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We consider a multivariate continuous-time ARMA (MCARMAgeess sampled at a high-
frequency time-gridhn, 2hy, ..., nhy} wherehy | 0 andnh, — « asn — o, or at a constant
time-grid whereh, = h. For this model we present the asymptotic behavior of th@gnig
normalized partial sum to a multivariate stable or a muttate normal random vector depend-
ing on the domain of attraction of the driving Lévy processrther, we derive the asymptotic
behavior of the sample autocovariance. In the case of fiettered moments of the driving
Lévy process the sample autocovariance is a consistamntagst. Moreover, we embed the
MCARMA process in a cointegrated model. For this model weppee a parameter estima-
tor and derive its asymptotic behavior. The results arergfee more general processes than
MCARMA processes and contain some asymptotic propertistoghastic integrals.
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1. Introduction

Multivariate continuous-time ARMA (MCARMA) process&s= (V(t))i>o are the continuous-time ver-
sions of the well known multivariate ARMA processes in digertime having short memory. They are
important for stochastic modelling in many areas of appiliceas, e.g., signal processing and control (cf.
[20, 26]), econometrics (cf. [2, 32]), high-frequency ficgd econometrics (cf. [45]), and financial math-
ematics (cf. [1]). Starting at least with Doob [13] in 1944au3sian CARMA processes under the name
Gaussian processes with rational spectral density apghashere the driving force is a Brownian motion.
To obtain more flexible marginal distributions and dynanBcsckwell (cf. [6, 7]) analyzed Lévy driven
CARMA models, which were extended by Marquardt and Stel28} fo the multivariate setting; see [8]
for an overview and a comprehensive list of references.

Lévy processes are defined to have independent and stgtimtaements, and are characterized by
their Lévy-Khintchine representation. AR™-valued Lévy proceséL (t))i>o has the Lévy-Khintchine
representatiofil(€® 1) = exp(—tW(©)) for © € R™, where® is the transpose @ and
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with y, € R™, % a positive semi-definite matrix IR™™ andv_ a measure o(R™, Z(R™)), called the
Lévy measurewhich satisfiegzm min{||x||2, 1} v, (dx) < e andv ({Om}) = 0. The triplet(y, , %, v, ) is
called thecharacteristic triplef because it characterizes completely the distributiomefliévy process.
A two-sided Lévy procesf (t))icr is then a composition of two independent and identicallyritisted
Léevy processeé (D (1)) and(L @) (t) )= in

L@(t) fort>0,
L) { L@(~t—) fort<O.

We refer to the excellent monograph of Sato [42] for more itbetan Lévy processes. In this paper the
driving Lévy process is very general. It is allowed to hawhba finite varianceE||L (1)]> < « and

an infinite variancé®||L (1)||? = oo, which is modelled by a multivariate regularly varying lygprocess.
CARMA processes driven by infinite variance Lévy processeparticularly relevant in modelling energy
markets, see Garcia et al. [19], for instance. We will inigede MCARMA processes (see Definition 2.1)
observed not only at a constant frequehdyt also, and especially for high frequencies as found imfira
and turbulence. Then the observation grid g, 2hy,...,nh}, whereh, | 0 and limy_.nh, = . The
behavior of the spectral density of a high frequency sampieRMA model and kernel density estimation
was recently explored in Brockwell et al. [5, 9]. The estiimatof the spectral density and the model
parameters is topic of Fasen and Fuchs [17, 18]. For thettatiinference of a MCARMA process, e.g.,
parameter estimation and hypothesis testing, it is craciahow the asymptotic behavior of the partial sum
(cf. [17, 18]). We will show the convergence of the propertymalized partial sum to am-stable random
vector, wherea = 2 reflects the multivariate normal distribution. In the highquency setting the limit
distribution factorizes in a random factor independenthef MCARMA parameters and a deterministic
factor, which is determined by the model parameters (tlegyiiail over the kernel function). This is the same
pattern as for multivariate ARMA models. However, the nolirzion differs in the continuous-time and
the discrete-time case. The grid distahgéas an influence on the convergence rate and hence, determine
the normalization in the continuous-time model. Furthenenave study the asymptotic behavior of the
sample autocovariance. The results show that in the finilergkmoment case the sample autocovariance
is a consistent estimator for the autocovariance. In thaitefsecond moment case it converges to an
a /2-stable random matrix. Again the convergence rate depemtise sampling distand®.

Another issue of this paper is the estimation of a cointegrahodel in continuous time, where the
MCARMA process is embedded. Co-integration plays an ingmdrtole in financial econometrics, see,
e.g., Engle and Granger [14] and is well understood in disdiee if second moments exist (cf. the
monographs [24, 27]). Most of the literature on cointegtatedels in continuous time is restricted to
Gaussian processes as, e.g, [3, 10, 36, 44]. First appreé&xideop the Gaussian assumption go back to
Phillips [33]; see also Fasen [16] and references there@iLL = (L1(t))icr be theR™-valued driving
Lévy process of th&?-valued MCARMA proces¥ andL, = (L(t))icr be anRV-valued Lévy process
independent of 1. Then we investigate fok € R9*V themultivariate cointegrated model

Y(t) = AX({t)+V(), t>0, inRY, 1)
X(t) = Lat), t>0, inR% '
The observation scheme is
Y4 = (Y(hn),...,Y(nhy)) € RN, XI = (X(hp),...,X(nhy)) € RVN, (1.2)

However, the paper investigates a more general model.(ﬂ.,ggt)kez and (&nx)kez be independent se-
quences of iid (independently and identically distrib)tethdom vectors iiR™ andR", respectively, for
anyn € N, and(Cpx)ken be a sequence of deterministic matriceRf™ satisfying some general con-
straints. Then we may define for any N theR9-valued stationary moving average process

Zn7k = .ZOCnJEn’k_j fOI‘ k S NIO7 (13)
=



and the cointegrated model as

Yok = AXnk+Znk fornkeN, inRY, (1.4)
Xnk = Xnk-1+ Enk fornkeN, IinR". '
In this case the observation scheme is
Yﬂ = (Yn,la s aYn,n) € Rdxn; Xﬂ = (Xn,17 cee ,Xn,n) e RV, (1-5)

Since the high frequency sampled MCARMA procég¢kh))kez has a representation as in (1.3) and
La(khn) = La((k—1)hn) + [L2(khn) — L2((k—1)hn)],

where(L2(khy) —L2((k—1)hn))ken is @n iid sequence by the independent and stationary incrgmnep-
erty of a Lévy process, (1.2) can be interpreted as a speasal of (1.5). As estimator féx we use the
least squares estimator

An = YHXn(XhX,) L (1.6)

The paper is structured in the following way. First, in Sect? we present some preliminaries on
MCARMA processes, regular variation and model assumptidie main results of this paper on limit
theory for high-frequency sampled MCARMA processes bui &ds equidistant sampled MCARMA pro-
cesses are topic of Section 3. We show that the properly rimedapartial sumyy_,V(kh,) and the
sample autocovariancg_; V (kh,)V (kh,)" of the MCARMA process with eitheln, | 0 andnh, — o as
n — oo, or hy = h (but with different normalization) converge weakly, and @aenpletely characterize their
limit distributions. Moreover, we investigate the cointaigd model (1.1)-(1.2). All results are compared
to multivariate ARMA models in discrete time. The proofs liktsection are based on some general limit
theorems as constituted in Section 4. There we present wodeg general assumptions the asymptotic
behavior ofA,, for the multivariate cointegrated model (1.4)-(1.5). Hin&Section 5 contains the proofs
of the stated results and the Appendix A involves the asytigdbehavior of stochastic integrals where the
driving Lévy process has either a finite second moment orukivariate regularly varying. On the one
hand, these results are interesting for their own but onttherdand, they act as preliminaries to the results
in this paper.

We use the notatioa=- for weak convergence& for convergence in probability, and= for vague
convergence. LeR = RU{—o, 0} be the compactification & and let%(-) be the Borelg-algebra. For

two random vectorX, Y the notatiorX 4 v means equality in distribution. We use as norms the Eudlidea
norm ||-|| in RY and the corresponding operator nojtri for matrices, which is submultiplicative. Recall
that two norms on a finite-dimensional linear space are awgyivalent and hence, our results remain true
if we replace the Euclidean norm by any other norm. For a nrahaeifunctionf : (0,0) — (0,) anda €

R we say thaff is regularly varying of index-a, if limy_,. f(xu)/f(x) = u~“ for anyu > 0, and we write

f € #Z_4 . The set ofd x mmatrices oveR is denoted byMyxm(R). The matrixOyxn, is the zero matrix

in Mgxm(R) andly,q is the identity matrix inMq,.4(R). For a vectox € RY we writex’ for its transpose
and forx € R we write |x| = sup(k € Z : k < x}. The spacéD|[0, 1],R%) denotes the space of all cadlag
(continue a droite et limitée & gaucheright continuous, with left limits) functions 0@, 1] with values in

RY equipped with the Skorokhal topology. Finally, for a semimartingalef = (W (t),...,Wq(t))>o in

RY we denote byW, W] = ([Wi,Wijlt)i j=1,..d fort > 0 the quadratic variation process.

2. Preliminaries

2.1. MCARMA process

LetL; = (L1(t))ier be a two-sided®R™-valued Lévy process anp > q are positive integers. Then the
d-dimensional MCARMAp,q) model can be interpreted as the solution to ph-orderd-dimensional



stochastic differential equation
P(D)V(t) =Q(D)DLy(t) forteR,
whereD is the differential operator,
P(2) :=lgxgZ’ + P12 1 4+ ...+ Pp 12+ Pp (2.1)
with Py,...,Pp € Myxq(R) is the auto-regressive polynomial and
Q(2) = Qo'+ Q1 ' +...+ Qq-12+ Qq (2.2)

with Qg, ..., Qq € Myxm(R) is the moving-average polynomial. Since a Lévy processislifferentiable,
this definition can not be used, however, it can be intergrietde equivalent to the following.

Definition 2.1. Let(L1(t))icr be anR™-valued levy process and let the polynomi&ls), Q(z) be defined
asin(2.1)and(2.2)with p,q € Ng, g < p, andQq # Ogxm. Moreover, define

Odxd  ldxd Odxda -+ Odxd

Odxd  Odxda  ldxd

A=— eM R),
: ded depd( )

Ogxa - - Ogxd ldxd

—Pp —Pp1 -

E = (ldxd;0dxd; - - -,0dxd) € Maxpa(R) andB = (B} ---B},)" € Mpgxm(R) with
p—j-1

Bii=...:=Bp_q-1:=04xm and Bp_ji=— Z PBp_j-i+Qq-j forj=0,...,q
i=

Assumet'(P) = {ze C : detP(z)) = 0} C (—,0) +iR. Furthermore, the &vy measure), of L
satisfies

[ toglxlu,(dx) <o
[[x[|>1

Then theR9-valuedcausal MCARMA p,q) procesgV (t) ke is defined by the state-space equation
V(t)=EZ(t) forteR, (2.3)
where

t
Z(t) = / e N9BdL,(s) forteR (2.4)

is the unique solution to the pd-dimensional stochastfeditial equatiordZ (t) = —AZ(t)dt + BdL (t).
The functiorf(t) = Ee*’“BIL(O’m) (t) fort € R is called kernel function.

In particular, the MCARMAL,0) process and in (2.4) are multivariate Ornstein-Uhlenbeck processes.
To see that the MCARMAp, q) process is well-defined compare Marquardt and Stelzer [28}eover,
Lemma 3.8 of Marquardt and Stelzer [28] says that the £€P) is equal to the set of eigenvalues-oef\,
which means that for a MCARM{p, q) process the eigenvaluesAfhave strictly positive real parts. The
class of MCARMA processes is huge. Schlemm and Stelzer (2@jollary 3.4, showed that the class of
state-space models of the form

dZ(t) = —AZ(t)dt+BdL(t),
V(t) = CZ(t),



whereA € RN*N has only eigenvalues with strictly positive real paBsz RN*™M andC € RN and the
class of causal MCARMA processes are equivaleRi|if (1)[|? < « andE(L (1)) = Op.

2.2. Multivariate regular variation and assumptions

Multivariate regular variation plays a basic part in our rbassumption. First, we recall the definition.

Definition 2.2. A random vectot) € RY is multivariate regularly varying with indexa < 0 if and only

if there exists a non-zero Radon measpren (B \ {04}, Z(R° \ {04})) with (R \ RY) = 0 and a
sequencéan)nen Of positive numbers increasing ¢osuch that

nP(a;lUe-) == u(-) asn— o on%(@d\{od}),

where the limit measurg is homogenous of ordera, i.e.,t(uB) =u~“u(B) foru>0,Be %(Ed\{od}).
We writeU € Z_q(an, ).

If the representation of the limit measuueor the norming sequenden)nen does not matter we also
write Z_q(an) andZ_q, respectively. For further information regarding multiege regular variation of
random vectors we refer to Resnick [40].

Definition 2.3. LetU be anRY-valued random vectorr € (0,2], (an)ney be an increasing sequence of

positive constants tending ¢, 1 be a Radon measure ¢&"\ {0}, Z(R"\ {04})) with (R \ RY) = 0
andZ € My, 4(R) be a positive semi-definite matrix. We writed DA(a,an, Z, u) if either

(@) o <2,Z=0qxq, 1 isnon-zero and) € Z_(an, 1), Or
(b) a =2, a,=nY? pu=0andE|U|J? < o with E(UU") = 3.

The abbreviation DA stands falomain of attractiorbecause of the following argument. L@l )ken
be a sequence of ii@%-valued random vectors withl; € DA(a,an, 4,%), a # 1, andS = (S(t) >0
be anRY-valueda-stable Lévy process with characteristic triplgt, <o xp (dx), Z, 4) if a € (0,1) and
(= Jjx>1XH(dx), Z, 1) if a > 1. In particular ifa = 2, Sis a Brownian motion with covariance matiix
AssumeE(Uq) =0q if a > 1. Then

[nt)
&'y Uk=S asn— winD([0,1],RY).
k=1

This means that the triplétr, 1, X) characterizes completely the limit distribution afag) < the conver-
gence rate. Foo = 1 we need additionally a deterministic shift factor to obtdie convergence, which
we can neglect ifJ; is symmetric. In general the only possible limit of a normedl partial sum of iid
random vectors is aa-stable distribution witta € (0,2] (cf. RvaCeva [41]). The limit distribution is an
a-stable random vector with < 2 if and only if Uy is multivariate regularly varying of indexa. Then
alsoE||U||? = «. On the other hand||U1||? < = is only a sufficient assumption to be in the domain of
attraction of a normal distribution.

3. Main results

We start with a central limit theorem for MCARMA processes in

Theorem 3.1. Let (V(t))cr be anRY-valued causal MCARM, q) process as given in Definition 2.1
driven by theR™M-valued levy procesgL(t))ier With L1(1) € DA(a,an, t1,%1) andE(L1(1)) = O, if
a>1 Seta:=ay fort > 0. If a =1we assume additionally that (1) is symmetric.

(a) Let(Sy(t))i>0 be anR™M-valueda-stable levy process with characteristic triplef, -, XHa (dX), Z1, p1)



if a € (0,1] and (— [ =1 XH1(dX), Z1, pa) if o > 1. Suppose the sequence of positive constdnisen
satisfies h | 0 as n— o andlimp_.. nhh, = . Then as i~ o,

3 élwkm) — ( /O “t(s) ds) Si(1)

(b) Let h> 0 and let(Stn(t))>0 be anRY-valued a-stable levy process with characteristic triplet
(Jiw<2 XHen(dX), Zen, Hin) if a € (0,1] and (= [0 XHn(dX), Zeh, Hip) if @ > 1, where

Win(B) = /Oh /Rm]lg <k§0f(kh+ s)x) p (dx)ds for Be 2(R%\ {0g}), 3.1)

/

S — /O“ <kif(kh+s>>zl<kif(kh+s>> ds. (32)

Supposé&||L1(1)||" < o for some r> 2 if a = 2. Then as n— o,

n

Z V(kh) = S n(1).

We shall compare this result to the limit results for ARMA netgland present a motivation for the
normalization.

Remark 3.2.

(a) Let(&,)kez be a sequence of iid random vectorsif with &, € Z_q(an, p1) for somed < a < 2.
If a > 1then suppos&(&,) = Om, and ifa = 1 then supposé, is symmetric. Furthermore, 1€Cy)ken
be a sequence of matrices inyMy(R) with 55 o k||C||® < o for somed < 6 < a, 8 < 1. TheR%-valued
stationary MA procesfXy)kez is defined as

Xk=Y Cjé,_; forkeZ. (3.3)
JZO j

Then a special case of Theorem 4.2 (from below) is that-ason

*1nx S C 1
an k; k:><kZO k)sl()

On the one hand, we observe the similar structure of the tiisitibution( ;" f(s) ds) S1(1) and (¥ ¢_o Ck) S1(1)
in the continuous-time high frequency and the discrete-tinodel. On the other hand, the normings are
different. To explain the different normings we considemastable levy procesgl1(t))i>0 and ana-
stable random variablé ;. Then the idea in the continuous-time model is that as »,

k=1 k=1

hn _hni V(kh,) <if(jhn)hn> ( _&] Z[Ll(khn)—Ll((k—l)hn)]> +0p(1) (3.4)

hn) <(nhn)‘§hr% i[Ll(k)Ll(kl)]> +0p(1)

k=1
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and in the discrete-time model that as-neo,

Xy = <ZOC ) (aglkzlfk> +op(1) 2 (éoc,-) &, +0p(1). (3.5)

In (3.4)and(3.5)we see where the different normings have their origin. Incihrtinuous-time model, the
hn of the norming hamh goes into the first factor of (3.4), which converges f f(s) ds) and the norming

an goes into the second, the random factor.

(b) Representatio(3.4) gives also a motivation for the fact that the classical teghas of Davis and
Resnick [12] to prove the asymptotic behavior of one-dinmrad MA processes by using truncated MA
processes will not work for the high-frequency case, bezbiung, o z?"zof(jhn)hn =04xmforM >0. O

an

HM:

Remark 3.3. A straightforward extension is the convergence of the fitiiteensional distribution for any
I € N, as n— oo,

(zvm zv k+|hn> (/f ds) S1(1)

since for any le N,

zv (k+1)hp) = <Zof (jhn) ) ( -éi Ly (khn) —L1((k— 1)hn)]> +0p(1)

asin(3.4) |
Next we investigate the co-integrated model (1.1)-(1.2).

Theorem 3.4. Let model (1.1)-(1.2) be given whekg, has full rank and let the assumptions of The-
orem 3.1 hold. Furthermore, lgtL,(t));cg be anRV-valued lévy process independent @f;(t))ier,
whereL (1) € DA(B,bn, t2,%2) andE(L2(1)) = 0y if B > 1. If B =1 assume additionally that (1)

is symmetric. Setia=ay; and h = by for t > 0. Moreover, let(S,(t))i>0 be anRV-valued3-stable
Lévy process independent(& (t) )i>o with characteristic triplet( /< XHz(dX), 22, 42) if B € (0,1] and

(= Jjx>1XH2(dx), Z2, ti2) if B > 1, and suppose

(o i) o) o

(a) Suppose the sequence of positive constdniscy satisfies R} 0 as n— o andlimp_ Nhy = 0. If
min(a, B) < 2 and eitherv, ,(RY) = o or X, # Oyxy We additionally assume that for sorae> 0,

Ilmn_mnmln HB “hzanhn =0 if min(a,B) <1, and moreover, (3.6)

Ilmn_mnhn aT1hn nhn =0 if 1<min(a,B) <2

ThenA, as given in(1.6)satisfies as A+ «,

AR b, (Bn — A) = (/:f(s)ds) (sl( / Si(s—)dSH(s) ) (/ S)(9) )

In particular,,&n Foaasns oifa > B/(B+1),i.e. A, is a consistent estimator.
(b) Leth>0and h = h for any ne N. Supposé&||L1(1)|" < « for some r> 2 if a = 2. ThenA, as
given in(1.6) satisfies as A+ o,

na 1on(An — A) — (sf,ha)sz(l)' -/ lsf,h<s>dsz(s>') < / 132(5)32(5)'d3> B



In particular, A, L Aasnswifa> B/(B+1),i.e.Ayis a consistent estimator.

Remark 3.5.
(a) Assumptior§3.6)can be relaxed, which goes beyond this paper because it usmapletely different
approach, and can be found in Fasen [15].

(b) If a = B < 2, sufficient conditions fof3.6) are that for some > 0,

. 2—%4¢ .
liMpsenhy 277" =o if o<1,

1 1
. F+oig+E .
lIMpswnhd 279 =0 if 1<a<?2

holds. O

Finally, we investigate the asymptotic behavior of the slengutocovariance. Both Theorem 3.1 and
Theorem 3.6 are used in Fasen and Fuchs [17, 18] to deriveyingpaotic behavior of the normalized, the
self-normalized and the smoothed periodogram as well agtédtistical inference of CARMA processes.

Theorem 3.6. Let (V(t))i>0 be anRY-valued MCARMAp, g) process as given in Definition 2.1 driven by
theR™M-valued Levy processl i (t))icr With L1(1) € DA(a, an, p1,21). Seta:=ay fort > 0.

(a) Let(Si(t))i>0 be anR™-valueda-stable levy process with characteristic triplé®m, 1, 41). Suppose
the sequence of positive constaftis)cn satisfies h | 0 as h— o andlimp_,. Nhy = . Then as n— o,

hna;ri kilV(khn)V(khn)/ _— /Omf(s) [Slasl]lf(S)/dS,

which is equal t&&(V (0)V(0)') if a = 2. In particular, this means for a one-dimensional CARMA s
(V(t))sowith f =f, Ly =L, and § = S; that as n— oo,

a2 élV(khn)2 — ( /O “12(s) ds) [SL, Si1.

(b) Let h> 0 and let (Sh(t))i=0 be an RY-valued a-stable levy process with characteristic triplet
(04, 2t h, Us,n) Whereps , and 2z, are given as in (3.1) and (3.2), respectively. Then as w,

a;? i V(kh)V (kh) = [Sth, St nl1s
k=1

which is equal t& p, if o = 2.

Thus, ifE[|L1(1)]|? < =, the sample autocovariance is a consistent estimatohéiywe want to point
out that in contrast to Theorem 3.1, Theorem 3.6 does notinefylL (1)) =04 if 1 < a < 2 and the
symmetry ofL1(1) if a = 1. Also the drift term ofS; can be chosen arbitrary since it doesn’t has an

influence oSy, S1)1.
As in Remark 3.2 we shall make a comparison to the discrate-tase.

Remark 3.7.
Let a discrete-time MA process as in Remark 3.2 be given. Bh&avis et al. [11], Theorem 2.1, for the
2-dimensional case (see also Meerschaert and Scheffler (29])) as n— oo,

M s

a2y XiXk=3 Ck[S1,Si1Ci.
k=0

k=1

Again we see the similarity between the continuous-timie freggjuency and the discrete-time model. Con-
sidering ana-stable levy processl1(t))i>0 and ana-stable random variabl€ ;, the normings can be



understood in the continuous-time high-frequency model by
n
n
Z}f jhn) ( Z La(khy) —La((k— 1)hn)][Ll(khn)—Ll((k—l)hn)]’> f(jhn)'hn+0p(2)
Z}f jhn)[L1,L1)4f(jhn) hn+0p(1)
J:

/O “8()[S1, Sulaf(S) ds+ op(1).

The first factor R of hnag,i is required for the convergence of the integral ar;idor the random part. In
the discrete-time model we have

_znxX’:mC. P "¢l +o 1gwc'81,81C'-+0 1.
ank;k Jzoj<an kzlgkfk>1 P(1) goj[ J1Cj+0e(1)

O

Remark 3.8. The finite dimensional distribution of the sample autoc@ase function has for anyd N
the asymptotic behavior as# o,

ot <§ V(kh)V(kh)',.... i V(khn)V((k+|)hn)'>
k= K=1

- (/O (9)[S1. Sul1f(S) / (9)[Sw, Silaf(9) ds)

4. Multivariate high frequency model

Under the following general assumption we derive the prigeeof the least squares estimator givenin (1.6)
for model (1.4)-(1.5). As mentioned in the introduction arsgd in the proof of Theorem 3.1, the cointe-
grated MCARMA model can been seen as a special case of this gemeral model.

Assumption 4.1. Let mode(1.4)(1.5) be given.
(a) Suppose that there exist sequences of positive coaﬁtaﬁﬁ 1 00 as n— oo such that
N [ntJ
<~‘l z Eniebnt Z £n k) = (S1(t),S2(t)")i=0 asn—oinD([0,1],R™Y),  (4.1)
>0

whereS; = (S;(t) )i>0 is a cadlag stochastic process R™ andS; = (S(t) )i>0 is a cddlag stochastic
process inRY, respectively. Furthermore, suppose that

<o|et</s2 (9)d > o)o. 4.2)

(b) Define

Znk = Z}( ) Cn,|>En,kj for k € Ng,n € N.
j= I=j+1



Suppose that there exist a sequence of positive constantsy and a positive bounded decreasing
function g with either ¢ Z_q, a € (0,2), or [5° xg(x)dx < o and o := 2, such that

P(hn||Znoll >X) <g(x) forx>0,neN.

(c) Letforsomd® < 6 <aandf <1,

K||Cnkl|® < oo.

Furthermore, there exists a matix € My, m(R) for (hn)nen in (b) such that

r!llnoo hn kZOCrLk = C

(d) There exist constants K>, K3 < 0 and somé < < a with é < 1 such that the following holds:

() NbR2E(llenal|? g, <) < Ki¥NEN.

(i) nb, Y| E(gn1l DI <Kz¥neN.

{llenall<bn
G A R=0 3

(i) by Bl Enall®L e, ,5op)

Furthermore, one of the following conditions is satisfiedgan (b):

(ivl) ge Z_q with a € (0,2) andlimp .. n&, °b;, °E||n]|® = 0

<KsvVneN.

(iv2) [ xg(x)dx < o andlimn_,. nay, 2by 2E||n.1]|2 =

Note thatifg is a positive bounded decreasing function vgith Z_q, o € (0,2) then [5° x¥~1g(x) dx < e
forany 0< y < a (apply Karamata’s Theorem (cf. Resnick [40], Theorem 2¥preover, lin—»g(an) =
0.

We start with the first limit result.

Theorem 4.2. Let model (1.4)-(1.5) be given wheXg has full rank and let Assumption 4.1 hold. Define

[nt] Y
Sin(t) =M@,y Zak  and  Spp(t)i=byt Y enx fort>0,neN,
k=1 k=1

Then as n— oo,

1 1
(sl,nu),sz,n(l), | Sen(952n(s)'0s, [ sl,n<s—>dsz,n<s>')
— (cs1<1>,sz<1>, [ sese/ac [ s Sz()>

in RY x RY x RY*Y x RI*V,

Based on this theorem we are able to derive the asymptotavimtof the least squares estimator in the
cointegrated model.

Theorem 4.3. Let model (1.4)-(1.5) be given and let Assumption 4.1 holden®,, as given in(1.6)
satisfies as A~ oo,

Nhedy Bon(An—A) = C(sl< / Si(s—)dSx(9) )( / Sy(s ’ds)

. ~ P PP ~ 17T . ~ . . .
In particular, Ay — A as n— o if limp_, Nha; tby, = o, i.e. Ay is a consistent estimator.

10



5. Proofs

5.1. Proofs of Section 4

The proofs of this section are very similar to Fasen [16]. Eegr, we mimic them to show where the
different assumptions are going in. An essential piece ®pttoof will be that as1 — oo,

n o n
hna, ! S Znk= (hn cn,> < Z >+op (5.1)
As Lemma 5.6 in Fasen [16] we can prove the next lemma. Thisni@we require for the proof of
Theorem 3.6 and Theorem 4.2.

Lemma5.1. Let (&, k)kery be an iid sequence of random vector®hfor any ne N, and let(W, ke be
a sequence of random vectorsRfi for any ne N, where(Wnk_)j1.. k-1 is independent ofen ) jen
for any nk € N. Suppose that there exists a positive, bounded, decrefsiatjon g such that

P(|[Whl >x) <g(x) foranyx>0,neNkeN.
Assume that one of the following conditions is satisfied:

(1) g€ #Z_4,0< a < 2, and for somd < § < 1, & < a, the conditiorimp,_.. &, °b;, °E||€n1//® = 0
holds.

(2) J&xg(x)dx < e, E(gn1) = Oy for n € N andlimp e na; 2b; 2E||en1/2 = 0

Then as n— oo,
11 - P
a—1K— !
an bn Z Wnyk_lsn’k — Ogxy -

Proof. Case (1)Takingd < 1 into account we have

o

~ n e d
a,°b, °E > Whiagn|| < &, b, ° 2 E Wi ]| °E HsnakHé
K=1 k=1

e 5,2 (& 5 g Bljens° 5 0

Case (2).We investigate the sequence of random matrices comporsméamid denote b, m) the com-
ponent in thd-th row andm-th column. Sian(Wnyk_lsgyk)(Lm))keN are uncorrelated,

IN

2 n

~ n o~
é«gaEZE (kZan,klg&k> é}?zbaz Z E ((Wn,kflghk)(zl,m))

(I,m) k=1

< C18,%b,2 ZEHWnk 1IPEl €nl|?
< Conay2b, 2Elena?

The last expression tends to Oras» « by assumption. O

We will prove Theorem 4.2 by an application of Jacod and St&w[23], Theorem VI.6.22. Therefore, we
need some definition.

Definition 5.2. Let S" = (S"(t) )i>0 = (S/(t),...,F(t))i>0 for any ne N be anR™V-valued adapted
cadlag stochastic process df2,.7, ( %”)tzo)nem P) and 7" be the set of al[.#");>o predictable pro-

11



cesse$i" in R4*™ having the form
m(H")

Hp = YSIL{O} + kzl YEIL(tE,t&J (t) fort >0

withmH") eN, 0=ty <... < tr?](Hn)H <, andY}in R>Mis %E-measurable withY}|| < 1. Then the
sequence of stochastic proces§8Y .y is said to bepredictably uniformly tight (P-UT]f for any t > 0:

>x>0.

Lemma 5.3. Let Assumptions 4.{) hold. Then the sequence of stochastic proce§Sggny as given
in Theorem 4.2 is P-UT ofQ, %, ((:Z")t>0)nen, P) With Z" = a(enk -k < [nt]),t > 0,ne N.

m(H™)
S YRSty A~ S AD)
k=1

lim  sup IP(

Xte Hne s neN

Similarly to Lemma 5.5 in Fasen [16] we derive the next Lemma.

Proof. We define fot > 0,n € N,

[nt]

. ~71 b - b
Mn(t) = b, k;(en,kﬂ{usn,kusbn} EC e}
1 . b
DY(t) = [nt/b;'E (E”vlﬂ{usn‘luéﬁn}) ’
2 _[nt]

) 1
Dr(t) = by kzlgn’kl{HSn.k\bEn}'

It is obvious thaiMn(t))i>0 is @ martingale with respect {07 )1>o and in particular, a local martingale.
All three processes are adapted with respe¢tif);>0 and we have the semimartingale decomposition

Son(t) = Mn(t) + D (t) + DI (t).

If (Mn)nens (Dﬁ,l))neN and(Dﬁz))neN areP-UT then VI.6.4 in Jacod and Shiryaev [23] gives that the sum
(Szlyn)neN |S P‘UT as We”.

Let VTs(W) =sup_, _,VTs(Wj) for s> 0 denote the variation process of the cadlag stochasiiess
(W(S))s20 = (W1(S), ..., Wy(S))ss0. To prove theP-UTness of DI )nen and (D )nen it is sufficient to
show thaI(VTt(D,ﬂl)))neN and(VTt(Dﬁz)))neN are tight for anyt > 0; see Jacod and Shiryaev [23], VI.6.6.

Lett > 0 be fixed. We start with the verification of the tightnesi‘ﬁTt(Dﬁ”))neN by showing that it is
uniformly bounded. Assumption 4(@) (ii) gives the uniform bound

supvT; (DY) < C; supntby; *

neN neN

[E(ena )| <cat. (5.2)

{ll€n1/|<bn}

which results in the tightness ()\‘/Tt(Dﬁ,l)))neN.
2

For the proof of the tightness ¢¥/T; DE, )))neN we use that fod <1,
(2)\\& -5 o )
(VTU(DF) < Cobn® 5 lendl®L 1,15,

Then a conclusion of Assumption 4(d) (i) and Markov’s inequality is

N [nt] o
SUpP(VTe (D) > 1) < Can~®suphy® 5 B(|lenkl|®Ly, op,) < Csn 2t =5 0. (5.3)
k=1 ’

neN neN

12



Hence,(VTt(Dg)))neN is also tight.
If we show that([Mn, M n]t)nen is tight for anyt > 0, then theP-U Tness of(M ) follows by Jacod
and Shiryaev [23], Proposition V1.6.13. Here, we use Asstionpd.1(d) (i) for

supP(|[[Mn,Mplt|| > n) < fl_1SUWEEZE(llfn,lllzll{Hgn1H<5n}) <Cen '—0 asn— .
neN neN 1<

Finally, ([Mn,Mp]t)nen is tight as well. O
Proof of Theorem 4.2.The Beveridge-Nelson decomposition (cf. [4]) has the regméation

Zn7k - <%Cn7j> En7k+ Zn7k_1 - Zn7k fOI‘ k, ne N
=

Thus,

Int)
Sin(t)=h ~—l<zocnj> zfnk+hnan [znof nm} fort > 0. (5.4)

Therefore we define

<hnzocnj>an ank fort > 0. (5.5)
By Assumption 4.1a) and(c) we have as — oo,
(Bealt)' S2alt)),_, = (10,8202 In B0, 1, RS
A straightforward conclusion of the continuous mappingtieen is then ag — oo,
(Sun(0): 202, [ Son(51520(5/5 (51 2t
= (Csi(l)vSZ(]-)a/0182(S>SZ(S>/dSv((Csl(t>)/782(t)/>{>0>

in RY x RY x RV x (D[0,1],R4*Y). Since (Spn)ner is P-UT by Lemma 5.3, a result of Jacod and
Shiryaev [23], Theorem VI.6.22, is that S~ oo,

- 1 1_
(Sl,n(l)vsz,n(]-)a/o Sz,n(S>SZ,n(S),d57/O Si,n(s)dsz,n(s),)
— (c80),50). [ S99/ C [ Sis-)dsls) ) (5.6)

inRY x RY x RV*Y x RIXV,
On the one hand, by (5.4) we have

/0 *Sin(s-)dSy / Sin (8 +

Applying Lemma 5.1h8;1Zn0 — 04 asn — o (by Assumption 4.1(b)), andSyn(1) = S,(1) as
n — oo gives on the other hand,

hndy *Zn0S2.n(1) — ey 1oyt Zznk—lgnk] (5.7)

hndn by 2Zn0S2.n(1) — i, Toy Zznk—lgnkﬁodxv asn — oo. (5.8)
k=1

13



Finally, from (5.6)-(5.8) the statement follows. ]

Proof of Theorem 4.3.
(a) SinceY; = AXj| +Z;, with X, Y, as given in (1.5) andy, = (Zn1,...,Znn), We have

An—A = AXXn(X0Xn) L+ ZEXn(X0Xn) L — A = Z0Xn (X4 Xn) 7L (5.9)
This gives
~ ~ ~ -1
nhna; 1bn (An ) = iy, on(Z,Xn) (X, X0) (hnaglz;,xnbgl) (n*lbglxgxnbgl) . (5.10)
Now we will prove the convergence
(hnan L/ Al (bnlxaxn'ﬁnl)) <081 —c / Si(s-)dSy(s) / (s )’ds) (5.11)

in R4%Y x RV*¥ asn — oo, giving us the claim by a continuous mapping theorem, sidc®) holds. We get
for the left-hand side of (5.11),

han 1By 1 ZpXn = Sin(DS / Sin(s-)dSan(), (5.12)
N 12X X, = / Son(9)S2n(9)'ds (5.13)
The result follows then from Theorem 4.2 and (5.10)-(5.13). |

5.2. Proof of Theorem 3.1

It is well known that the stationary Ornstein-UhlenbeckqassZ given in (2.4) observed at the time-grid
hnZ has the representation as a MA process

Z(khy) = zoe-ﬂhnjfnyk_j fork e Z,
=

where
khn
& = e Nkm=S)BdlL,(s) forkeZ,neN.
n.k (

k—1)hn

As (5.1) suggests as— oo,

]
hnan kzl (khn) = < ZOEe /\th> <anh,1 zl‘?n,k> +0p(1).

The convergence cxi;hlq Yk-1&nk is based on central limit results for arrays and the propenif the
sequence of iid random vectai,  Jkez as presented in Appendix A.

Before we state the proof of Theorem 3.1, we present the goatoresult for the state processvhich
is essential for the proof of Theorem 3.1.

Lemma 5.4. Let the assumptions of Theorem 3.1 hold. Then-as®,
n

hnagy, S Z(khn) = A~'BSy(1).

k=1

14



Proof. First, we define, := ann,, Cnx := €Mk and
khn
Enki= e Nkm=sIBd| 1(s) forkeZ,neN.
’ (k—=1)hn

Then

Znk:=Z(khy) = Z)Cménk] forkeZ,neN.

We will show that Assumption 4.fa)-(d) with £, := 0 are satisfied because then the result follows by
Theorem 4.2 (it does not matter that (4.2) is not satisfied f@r= 0).

(a) Consider the case 9 a < 2. By Proposition A.4a,c,d) E(En,0> = Opa if a > 1, §, o symmetric for
a =1, and Resnick [40], Theorem 7.1, we have

Lnt)
(N_l Z ¢n k) — (BSi(t))i>0 asn— o inD([0,1],RPY). (5.14)
t>0

Considera = 2. Then Proposition A.{c,e,f,g)and Kallenberg [25], Corollary 15.16 give (5.14).
(b) Since

(o]

Zn,k:zo S e &= (laxa—e ) e Mz (kh),
j= I=]+1

the inequality
P(hl|Znoll > %) < P(2[ATH[||IZ(0)]| >X) =:g(x) forx=0

holds, where fora < 2 the functiong € Z_, due to Moser and Stelzer [30], Theorem 3.2, such that
by Karamata’s Theorenfy’ x¥~1g(x) dx < o for any 0< y < a, and fora = 2 we have 3 xg(x) dx =
8|A|2E|Z(0)]? <

(c) We haveyy_ok[e\mk||® < 5 ke A0k < oo for any® > 0,ne N, and

[ee]
lim hy 3 Cogx = lim ha(lgg —e ")t =A"1
n—oo & ’ n—oo

(d) is obviously satisfied sincg, = 0. ]
Proof of Theorem 3.1.
(a) DuetolLemmab.4,

n

Z (khy) = A"1BS;(1) asn— o,

and by (2.3)
n
S Vikhy) = z EZ (khy) — EA~1BSy(1) (/ f(s ds) asn - o,
K=1
such that we receive the statement.
(b) Defineg(s) := e"\SB]l(o,w) (s). A conclusion of Fasen [16], Proposition 2.1, is thahas oo,
n

Z Z(kh) = Syn(1).

15



Thus, ash — o,

(kh>:>ESgh*th( 1)

1
M=

=
Il
iR

completes the proof. ]

5.3. Proof of Theorem 3.4
Again we use for the proof of Theorem 3.4 the similar resultli@ state process as stated in

Lemma 5.5. Let model (1.1)-(1.2) be given with=Z andA € RPIV and let the assumptions of Theo-
rem 3.4 hold. TheiA, as given in(1.6) satisfies as A~ oo,

by b, (An—A)  — A-lB<sl<1>sz<1>' [[sits- s )(/ Su(s 'ds)

In particular, A, —— A as n— w if a > B/(B+ 1), i.e. Ay is a consistent estimator.

Proof. We use the same notation as in the proof of Lemma 5.4 only tlaatezﬁneBn :=bpn,, and
Enk = Lz(khn) — Lz((k— 1)hn).

Again we will show that Assumption 4 (k)-(d) are satisfied following then the statement by Theorem 4.3.

(a) If a < 2 due to the independence(d, ) and(&nk), Proposition A.2 and Resnick [40], Theorem 7.1,
the limit result

oy
( Z En ka Z en k) i (Sl(t)/aSZ(t)/)tzo asn — o in ]D)([Q 1],de+V) (515)
t>0

holds; see also Paulauskas and Rachev [3H.42, (5.15) is a conclusion of Proposition A.1 and Kallen-
berg [25], Corollary 15.15.

(b,c) is satisfied by the proof of Lemma 5.4.

(d) (i) is a conclusion from Proposition A@) and Proposition A.Xe), respectively.(ii) follows from
Proposition A.2(e) and Proposition A.Xf), respectively. Only foo = 1 it follows by symmetry. More-
over, we obtairiii) by Proposition A.2Zd) and Proposition A.Xd).

Letmin(a,B) < 2, then usingE||L»(hy)||® < Clh‘s/2 and (3.6) givegivl). In the case of a compound Pois-
son process, Lemma A.4 says tMle(hn)H < Czhp, such that no additional assumption is necessary.
Finally, if a = B = 2, then limh_ N(Nhy) ~2E||L 2(hn)||? = liMn_ N(Nhy) “2haE||L2(1)[]? = 0, such that

(iv2) holds. |
Proof of Theorem 3.4.The proof goes as the proof of Theorem 3.1 using only Lemmard3-asen [16],
Theorem 3.4. |

5.4. Proof of Theorem 3.6

The main idea of the proof is to show thatras> co,

n 00 . n "
" Y V(kh)V (k) = E Zoe-’\“nl < "y En,kf’n,k> e NMIE'h, +op(1).
k=1 j= k=1

The convergence oi;,i Zﬂzlfn,kf,n,k follows by the limit results of Resnick [40], Theorem 7.1 asliv
respectively by the law of large numbers for arrays of inaelemt random vectors and the properties of
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(&nkkez as given in Appendix A.
In the same spirit as before we start with the resul#or

Lemma 5.6. Let the assumptions of Theorem 3.6 hold. Then-asa,
hnay2 Z Z (kh)Z (khy)’ — / S[BS1,BS]1e%ds (5.16)

Proof. A multivariate version of the second order Beveridge-Neldecomposition given in Phillips and
Solo [34], Equation (28), gives the representation

S AR Ahi 1 1 S (2 2
Zk)Z(dw) = 5 e e e + (P —Fr) + 3 (Frite +Frie )
j= r=1
< (3 3 3) (3)
+ (Fn,k—lr + I:n,k—l - I:n,kr - Fn,k,—r)7
r=
where
1 [oe] [oe] _ Y
Fe = > e Mo e
]=0s=]+1
2 < CAhni A he(i
Fn,lz,r = AthEn,kE;\,kfre Ahn(1+r)7
j=max0,-r)
3 Y] Y] _ hn _ /hn
FE\,&,r = ZO Z A S‘?n,k—jfa,k—j—re A (s+r).
J=0s=maxj+1,-r)
Then

s

&k ;yk> e Nl (F —FRR)

X
™=

S Z(khw)Z(kiy) = zo A“nl(
+ 2

2 - (3 3 3 3
5 Z(Fn LR 0+ S (F +FS  —Fihr —Finr)
k=1r r=1
=. Jn71 + Jn72 + \]n73 + Jn74. (517)

Step 1.Leta € (0,2) and assume that; is a compound Poisson process as given in (A.5) with characte
istic triplet (Om, Omxm, Vi, ). On the one hand, by Lemma 5.7 from below we have fei2, 3,4

hnay2dni — Opdxpd @SN — o, (5.18)

On the other hand, by Proposition A/Z,c)and Resnick [40], Theorem 7.1, we have
Svi=a,? élfn’kfgﬁk — [BS;,BS;];  asn— oo,
We denote by, andg maps fromMpg, pd(R) — Mpdx pd(R) with
gn(C) = hn jie’\hni Ce Nl and g(C)= /O e MsceNsds, (5.19)

Sincegn and g are continuous with liML,» gn(Cn) = g(C) for any sequenc€,,C € Mpgxpd(R) with
limnh—»Cn = C, we can apply a generalized version of the continuous mappieorem (cf. Whitt [46],
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Theorem 3.4.4) to obtaigh(Sn) = 9([S1,S1]1) asn — o, which means that as— o,

0 X n o ~00 ,
Mty s = My 3 € (kzlfn,kfﬁ,,k> e — [T BS, BSe Vods  (5.20)
= —

Then the result (5.16) follows by (5.17)-(5.20).
Step 2.Leta € (0,2) andL 1 be some Lévy process. We use the decompositidm 6 L(
Enk= Eﬁ,lﬁ + Efﬁz as given in (A.3) and (A.4), respectively, such that

t
Z(t):/ ~At-5) gL (1 +/ N9 BdL(?)(s) = Z4(t) + Za(t) fort >0,

and

X
™=
N

x~

n n n n

+L

) and

= Y Za(khn)Za(khn)'+ Y Za(khn)Za(khn)' + 5 Za(khn)Za(khn)'+ 3 Za(khn)Z2(khn)'

=] =] =] =1
=lln1+Iln2+Inz+Ina

Applying Step 1 we obtain as— oo,
n 00
M 3 Zs(kiw)Za(ki) — [ e[S, BS e ds.
k=1

Furthermore, Holder inequality results in the decompasit

NI

1
2

hnay max([Inzll; [lInsl) < (hnanrikz IZl(khn)|2> <hnami kZ IZz(khn)H2>
=1 =1

of independent factors. Now we use thé{) has the representation (A.5) and we define

N(t) -Khn t
0 :=[BI'S |3l E;‘k::/ e k-9 g *(s), Z*(t)::/ e A9 gL (s).
k=1 ’ (k—=1)hn

—00

Hence,

IBLY® <L 1), [ENI<& and [Za®)] <Z°(1).

Then a conclusion of Step 1 is
n
hnap Z 1Z1(khn) || < hnay2 Z Z*(khy)? [ssgl asn — oo,
whereS= (S(t))i>0 is ana-stable Lévy process. Since

n
Jim P 3 E[1Za(ktw) | = fim nhvagt £Z2(1)] =0,
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we obtain
1
2

(hnaﬁékzllzz(kmﬂz) —50 asn— o, (5.26)

Hence, (5.23)-(5.26) givena,? [|In2]| — 0 andhna,2 [|Ina]| — 0 asn — e. A conclusion of (5.26) is

hnay [lInall — 0 asn— oo as well. Finally, the result follows by (5.21) and (5.22).
Step 3. Leta = 2. On the one hand, by Lemma 5.8 from below we have foP, 3,4 asn — o,

hnay2 Jni — Opaxpd- (5.27)
On the other hand, by Proposition A{d) asn — o,

Shi= ﬁ &nkénk — BZ1B' = [BS;,BSy]1.

™M-

The same arguments as in Step 1 complete the proof. a

First we present Lemma 5.7 and 5.8 and then give the proof ebiiém 3.6.

Lemma 5.7. Let the assumptions of Lemma 5.6 hold watke (0,2) and suppose thdt; is a compound
Poisson process as given in (A.5) with characteristic &{00m, Omxm, VL, ).

@) ThenFn% d Fn%% and as n— oo,
hnaﬁri':% —— Opdxpd-

(b) Then as R~ o,

(c) Then as R oo,
hnaf:fi (FS()JJ + F(3> - FS\?F)LI’ - F§13r)1 4) — Opdx pd-

Proof.
(a) We use the notation given in (5.24). Then

IFSall < (1—e 2t 3 e AMgE, < (1-e )z (0
J:

Hence,

1 _ . 0
P(IFS) > a2 hnt) < P(Z*(0)2 > Cra2y, ) 5 0.

(b) The upper bound

> 3 Fur|| <

k=1r=

(o)

—Ahn(2] l 7)\h
%e n(2j+1) (%Enk 1€ nr>
J

n
< g 2Afny— ankz* ((k—1)hn) (5.28)

=~
gy

holds. Applying Lemma 5.1 (here we require that for a combRaisson proceds||¢ , o | < Cohy by
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Lemma A.4, which is used to shof) for some 0< 6 < 1,6 < a and & > a) gives

n
hn(1— e 2y~ ‘éankZ* (k—1)hy) = 0 asn—s . (5.29)

On the other hand, if we defing* (khy) := 3y ge M &x, , thenw* (khy) 4 7:(0) and

n oo n o oo
2 — jox x n
Fn,lz,—r < Z e ZAthEn,kfn,kHe(\h '
k=1r= k=1r=1]=r
< (1—e )= Z EnW* ((K+1)hn). (5.30)
Using again Lemma 5.1 yields
hn(1— e 2AMn)~1g 2 Z EnW* ((k+1)hy) — 0 asn— w. (5.31)

Hence, (5.28)-(5.31) give the statement.
(c) We will show that on the one hand,

-2 3 P
hn e Fn’&r — Opdxpd asn— o,

and on the other hand,

Sincey anm S anr),r andy ;. ang r Zr lFE,r), ; the proof will then be finished. Again we
use the notation given in (5.24). For the first term we demmeupper bound

—2Ahps g * —Ahpr
an,O,r Zo Z e e Zofn,—jflfre "
r= j=0s=]+1 r=

(A-e M)ty e Aig 2 (< - D)
=

IN

IN

Applyingfor0O<d < a,d <1,

[
El(Ye?Mme 27 ((—j- 1)hn>> < Y e MMEEHEZ(0)°),
(B s

where we used the independencépf ; andZ*((—j —1)hy) in the firstinequality, and Lemma A.4 results
in
" E)
h3an2F ;ngr < Gaa2 %0,
r=
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For the second term we have the upper bound

3 Fib

o 00

0
—Ahns g * —Ahn(s—r
< 535 eme e
r=1j=0s=max(j+1r)

0
i
72Ah -1 2Ahn(j+1 h
P P A L
J

r=

0 0
o)1 —2\h h
+(1 ") > e e & et
j=0r=Tt1

= In1+In2

Moreover,

o0 . j .
1= (1—e M) le M Z)e” Migy . 2 & jore AMUTD < (1—e 27177 (0),
= =

and
lhy = (L—e 2yl zo e Aigy Z & jr€ D)
= r=J+1

4 (1- e 2my-lg-Atmze(0)Z(0),

whereZ(O) is an independent copy &f(0). A conclusion of (5.32)-(5.34) is that for amy> 0,

n,0,r

> s) <P(Z*(0)*+Z*(0)Z(0) > C4a3,) — 0 asn— oo,

P <hna;2

what was the aim to show.

Lemma 5.8. Let the assumptions of Lemma 5.6 hold vath- 2.
(@) ThenFn% 4 Fn%n and as n— oo,

anm nO — Opdpd-

(b) Then as n- o,
n Y]
— 2 2 P
hn fikz zl(Ff(le,r + Fﬁ,ﬁ,fr) — Opdxpd-
r=

(c) Then as R~ o,
hn 7&] (Fr(f()),r + I:r(1:?()),—r - FS\3F)” - Fg?r)l,—r) ;> Opdx pd-

Proof.
(a) We rewrite
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With g, andg as defined in (5.19) and
S, = ar?l’i %eil\hnjénjfjf&,jeil\lhnj;
J:

the equalltynnanrh o o e \gn(Sh)eN is valid. If we are able to prove th& — Opgy pd @S — o,
then with a generalized continuous mapping theorem (th@saguments as in the proof of Lemma 5.6)

we can concludéna,,2 F,ﬂ% — Opdx pd @SN — oo. Finally, due to Proposition A.{a)
n—oo
E|S <ay? 20 & M| £, 0|2 < Cra2 50,

andSy — Opdx pd @SN — o,
(b) The representation

Z nkr _ zo e\ <an Z Enkz ((k—1)hn )) —/\hn(Hl)hn
J7
holds. Using the same arguments agait is sufficient to prove that as — oo,
2 < P
ar?hfI Z En,kz((k* 1)hn>/ — Opd>< pd-
K=1
However, this follows from Proposition A.1 and Lemma 5. Imi#rly,

n (o) (o) n [ee]
-2 2 e \'h e\h / —A'hnj
Ay Z Fn,k,—r = ZO ") < Z Z\ nr‘?n,k‘?n,kﬂ) e "y,
k=1r= j= K=1r=

As in (a) itis sufficient to show that

n oo

a Y Zle_/\hnr‘?n,k‘?;l,kﬂ — Opdspd- (5.35)
k=1r=
We prove the convergence of (5.35) componentwise. The sequeof (I,m)-components

((e—Ahann7k§%7k+r)(I,m)) e is uncorrelated such that

2
A —Ahp / B n _ Ahn , 2
(850 memins) ) = B (e emtn,)
n

8

(1.m)

[

e 2M(E|&0]1%)? < Canhn.

IN
9

Thus, (5.35) holds.
(c) Letus start with

h -2 - F(3) _ ad e—/\hn(s+l) -2 - e_Ah”jE _Z((*] 71)h )’e—/\'hnj e—/\/hn(3+2)h )
n8hp, r; n0,r SZO A, J_ZO n—j n h
As before it is sufficient to show that

a’ Zoefl\h”jfn,sz((—j —1)hy)e N 004,00 @SN — oo,
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We prove it componentwise using the uncorrelation of theuemge of the(l,m)-components
((€n—jZ((=] —2)hn)")1,m)jen- For the(l,m)-component we have

2
1= (1,m
- e (e"™ig, Z((~i-h )'e‘“'“”j)z
= anhngo n—j n m

B, Ca Zoe‘“h”jEl\En,ol\z]EIIZ(O)H2

IN

IN

Csa;ri n*>°°
Now we investigate

(o]

[ed] (3) 00 J 00
_ —Ahps —/\ hn(s—r

ZanyQ—f - ZO Zl Z e En JEn —j+r€ " Jr Z

r= ]=0r=1s=j+1 J=0r=]+1s=

—Ahps / —N'hnp(s—r
e g, j&h jie e

ﬁMs

Then

9] (2] . J , . ,
Iy = efAhn(erl) ef/\hnj E . E/ o efA hn(j—r) efA hn(s+1).
n, s; JZO n,—j r; n,—j+r

For the convergendﬁ,a;rilnyl LN Opdx pd @shn — o it is again sufficient to show that

o -1

-2 —/\hnj —/\hnu
a, '3 & —>0pdxpd asn— oo, (5.37)
hngo nej ZO n—u€

. . . _ : i1 Al
what we will prove componentwise. Since tthem)-componentg(e "™ &, SIT0EL e Ny e
are uncorrelated

2

2
[ -1 00 j—1
E|YeMig [T & e =Y E|e Mg _-< & e-’\’“n“> .(5.38)
(]; " J(uzo n (1,m) JZO m UZO nY (1,m)

Furthermore, by Proposition A(R) we get
. 2 . .
Efjemig, || < Coe 2 MR £,0)12 < Crhne 2, (5.39)

and

2 .
j—1
<Cg Zoe’”h"”EHEangCg. (5.40)
u=

-1

/ —N'hpu

E Z}En’,ue n
u=

Hence, (5.38)-(5.40) and the independenceéf'e¢,, ; and s & & N give

2
o . -1 © .
E(Ye™Mig . [T&, eNmu <Cuohy § e ?M <y,
(e (gae), ) onf

which results in (5.37).
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Next we have to show thdma;,iln,z SN Opdx pd @sn — . Therefore we use the representation

(o] [oe] [oe] ,
7/\h —A\h, l —AN\'h,
|n,2 = % nS Z e ann,—jEn.fjJrr € ns
1=

r=j+1

and prove that ag — oo,

ot 2.2 e jer = A, 3 € Y @ ME, &L — Opaspa. (5.41)
j=0r=j+1 J= u=1
By the uncorrelation of the components é(e’\h”je’\h"“g‘n’jf'n,u)(l m)) we obtain similarly as
) j,ueN
above
E <Z}e’\h"j > e g L& u> < ; SE ((e’\h"je’\h"“fnjf'n u) )
g = ’ ’ o Y ’ =/ (I,m)
J= u=1 (I,m) j=0u=1
< Ci Z)e*”“”j ;e*”“”“Ean,fjH
i= =
< G
After all this gives (5.41) antina,,Z Inz — Opgxpg @SN — oo i

Finally, we are able to prove the main statement in Theor&m 3.

Proof of Theorem 3.6.
(a) The observation equation (2.3) and Lemma 5.6 yield

n n
o S V(kh)V (ki)' = hnar? S EZ (khn)Z (k) E/
k=1 k=1
— / Ee /B[Sy, S,]1B'e VE ds = / f(9)[SL, Su]1f(s)'ds  asn—s w,
0 0
(b) An application of Fasen [16], Proposition 2.1, gives thatwgi(s) = e*’\SB]l(O’oo)(s)
n
Z = [Syh,Sgnl1  asn— oo,
such that
n
Z V (kh) = E[Sgp, Sgn]1E" = [ESgh, ESgn)1 4 [Sth,Stpl1  asn— oo,
is the result. a

A. Appendix: Asymptotic behavior of stochastic integrals

In the appendix we present the tail behavior and extensiba@mmata’s Theorem to stochastic integrals
of the formfohn f(s)dL (s) wherehy | 0 asn — oo. First, we start with a driving Lévy process which has a
finite second moment. In the subsequent subsection thengiiévy process has a regularly varying tail.
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A.1l. Finite second moments

Proposition A.1. Let (L (t));>0 be anR9-valued Levy process witl||L (1)||2 < w0 andE(L (1)L (1)) = =.
Supposéhn)nen is a sequence of positive constants such that @ andlimp_,. nh, = . Moreover, let
f: R — R™d pe a measurable and bounded function viith,_.of(x) = f(0). Defineé,, = Oh”f(s) dL(s)
for ne N. Finally, letd € (0,2] and let x> 0.

(a) There exists a finite positive constant K such that
hlE|E,I2<K V¥neN.
If E(L (1)) = Oy, thenlimp_. iy X[ €, 12 = E[fO)L (1)]2
(b) IfE||L(1)||* < oo, then there exists a finite positive constant K such B, |4 < Kh, Yne N,
(c) nP((nhy)~Y/2& € .) == 0as n— w0 on B(R™\{On}).

(d) liMne n(nhn)_a/zE(HEnHé]l{H.fn\p\/mX}) =0.

(e) There exists a finite positive constant K such that
W E([EllP1 e, < i) <K VNEN.
If E(L (1)) = Oq, thenlimn e hy YE(]|&4[1P1 ¢, 1< vimg ) = BIFO)L (1)]%
(f) LetE(L(1)) = Og. Thenlimn e n(nhn) 2E(E 11 ¢ < /mmmg) = Omxm:

(9) Let(&,)ker be an iid sequence with,, ; < & forany ne NandE(L (1)) = 0g. Then
n
(nh) S &niénk — F(O)ZF(0)  asn— oo,
k=1

Proof. (a) Supposé(L (1)) = 04. Due to (2.10) in Marquardt and Stelzer [28] the covarianagrix of
&, is [i"f(s)=f(s)' ds. Hence, we obtain as— o,

i
E|&q|1? = /0 |diag(f(s)Zf(s)") | *ds ~ hn||diag(f(0)Zf(0))||* = haE||f(O)L (1), (A1)

where diagB) denotes the vector cgntaining the diagonal elemenis of
SupposéE(L (1)) # Oq. Then defind. (t) := L (t) —tE(L (1)) fort > 0 and use the upper bound

hn _ 2
E||&qlI? < 41EH/0 f(s)dL (s)|| +Cyh2.

A conclusion of (A.1) is the statement.
(b) SupposeE(L(1)) = 04. The characteristic function df(t) = féf(s) dL(s) =: (&1(t),...,ém()) is
E(€9¢1) = exp(— W (©)) for © € R™ where

Wi () = /0 "p(/f(s)ds

(cf. Rajput and Rosinski [37], Proposition 2.6). Hence,Ket 1,..., mandec = (0,...,0,1,0,...,0) €
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Rm

o _ 9 pdodeny] <i >2<i )
E&OF = ggkE )9=o’3 g 1108 6-0 g Tr(68d 6-0
t d 2 t d
= 3(/0 <@W(9éxf(5))) 9=ods) —/O (Ew(ee&f(s))> ezods
~ 3t°C,+tC3 ast— 0.
Finally,
E||&]1* <Ca S Elé&(hn)[* <Cshn VneN. (A.2)
k=1

Supposé(L (1)) # 04. Then by (A.2)

hn . 4
Bl < 8| [ "o d(9)| +Cont <o
0

(¢) In the following f* := sup.g |f(s)|. Let (y_,ZL,vL) be the characteristic triplet ¢t (t));>0 and
BI~1 = {x € RY: ||x|| < 1} be the unit ball inRY. We factorize the Lévy measurg into two Lévy
measures

v, (A) = v (A\BI ) and v ,(A) :=v (ANBIY)  forAc B(RI\{04})
such thav, = v, +vi,. Then we can decompogk(t) )i>o in two independent Lévy processes
L) =LDt)+LPt) fort>0, (A.3)
whereL () = (L) (t));>0 has the characteristic triplé@y, Oqsq, Vi, ) andL® = (L?)(t))i>0 has the char-
acteristic triplet(y, , . ,v,). Then

hn "hn
_ (1) 2 (g) —- g (2
&= [ OB+ [ M)A D (9 =+, (A4)

and&(Y andé? are independent. Since the Lévy measure @f is finite andL (%) is without Gaussian
part and driftL (1) has the representation as a compound Poisson process

N(t) N(hn)
LYM) =3 J t>0, and &Y= Y (M, (A.5)
k=1 k=1

where (Jy)ken is @ sequence of iid random vectors independent of the Rojssmess(N(t))>o with
intensityA = v, (RY) and jump timesy)ken. Now, letB be a relatively compact set iR\ {Om})
with (1(dB) = 0 andys = infyeg ||X||, which is larger than 0. Then

nP((nh) Y28, € B) < nP([|ES]| > ysv/Nha/2) + NP(||EP]| > yg1/nha/2).

First, we will show that the first summand wiﬁf]” converges to 0. Therefore, we will use the next
conclusions. On the one hand, for 1,

PN =1) _ 4, (A
hn hnl!

< CgP(N(1) =1). (A.6)
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On the other hand, fdr> 2,

_ I[l—1
jim TN =1 e A" (A7)
n—oo hn n—oo |1
Finally,
jim EN(W =1 i e Ay 2 (A.8)
n—oo hn n—oo

If U 1 <U 2 <...<U denotes the order statistic loiid uniform random variables of0, 1) then

f(haU )k

(€] > vev/nha/2) = nZP<

> ¥By/N /2> N(hn) =1)
(see Resnick [38], Theorem 4.5.2). On the one hand, by (A.6)

N(2)
AE(ED] > o /A/2) < nCoP (f* S 19> vB\/nnn'/2>
k=1

N(1)
Cio P | f* Il € dx | =30,
Yo v/ /2 < k;” H

IN

sinceE((inll) [9kIN?) < o by Sato [42], Corollary 25.8. On the other hand, since theylideasure of

L@ has compact support, all momentsld?) (1) are finite (cf. Sato [42], Corollary 25.8), such that a
conclusion of(b) is

nP([1€P]| > y81/Nn/2) < n(yey/nin/2) B[ 2 * < Cun(nhy) 2, =3 0.

(d) Note that for any random variablé with E|[X|?> < oo the limit limy_.y?P(|X| >y) = 0 and
limy_,e V>~ PE(|X[°1 x>y} ) = O (apply Holder inequality) holds. Then

o
_9 Q)6 J
nnhe) 2E(1E07 11 g meg) < Cralnfn) 2 (( Z ||Jk|> L sty Jk>rx})
2 0. (A.9)
Moreover, by Markov’s inequality
-4 (26
R S

< n(nhy) "2 ((nm)%x5p(|5§,2>| > x/nmx)+5/;_m x5-1E||5§,2>||4x-4dx)

Cra(nhy) 150, (A.10)

IN

)
TakingE||€,||° < (E||€,,]|2)2 < CwhZ into account, the inequality

n(nhy) 2 EJ|& 2| O( Hf‘”n > /nhox/2) +n(nh) 2B E X R(1E 2| > \/nhex/2)
< Casn(nhy)~ 2 ha(nh) 1 =5 0 (A.11)
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is valid. Finally, applying (A.9)-(A.11) yields

n(nhe) " 2E(IEI2 11, 1o yimg)

< 2%n(nhy)PE(IEY)%0 +29n(nhy) 2 E(|1€2]|1

{uz#)uwm/z}) {us&”uwm/z})
) o)
+2°n(nhy) 2E||EP(IPP(| €V || > v/nhx/2) + 2%n(nhy) ~2E([EY]1PP(|EP))| > /nhx/2)

== o
(f) SinceE(¢,,) = Om, an application ofd) results in

lim () 2B e, < i) | = im n(nhe) 2IE(E L, 1 vimg )l = O

(g) Gut[21], Theorem 3.1, and
hn
lim 0 E(E0&) = fim [ 1(9)21(s) ds = F(0)F(0)

gives(nhy) 1 SR_1 & kénk — F(0)Zf(0)' asn — oo, ]

A.2. Infinite second moments
Moreover, we present some asymptotic resultd fd) € Z_q(an, 1), a € (0,2).

Proposition A.2. Let (L (t));>0 be anR9-valued Levy process with (1) € Z_q(an, 1), 0 < a < 2. Sup-
pose(hn)nen is a sequence of positive constants such thal 8 and limp. nhy = . Set a:= &y,
fort > 0. Letf:R — R™Y be a measurable and bounded function with, ,of(x) = f(0). Define
£, = Jm(s)dL(s) forneN.

(@) Then
NP(ap&n € ) == pof(0) ()  onB(R™{On}).
(b) There exists a finite positive constant K such that

lim nP(||&,ll > ann,X) = Kx™®  for x> 0.

(c) Leteitherd > 2, or 4 > a and(L (t))>0 be a compound Poisson process. Then there exists for any
x > 0 a finite positive constant Ksuch that

Ny E(I1€n°L g, <am) < KeX* ™7 ¥neN.

(d) Letd € (0,a). Then there exists for anyx 0 a finite positive constantKsuch that
na °E(||€,°1 ) <Ksx*~% v¥neN
By LIS 0l {180 >anmxt) = Ko :

(e) Suppose that # 1andE(L(1)) =04 if 1 < a < 2. Then there exists for anyx 0 a finite positive
constant K such that

n@?é||E(fnﬂ{\\en\\ganhnx})H <Kx9 vneN.

The proof of Proposition A.2 uses the next two Lemmatas.
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Lemma A.3. Let (L(t))i>0 be anR%-valued levy process Witl||L (1)||? < o, (& )i>0 be an increasing
sequence of positive constantsi o, 0 < a < 2, and (hn)ne be a sequence of positive constants such
that h, | 0 as n— o and limp_,. nhy, = . Moreover, letf : R — R™d be a measurable and bounded
function withlimy_,of(x) = f(0). Defineé, = fé‘"f(s) dL(s) forne N. Finally, let(a —1); < d < 2.

(@) Thenlimp_e n]P’(a;é]En € B) = O for any relatively compact setB%(Em\{Om}).
(b) 1iMn e N E((|E 1%L e, >amx) =0 forx>0.

Proof.
(@) Let ys :=infyeg||X||, which is larger than 0, and @ € < 2/a — 1. Markov's inequality, Proposi-
tion A.1 (a) and Potter’s Theorem result in
n 1 C n o
SE[&? < 5 —5—mh %0,

NP(ann &n € B) < NP([| &yl > ann 1) < 2. V& (nhy)

which we had to show.
(b) Moreover,

NS E(IE 0l Lje, samt) = N (@nnX)°P([1€ 0]l > annX) + Ny - PIEal > 2)52° *dz

NCE|E,|Payix 2+ ngyy [ E|&,|*2 262 tdz

hnX

IN

IN

Conhna,2 =50,
where we also used Markov’s inequality. a

Lemma A.4. LetL, = (ZE:(tl)Jk)tzo be anR%-valued compound Poisson process &nik — R™ 9 be a
measurable and bounded function withy_,o f(x) = f(0). Defineé , = ( s)dL1(s) for ne N. Then for
any0 < & < 1with E[|L(1)||° < o there exists a finite positive constant K such that

E||€,]|° < Kh.

Proof. We define the Lévy proceds’(t) := ZE:Q | 3||® for t > 0, which satisfiesE(L%(1)) < « by
Sato [42], Corollary 2.5.8. Let the increasing sequefiggxen denote the jump times ¢N(t) )i>o. Then

N(hn) hn
Igalo< 5 |\f(rk)|\5|pk|\5=/0 If(s)[1° L°(dls).
k=1

sinceEE (Jg" [f(s)[1°L2(ds) ) = E(L®(1)) g [f(s) |2 ds < Chy, we get alscE|€,|® < Ch, =

Note, for an arbitrary driving Lévy process the result i$ walid, e.g., Brownian motion. In general we
S

only haveE||&,,[|° < Chg.

Proof of Proposition A.2. (a) We use the decomposition @f, = Eﬁ,l) + EE,Z) as given in the proof
of Proposition A.1 and the notation there. Moreovg®)J; € % q(an,A ~1u o f(0)~1(- )) due to Hult

and Lindskog [22], Lemma 2.1 and;|| € Z_q(an) as weII First, we will show thaf satisfies the
statement. Now, leB be a relatively compact set W(R \{Om}) with u(dB) = 0 andys = infyeg ||X||,
which is larger than 0. We define

(o] I
nPanés €B) = n1P>< " Z (haUy ) Jx € B) N(hy) =1) Z a. (A.12)
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Furthermore, (A.6) gives for arly> 1,

!
<ap < CinhyP <amif*kz ([l > VB) P(N(1) =1) =: by,
=

and for some finite constan®s,Cs,C4 > 0,

rl'ﬂlob = Clf* Ty P(N(1) =1),
N(1)
. % o . -1 x—1 _ *a,,~a
glg;gbm = Canlg;nmP<anmel|Jkll>f VB>—C4f /3

where we used thgt}_, || Jk|| andzE:(ll> ||[Jk|| are inZ_q(an) by Resnick [40], Theorem 6.1 and Proposi-
tion 7.4, and by Hultand Lindskog [22], Lemma 2.1, respedivSince (A.8), (A.12) and lifL,. f(haU1.1) =
f(0) P-a.s. yield

lim &, = lim nhyP (a;rtf(O)Jl e B) A = pof(0)74(B),
and moreover (A.7) results in
rIll_rll)am =0 forl>2,

a conclusion of Pratt’s Theorem (see Pratt [35]) is

lim nP (anhnf ) - lilrliinooa;v' — pof(0)"Y(B). (A.13)

n—oo

Furthermore, the Lévy measureld® has compact support. Thus, Sato [42], Corollary 25.8, givesall
moments of|L (?)(1)|| exist. The statement follows then from Lemma 4&3 (A.4) and (A.13).

(b) is a conclusion ofa) and Resnick [39], Proposition 3.12.

(c) Step 1.Let (L(t))i>0 be a compound Poisson process as given in (A(5),= l4xg andd > o (if
0 > 2 then in particularlyd > a). Keep in mind that. (1) € Z_q(an, t) andJy € Z_q(an, U/A) by Hult
and Lindskog [22], Lemma 2.1. Then

P(N(hp) =1
B i) = B 3 <) o (19

By Resnick [40], Theorem 6.1 and Proposition 7|4;,_; Jk| € %Z-a(an), a conclusion of Karamata’s
Theoremis forany > 1,

I|m nhna,, ( Z Jx

As in (a) we are allowed to apply Pratt’s Theorem, such that (A.7)3JAA.14) and (A.15) result in

o
; P(N(hw) =)
{ll Skt Il <anmx} hn '

o

_ S—a
ﬂ{zL_lJusanmx}) = 1Csx™ . (A.15)

s 5 5
lim na (L (M) 1T () <anyx) = ACsX° % (A.16)
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Step 2.Let (L (t))i>0 be a compound Poisson process as given in (A, arbitrary and > a. Since

N(hn)
IEJ’(|5r1||>y)§19’<f* > |Jk||>Y> for anyy >0
k=1

andL*(t) := f* zEz(t{ |3k|| fort > 0 is a compound Poisson process wittil) € #Z_4(an), we have
N (€]l 12, <agy) < WEP (L (1) > B X) + N0 (L () 11 ) < ) -
which converges t€sx?~% due to(b) and Step 1.
Step 3. Let (L(t))i>0 be a Lévy procesd, be arbitrary,d0 > 2 and&, = Eﬁ,l) + Eﬁ,z) as given in (A.4).

Further, lete > 0. Then the decomposition

5 F:) —0 o
e B0l "Ly <amp) = MR ECIEnI"Lg1g, < L e®)<an erepy)

—0 o
+na  E((1€n]l ]l{\lé'nHSanhnX}]l{Hgﬁ,l)\|>anm(x+s)})
= lni+ln2

holds. Further,

I < na22%E(||EM)%1 )+ n25(2x+ €)°E itsﬂ

ni S Ny n 6 ) <an (x+e)) an(2x+e)|| e <an(2ce))
_ _ 2 ) _
< RZEIEIL ) oy ) MO EIER 5 ol )¢

by Step 2 and Proposition A(R). In the last inequality we required > 2. Moreover, applyingb) and
Proposition A.1(a) results in

In2 < NP(|[ER]| > ann, &)P(| €S| > an, (X+ €)) < Cog~2hnanZnP(| L[| > an, (x+€)) 3 0.

Thus,(c) follows.
(d) Lete € (0,1). We use the upper bound

na e EI€n L, > amx)

< ng 22°E(1 €01 )N 2B (16721

[IED > amx(1—)} {He&”\banhnx(l_s)})
—558(|1£)(10 R 2E(|1EP)1°
AR 218071 2o ) T MER BT oy )
= In7l+ In72+ |n73+ |n,4- (A-17)

As in (c) we can show that by Karamata’s and Pratt's Theorem the contpBaisson proces&*(t))i>o0
satisfies

1m 3L ()71 ) = AC108 . (18)
and
|n71 < 25nagrf1]E(||L*(hn)||5]1{H|_*(hn)H>anhnX}) < C11X67a vneN.

Further, by(b) and Proposition A.1a)

o 00
In2 < 2%, (E|E2[2) 2nP(| E(]| > annx(1—£)) =5 0 (A.19)
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holds. Moreover, by Lemma A.4
Ina = aye2’El| & PnP (€17 > amnxe) < Cragydhn *nhnag2x 2625 0. (A.20)

Finally, by Lemma A.3b), limn_«» In4 = 0. Statemenfd) is then a consequence from (A.17)-(A.20).
(e) Steplletl< a < 2. ThenE(¢,)=0m. Hence,

Nai IE(EnL (g, | <am ) | = N80 IECE 0L, 1> ama) | < N ECIEnllL (e, 1>amx)

such that we can applig).
Step 2.Leta < (0,1). Again we use the decomposition&f = &Y + £(?) as given in (A.4). Thus,

E(Enl {1, <amm) = EE 1161 <amm) + EEZ (g <amps) = In1+ In2.

On the one hand, let for songe> 0,

Anhy (X+€) B 0 0
laall < / P(|ED]| >y, [|€n]l < anrX) dy+ / P(|EL] > v, [ €nll < BunX) dy

0 anhn(x+£)

= Inz1+1In12

Then
) Gm (XHE) () 2)

na1 < BOEIL o0 o)+ PO > %10 > ame)dy

< E(|EP)1 )+ anhy (X+ €)P([|E2 || > ann,€)-

{11ED [ <anm (x+€)}

Hence, by(c) and Proposition A.Ya)

limsupnaIn.11 < Ciax™ @ + Cpalim supnk||&? [%apn = Cyax! €.
n—so n—sc0

Furthermore,
naz< [ BOED T > IED ] > y - amx)dy < PIE | > am,0c+ £) BN,
anm (1+¢€)

such that by(b) and Proposition A.%a),

lim supna;ﬁ]Imu =0.

n—oo

To concludena;éln,l < C1ax1=9 ¥ n e N. On the other hand, we have

IN

IE((EP —EEP)N e, > amut) | + IEEE )L, <amxt)
E(||E@(|1 1E@ )+2|[E(ED)

[Tnz]

IN

)
{\|z<nl>u>anhnx/2})+E( ||1{uz$3>u>anhnx/2}

= Ih21+In22+1In23.

Then by(b), Proposition A.1(a), |E(¢?)|| < Cish, anda € (0,1),

naytlnz: = aniEERInP(|EN ] > annx/2) =50,

na;hlq|n,2,3 < Clgnhna;érifo.
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Finally, by Markov’s inequality

(<4

e inzz =M 2B > anx2) +nag, [ B(IER] > y)dy < Canmag? 5 0
and thus, lim e na ;i Ina = 0. O
References

[1]

(2]

(3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]
[16]

[17]

BENTH, F. E., KOEKEBAKKER, S., AND ZAKAMOULINE, V. (2010). The CARMA interest rate
model. Preprint, available fromttp://ssrn.com/abstract=1138632.

BERGSTROM A. R. (1990). Continuous time econometric modellingdxford University Press,
Oxford.

BERGSTROM A. R. (1997). Gaussian estimation of mixed-order contirgstime dynamic models
with unobservable stochastic trends from mixed stock amwd dlata. Econom. Theory3, 467-505.

BEVERIDGE, S.AND NELSON, C. R. (1981). A new approach to decomposition of economie ti
series into permanent and transitory components withquaati attention to measurement of the 'busi-
ness cyle'.J. Monetary Economigsp. 151-174.

BROCKWELL, P., FERRAZZANO, V., AND KLUPPELBERG C. (2012). High frequency sampling of
a continuous-time ARMA procesd. Time Ser. AnaB3, 152-160.

BROCKWELL, P. J. (2001). Lévy-driven CARMA processésn. Inst. Statist. Mattb3, 113-123.

BROCKWELL, P. J. (2004). Representations of continuous-time ARMAgssesJ. Appl. Probab.
41A, 375-382.

BROCKWELL, P. J. (2009). Lévy-driven continuous-time ARMA processén: T. G. Andersen,
R. Davis, J.-P. Kreil3, and T. Mikosch (Edstjandbook of Financial Time Seriepp. 457 — 480.
Springer, Berlin.

BROCKWELL, P. J., ERRAZZANO, V., AND KLUPPELBERG C. (2012). High-frequency sampling
and kernel estimation for continuous-time moving averagegsses. Submitted for publication,
available fromhttp://www-m4.ma. tum.de/Papers

CoMmTE, F. (1999). Discrete and continuous time cointegratibrieconometric88, 207—-222.

Davis, R., MARENGO, J.,AND RESNICK, S. (1985). Extremal properties of a class of multivariate
moving averagesBull. Internat. Statist. Instituté1, 26.1-26.14.

Davis, R. AND RESNICK, S. (1985). Limit theory for moving averages of random Jalga with
regularly varying tail probabilitiesAnn. Probab13, 179-195.

Doos, J. L. (1944). The elementary Gaussian procesdnen. Math. Stat25, 229-282.

ENGLE, R. F.AND GRANGER, C. W. J. (1987). Co-integration and error correction: Repntation,
estimation and testingzconometricé5, 251-276.

FASEN, V. (2012). Statisctical inference of high frequency sasdpDU processes. In preparation.

FASEN, V. (2012). Time series regression on integrated contisttone processes with heavy and
light tails. Econometric Theorylo appear.

FASEN, V. AND FucHs, F. (2012). On the limit behavior of the periodogram of higbguency
sampled stable CARMA processes Submitted for publicatwajlable fromhttp://www.math.
ethz.ch/~vfasen/.

33



[18] FASEN, V. AND FucHS, F. (2012). Spectral estimates for high-frequency sam@l&BMA pro-
cesses. Submitted for publication, available filotp: //www.math. ethz. ch/~vfasen/.

[19] GARCIA, I., KLUPPELBERG C.,AND MULLER, G. (2011). Estimation of stable CARMA models
with an application to electricity spot priceStat. Modell1, 447—-470.

[20] GARNIER, H. AND WANG, L. (Eds.) (2008)Identification of Continuous-time Models from Sampled
Data. Advances in Industrial Control, Springer, London.

[21] GuT, A. (1992). Complete convergence of arralsriodica Mathematica Hungaric2l, 51-75.

[22] HuLT, P.AND LINDSKOG, H. (2007). Extremal behaviour of stochastic integralgetriby regularly
varying Lévy processe#\nn. Probab35, 309-339.

[23] JacoD, J. AND SHIRYAEV, A. N. (2002). Limit Theorems for Stochastic Processe2nd edn.
Springer, Heidelberg.

[24] JOHANSEN, S. (1996). Likelihood-Based Inference on Cointegration in the Vedatoregressive
Model Oxford University Press, Oxford.

[25] KALLENBERG, O. (1997).Foundations of Modern ProbabilitySpringer, New York.

[26] LARSSON E. K., MOSSBERG M., AND SODERSTROM, T. (2006). An overview of important
practical aspects of continuous-time ARMA system iderstfam. Circuits Systems Signal Process.
25, 17-46.

[27] LOTKEPOHL, H. (2007). New Introduction to Multiple Time Series Analysi&nd edn. Springer,
Berlin.

[28] MARQUARDT, T. AND STELZER, R. (2007). Multivariate CARMA processestoch. Proc. Appl.
117,96-120.

[29] MEERSCHAERT M. M. AND SCHEFFLER H.-P. (2000). Moving averages of random vectors with
regularly varying tails.J. Time Ser. AnaR1, 297-328.

[30] MOSER M. AND STELZER, R. (2012). Tail behavior of multivariate Lévy-driven reck moving
average processes and supOU stochastic volatility moAdis.Appl. Probab43, 1109-1135.

[31] PauLAUSKAS, V. AND RACHEYV, S. (1998). Cointegrated processes with infinite varianceva-
tions. Ann. Appl. Probab8, 775-792.

[32] PHILLIPS, P. C. B. (1974). The estimation of some continuous time rsodEconometrica4?2,
803-823.

[33] PHILLIPS, P. C. B. (1991). Error correction and long-run equilibriitmtontinuous time.Econo-
metrica59, 967-980.

[34] PHILLIPS, P. C. B.AND SoLO, V. (1992). Asymptotics for linear processesnn. Statist20, 971—
1001.

[35] PRATT, J. (1960). On interchanging limits and integradsin. Math. Statist31, 74-77.

[36] RAHBEK, A. AND KESSLER M. (2001). Asymptotic likelihood based inference for edeigrated
homogenous Gaussian diffusior&cand. J. StatisR8, 455—-470.

[37] RAJPUT, B. S.AND ROSINSKI, J. (1989). Spectral representation of infinitely divieiprocesses.
Probab. Th. Rel. Field82, 452—-487.

[38] RESNICK, S. I. (1986). Point processes, regular variation and weakergenceAdv. Appl. Probab.
18(6), 66—138.

34



[39] RESNICK, S. I. (1987). Extreme Values, Regular Variation, and Point Process8pringer, New
York.

[40] RESNICK, S. I. (2007). Heavy-Tail Phenomena: Probabilistic and Statistical Mg  Springer,
New York.

[41] RVACEVA, E. L. (1962). On domains of attraction of multidimensiodigtributions.Selected Trans-
lations in Math. Statist. Prob. Theo8; 183-205.

[42] SaTO, K. (1999).Lévy Processes and Infinitely Divisible Distributiof@ambridge University Press,
Cambridge.

[43] SCHLEMM, E.AND STELZER, R. Multivariate CARMA processes, continous-time statecgpmod-
els and complete regularity of the innovations of the sachAlRMA processesBernoulli18, 46—63.

[44] STOCKMARR, A. AND JACOBSEN, M. (1994). Gaussian diffusions and autoregressive peases
weak convergence and statistical inferer8eand. J. StatisR1, 403—429.

[45] ToDoOROV, V. (2009). Estimation of continuous-time stochastic tititg models with jumps using
high-frequency datal. Econometric448 131-148.

[46] WHITT, W. (2002). Stochastic-Process Limits: An Introduction to StochaBtiecess Limits and
Their Applications to Queuespringer, New York.

35



