alpha s+\beta t+\gamma}{(z-s)(w-t)} d \mu(s, t) \\
& =(\alpha z+\beta w+\gamma) G_{\mu}(z, w)-\beta G_{\mu^{(1)}}(z)-\alpha G_{\mu^{(2)}}(w)
\end{aligned}
$$

633 This clearly gives ($\mathbb{R} .59)$ if μ is supported on $\alpha s+\beta t+\gamma=0$. Conversely, suppose that $G(z, w)=0$ 634 holds true for $(z, w) \in(\mathbb{C} \backslash \mathbb{R})^{2}$. Then a simple computation shows that

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} \frac{\alpha s+\beta t+\gamma}{\left(s^{2}+1\right)\left(t^{2}+1\right)} d \mu(s, t)=-\frac{\Re[G(i, i)-G(-i, i)]}{2}=0 \tag{7.60}
\end{equation*}
$$

635 On the other hand, considering the function $H(z, w)=z G(z, w)$ yields that

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} \frac{s(\alpha s+\beta t+\gamma)}{\left(s^{2}+1\right)\left(t^{2}+1\right)} d \mu(s, t)=-\frac{\Re[H(i, i)-H(-i, i)]}{2}=0 . \tag{7.61}
\end{equation*}
$$

636 Similarly, one can obtain that

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} \frac{t(\alpha s+\beta t+\gamma)}{\left(s^{2}+1\right)\left(t^{2}+1\right)} d \mu(s, t)=0 \tag{7.62}
\end{equation*}
$$

637 Multiplying ([.60]), ([.5]) and (K.62) by γ, α and β, respectively, and then adding them all together 638 shows that

$$
\int_{\mathbb{R}^{2}} \frac{(\alpha s+\beta t+\gamma)^{2}}{\left(s^{2}+1\right)\left(t^{2}+1\right)} d \mu(s, t)=0
$$

639 Since μ is positive, this clearly shows that it is supported on $\alpha s+\beta t+\gamma=0$, as desired.
640 Proposition 7.3. A measure $\mu \in \mathscr{P}_{\mathbb{R}^{2}}$ is non-full if and only if there exist $\alpha, \beta, \gamma \in \mathbb{R}$ so that

$$
\begin{equation*}
z w(\alpha z+\beta w) \phi_{\mu}(z, w)=\beta w^{2} \phi_{\mu^{(1)}}(z)+\alpha z^{2} \phi_{\mu^{(2)}}(w)-\gamma z w \tag{7.63}
\end{equation*}
$$

641 holds for $(z, w) \in \Gamma^{2}$, in which case μ is supported on the line $\alpha s+\beta t+\gamma=0$.
642 Proof. With the help of Lemma [T.2, we see that μ is supported on the line $\alpha s+\beta t+\gamma=0$ if 643 and only if $(\mathbb{K} .5 \mathbb{Y})$ holds for $(z, w) \in(\mathbb{C} \backslash \mathbb{R})^{2}$ or, equivalently, the identity

$$
\begin{equation*}
\left(\alpha F_{\mu^{(1)}}^{-1}(z)+\beta F_{\mu^{(2)}}^{-1}(w)+\gamma\right) G_{\mu}\left(F_{\mu^{(1)}}^{-1}(z), F_{\mu^{(2)}}^{-1}(w)\right)=\frac{\beta}{z}+\frac{\alpha}{w} \tag{7.64}
\end{equation*}
$$

$$
\begin{equation*}
(\alpha z+\beta w)\left[1-\frac{1}{z w G_{\mu}\left(F_{\mu^{(1)}}^{-1}(z), F_{\mu^{(2)}}^{-1}(w)\right)}\right]=-\left[\alpha \phi_{\mu^{(1)}}(z)+\beta \phi_{\mu^{(2)}}(w)+\gamma\right] \tag{7.65}
\end{equation*}
$$

646 holds true for $(z, w) \in \Gamma^{2}$. Apparently, ($\left.\mathbb{K} \cdot 63\right)$ and ($\left.\mathbb{K} \cdot 6 \cdot 5\right)$ are equivalent, concluding the proof.
647 Theorem 7.4. Let μ be $a \boxplus \boxplus$-infinitely divisible distribution on \mathbb{R}^{2} with bi-free characteristic

$$
\begin{equation*}
\frac{\alpha z+\beta w}{z w} \phi_{\mu}(z, w)-\frac{\beta}{z^{2}} \phi_{\mu^{(1)}}(z)-\frac{\alpha}{w^{2}} \phi_{\mu^{(2)}}(w)+\frac{\gamma}{z w} \tag{7.66}
\end{equation*}
$$

652 can be expressed as

$$
\begin{equation*}
\frac{\gamma^{\prime}}{z w}+\frac{\alpha a+\beta c}{z^{2} w}+\frac{\alpha c+\beta b}{z w^{2}}+\int_{\mathbb{R}^{2}}\left[\frac{\alpha s+\beta t}{(z-s)(w-t)}-\frac{1}{z w} \frac{\alpha s+\beta t}{1+s^{2}+t^{2}}\right] d \tau(s, t) \tag{7.67}
\end{equation*}
$$

653 by (B.T6), (B.18) and (B.T9), where \mathbf{A} is as in (B.T4) and $\gamma^{\prime}=\alpha \mathbf{v}^{(1)}+\beta \mathbf{v}^{(2)}+\gamma$.

Let $\mathbf{u}=(\alpha, \beta)$ and $\gamma=-\langle\mathbf{u}, \mathbf{v}\rangle$. In this case $\gamma^{\prime}=0$. If μ is supported on $\langle\mathbf{u},(s, t)\rangle=\langle\mathbf{u}, \mathbf{v}\rangle$, then Proposition $\mathbb{C} .3$ yields that the function in $(\mathbb{K} 7)$ vanishes on $(\mathbb{C} \backslash \mathbb{R})^{2}$. Using the technique employed in Lemma $[2$ we can obtain that

$$
\int_{\mathbb{R}^{2}} \frac{(\alpha s+\beta t)^{2}}{\left(1+s^{2}\right)\left(1+t^{2}\right)} d \tau(s, t)=-\left(\alpha^{2} a+2 \alpha \beta c+\beta^{2} b\right)=-\langle\mathbf{A} \mathbf{u}, \mathbf{u}\rangle
$$

Since $\mathbf{A} \geq 0$, it follows that $\mathbf{A u}=0$ and τ is supported on the line $\alpha s+\beta t=0$. Conversely, if $\mathbf{A u}=0$ and τ is supported on the line $\alpha s+\beta t=0$, then using Proposition 7.3 and (7.67) again shows that μ is supported on $\alpha s+\beta t=\alpha \mathbf{v}^{(1)}+\beta \mathbf{v}^{(2)}$, as desired.

The following results are both direct consequences of Theorem [r.4.
Corollary 7.5. A bi-free Gaussian distribution with bi-free characteristic triplet ($\mathbf{v}, \mathbf{A}, 0)$ is nonfull if and only if \mathbf{A} is singular, in which case, it is supported on the line $\langle\mathbf{u},(s, t)\rangle=\langle\mathbf{u}, \mathbf{v}\rangle$, where \mathbf{u} is a nonzero vector in the kernel of \mathbf{A}.

Corollary 7.6. A bi-free compound Poisson distribution with rate $\lambda>0$ and jump distribution ν is non-full if and only if ν is $\mathcal{M}_{\mathbb{R}^{2}}^{0}$-nonfull, in which case they are supported on the same line. Consequently, any bi-free Poisson distribution is non-full.

Proof. Following the notations in ($\overline{3.20]})$ and (5.2 T$)$, Theorem 7.4 yields that ν is supported on the line $\langle\mathbf{u},(s, t)\rangle=0$ for some $\mathbf{u} \in \mathbb{R}^{2}$ if and only if μ is supported on the line $\langle\mathbf{u},(s, t)\rangle=\langle\mathbf{u}, \mathbf{v}\rangle=0$, as desired.

Theorem 7.7. Let $\mu \in \mathscr{P}_{\mathbb{R}^{2}}$ be *-infinitely divisible. Then μ is full if and only if $\Lambda(\mu)$ is full.
Proof. Recall that μ is non-full if and only if its characteristic function has the property that $|\widehat{\mu}(\lambda \mathbf{u})|=1$ for all $\lambda \in \mathbb{R}$, where \mathbf{u} is some nonzero vector. If P is the Poisson part of μ, then

$$
|\widehat{\mu}(\lambda \mathbf{u})|=|\widehat{P}(\lambda \mathbf{u})| \exp \left[-\frac{1}{2} \lambda^{2}\langle\mathbf{A} \mathbf{u}, \mathbf{u}\rangle\right]
$$

yields that μ is non-full if and only if $\mathbf{A u}=0$ and $|\widehat{P}(\lambda \mathbf{u})|=1$ for all λ. Then the desired result follows from Theorem $\mathbb{Z . 4}$ and (5.52).

Acknowledgement. The authors would like to thank anonymous reviewers for providing comments and suggestions which improve the quality of this paper. The first-named author is supported by JSPS Grant-in-Aid for Young Scientists (B) 15K17549. The second-named author was supported through a grant from the Ministry of Science and Technology in Taiwan MOST-104-2115-M-110-011-MY2 and a faculty startup grant from the National Sun Yat-sen University. The third-named author was supported by the NSERC Canada Discovery Grant RGPIN-2016-03796.

References

[1] M. Barczy and G. Pap, Portmanteau theorem for unbounded measures, Statist. Probab. Lett. 76 (2006), 18311835.
[2] S.T. Belinschi, H. Bercovici, Y. Gu, and P. Skoufranis, Analytic subordination for bi-free convolution, ArXiv: 1702.01673 v 1
[3] H. Bercovici and V. Pata, Stable laws and domains of attraction in free probability theory, Ann. Math. 149 (1999), 1023-1060.
[4] H. Bercovici and V. Pata, A free analogue of Hinčin characterization of infinite divisibility, Proc. Amer. Math. Soc. 128 (2000), No. 4, 1011-1015.
[5] H. Bercovici and D. Voiculescu, Free convolutions of measures with unbounded support, Indiana Univ. Math. J. 42 (1993), no. 3, 733-773.
[6] H. Bercovici and J.-C. Wang, The asymptotic behavior of free additive convolution, Oper. Matrices 2 (2008), no. 1, 115-124.
[7] I. Charlesworth, B. Nelson, P. Skoufranis, On two-faced families of non-commutative random variables, Canad. J. Math. 67(6) (2015) 1290-1325.
[8] I. Charlesworth, B. Nelson, P. Skoufranis, Combinatorics of bi-freeness with amalgamation, Comm. Math. Phys. 338(2) (2015) 801-847.
[9] G. P. Chistyakov and F. Götze, Limit theorems in free probability theory. I, Ann. Probab. 36 (2008), no. 1, 54-90.
[10] E. Feldheim, Étude de la stabilité des lois de probabilité, Ph.D. thesis, Faculté des Sciences de Paris, Paris, France (1937)
[11] B. V. Gnedenko and A. N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables, Addison-Wesley Publishing Company, Inc., 1954.
[12] Y. Gu, H.-W. Huang, and J. A. Mingo, An analogue of the Lévy-Hinčin formula for bi-free infinitely divisible distributions, Indiana Univ. Math. J. 65 (2016), no. 5, 1795-1831.
[13] Y. Gu and P. Skoufranis, Bi-Boolean independence for pairs of algebras. ArXiv:1703.03072
[14] H.-W. Huang and J.-C. Wang, Analytic aspects of bi-free partial R-transform, J. Funct. Anal. 271 (2016), no. 4, 922-957.
[15] P. Lévy, Théorie de laddition des variables aléatoires, Monographies des probabilités; 1 (2nd Edition). Paris: Gauthier-Villars (1954).
[16] M. M. Meerschaert and H.-P. Scheffler, Limit distributions for sums of independent random vectors: Heavy tails in theory and practice, Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley \& Sons, Inc., New York, 2001. xvi+484 pp. The list of errata is available at http://www.stt.msu.edu/~mcubed/ RVbook.html
[17] E. L. Rvačeva, On domains of attraction of multi-dimensional distributions, 1962 Select. Transl. Math. Statist. and Probability 2 pp. 183-205 American Mathematical Society, Providence, RI.
[18] K. Sato, Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Math. 68, Cambridge, 1999.
[19] P. Skoufranis, Independences and partial R-transforms in bi-free probability, Ann. Inst. Henri Poincaré Probab. Stat. 52 (2016), no.3, 1437-1473.
[20] P. Skoufranis, A combinatorial approach to Voiculescu's bi-free partial transforms, Pacific J. Math. 283 (2016), no. 2, 419-447.
[21] D. V. Voiculescu, Free probability for pairs of faces I, Comm. Math. Phys. 332 (2014), 955-980.
[22] D. V. Voiculescu, Free probability for pairs of faces II: 2-variables bi-free partial R-transform and systems with rank ≤ 1 commutation, Ann. Inst. Henri Poincaré Probab. Stat. 52 (2016), no. 1, 1-15.
[23] D. V. Voiculescu, K. J. Dykema, A. Nica, Free Random Variables. CRM Monograph Series, Vol. 1 Am. Math. Soc. Providence, RI, 1992.

Department of Mathematics, Hokkaido University, North 10 West 8, Kita-ku, Sapporo 060-0810, JAPAN

E-mail address: thasebe@math.sci.hokudai.ac.jp
Department of Applied Mathematics, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung 80424, Taiwan, R.O.C.

E-mail address: hwhuang@math.nsysu.edu.tw
Department of Mathematics and Statistics, University of Saskatchewan, 106 Wiggins Road, Saskatoon, Saskatchewan S7N 5E6, Canada

E-mail address: jcwang@math.usask.ca

[^0]: Date: December 18, 2017.
 ${ }^{1} 2010$ Mathematics Subject Classification: Primary 46L54, Secondary 60E07.
 ${ }^{2}$ Key words and phrases. bi-free limit theorem, bi-free infinitely divisible distributions, bi-freely stable distributions, full distributions.

