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We consider a multivariate continuous-time ARMA (MCARMA) process sampled at a high-
frequency time-grid{hn,2hn, . . . ,nhn} wherehn ↓ 0 andnhn → ∞ asn→ ∞, or at a constant
time-grid wherehn = h. For this model we present the asymptotic behavior of the properly
normalized partial sum to a multivariate stable or a multivariate normal random vector depend-
ing on the domain of attraction of the driving Lévy process.Further, we derive the asymptotic
behavior of the sample autocovariance. In the case of finite second moments of the driving
Lévy process the sample autocovariance is a consistent estimator. Moreover, we embed the
MCARMA process in a cointegrated model. For this model we propose a parameter estima-
tor and derive its asymptotic behavior. The results are given for more general processes than
MCARMA processes and contain some asymptotic properties ofstochastic integrals.
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1. Introduction

Multivariate continuous-time ARMA (MCARMA) processesV = (V(t))t≥0 are the continuous-time ver-
sions of the well known multivariate ARMA processes in discrete time having short memory. They are
important for stochastic modelling in many areas of application as, e.g., signal processing and control (cf.
[20, 26]), econometrics (cf. [2, 32]), high-frequency financial econometrics (cf. [45]), and financial math-
ematics (cf. [1]). Starting at least with Doob [13] in 1944, Gaussian CARMA processes under the name
Gaussian processes with rational spectral density appeared, where the driving force is a Brownian motion.
To obtain more flexible marginal distributions and dynamicsBrockwell (cf. [6, 7]) analyzed Lévy driven
CARMA models, which were extended by Marquardt and Stelzer [28] to the multivariate setting; see [8]
for an overview and a comprehensive list of references.

Lévy processes are defined to have independent and stationary increments, and are characterized by
their Lévy-Khintchine representation. AnRm-valued Lévy process(L(t))t≥0 has the Lévy-Khintchine
representationE(eiΘ′L(t)) = exp(−tΨ(Θ)) for Θ ∈Rm, whereΘ′ is the transpose ofΘ and

Ψ(Θ) =−iγ ′L Θ+
1
2

Θ′ΣL Θ+

∫

Rm

(
1−eix′Θ + ix′Θ1{‖x‖2≤1}

)
νL (dx)
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with γL ∈ Rm, ΣL a positive semi-definite matrix inRm×m andνL a measure on(Rm,B(Rm)), called the
Lévy measure, which satisfies

∫
Rm min{‖x‖2,1}νL (dx)< ∞ andνL ({0m}) = 0. The triplet(γL ,ΣL ,νL ) is

called thecharacteristic triplet, because it characterizes completely the distribution of the Lévy process.
A two-sided Lévy process(L(t))t∈R is then a composition of two independent and identically distributed
Lévy processes(L (1)(t))t≥0 and(L (2)(t))t≥0 in

L(t) =
{

L (1)(t) for t ≥ 0,
L (2)(−t−) for t < 0.

We refer to the excellent monograph of Sato [42] for more details on Lévy processes. In this paper the
driving Lévy process is very general. It is allowed to have both a finite varianceE‖L(1)‖2 < ∞ and
an infinite varianceE‖L(1)‖2 = ∞, which is modelled by a multivariate regularly varying Lévy process.
CARMA processes driven by infinite variance Lévy processesare particularly relevant in modelling energy
markets, see Garcia et al. [19], for instance. We will investigate MCARMA processes (see Definition 2.1)
observed not only at a constant frequencyh but also, and especially for high frequencies as found in finance
and turbulence. Then the observation grid is{hn,2hn, . . . ,nhn}, wherehn ↓ 0 and limn→∞ nhn = ∞. The
behavior of the spectral density of a high frequency sampledCARMA model and kernel density estimation
was recently explored in Brockwell et al. [5, 9]. The estimation of the spectral density and the model
parameters is topic of Fasen and Fuchs [17, 18]. For the statistical inference of a MCARMA process, e.g.,
parameter estimation and hypothesis testing, it is crucialto know the asymptotic behavior of the partial sum
(cf. [17, 18]). We will show the convergence of the properly normalized partial sum to anα-stable random
vector, whereα = 2 reflects the multivariate normal distribution. In the highfrequency setting the limit
distribution factorizes in a random factor independent of the MCARMA parameters and a deterministic
factor, which is determined by the model parameters (the integral over the kernel function). This is the same
pattern as for multivariate ARMA models. However, the normalization differs in the continuous-time and
the discrete-time case. The grid distancehn has an influence on the convergence rate and hence, determines
the normalization in the continuous-time model. Furthermore, we study the asymptotic behavior of the
sample autocovariance. The results show that in the finite second moment case the sample autocovariance
is a consistent estimator for the autocovariance. In the infinite second moment case it converges to an
α/2-stable random matrix. Again the convergence rate dependson the sampling distancehn.

Another issue of this paper is the estimation of a cointegrated model in continuous time, where the
MCARMA process is embedded. Co-integration plays an important role in financial econometrics, see,
e.g., Engle and Granger [14] and is well understood in discrete time if second moments exist (cf. the
monographs [24, 27]). Most of the literature on cointegrated models in continuous time is restricted to
Gaussian processes as, e.g, [3, 10, 36, 44]. First approaches to drop the Gaussian assumption go back to
Phillips [33]; see also Fasen [16] and references therein. Let L1 = (L1(t))t∈R be theRm-valued driving
Lévy process of theRd-valued MCARMA processV andL2 = (L2(t))t∈R be anRv-valued Lévy process
independent ofL1. Then we investigate forA ∈Rd×v themultivariate cointegrated model

Y(t) = AX(t)+V(t), t ≥ 0, in Rd,
X(t) = L2(t), t ≥ 0, in Rv.

(1.1)

The observation scheme is

Y
′
n = (Y(hn), . . . ,Y(nhn)) ∈R

d×n, X
′
n = (X(hn), . . . ,X(nhn)) ∈ R

v×n. (1.2)

However, the paper investigates a more general model. Let(ξ n,k)k∈Z and (εn,k)k∈Z be independent se-
quences of iid (independently and identically distributed) random vectors inRm andRv, respectively, for
anyn ∈ N, and(Cn,k)k∈N be a sequence of deterministic matrices inRd×m satisfying some general con-
straints. Then we may define for anyn∈N theRd-valued stationary moving average process

Zn,k =
∞

∑
j=0

Cn, jξ n,k− j for k∈ N0, (1.3)
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and the cointegrated model as

Yn,k = AXn,k+Zn,k for n,k∈ N, in Rd,
Xn,k = Xn,k−1+ εn,k for n,k∈ N, in Rv.

(1.4)

In this case the observation scheme is

Y
′
n = (Yn,1, . . . ,Yn,n) ∈R

d×n, X
′
n = (Xn,1, . . . ,Xn,n) ∈ R

v×n. (1.5)

Since the high frequency sampled MCARMA process(V(khn))k∈Z has a representation as in (1.3) and

L2(khn) = L2((k−1)hn)+ [L2(khn)−L2((k−1)hn)],

where(L2(khn)−L2((k−1)hn))k∈N is an iid sequence by the independent and stationary increment prop-
erty of a Lévy process, (1.2) can be interpreted as a specialcase of (1.5). As estimator forA we use the
least squares estimator

Ân = Y
′
nXn(X

′
nXn)

−1. (1.6)

The paper is structured in the following way. First, in Section 2 we present some preliminaries on
MCARMA processes, regular variation and model assumptions. The main results of this paper on limit
theory for high-frequency sampled MCARMA processes but also for equidistant sampled MCARMA pro-
cesses are topic of Section 3. We show that the properly normalized partial sum∑n

k=1V(khn) and the
sample autocovariance∑n

k=1V(khn)V(khn)
′ of the MCARMA process with eitherhn ↓ 0 andnhn → ∞ as

n→ ∞, or hn = h (but with different normalization) converge weakly, and wecompletely characterize their
limit distributions. Moreover, we investigate the cointegrated model (1.1)-(1.2). All results are compared
to multivariate ARMA models in discrete time. The proofs of this section are based on some general limit
theorems as constituted in Section 4. There we present undersome general assumptions the asymptotic
behavior ofÂn for the multivariate cointegrated model (1.4)-(1.5). Finally, Section 5 contains the proofs
of the stated results and the Appendix A involves the asymptotic behavior of stochastic integrals where the
driving Lévy process has either a finite second moment or is multivariate regularly varying. On the one
hand, these results are interesting for their own but on the other hand, they act as preliminaries to the results
in this paper.

We use the notation=⇒ for weak convergence,
P−→ for convergence in probability, and

ν
=⇒ for vague

convergence. LetR=R∪{−∞,∞} be the compactification ofR and letB(·) be the Borel-σ -algebra. For

two random vectorsX,Y the notationX d
=Y means equality in distribution. We use as norms the Euclidean

norm‖·‖ in Rd and the corresponding operator norm‖·‖ for matrices, which is submultiplicative. Recall
that two norms on a finite-dimensional linear space are always equivalent and hence, our results remain true
if we replace the Euclidean norm by any other norm. For a measurable functionf : (0,∞)→ (0,∞) andα ∈
R we say thatf is regularly varying of index−α, if lim x→∞ f (xu)/ f (x) = u−α for anyu> 0, and we write
f ∈ R−α . The set ofd×m matrices overR is denoted byMd×m(R). The matrix0d×m is the zero matrix
in Md×m(R) andId×d is the identity matrix inMd×d(R). For a vectorx ∈ Rd we writex′ for its transpose
and forx∈ R we write⌊x⌋ = sup{k ∈ Z : k ≤ x}. The space(D[0,1],Rd) denotes the space of all càdlàg
(continue à droite et limitée à gauche= right continuous, with left limits) functions on[0,1] with values in
Rd equipped with the SkorokhodJ1 topology. Finally, for a semimartingaleW = (W1(t), . . . ,Wd(t))t≥0 in
Rd we denote by[W,W]t = ([W i ,W j ]t)i, j=1,...,d for t ≥ 0 the quadratic variation process.

2. Preliminaries

2.1. MCARMA process

Let L1 = (L1(t))t∈R be a two-sidedRm-valued Lévy process andp > q are positive integers. Then the
d-dimensional MCARMA(p,q) model can be interpreted as the solution to thep-th-orderd-dimensional
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stochastic differential equation

P(D)V(t) = Q(D)DL1(t) for t ∈ R,

whereD is the differential operator,

P(z) := Id×dzp+P1z
p−1+ . . .+Pp−1z+Pp (2.1)

with P1, . . . ,Pp ∈ Md×d(R) is the auto-regressive polynomial and

Q(z) := Q0zq+Q1z
q−1+ . . .+Qq−1z+Qq (2.2)

with Q0, . . . ,Qq ∈ Md×m(R) is the moving-average polynomial. Since a Lévy process is not differentiable,
this definition can not be used, however, it can be interpreted to be equivalent to the following.

Definition 2.1. Let(L1(t))t∈R be anRm-valued Ĺevy process and let the polynomialsP(z),Q(z) be defined
as in(2.1)and(2.2)with p,q∈ N0, q< p, andQ0 6= 0d×m. Moreover, define

Λ =−




0d×d Id×d 0d×d · · · 0d×d

0d×d 0d×d Id×d
. . .

...
...

. . .
. . . 0d×d

0d×d · · · · · · 0d×d Id×d

−Pp −Pp−1 · · · · · · −P1




∈ Mpd×pd(R),

E = (Id×d,0d×d, . . . ,0d×d) ∈ Md×pd(R) andB = (B′
1 · · ·B′

p)
′ ∈ Mpd×m(R) with

B1 := . . . := Bp−q−1 := 0d×m and Bp− j :=−
p− j−1

∑
i=1

PiBp− j−i +Qq− j for j = 0, . . . ,q.

AssumeN (P) = {z∈ C : det(P(z)) = 0} ⊆ (−∞,0) + iR. Furthermore, the Ĺevy measureνL1 of L1

satisfies
∫

‖x‖>1
log‖x‖νL1(dx)< ∞.

Then theRd-valuedcausal MCARMA(p,q) process(V(t))t∈R is defined by the state-space equation

V(t) = EZ(t) for t ∈R, (2.3)

where

Z(t) =
∫ t

−∞
e−Λ(t−s)BdL1(s) for t ∈ R (2.4)

is the unique solution to the pd-dimensional stochastic differential equationdZ(t) =−ΛZ(t)dt +BdL(t).
The functionf(t) = Ee−ΛtB1(0,∞)(t) for t ∈ R is called kernel function.

In particular, the MCARMA(1,0) process andZ in (2.4) are multivariate Ornstein-Uhlenbeck processes.
To see that the MCARMA(p,q) process is well-defined compare Marquardt and Stelzer [28].Moreover,
Lemma 3.8 of Marquardt and Stelzer [28] says that the setN (P) is equal to the set of eigenvalues of−Λ,
which means that for a MCARMA(p,q) process the eigenvalues ofΛ have strictly positive real parts. The
class of MCARMA processes is huge. Schlemm and Stelzer [43],Corollary 3.4, showed that the class of
state-space models of the form

dZ̃(t) = −Λ̃Z̃(t)dt + B̃dL(t),

Ṽ(t) = C̃Z̃(t),
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whereΛ̃ ∈ RN×N has only eigenvalues with strictly positive real parts,B̃ ∈ RN×m andC̃ ∈ Rd×N and the
class of causal MCARMA processes are equivalent ifE‖L(1)‖2 < ∞ andE(L(1)) = 0m.

2.2. Multivariate regular variation and assumptions

Multivariate regular variation plays a basic part in our model assumption. First, we recall the definition.

Definition 2.2. A random vectorU ∈ Rd is multivariate regularly varying with index−α < 0 if and only

if there exists a non-zero Radon measureµ on (R
d \ {0d},B(R

d \ {0d})) with µ(Rd \Rd) = 0 and a
sequence(an)n∈N of positive numbers increasing to∞ such that

nP(a−1
n U ∈ ·) v

=⇒ µ(·) as n→ ∞ onB(R
d \ {0d}),

where the limit measureµ is homogenous of order−α, i.e.,µ(uB) = u−α µ(B) for u> 0, B∈B(R
d\{0d}).

We writeU ∈ R−α(an,µ).

If the representation of the limit measureµ or the norming sequence(an)n∈N does not matter we also
write R−α(an) andR−α , respectively. For further information regarding multivariate regular variation of
random vectors we refer to Resnick [40].

Definition 2.3. Let U be anRd-valued random vector,α ∈ (0,2], (an)n∈N be an increasing sequence of

positive constants tending to∞, µ be a Radon measure on(R
d \{0d},B(R

d \{0d})) with µ(Rd \Rd) = 0
andΣ ∈ Md×d(R) be a positive semi-definite matrix. We write U∈ DA(α,an,Σ,µ) if either

(a) α < 2, Σ = 0d×d, µ is non-zero andU ∈ R−α(an,µ), or

(b) α = 2, an = n1/2, µ = 0 andE‖U‖2 < ∞ withE(UU′) = Σ.

The abbreviation DA stands fordomain of attractionbecause of the following argument. Let(Uk)k∈N
be a sequence of iidRd-valued random vectors withU1 ∈ DA(α,an,µ ,Σ), α 6= 1, andS= (S(t))t≥0

be anRd-valuedα-stable Lévy process with characteristic triplet(
∫
‖x‖≤1xµ(dx),Σ,µ) if α ∈ (0,1) and

(−∫‖x‖>1xµ(dx),Σ,µ) if α > 1. In particular ifα = 2, S is a Brownian motion with covariance matrixΣ.
AssumeE(U1) = 0d if α > 1. Then

a−1
n

⌊nt⌋
∑
k=1

Uk =⇒ S asn→ ∞ in D([0,1],Rd).

This means that the triplet(α,µ ,Σ) characterizes completely the limit distribution and(an)n∈N the conver-
gence rate. Forα = 1 we need additionally a deterministic shift factor to obtain the convergence, which
we can neglect ifU1 is symmetric. In general the only possible limit of a normalized partial sum of iid
random vectors is anα-stable distribution withα ∈ (0,2] (cf. Rvačeva [41]). The limit distribution is an
α-stable random vector withα < 2 if and only if U1 is multivariate regularly varying of index−α. Then
alsoE‖U1‖2 = ∞. On the other hand,E‖U1‖2 < ∞ is only a sufficient assumption to be in the domain of
attraction of a normal distribution.

3. Main results

We start with a central limit theorem for MCARMA processes in

Theorem 3.1. Let (V(t))t∈R be anRd-valued causal MCARMA(p,q) process as given in Definition 2.1
driven by theRm-valued Ĺevy process(L1(t))t∈R with L1(1) ∈ DA(α,an,µ1,Σ1) andE(L1(1)) = 0m if
α > 1. Set at := a⌊t⌋ for t ≥ 0. If α = 1 we assume additionally thatL1(1) is symmetric.
(a) Let(S1(t))t≥0 be anRm-valuedα-stable Ĺevy process with characteristic triplet(

∫
‖x‖≤1xµ1(dx),Σ1,µ1)
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if α ∈ (0,1] and(−∫‖x‖>1xµ1(dx),Σ1,µ1) if α > 1. Suppose the sequence of positive constants(hn)n∈N
satisfies hn ↓ 0 as n→ ∞ andlimn→∞ nhn = ∞. Then as n→ ∞,

hna−1
nhn

n

∑
k=1

V(khn) =⇒
(∫ ∞

0
f(s)ds

)
S1(1).

(b) Let h> 0 and let (Sf,h(t))t≥0 be anRd-valuedα-stable Ĺevy process with characteristic triplet
(
∫
‖x‖≤1xµf,h(dx),Σf,h,µf,h) if α ∈ (0,1] and(−∫‖x‖>1xµf,h(dx),Σf,h,µf,h) if α > 1, where

µf,h(B) =

∫ h

0

∫

Rm
1B

(
∞

∑
k=0

f(kh+ s)x

)
µ1(dx)ds for B∈ B(Rd\{0d}), (3.1)

Σf,h =

∫ h

0

(
∞

∑
k=0

f(kh+ s)

)
Σ1

(
∞

∑
k=0

f(kh+ s)

)′

ds. (3.2)

SupposeE‖L1(1)‖r < ∞ for some r> 2 if α = 2. Then as n→ ∞,

a−1
n

n

∑
k=1

V(kh) =⇒ Sf,h(1).

We shall compare this result to the limit results for ARMA models and present a motivation for the
normalization.

Remark 3.2.
(a) Let (ξ k)k∈Z be a sequence of iid random vectors inRm with ξ 1 ∈ R−α(an,µ1) for some0< α < 2.
If α > 1 then supposeE(ξ 1) = 0m, and ifα = 1 then supposeξ 1 is symmetric. Furthermore, let(Ck)k∈N
be a sequence of matrices in Md×m(R) with ∑∞

k=0k‖Ck‖θ < ∞ for some0< θ < α, θ ≤ 1. TheRd-valued
stationary MA process(Xk)k∈Z is defined as

Xk =
∞

∑
j=0

C jξ k− j for k∈ Z. (3.3)

Then a special case of Theorem 4.2 (from below) is that as n→ ∞,

a−1
n

n

∑
k=1

Xk =⇒
(

∞

∑
k=0

Ck

)
S1(1).

On the one hand, we observe the similar structure of the limitdistribution(
∫ ∞

0 f(s)ds)S1(1) and(∑∞
k=0Ck)S1(1)

in the continuous-time high frequency and the discrete-time model. On the other hand, the normings are
different. To explain the different normings we consider anα-stable Ĺevy process(L1(t))t≥0 and anα-
stable random variableξ 1. Then the idea in the continuous-time model is that as n→ ∞,

hna−1
nhn

n

∑
k=1

V(khn) =

(
∞

∑
j=0

f( jhn)hn

)(
a−1

nhn

n

∑
k=1

[L1(khn)−L1((k−1)hn)]

)
+oP(1) (3.4)

d
=

(
∞

∑
j=0

f( jhn)hn

)(
(nhn)

− 1
α h

1
α
n

n

∑
k=1

[L1(k)−L1(k−1)]

)
+oP(1)

d
=

(
∞

∑
j=0

f( jhn)hn

)
S1(1)+op(1) =

(∫ ∞

0
f(s)ds

)
S1(1)+oP(1),
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and in the discrete-time model that as n→ ∞,

a−1
n

n

∑
k=1

Xk =

(
∞

∑
j=0

C j

)(
a−1

n

n

∑
k=1

ξ k

)
+op(1)

d
=

(
∞

∑
j=0

C j

)
ξ 1+op(1). (3.5)

In (3.4)and(3.5)we see where the different normings have their origin. In thecontinuous-time model, the
hn of the norming hna−1

nhn
goes into the first factor of (3.4), which converges to(

∫ ∞
0 f(s)ds) and the norming

a−1
nhn

goes into the second, the random factor.
(b) Representation(3.4) gives also a motivation for the fact that the classical techniques of Davis and
Resnick [12] to prove the asymptotic behavior of one-dimensional MA processes by using truncated MA
processes will not work for the high-frequency case, because limn→∞ ∑M

j=0 f( jhn)hn = 0d×m for M > 0. 2

Remark 3.3. A straightforward extension is the convergence of the finitedimensional distribution for any
l ∈ N, as n→ ∞,

hna−1
nhn

(
n

∑
k=1

V(khn), . . . ,
n

∑
k=1

V((k+ l)hn)

)
=⇒

(∫ ∞

0
f(s)ds

)
(S1(1), . . . ,S1(1))

since for any l∈ N0,

hna−1
nhn

n

∑
k=1

V((k+ l)hn) =

(
∞

∑
j=0

f( jhn)hn

)(
a−1

nhn

n

∑
k=1

[L1(khn)−L1((k−1)hn)]

)
+oP(1)

as in(3.4). 2

Next we investigate the co-integrated model (1.1)-(1.2).

Theorem 3.4. Let model (1.1)-(1.2) be given whereXn has full rank and let the assumptions of The-
orem 3.1 hold. Furthermore, let(L2(t))t∈R be anRv-valued Ĺevy process independent of(L1(t))t∈R,
whereL2(1) ∈ DA(β ,bn,µ2,Σ2) andE(L2(1)) = 0v if β > 1. If β = 1 assume additionally thatL2(1)
is symmetric. Set at := a⌊t⌋ and bt = b⌊t⌋ for t ≥ 0. Moreover, let(S2(t))t≥0 be anRv-valuedβ -stable
Lévy process independent of(S1(t))t≥0 with characteristic triplet(

∫
‖x‖≤1xµ2(dx),Σ2,µ2) if β ∈ (0,1] and

(−∫‖x‖>1xµ2(dx),Σ2,µ2) if β > 1, and suppose

P

(
det

(∫ 1

0
S2(s)S2(s)

′ds

)
= 0

)
= 0.

(a) Suppose the sequence of positive constants(hn)n∈N satisfies hn ↓ 0 as n→ ∞ and limn→∞ nhn = ∞. If
min(α,β )< 2 and eitherνL2(R

v) = ∞ or ΣL2 6= 0v×v we additionally assume that for someε > 0,

limn→∞ n
1

min(α,β)+ε
h

1
2
n a−1

nhn
b−1

nhn
= 0 if min(α,β ) ≤ 1, and moreover,

limn→∞ nh
1
2
n a−1

nhn
b−1

nhn
= 0 if 1< min(α,β ) < 2.

(3.6)

ThenÂn as given in(1.6)satisfies as n→ ∞,

nhna−1
nhn

bnhn(Ân−A) =⇒
(∫ ∞

0
f(s)ds

)(
S1(1)S2(1)

′−
∫ 1

0
S1(s−)dS2(s)

′
)(∫ 1

0
S2(s)S2(s)

′ds

)−1

.

In particular, Ân
P−→ A as n→ ∞ if α > β/(β +1), i.e. Ân is a consistent estimator.

(b) Let h> 0 and hn = h for any n∈ N. SupposeE‖L1(1)‖r < ∞ for some r> 2 if α = 2. ThenÂn as
given in(1.6)satisfies as n→ ∞,

na−1
n bn(Ân−A) =⇒

(
Sf,h(1)S2(1)

′−
∫ 1

0
Sf,h(s−)dS2(s)

′
)(∫ 1

0
S2(s)S2(s)

′ds

)−1

.
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In particular, Ân
P−→ A as n→ ∞ if α > β/(β +1), i.e. Ân is a consistent estimator.

Remark 3.5.
(a) Assumption(3.6)can be relaxed, which goes beyond this paper because it uses acompletely different

approach, and can be found in Fasen [15].

(b) If α = β < 2, sufficient conditions for(3.6)are that for someε > 0,

limn→∞ nh
2− α

2 +ε
n = ∞ if α ≤ 1,

limn→∞ nh
1
2+

1
2−α +ε

n = ∞ if 1< α < 2

holds. 2

Finally, we investigate the asymptotic behavior of the sample autocovariance. Both Theorem 3.1 and
Theorem 3.6 are used in Fasen and Fuchs [17, 18] to derive the asymptotic behavior of the normalized, the
self-normalized and the smoothed periodogram as well as forstatistical inference of CARMA processes.

Theorem 3.6. Let (V(t))t≥0 be anRd-valued MCARMA(p,q) process as given in Definition 2.1 driven by
theRm-valued Ĺevy process(L1(t))t∈R with L1(1) ∈ DA(α,an,µ1,Σ1). Set at := a⌊t⌋ for t ≥ 0.
(a) Let(S1(t))t≥0 be anRm-valuedα-stable Ĺevy process with characteristic triplet(0m,Σ1,µ1). Suppose
the sequence of positive constants(hn)n∈N satisfies hn ↓ 0 as n→ ∞ and limn→∞ nhn = ∞. Then as n→ ∞,

hna−2
nhn

n

∑
k=1

V(khn)V(khn)
′ =⇒

∫ ∞

0
f(s)[S1,S1]1f(s)′ ds,

which is equal toE(V(0)V(0)′) if α = 2. In particular, this means for a one-dimensional CARMA process
(V(t))t≥0 with f = f, L1 = L1 and S1 = S1 that as n→ ∞,

hna−2
nhn

n

∑
k=1

V(khn)
2 =⇒

(∫ ∞

0
f 2(s)ds

)
[S1,S1]1.

(b) Let h> 0 and let (Sf,h(t))t≥0 be anRd-valuedα-stable Ĺevy process with characteristic triplet
(0d,Σf,h,µf,h) whereµf,h andΣf,h are given as in (3.1) and (3.2), respectively. Then as n→ ∞,

a−2
n

n

∑
k=1

V(kh)V(kh)′ =⇒ [Sf,h,Sf,h]1,

which is equal toΣf,h if α = 2.

Thus, ifE‖L1(1)‖2 < ∞, the sample autocovariance is a consistent estimator. Further, we want to point
out that in contrast to Theorem 3.1, Theorem 3.6 does not require E(L1(1)) = 0d if 1 < α < 2 and the
symmetry ofL1(1) if α = 1. Also the drift term ofS1 can be chosen arbitrary since it doesn’t has an
influence on[S1,S1]1.

As in Remark 3.2 we shall make a comparison to the discrete-time case.

Remark 3.7.
Let a discrete-time MA process as in Remark 3.2 be given. Thenby Davis et al. [11], Theorem 2.1, for the
2-dimensional case (see also Meerschaert and Scheffler [29], (4.7)) as n→ ∞,

a−2
n

n

∑
k=1

XkX
′
k =⇒

∞

∑
k=0

Ck[S1,S1]1C′
k.

Again we see the similarity between the continuous-time high frequency and the discrete-time model. Con-
sidering anα-stable Ĺevy process(L1(t))t≥0 and anα-stable random variableξ 1, the normings can be

8



understood in the continuous-time high-frequency model by

hna−2
nhn

n

∑
k=1

V(khn)V(khn)
′

=
∞

∑
j=0

f( jhn)

(
a−2

nhn

n

∑
k=1

[L1(khn)−L1((k−1)hn)][L1(khn)−L1((k−1)hn)]
′
)

f( jhn)
′hn+oP(1)

d
=

∞

∑
j=0

f( jhn)[L1,L1]
′
1f( jhn)

′hn+oP(1)

=

∫ ∞

0
f(s)[S1,S1]1f(s)′ ds+oP(1).

The first factor hn of hna−2
nhn

is required for the convergence of the integral and a−2
nhn

for the random part. In
the discrete-time model we have

a−2
n

n

∑
k=1

XkX
′
k =

∞

∑
j=0

C j

(
a−2

n

n

∑
k=1

ξ kξ ′
k

)
C′

j +oP(1)
d
=

∞

∑
j=0

C j [S1,S1]1C′
j +oP(1).

2

Remark 3.8. The finite dimensional distribution of the sample autocovariance function has for any l∈ N

the asymptotic behavior as n→ ∞,

hna−2
nhn

(
n

∑
k=1

V(khn)V(khn)
′, . . . ,

n

∑
k=1

V(khn)V((k+ l)hn)
′
)

=⇒
(∫ ∞

0
f(s)[S1,S1]1f(s)′ ds, . . . ,

∫ ∞

0
f(s)[S1,S1]1f(s)′ ds

)
.

2

4. Multivariate high frequency model

Under the following general assumption we derive the properties of the least squares estimator given in (1.6)
for model (1.4)-(1.5). As mentioned in the introduction andused in the proof of Theorem 3.1, the cointe-
grated MCARMA model can been seen as a special case of this more general model.

Assumption 4.1. Let model(1.4)-(1.5) be given.

(a) Suppose that there exist sequences of positive constants ãn, b̃n ↑ ∞ as n→ ∞ such that

(
ã−1

n

⌊nt⌋
∑
k=1

ξ ′
n,k, b̃

−1
n

⌊nt⌋
∑
k=1

ε ′n,k

)

t≥0

=⇒ (S1(t)
′,S2(t)

′)t≥0 as n→ ∞ in D([0,1],Rm+v), (4.1)

whereS1 =(S1(t))t≥0 is a c̀adlàg stochastic process inRm andS2 =(S2(t))t≥0 is a c̀adlàg stochastic
process inRv, respectively. Furthermore, suppose that

P

(
det

(∫ 1

0
S2(s)S2(s)

′ds

)
= 0

)
= 0. (4.2)

(b) Define

Z̃n,k :=
∞

∑
j=0

(
∞

∑
l= j+1

Cn,l

)
ξ n,k− j for k∈ N0,n∈ N.

9



Suppose that there exist a sequence of positive constants(hn)n∈N and a positive bounded decreasing
function g with either g∈ R−α , α ∈ (0,2), or

∫ ∞
0 xg(x)dx< ∞ andα := 2, such that

P(hn‖Z̃n,0‖> x)≤ g(x) for x≥ 0, n∈ N.

(c) Let for some0< θ < α andθ ≤ 1,

∞

∑
k=0

k‖Cn,k‖θ < ∞.

Furthermore, there exists a matrixC ∈ Md×m(R) for (hn)n∈N in (b) such that

lim
n→∞

hn

∞

∑
k=0

Cn,k = C.

(d) There exist constants K1,K2,K3 < ∞ and some0< δ < α with δ ≤ 1 such that the following holds:

(i) nb̃−2
n E(‖εn,1‖2

1{‖εn,1‖≤b̃n})≤ K1 ∀n∈ N.

(ii) nb̃−1
n ‖E(εn,11{‖εn,1‖≤b̃n})‖ ≤ K2 ∀n∈ N.

(iii) n b̃−δ
n E(‖εn,1‖δ

1{‖εn,1‖>b̃n})≤ K3 ∀n∈ N.

Furthermore, one of the following conditions is satisfied for g in (b):

(iv1) g∈ R−α with α ∈ (0,2) andlimn→∞ nã−δ
n b̃−δ

n E‖εn,1‖δ = 0.

(iv2)
∫ ∞

0 xg(x)dx< ∞ and limn→∞ nã−2
n b̃−2

n E‖εn,1‖2 = 0.

Note that ifg is a positive bounded decreasing function withg∈R−α , α ∈ (0,2) then
∫ ∞

0 xγ−1g(x)dx<∞
for any 0< γ <α (apply Karamata’s Theorem (cf. Resnick [40], Theorem 2.1)). Moreover, limn→∞ g(ãn)=
0.

We start with the first limit result.

Theorem 4.2. Let model (1.4)-(1.5) be given whereXn has full rank and let Assumption 4.1 hold. Define

S1,n(t) := hnã−1
n

⌊nt⌋
∑
k=1

Zn,k and S2,n(t) := b̃−1
n

⌊nt⌋
∑
k=1

εn,k for t ≥ 0, n∈ N.

Then as n→ ∞,
(

S1,n(1),S2,n(1),
∫ 1

0
S2,n(s)S2,n(s)

′ds,
∫ 1

0
S1,n(s−)dS2,n(s)

′
)

=⇒
(

CS1(1),S2(1),
∫ 1

0
S2(s)S2(s)

′ds,C
∫ 1

0
S1(s−)dS2(s)

′
)

in R
d ×R

v×R
v×v×R

d×v.

Based on this theorem we are able to derive the asymptotic behavior of the least squares estimator in the
cointegrated model.

Theorem 4.3. Let model (1.4)-(1.5) be given and let Assumption 4.1 hold. Then Ân as given in(1.6)
satisfies as n→ ∞,

nhnã−1
n b̃n(Ân−A) =⇒ C

(
S1(1)S2(1)

′−
∫ 1

0
S1(s−)dS2(s)

′
)(∫ 1

0
S2(s)S2(s)

′ds

)−1

.

In particular, Ân
P−→ A as n→ ∞ if limn→∞ nhnã−1

n b̃n = ∞, i.e. Ân is a consistent estimator.
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5. Proofs

5.1. Proofs of Section 4

The proofs of this section are very similar to Fasen [16]. However, we mimic them to show where the
different assumptions are going in. An essential piece of the proof will be that asn→ ∞,

hnã−1
n

n

∑
k=1

Zn,k =

(
hn

∞

∑
j=0

Cn, j

)(
ã−1

n

n

∑
k=1

ξ n,k

)
+oP(1). (5.1)

As Lemma 5.6 in Fasen [16] we can prove the next lemma. This lemma we require for the proof of
Theorem 3.6 and Theorem 4.2.

Lemma 5.1. Let(εn,k)k∈N be an iid sequence of random vectors inRv for any n∈N, and let(Wn,k)k∈N be
a sequence of random vectors inRd for any n∈ N, where(Wn,k− j) j=1,...,k−1 is independent of(εn,k+ j) j∈N
for any n,k∈N. Suppose that there exists a positive, bounded, decreasingfunction g such that

P(‖Wn,k‖> x)≤ g(x) for any x≥ 0,n∈ N,k∈ N.

Assume that one of the following conditions is satisfied:

(1) g∈ R−α , 0< α < 2, and for some0< δ ≤ 1, δ < α, the conditionlimn→∞ nã−δ
n b̃−δ

n E‖εn,1‖δ = 0
holds.

(2)
∫ ∞

0 xg(x)dx< ∞, E(εn,1) = 0v for n∈ N and limn→∞ nã−2
n b̃−2

n E‖εn,1‖2 = 0.

Then as n→ ∞,

ã−1
n b̃−1

n

n

∑
k=1

Wn,k−1ε ′n,k
P−→ 0d×v .

Proof. Case (1).Takingδ ≤ 1 into account we have

ã−δ
n b̃−δ

n E

∥∥∥∥∥
n

∑
k=1

Wn,k−1ε ′n,k

∥∥∥∥∥

δ

≤ ã−δ
n b̃−δ

n

n

∑
k=1

E
∥∥Wn,k−1

∥∥δ
E
∥∥εn,k

∥∥δ

≤ nã−δ
n b̃−δ

n

(
δ
∫ ∞

0
xδ−1g(x)dx

)
E‖εn,1‖δ n→∞−→ 0.

Case (2).We investigate the sequence of random matrices componentwise and denote by(l ,m) the com-
ponent in thel -th row andm-th column. Since((Wn,k−1ε ′n,k)(l ,m))k∈N are uncorrelated,

ã−2
n b̃−2

n E



(

n

∑
k=1

Wn,k−1ε ′
n,k

)2

(l ,m)


 = ã−2

n b̃−2
n

n

∑
k=1

E

((
Wn,k−1ε ′n,k

)2
(l ,m)

)

≤ C1ã−2
n b̃−2

n

n

∑
k=1

E‖Wn,k−1‖2
E‖εn,k‖2

≤ C2nã−2
n b̃−2

n E‖εn,1‖2.

The last expression tends to 0 asn→ ∞ by assumption. 2

We will prove Theorem 4.2 by an application of Jacod and Shiryaev [23], Theorem VI.6.22. Therefore, we
need some definition.

Definition 5.2. Let Sn = (Sn(t))t≥0 = (Sn
1(t), . . . ,S

n
v(t))t≥0 for any n∈ N be anRm×v-valued adapted

càdlàg stochastic process on(Ω,F ,((F n
t )t≥0)n∈N,P) andH n be the set of all(F n

t )t≥0 predictable pro-
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cessesHn in Rd×m having the form

Hn
t = Yn

01{0}+
m(Hn)

∑
k=1

Yn
k1(tnk ,t

n
k+1]

(t) for t ≥ 0

with m(Hn) ∈N, 0= tn
0 < .. . < tn

m(Hn)+1 < ∞, andYn
k in Rd×m is F n

tnk
-measurable with‖Yn

k‖ ≤ 1. Then the

sequence of stochastic processes(Sn)n∈N is said to bepredictably uniformly tight (P-UT)if for any t> 0:

lim
x↑∞

sup
Hn∈H n,n∈N

P

(∥∥∥∥∥
m(Hn)

∑
k=1

Yn
k(S

n(tn
k+1∧ t)−Sn(tn

k ∧ t))

∥∥∥∥∥> x

)
= 0.

Similarly to Lemma 5.5 in Fasen [16] we derive the next Lemma.

Lemma 5.3. Let Assumptions 4.1(d) hold. Then the sequence of stochastic processes(S2,n)n∈N as given
in Theorem 4.2 is P-UT on(Ω,F ,((F n

t )t≥0)n∈N,P) with F n
t = σ(εn,k : k≤ ⌊nt⌋), t ≥ 0, n∈ N.

Proof. We define fort ≥ 0, n∈ N,

Mn(t) := b̃−1
n

⌊nt⌋
∑
k=1

(
εn,k1{‖εn,k‖≤b̃n}−E(εn,11{‖εn,1‖≤b̃n})

)
,

D(1)
n (t) := ⌊nt⌋b̃−1

n E

(
εn,11{‖εn,1‖≤b̃n}

)
,

D(2)
n (t) := b̃−1

n

⌊nt⌋
∑
k=1

εn,k1{‖εn,k‖>b̃n}.

It is obvious that(Mn(t))t≥0 is a martingale with respect to(F n
t )t≥0 and in particular, a local martingale.

All three processes are adapted with respect to(F n
t )t≥0 and we have the semimartingale decomposition

S2,n(t) = Mn(t)+D(1)
n (t)+D(2)

n (t).

If (Mn)n∈N, (D(1)
n )n∈N and(D(2)

n )n∈N areP-UT then VI.6.4 in Jacod and Shiryaev [23] gives that the sum
(S2,n)n∈N is P-UT as well.

Let VTs(W) = supi=1,...,v VTs(W i) for s≥ 0 denote the variation process of the càdlàg stochastic process

(W(s))s≥0 = (W1(s), . . . ,Wv(s))s≥0. To prove theP-UTness of(D(1)
n )n∈N and(D(2)

n )n∈N it is sufficient to

show that(VTt(D
(1)
n ))n∈N and(VTt(D

(2)
n ))n∈N are tight for anyt ≥ 0; see Jacod and Shiryaev [23], VI.6.6.

Let t ≥ 0 be fixed. We start with the verification of the tightness of(VTt(D
(1)
n ))n∈N by showing that it is

uniformly bounded. Assumption 4.1(d) (ii) gives the uniform bound

sup
n∈N

VTt(D
(1)
n )≤C1sup

n∈N
ntb̃−1

n

∥∥∥E(εn,11{‖εn,1‖≤b̃n})
∥∥∥≤C2t, (5.2)

which results in the tightness of(VTt(D
(1)
n ))n∈N.

For the proof of the tightness of(VTt(D
(2)
n ))n∈N we use that forδ ≤ 1,

(VTt(D
(2)
n ))δ ≤C3b̃−δ

n

⌊nt⌋
∑
k=1

‖εn,k‖δ
1{‖εn,k‖>b̃n}.

Then a conclusion of Assumption 4.1(d) (iii) and Markov’s inequality is

sup
n∈N

P(VTt(D
(2)
n )> η)≤C4η−δ sup

n∈N
b̃−δ

n

⌊nt⌋
∑
k=1

E(‖εn,k‖δ
1{‖εn,k‖>b̃n})≤C5η−δ t

η→∞−→ 0. (5.3)
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Hence,(VTt(D
(2)
n ))n∈N is also tight.

If we show that([Mn,Mn]t)n∈N is tight for anyt ≥ 0, then theP-UTness of(Mn)n∈N follows by Jacod
and Shiryaev [23], Proposition VI.6.13. Here, we use Assumption 4.1(d) (i) for

sup
n∈N

P(‖[Mn,Mn]t‖> η)≤ η−1sup
n∈N

nb̃−2
n E(‖εn,1‖2

1{‖εn,1‖≤b̃n})≤C6η−1 −→ 0 asη → ∞.

Finally, ([Mn,Mn]t)n∈N is tight as well. 2

Proof of Theorem 4.2.The Beveridge-Nelson decomposition (cf. [4]) has the representation

Zn,k =

(
∞

∑
j=0

Cn, j

)
ξ n,k+ Z̃n,k−1− Z̃n,k for k,n∈N.

Thus,

S1,n(t) = hnã−1
n

(
∞

∑
j=0

Cn, j

) ⌊nt⌋
∑
k=1

ξ n,k+hnã
−1
n

[
Z̃n,0− Z̃n,⌊nt⌋

]
for t ≥ 0. (5.4)

Therefore we define

S̃1,n(t) :=

(
hn

∞

∑
j=0

Cn, j

)
ã−1

n

⌊nt⌋
∑
k=1

ξ n,k for t ≥ 0. (5.5)

By Assumption 4.1(a) and(c) we have asn→ ∞,

(
S̃1,n(t)

′,S2,n(t)
′
)′

t≥0
=⇒

(
(CS1(t))

′,S2(t)
′)′

t≥0 in D([0,1],Rd+v).

A straightforward conclusion of the continuous mapping theorem is then asn→ ∞,
(

S̃1,n(1),S2,n(1),
∫ 1

0
S2,n(s)S2,n(s)

′ds,(S̃1,n(t)
′,S2,n(t)

′)′t≥0

)

=⇒
(

CS1(1),S2(1),
∫ 1

0
S2(s)S2(s)

′ds,((CS1(t))
′,S2(t)

′)′t≥0

)

in Rd ×Rv ×Rv×v × (D[0,1],Rd+v). Since(S2,n)n∈N is P-UT by Lemma 5.3, a result of Jacod and
Shiryaev [23], Theorem VI.6.22, is that asn→ ∞,

(
S̃1,n(1),S2,n(1),

∫ 1

0
S2,n(s)S2,n(s)

′ds,
∫ 1

0
S̃1,n(s−)dS2,n(s)

′
)

=⇒
(

CS1(1),S2(1),
∫ 1

0
S2(s)S2(s)

′ds,C
∫ 1

0
S1(s−)dS2(s)

′
)

(5.6)

in Rd ×Rv×Rv×v×Rd×v.
On the one hand, by (5.4) we have

∫ 1

0
S1,n(s−)dS2,n(s)

′ =
∫ 1

0
S̃1,n(s−)dS2,n(s)

′+

[
hnã−1

n Z̃n,0S2,n(1)−hnã
−1
n b̃−1

n

n

∑
k=1

Z̃n,k−1ε ′
n,k

]
. (5.7)

Applying Lemma 5.1,hnã−1
n Z̃n,0

P−→ 0d asn → ∞ (by Assumption 4.1(b)), andS2,n(1) =⇒ S2(1) as
n→ ∞ gives on the other hand,

hnã−1
n b̃−1

n Z̃n,0S2,n(1)−hnã
−1
n b̃−1

n

n

∑
k=1

Z̃n,k−1ε ′
n,k

P−→ 0d×v asn→ ∞. (5.8)
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Finally, from (5.6)-(5.8) the statement follows. 2

Proof of Theorem 4.3.
(a) SinceY′

n = AX′
n+Z′

n with Xn,Yn as given in (1.5) andZ′
n = (Zn,1, . . . ,Zn,n), we have

Ân−A = AX
′
nXn(X

′
nXn)

−1+Z
′
nXn(X

′
nXn)

−1−A = Z
′
nXn(X

′
nXn)

−1. (5.9)

This gives

nhnã−1
n b̃n

(
Ân−A

)
= nhnã−1

n b̃n(Z
′
nXn)(X

′
nXn)

−1 =
(

hnã−1
n Z

′
nXnb̃−1

n

)(
n−1b̃−1

n X
′
nXnb̃−1

n

)−1
. (5.10)

Now we will prove the convergence
(

hnã−1
n Z

′
nXnb̃−1

n ,n−1(b̃−1
n X

′
nXnb̃−1

n )

)
=⇒

(
CS1(1)S2(1)

′−C
∫ 1

0
S1(s−)dS2(s)

′,
∫ 1

0
S2(s)S2(s)

′ds

)
(5.11)

in Rd×v×Rv×v asn→ ∞, giving us the claim by a continuous mapping theorem, since (4.2) holds. We get
for the left-hand side of (5.11),

hnã−1
n b̃−1

n Z
′
nXn = S1,n(1)S2,n(1)

′−
∫ 1

0
S1,n(s−)dS2,n(s)

′, (5.12)

n−1b̃−2
n X

′
nXn =

∫ 1

0
S2,n(s)S2,n(s)

′ds. (5.13)

The result follows then from Theorem 4.2 and (5.10)-(5.13). 2

5.2. Proof of Theorem 3.1

It is well known that the stationary Ornstein-Uhlenbeck processZ given in (2.4) observed at the time-grid
hnZ has the representation as a MA process

Z(khn) =
∞

∑
j=0

e−Λhn jξ n,k− j for k∈ Z,

where

ξ n,k =

∫ khn

(k−1)hn

e−Λ(khn−s)BdL1(s) for k∈ Z,n∈ N.

As (5.1) suggests asn→ ∞,

hna−1
nhn

n

∑
k=1

V(khn) =

(
hn

∞

∑
j=0

Ee−Λhn j

)(
a−1

nhn

⌊n⌋
∑
k=1

ξ n,k

)
+oP(1).

The convergence ofa−1
nhn

∑n
k=1 ξ n,k is based on central limit results for arrays and the properties of the

sequence of iid random vectors(ξ n,k)k∈Z as presented in Appendix A.
Before we state the proof of Theorem 3.1, we present the analogous result for the state processZ which

is essential for the proof of Theorem 3.1.

Lemma 5.4. Let the assumptions of Theorem 3.1 hold. Then as n→ ∞,

hna−1
nhn

n

∑
k=1

Z(khn) =⇒ Λ−1BS1(1).

14



Proof. First, we definẽan := anhn, Cn,k := e−Λhnk and

ξ n,k :=
∫ khn

(k−1)hn

e−Λ(khn−s)BdL1(s) for k∈ Z,n∈ N.

Then

Zn,k := Z(khn) =
∞

∑
j=0

Cn, jξ n,k− j for k∈ Z,n∈ N.

We will show that Assumption 4.1(a)-(d) with εn,k := 0 are satisfied because then the result follows by
Theorem 4.2 (it does not matter that (4.2) is not satisfied forεn,k = 0).

(a) Consider the case 0< α < 2. By Proposition A.2(a,c,d), E(ξ n,0) = 0pd if α > 1, ξ n,0 symmetric for
α = 1, and Resnick [40], Theorem 7.1, we have

(
ã−1

n

⌊nt⌋
∑
k=1

ξ n,k

)

t≥0

=⇒ (BS1(t))t≥0 asn→ ∞ in D([0,1],Rpd). (5.14)

Considerα = 2. Then Proposition A.1(c,e,f,g)and Kallenberg [25], Corollary 15.16 give (5.14).
(b) Since

Z̃n,k =
∞

∑
j=0

(
∞

∑
l= j+1

e−Λhnl

)
ξ n,k− j = (Id×d −e−Λhn)−1e−ΛhnZ(khn),

the inequality

P(hn‖Z̃n,0‖> x)≤ P(2‖Λ−1‖‖Z(0)‖> x) =: g(x) for x≥ 0

holds, where forα < 2 the functiong ∈ R−α due to Moser and Stelzer [30], Theorem 3.2, such that
by Karamata’s Theorem

∫ ∞
0 xγ−1g(x)dx < ∞ for any 0< γ < α, and forα = 2 we have 2

∫ ∞
0 xg(x)dx =

8‖Λ−1‖2E‖Z(0)‖2 < ∞.
(c) We have∑∞

k=0k‖e−Λhnk‖θ ≤ ∑∞
k=0 ke−λ θhnk < ∞ for anyθ > 0, n∈N, and

lim
n→∞

hn

∞

∑
k=0

Cn,k = lim
n→∞

hn(Id×d −e−Λhn)−1 = Λ−1.

(d) is obviously satisfied sinceεn,k = 0. 2

Proof of Theorem 3.1.
(a) Due to Lemma 5.4,

hna−1
nhn

n

∑
k=1

Z(khn) =⇒ Λ−1BS1(1) asn→ ∞,

and by (2.3)

hna−1
nhn

n

∑
k=1

V(khn) = hna−1
nhn

n

∑
k=1

EZ(khn) =⇒ EΛ−1BS1(1) =

(∫ ∞

0
f(s)ds

)
S1(1) asn→ ∞,

such that we receive the statement.
(b) Defineg(s) := e−ΛsB1(0,∞)(s). A conclusion of Fasen [16], Proposition 2.1, is that asn→ ∞,

a−1
n

n

∑
k=1

Z(kh) =⇒ Sg,h(1).

15



Thus, asn→ ∞,

a−1
n

n

∑
k=1

V(kh) =⇒ ESg,h
d
= Sf,h(1)

completes the proof. 2

5.3. Proof of Theorem 3.4

Again we use for the proof of Theorem 3.4 the similar result for the state processZ as stated in

Lemma 5.5. Let model (1.1)-(1.2) be given withV = Z andA ∈ Rpd×v, and let the assumptions of Theo-
rem 3.4 hold. Then̂An as given in(1.6)satisfies as n→ ∞,

nhna−1
nhn

bnhn(Ân−A) =⇒ Λ−1B
(

S1(1)S2(1)
′−
∫ 1

0
S1(s−)dS2(s)

′
)(∫ 1

0
S2(s)S2(s)

′ds

)−1

.

In particular, Ân
P−→ A as n→ ∞ if α > β/(β +1), i.e. Ân is a consistent estimator.

Proof. We use the same notation as in the proof of Lemma 5.4 only that we definẽbn := bnhn, and

εn,k := L2(khn)−L2((k−1)hn).

Again we will show that Assumption 4.1(a)-(d) are satisfied following then the statement by Theorem 4.3.

(a) If α < 2 due to the independence of(ξ n,k) and(εn,k), Proposition A.2 and Resnick [40], Theorem 7.1,
the limit result

(
ã−1

n

⌊nt⌋
∑
k=1

ξ ′
n,k, b̃

−1
n

⌊nt⌋
∑
k=1

ε ′n,k

)

t≥0

=⇒ (S1(t)
′,S2(t)

′)t≥0 asn→ ∞ in D([0,1],Rpd+v) (5.15)

holds; see also Paulauskas and Rachev [31]. Ifα = 2, (5.15) is a conclusion of Proposition A.1 and Kallen-
berg [25], Corollary 15.15.
(b,c) is satisfied by the proof of Lemma 5.4.
(d) (i) is a conclusion from Proposition A.2(c) and Proposition A.1(e), respectively.(ii) follows from
Proposition A.2(e) and Proposition A.1(f), respectively. Only forα = 1 it follows by symmetry. More-
over, we obtain(iii) by Proposition A.2(d) and Proposition A.1(d).
Let min(α,β )< 2, then usingE‖L2(hn)‖δ ≤C1hδ/2

n and (3.6) gives(iv1). In the case of a compound Pois-
son process, Lemma A.4 says thatE‖L2(hn)‖δ ≤C2hn, such that no additional assumption is necessary.
Finally, if α = β = 2, then limn→∞ n(nhn)

−2E‖L2(hn)‖2 = limn→∞ n(nhn)
−2hnE‖L2(1)‖2 = 0, such that

(iv2) holds. 2

Proof of Theorem 3.4.The proof goes as the proof of Theorem 3.1 using only Lemma 5.5and Fasen [16],
Theorem 3.4. 2

5.4. Proof of Theorem 3.6

The main idea of the proof is to show that asn→ ∞,

hna−2
nhn

n

∑
k=1

V(khn)V(khn)
′ = E

∞

∑
j=0

e−Λhn j

(
a−2

nhn

n

∑
k=1

ξ n,kξ ′
n,k

)
e−Λ′hn jE′hn+oP(1).

The convergence ofa−2
nhn

∑n
k=1 ξ n,kξ ′

n,k follows by the limit results of Resnick [40], Theorem 7.1 as well,
respectively by the law of large numbers for arrays of independent random vectors and the properties of

16



(ξ n,k)k∈Z as given in Appendix A.
In the same spirit as before we start with the result forZ.

Lemma 5.6. Let the assumptions of Theorem 3.6 hold. Then as n→ ∞,

hna−2
nhn

n

∑
k=1

Z(khn)Z(khn)
′ =⇒

∫ ∞

0
e−Λs[BS1,BS1]1e−Λ′sds. (5.16)

Proof. A multivariate version of the second order Beveridge-Nelson decomposition given in Phillips and
Solo [34], Equation (28), gives the representation

Z(khn)Z(khn)
′ =

∞

∑
j=0

e−Λhn jξ n,kξ ′
n,ke

−Λ′hn j +(F(1)
n,k−1−F(1)

n,k)+
∞

∑
r=1

(F(2)
n,k,r +F(2)

n,k,−r)

+
∞

∑
r=1

(F(3)
n,k−1,r +F(3)

n,k−1,−r −F(3)
n,k,r −F(3)

n,k,−r),

where

F(1)
n,k =

∞

∑
j=0

∞

∑
s= j+1

e−Λhnsξ n,k− jξ
′
n,k− je

−Λ′hns,

F(2)
n,k,r =

∞

∑
j=max(0,−r)

e−Λhn jξ n,kξ ′
n,k−re

−Λ′hn( j+r),

F(3)
n,k,r =

∞

∑
j=0

∞

∑
s=max( j+1,−r)

e−Λhnsξ n,k− jξ
′
n,k− j−re

−Λ′hn(s+r).

Then

n

∑
k=1

Z(khn)Z(khn)
′ =

∞

∑
j=0

e−Λhn j

(
n

∑
k=1

ξ n,kξ ′
n,k

)
e−Λ′hn j +(F(1)

n,0−F(1)
n,n)

+
n

∑
k=1

∞

∑
r=1

(F(2)
n,k,r +F(2)

n,k,−r)+
∞

∑
r=1

(F(3)
n,0,r +F(3)

n,0,−r −F(3)
n,n,r −F(3)

n,n,−r)

=: Jn,1+ Jn,2+ Jn,3+ Jn,4. (5.17)

Step 1.Let α ∈ (0,2) and assume thatL1 is a compound Poisson process as given in (A.5) with character-
istic triplet (0m,0m×m,νL1). On the one hand, by Lemma 5.7 from below we have fori = 2,3,4

hna−2
nhn

Jn,i
P−→ 0pd×pd asn→ ∞. (5.18)

On the other hand, by Proposition A.2(a,c) and Resnick [40], Theorem 7.1, we have

Sn := a−2
nhn

n

∑
k=1

ξ n,kξ ′
n,k =⇒ [BS1,BS1]1 asn→ ∞.

We denote bygn andg maps fromMpd×pd(R)→ Mpd×pd(R) with

gn(C) = hn

∞

∑
j=0

e−Λhn jCe−Λ′hn j and g(C) =

∫ ∞

0
e−ΛsCe−Λ′sds. (5.19)

Sincegn and g are continuous with limn→∞ gn(Cn) = g(C) for any sequenceCn,C ∈ Mpd×pd(R) with
limn→∞ Cn = C, we can apply a generalized version of the continuous mapping theorem (cf. Whitt [46],

17



Theorem 3.4.4) to obtaingn(Sn) =⇒ g([S1,S1]1) asn→ ∞, which means that asn→ ∞,

hna−2
nhn

Jn,1 = hna−2
nhn

∞

∑
j=0

e−Λhn j

(
n

∑
k=1

ξ n,kξ ′
n,k

)
e−Λ′hn j =⇒

∫ ∞

0
e−Λs[BS1,BS1]1e−Λ′sds. (5.20)

Then the result (5.16) follows by (5.17)-(5.20).

Step 2.Let α ∈ (0,2) andL1 be some Lévy process. We use the decomposition ofL1 = L (1)
1 +L (2)

1 and

ξ n,k = ξ (1)
n,k + ξ (2)

n,k as given in (A.3) and (A.4), respectively, such that

Z(t) =
∫ t

−∞
e−Λ(t−s) BdL (1)(s)+

∫ t

−∞
e−Λ(t−s)BdL (2)(s) =: Z1(t)+Z2(t) for t ≥ 0,

and

n

∑
k=1

Z(khn)Z(khn)
′

=
n

∑
k=1

Z1(khn)Z1(khn)
′+

n

∑
k=1

Z1(khn)Z2(khn)
′+

n

∑
k=1

Z2(khn)Z1(khn)
′+

n

∑
k=1

Z2(khn)Z2(khn)
′

=: In,1+ In,2+ In,3+ In,4. (5.21)

Applying Step 1 we obtain asn→ ∞,

hna−2
nhn

n

∑
k=1

Z1(khn)Z1(khn)
′ =⇒

∫ ∞

0
e−Λs[BS1,BS1]1e−Λ′sds. (5.22)

Furthermore, Hölder inequality results in the decomposition

hna−2
nhn

max(‖In,2‖,‖In,3‖)≤
(

hna−2
nhn

n

∑
k=1

‖Z1(khn)‖2

) 1
2
(

hna−2
nhn

n

∑
k=1

‖Z2(khn)‖2

) 1
2

(5.23)

of independent factors. Now we use thatL (1)
1 has the representation (A.5) and we define

L∗(t) := ‖B‖
N(t)

∑
k=1

‖Jk‖, ξ ∗
n,k :=

∫ khn

(k−1)hn

e−λ (khn−s)dL∗(s), Z∗(t) :=
∫ t

−∞
e−λ (t−s)dL∗(s). (5.24)

Hence,

‖BL (1)
1 (t)‖ ≤ L∗(t), ‖ξ (1)

n,k‖ ≤ ξ ∗
n,k and ‖Z1(t)‖ ≤ Z∗(t).

Then a conclusion of Step 1 is

hna−2
nhn

n

∑
k=1

‖Z1(khn)‖2 ≤ hna−2
nhn

n

∑
k=1

Z∗(khn)
2 =⇒ 1

2λ
[S,S]1 asn→ ∞, (5.25)

whereS= (S(t))t≥0 is anα-stable Lévy process. Since

lim
n→∞

hna−2
nhn

n

∑
k=1

E‖Z2(khn)‖2 = lim
n→∞

nhna−2
nhn

E‖Z2(1)‖2 = 0,
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we obtain

(
hna−2

nhn

n

∑
k=1

‖Z2(khn)‖2

) 1
2

P−→ 0 asn→ ∞. (5.26)

Hence, (5.23)-(5.26) givehna−2
nhn

‖In,2‖ P−→ 0 andhna−2
nhn

‖In,3‖ P−→ 0 asn→ ∞. A conclusion of (5.26) is

hna−2
nhn

‖In,4‖ P−→ 0 asn→ ∞ as well. Finally, the result follows by (5.21) and (5.22).
Step 3. Let α = 2. On the one hand, by Lemma 5.8 from below we have fori = 2,3,4 asn→ ∞,

hna−2
nhn

Jn,i
P−→ 0pd×pd . (5.27)

On the other hand, by Proposition A.1(g) asn→ ∞,

Sn := a−2
nhn

n

∑
k=1

ξ n,kξ ′
n,k

P−→ BΣ1B′ = [BS1,BS1]1.

The same arguments as in Step 1 complete the proof. 2

First we present Lemma 5.7 and 5.8 and then give the proof of Theorem 3.6.

Lemma 5.7. Let the assumptions of Lemma 5.6 hold withα ∈ (0,2) and suppose thatL1 is a compound
Poisson process as given in (A.5) with characteristic triplet (0m,0m×m,νL1).

(a) ThenF(1)
n,0

d
= F(1)

n,n and as n→ ∞,

hna−2
nhn

F(1)
n,0

P−→ 0pd×pd .

(b) Then as n→ ∞,

hna−2
nhn

n

∑
k=1

∞

∑
r=1

(F(2)
n,k,r +F(2)

n,k,−r)
P−→ 0pd×pd .

(c) Then as n→ ∞,

hna−2
nhn

∞

∑
r=1

(F(3)
n,0,r +F(3)

n,0,−r −F(3)
n,n,r −F(3)

n,n,−r)
P−→ 0pd×pd .

Proof.
(a) We use the notation given in (5.24). Then

‖F(1)
n,0‖ ≤ (1−e−2λ hn)−1

∞

∑
j=0

e−2λ hn jξ ∗2
n,− j ≤ (1−e−2λ hn)−1Z∗(0)2.

Hence,

P(‖F(1)
n,0‖> a2

nhn
h−1

n )≤ P(Z∗(0)2 >C1a2
nhn

)
n→∞−→ 0.

(b) The upper bound
∥∥∥∥∥

n

∑
k=1

∞

∑
r=1

F(2)
n,k,r

∥∥∥∥∥ ≤
n

∑
k=1

∞

∑
j=0

e−λ hn(2 j+1)ξ ∗
n,k

(
∞

∑
r=0

ξ ∗
n,k−1−re

−λ hnr

)

≤ (1−e−2λ hn)−1
n

∑
k=1

ξ ∗
n,kZ

∗((k−1)hn) (5.28)

holds. Applying Lemma 5.1 (here we require that for a compound Poisson processE‖ξ n,0 ∗ ‖δ ≤C2hn by
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Lemma A.4, which is used to show(1) for some 0< δ < 1, δ < α and 2δ > α) gives

hn(1−e−2λ hn)−1a−2
nhn

n

∑
k=1

ξ ∗
n,kZ

∗((k−1)hn)
P−→ 0 asn→ ∞. (5.29)

On the other hand, if we defineW∗(khn) := ∑∞
r=0e−λ hnrξ ∗

n,k+r , thenW∗(khn)
d
= Z∗(0) and

∥∥∥∥∥
n

∑
k=1

∞

∑
r=1

F(2)
n,k,−r

∥∥∥∥∥ ≤
n

∑
k=1

∞

∑
r=1

∞

∑
j=r

e−2λ hn jξ ∗
n,kξ ∗

n,k+re
λ hnr

≤ (1−e−2λ hn)−1
n

∑
k=1

ξ ∗
n,kW

∗((k+1)hn). (5.30)

Using again Lemma 5.1 yields

hn(1−e−2λ hn)−1a−2
nhn

n

∑
k=1

ξ ∗
n,kW

∗((k+1)hn)
P−→ 0 asn→ ∞. (5.31)

Hence, (5.28)-(5.31) give the statement.
(c) We will show that on the one hand,

hna−2
nhn

∞

∑
r=1

F(3)
n,0,r

P−→ 0pd×pd asn→ ∞,

and on the other hand,

hna−2
nhn

∞

∑
r=1

F(3)
n,0,−r

P−→ 0pd×pd asn→ ∞.

Since∑∞
r=1F(3)

n,0,r
d
= ∑∞

r=1F(3)
n,n,r and∑∞

r=1F(3)
n,0,−r

d
= ∑∞

r=1F(3)
n,n,−r the proof will then be finished. Again we

use the notation given in (5.24). For the first term we derive the upper bound
∥∥∥∥∥

∞

∑
r=1

F(3)
n,0,r

∥∥∥∥∥ ≤
∞

∑
j=0

∞

∑
s= j+1

e−2λ hnsξ ∗
n,− j

(
∞

∑
r=0

ξ ∗
n,− j−1−re

−λ hnr

)

≤ (1−e−2λ hn)−1
∞

∑
j=0

e−2λ hn jξ ∗
n,− jZ

∗((− j −1)hn).

Applying for 0< δ < α, δ ≤ 1,

E



(

∞

∑
j=0

e−2λ hn jξ ∗
n,− jZ

∗((− j −1)hn)

)δ

≤

∞

∑
j=0

e−2δλ hn j
E(ξ ∗δ

n,0)E(Z
∗(0)δ ),

where we used the independence ofξ ∗
n,− j andZ∗((− j−1)hn) in the first inequality, and Lemma A.4 results

in

hδ
na−2δ

nhn
E

∥∥∥∥∥
∞

∑
r=1

F(3)
n,0,r

∥∥∥∥∥

δ

≤C3a−2δ
nhn

n→∞−→ 0.
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For the second term we have the upper bound
∥∥∥∥∥

∞

∑
r=1

F(3)
n,0,−r

∥∥∥∥∥ ≤
∞

∑
r=1

∞

∑
j=0

∞

∑
s=max( j+1,r)

e−λ hnsξ ∗
n,− jξ

∗
n,− j+re

−λ hn(s−r)

= (1−e−2λ hn)−1
∞

∑
j=0

j

∑
r=1

e−2λ hn( j+1)ξ ∗
n,− jξ

∗
n,− j+re

λ hnr

+(1−e−2λ hn)−1
∞

∑
j=0

∞

∑
r= j+1

e−2λ hnrξ ∗
n,− jξ

∗
n,− j+re

λ hnr

=: In,1+ In,2. (5.32)

Moreover,

In,1 = (1−e−2λ hn)−1e−2λ hn
∞

∑
j=0

e−λ hn jξ ∗
n,− j

j

∑
r=1

ξ ∗
n,− j+re

−λ hn( j−r) ≤ (1−e−2λ hn)−1Z∗(0)2, (5.33)

and

In,2 = (1−e−2λ hn)−1
∞

∑
j=0

e−λ hn jξ ∗
n,− j

∞

∑
r= j+1

ξ ∗
n,− j+re

−λ hn(r− j)

d
= (1−e−2λ hn)−1e−λ hnZ∗(0)Z̃(0), (5.34)

whereZ̃(0) is an independent copy ofZ∗(0). A conclusion of (5.32)-(5.34) is that for anyε > 0,

P

(
hna−2

nhn

∥∥∥∥∥
∞

∑
r=1

F(3)
n,0,r

∥∥∥∥∥> ε

)
≤ P(Z∗(0)2+Z∗(0)Z̃(0)>C4a2

nhn
)−→ 0 asn→ ∞,

what was the aim to show. 2

Lemma 5.8. Let the assumptions of Lemma 5.6 hold withα = 2.

(a) ThenF(1)
n,0

d
= F(1)

n,n and as n→ ∞,

hna−2
nhn

F(1)
n,0

P−→ 0pd×pd .

(b) Then as n→ ∞,

hna−2
nhn

n

∑
k=1

∞

∑
r=1

(F(2)
n,k,r +F(2)

n,k,−r)
P−→ 0pd×pd .

(c) Then as n→ ∞,

hna−2
nhn

∞

∑
r=1

(F(3)
n,0,r +F(3)

n,0,−r −F(3)
n,n,r −F(3)

n,n,−r)
P−→ 0pd×pd .

Proof.
(a) We rewrite

F(1)
n,0 =

∞

∑
s=0

e−Λhn(s+1)

(
∞

∑
j=0

e−Λhn jξ n,− jξ
′
n,− je

−Λ′hn j

)
e−Λ′hn(s+1).
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With gn andg as defined in (5.19) and

Sn := a−2
nhn

∞

∑
j=0

e−Λhn jξ n,− jξ
′
n,− je

−Λ′hn j ,

the equalityhna−2
nhn

F(1)
n,0 = e−Λhngn(Sn)e−Λ′hn is valid. If we are able to prove thatSn

P−→ 0pd×pd asn→ ∞,
then with a generalized continuous mapping theorem (the same arguments as in the proof of Lemma 5.6)

we can concludehna−2
nhn

F(1)
n,0

P−→ 0pd×pd asn→ ∞. Finally, due to Proposition A.1(a)

E‖Sn‖ ≤ a−2
nhn

∞

∑
j=0

e−2λ hn j
E‖ξ n,0‖2 ≤C1a−2

nhn

n→∞−→ 0,

andSn
P−→ 0pd×pd asn→ ∞.

(b) The representation

hna−2
nhn

n

∑
k=1

∞

∑
r=1

F(2)
n,k,r =

∞

∑
j=0

e−Λhn j

(
a−2

nhn

n

∑
k=1

ξ n,kZ((k−1)hn)
′
)

e−Λ′hn( j+1)hn

holds. Using the same arguments as in(a) it is sufficient to prove that asn→ ∞,

a−2
nhn

n

∑
k=1

ξ n,kZ((k−1)hn)
′ P−→ 0pd×pd .

However, this follows from Proposition A.1 and Lemma 5.1. Similarly,

hna−2
nhn

n

∑
k=1

∞

∑
r=1

F(2)
n,k,−r =

∞

∑
j=0

e−Λ′hn j

(
a−2

nhn

n

∑
k=1

∞

∑
r=1

e−Λhnrξ n,kξ ′
n,k+r

)
e−Λ′hn jhn.

As in (a) it is sufficient to show that

a−2
nhn

n

∑
k=1

∞

∑
r=1

e−Λhnrξ n,kξ ′
n,k+r

P−→ 0pd×pd . (5.35)

We prove the convergence of (5.35) componentwise. The sequence of (l ,m)-components((
e−Λhnr ξ n,kξ ′

n,k+r

)
(l ,m)

)
k,r∈N

is uncorrelated such that

E



(

n

∑
k=1

∞

∑
r=1

e−Λhnr ξ n,kξ ′
n,k+r

)2

(l ,m)


 =

n

∑
k=1

∞

∑
r=1

E

((
e−Λhnrξ n,kξ ′

n,k+r

)2

(l ,m)

)

≤ C2

n

∑
k=1

∞

∑
r=1

e−2λ hnr(E‖ξ n,0‖2)2 ≤C3nhn.

Thus, (5.35) holds.
(c) Let us start with

hna−2
nhn

∞

∑
r=1

F(3)
n,0,r =

∞

∑
s=0

e−Λhn(s+1)

(
a−2

nhn

∞

∑
j=0

e−Λhn jξ n,− jZ((− j −1)hn)
′e−Λ′hn j

)
e−Λ′hn(s+2)hn.

As before it is sufficient to show that

a−2
nhn

∞

∑
j=0

e−Λhn jξ n,− jZ((− j −1)hn)
′e−Λ′hn j P−→ 0pd×pd asn→ ∞.
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We prove it componentwise using the uncorrelation of the sequence of the(l ,m)-components
((ξ n,− jZ((− j −1)hn)

′)(l ,m)) j∈N. For the(l ,m)-component we have

a−4
nhn

E



(

∞

∑
j=0

e−Λhn jξ n,− jZ((− j −1)hn)
′e−Λ′hn j

)2

(l ,m)




= a−4
nhn

∞

∑
j=0

E

((
e−Λhn jξ n,− jZ((− j −1)hn)

′e−Λ′hn j
)2

(l ,m)

)

≤ a−4
nhn

C4

∞

∑
j=0

e−4λ hn j
E‖ξ n,0‖2

E‖Z(0)‖2

≤ C5a−4
nhn

n→∞−→ 0.

Now we investigate

∞

∑
r=1

F(3)
n,0,−r =

∞

∑
j=0

j

∑
r=1

∞

∑
s= j+1

e−Λhnsξ n,− jξ
′
n,− j+re

−Λ′hn(s−r)+
∞

∑
j=0

∞

∑
r= j+1

∞

∑
s=r

e−Λhnsξ n,− jξ
′
n,− j+re

−Λ′hn(s−r)

=: In,1+ In,2. (5.36)

Then

In,1 =
∞

∑
s=0

e−Λhn(s+1)

(
∞

∑
j=0

e−Λhn jξ n,− j

(
j

∑
r=1

ξ ′
n,− j+re

−Λ′hn( j−r)

))
e−Λ′hn(s+1).

For the convergencehna−2
nhn

In,1
P−→ 0pd×pd asn→ ∞ it is again sufficient to show that

a−2
nhn

∞

∑
j=0

e−Λhn jξ n,− j

(
j−1

∑
u=0

ξ ′
n,−ue−Λ′hnu

)
P−→ 0pd×pd asn→ ∞, (5.37)

what we will prove componentwise. Since the(l ,m)-components((e−Λhn jξ n,− j ∑ j−1
u=0 ξ ′

n,−ue−Λ′hnu)(l ,m)) j∈N
are uncorrelated

E




∞

∑
j=0

e−Λhn jξ n,− j

(
j−1

∑
u=0

ξ ′
n,−ue−Λ′hnu

)

(l ,m)




2

=
∞

∑
j=0

E


e−Λhn jξ n,− j

(
j−1

∑
u=0

ξ ′
n,−ue−Λ′hnu

)

(l ,m)




2

. (5.38)

Furthermore, by Proposition A.1(a) we get

E

∥∥∥e−Λhn jξ n,− j

∥∥∥
2
≤C6e−2λ hn j

E‖ξ n,0‖2 ≤C7hne−2λ hn j , (5.39)

and

E

∥∥∥∥∥
j−1

∑
u=0

ξ ′
n,−ue−Λ′hnu

∥∥∥∥∥

2

≤C8

j−1

∑
u=0

e−2λ hnu
E‖ξ n,0‖2 ≤C9. (5.40)

Hence, (5.38)-(5.40) and the independence of e−Λhn jξ n,− j and∑ j−1
u=0 ξ ′

n,−ue−Λ′hnu give

E




∞

∑
j=0

e−Λhn jξ n,− j

(
j−1

∑
u=0

ξ ′
n,−ue−Λ′hnu

)

(l ,m)




2

≤C10hn

∞

∑
j=0

e−2λ hn j ≤C11,

which results in (5.37).
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Next we have to show thathna−2
nhn

In,2
P−→ 0pd×pd asn→ ∞. Therefore we use the representation

In,2 =
∞

∑
s=0

e−Λhns

(
∞

∑
j=0

∞

∑
r= j+1

e−Λhnr ξ n,− jξ
′
n,− j+r

)
e−Λ′hns

and prove that asn→ ∞,

a−2
nhn

∞

∑
j=0

∞

∑
r= j+1

e−Λhnrξ n,− jξ
′
n,− j+r = a−2

nhn

∞

∑
j=0

e−Λhn j
∞

∑
u=1

e−Λhnuξ n,− jξ
′
n,u

P−→ 0pd×pd . (5.41)

By the uncorrelation of the components of

((
e−Λhn je−Λhnuξ n,− jξ

′
n,u

)
(l ,m)

)

j ,u∈N
we obtain similarly as

above

E



(

∞

∑
j=0

e−Λhn j
∞

∑
u=1

e−Λhnuξ n,− jξ
′
n,u

)2

(l ,m)


 ≤

∞

∑
j=0

∞

∑
u=1

E

((
e−Λhn je−Λhnuξ n,− jξ

′
n,u

)2

(l ,m)

)

≤ C12

∞

∑
j=0

e−2λ hn j
∞

∑
u=0

e−2λ hnu
E‖ξ n,− j‖2

E‖ξ n,u‖2

≤ C13.

After all this gives (5.41) andhna−2
nhn

In,2
P−→ 0pd×pd asn→ ∞. 2

Finally, we are able to prove the main statement in Theorem 3.6.

Proof of Theorem 3.6.
(a) The observation equation (2.3) and Lemma 5.6 yield

hna−2
nhn

n

∑
k=1

V(khn)V(khn)
′ = hna−2

nhn

n

∑
k=1

EZ(khn)Z(khn)
′E′

=⇒
∫ ∞

0
Ee−ΛsB[S1,S1]1B′e−Λ′sE′ ds=

∫ ∞

0
f(s)[S1,S1]1f(s)′ds asn→ ∞.

(b) An application of Fasen [16], Proposition 2.1, gives that with g(s) = e−ΛsB1(0,∞)(s)

a−2
n

n

∑
k=1

Z(kh)Z(kh)′ =⇒ [Sg,h,Sg,h]1 asn→ ∞,

such that

a−2
n

n

∑
k=1

V(kh)V(kh)′ =⇒ E[Sg,h,Sg,h]1E′ = [ESg,h,ESg,h]1
d
= [Sf,h,Sf,h]1 asn→ ∞,

is the result. 2

A. Appendix: Asymptotic behavior of stochastic integrals

In the appendix we present the tail behavior and extensions of Karamata’s Theorem to stochastic integrals
of the form

∫ hn
0 f(s)dL(s) wherehn ↓ 0 asn→ ∞. First, we start with a driving Lévy process which has a

finite second moment. In the subsequent subsection the driving Lévy process has a regularly varying tail.
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A.1. Finite second moments

Proposition A.1. Let(L(t))t≥0 be anRd-valued Ĺevy process withE‖L(1)‖2 < ∞ andE(L(1)L(1)′) = Σ.
Suppose(hn)n∈N is a sequence of positive constants such that hn ↓ 0 and limn→∞ nhn = ∞. Moreover, let
f : R→ Rm×d be a measurable and bounded function withlimx→0 f(x) = f(0). Defineξ n =

∫ hn
0 f(s)dL(s)

for n∈N. Finally, let δ ∈ (0,2] and let x> 0.

(a) There exists a finite positive constant K such that

h−1
n E‖ξ n‖2 ≤ K ∀n∈N.

If E(L(1)) = 0d, thenlimn→∞ h−1
n E‖ξ n‖2 = E‖f(0)L(1)‖2.

(b) If E‖L(1)‖4 < ∞, then there exists a finite positive constant K such thatE‖ξ n‖4 ≤ Khn ∀n∈ N.

(c) nP((nhn)
−1/2ξ n ∈ ·) v

=⇒ 0 as n→ ∞ onB(R
m\{0m}).

(d) limn→∞ n(nhn)
−δ/2E(‖ξ n‖δ

1{‖ξn‖>
√

nhnx}) = 0.

(e) There exists a finite positive constant K such that

h−1
n E(‖ξ n‖2

1{‖ξn‖≤
√

nhnx})≤ K ∀n∈N.

If E(L(1)) = 0d, thenlimn→∞ h−1
n E(‖ξ n‖2

1{‖ξ n‖≤
√

nhnx}) = E‖f(0)L(1)‖2.

(f) LetE(L(1)) = 0d. Thenlimn→∞ n(nhn)
−1/2E(ξ n1{‖ξn‖≤

√
nhnx}) = 0m×m.

(g) Let(ξ n,k)k∈N be an iid sequence withξ n,1
d
= ξ n for any n∈ N andE(L(1)) = 0d. Then

(nhn)
−1

n

∑
k=1

ξ n,kξ ′
n,k

P−→ f(0)Σf(0)′ as n→ ∞.

Proof. (a) SupposeE(L(1)) = 0d. Due to (2.10) in Marquardt and Stelzer [28] the covariance matrix of
ξ n is

∫ hn
0 f(s)Σf(s)′ds. Hence, we obtain asn→ ∞,

E‖ξ n‖2 =

∫ hn

0
‖diag(f(s)Σf(s)′)‖2ds∼ hn‖diag(f(0)Σf(0)′)‖2 = hnE‖f(0)L(1)‖2, (A.1)

where diag(B) denotes the vector containing the diagonal elements ofB.
SupposeE(L(1)) 6= 0d. Then definẽL(t) := L(t)− tE(L(1)) for t ≥ 0 and use the upper bound

E‖ξ n‖2 ≤ 4E

∥∥∥∥
∫ hn

0
f(s)dL̃ (s)

∥∥∥∥
2

+C1h2
n.

A conclusion of (A.1) is the statement.
(b) SupposeE(L(1)) = 0d. The characteristic function ofξ (t) =

∫ t
0 f(s)dL(s) =: (ξ1(t), . . . ,ξm(t))′ is

E(eiΘ′ξ (t)) = exp(−Ψf,t(Θ)) for Θ ∈ Rm where

Ψf,t(Θ) =
∫ t

0
Ψ(Θ′f(s))ds

(cf. Rajput and Rosinski [37], Proposition 2.6). Hence, fork = 1, . . . ,m andek = (0, . . . ,0,1,0, . . . ,0)′ ∈
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Rm,

E|ξk(t)|4 =
d

d4θ
E(eiθe′kξ (t))

∣∣∣∣
θ=0

= 3

(
d

d2θ
Ψf,t(θek)

∣∣∣∣
θ=0

)2

−
(

d
d4θ

Ψf,t(θek)

∣∣∣∣
θ=0

)

= 3

(∫ t

0

(
d

d2θ
Ψ(θe′kf(s))

)∣∣∣∣
θ=0

ds

)2

−
∫ t

0

(
d

d4θ
Ψ(θe′kf(s))

)∣∣∣∣
θ=0

ds

∼ 3t2C2+ tC3 ast → 0.

Finally,

E‖ξ n‖4 ≤C4

m

∑
k=1

E|ξk(hn)|4 ≤C5hn ∀ n∈ N. (A.2)

SupposeE(L(1)) 6= 0d. Then by (A.2)

E‖ξ n‖4 ≤ 8E

∥∥∥∥
∫ hn

0
f(s)dL̃ (s)

∥∥∥∥
4

+C6h4
n ≤C7hn.

(c) In the following f ∗ := sups∈R ‖f(s)‖. Let (γL ,ΣL ,νL ) be the characteristic triplet of(L(t))t≥0 and
Bd−1 = {x ∈ Rd : ‖x‖ ≤ 1} be the unit ball inRd. We factorize the Lévy measureνL into two Lévy
measures

νL1(A) := νL (A\Bd−1) and νL2(A) := νL (A∩B
d−1) for A∈ B(Rd\{0d})

such thatνL = νL1 +νL2. Then we can decompose(L(t))t≥0 in two independent Lévy processes

L(t) = L (1)(t)+L (2)(t) for t ≥ 0, (A.3)

whereL (1) = (L (1)(t))t≥0 has the characteristic triplet(0d,0d×d,νL1) andL (2) = (L (2)(t))t≥0 has the char-
acteristic triplet(γL ,ΣL ,νL2). Then

ξ n =

∫ hn

0
f(s)dL (1)(s)+

∫ hn

0
f(s)dL (2)(s) =: ξ (1)

n + ξ (2)
n , (A.4)

andξ (1)
n andξ (2)

n are independent. Since the Lévy measure ofL (1) is finite andL (1) is without Gaussian
part and drift,L (1) has the representation as a compound Poisson process

L (1)(t) =
N(t)

∑
k=1

Jk, t ≥ 0, and ξ (1)
n =

N(hn)

∑
k=1

f(Γk)Jk, (A.5)

where(Jk)k∈N is a sequence of iid random vectors independent of the Poisson process(N(t))t≥0 with
intensityλ = νL1(R

d) and jump times(Γk)k∈N. Now, letB be a relatively compact set inB(R
m\{0m})

with µ(∂B) = 0 andγB = infx∈B‖x‖, which is larger than 0. Then

nP((nhn)
−1/2ξ n ∈ B)≤ nP(‖ξ (1)

n ‖> γB

√
nhn/2)+nP(‖ξ(2)

n ‖> γB

√
nhn/2).

First, we will show that the first summand withξ (1)
n converges to 0. Therefore, we will use the next

conclusions. On the one hand, forl ≥ 1,

P(N(hn) = l)
hn

= e−λ hn
(λhn)

l

hnl !
≤C8P(N(1) = l). (A.6)
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On the other hand, forl ≥ 2,

lim
n→∞

P(N(hn) = l)
hn

= lim
n→∞

e−λ hn
λ l hl−1

n

l !
= 0. (A.7)

Finally,

lim
n→∞

P(N(hn) = 1)
hn

= lim
n→∞

e−λ hnλ = λ . (A.8)

If Ul ,1 <Ul ,2 < .. . <Ul ,l denotes the order statistic ofl iid uniform random variables on(0,1) then

nP(‖ξ (1)
n ‖> γB

√
nhn/2) = n

∞

∑
l=1

P

(∥∥∥∥∥
l

∑
k=1

f(hnUl ,k)Jk

∥∥∥∥∥> γB

√
nhn/2

)
P(N(hn) = l)

(see Resnick [38], Theorem 4.5.2). On the one hand, by (A.6)

nP(‖ξ (1)
n ‖> γB

√
nhn/2) ≤ nhnC9P

(
f ∗

N(1)

∑
k=1

‖Jk‖> γB

√
nhn/2

)

≤ C10

∫

γB
√

nhn/2
x2
P

(
f ∗

N(1)

∑
k=1

‖Jk‖ ∈ dx

)
n→∞−→ 0,

sinceE((∑N(1)
k=1 ‖Jk‖)2) < ∞ by Sato [42], Corollary 25.8. On the other hand, since the Lévy measure of

L (2) has compact support, all moments ofL (2)(1) are finite (cf. Sato [42], Corollary 25.8), such that a
conclusion of(b) is

nP(‖ξ (2)
n ‖> γB

√
nhn/2)≤ n(γB

√
nhn/2)−4

E‖ξ (2)
n ‖4 ≤C11n(nhn)

−2hn
n→∞−→ 0.

(d) Note that for any random variableX with E|X|2 < ∞ the limit limy→∞ y2
P(|X| > y) = 0 and

limy→∞ y2−δE(|X|δ1{|X|>y}) = 0 (apply Hölder inequality) holds. Then

n(nhn)
− δ

2 E(‖ξ (1)
n ‖δ

1{‖ξ (1)
n ‖>

√
nhnx}) ≤ C12(nhn)

2−δ
2 E



(

f ∗
N(1)

∑
k=1

‖Jk‖
)δ

1{ f ∗ ∑N(1)
k=1 ‖Jk‖>

√
nhnx}




n→∞−→ 0. (A.9)

Moreover, by Markov’s inequality

n(nhn)
− δ

2 E(‖ξ (2)
n ‖δ

1{‖ξ (2)
n ‖>

√
nhnx})

≤ n(nhn)
− δ

2

(
(nhn)

δ
2 xδ

P(‖ξ (2)
n ‖>

√
nhnx)+ δ

∫ ∞
√

nhnx
xδ−1

E‖ξ (2)
n ‖4x−4dx

)

≤ C13(nhn)
−1 n→∞−→ 0. (A.10)

TakingE‖ξ n‖δ ≤ (E‖ξ n‖2)
δ
2 ≤C14h

δ
2
n into account, the inequality

n(nhn)
− δ

2 E‖ξ (2)
n ‖δ

P(‖ξ (1)
n ‖>

√
nhnx/2)+n(nhn)

− δ
2 E‖ξ (1)

n ‖δ
P(‖ξ (2)

n ‖>
√

nhnx/2)

≤C15n(nhn)
− δ

2 h
δ
2
n hn(nhn)

−1 n→∞−→ 0 (A.11)
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is valid. Finally, applying (A.9)-(A.11) yields

n(nhn)
− δ

2 E(‖ξ n‖δ
1{‖ξn‖>

√
nhnx})

≤ 2δ n(nhn)
− δ

2E(‖ξ (1)
n ‖δ

1{‖ξ (1)
n ‖>

√
nhnx/2})+2δ n(nhn)

− δ
2 E(‖ξ (2)

n ‖δ
1{‖ξ (2)

n ‖>
√

nhnx/2})

+2δ n(nhn)
− δ

2 E‖ξ (2)
n ‖δ

P(‖ξ (1)
n ‖>

√
nhnx/2)+2δn(nhn)

− δ
2E‖ξ (1)

n ‖δ
P(‖ξ (2)

n ‖>
√

nhnx/2)
n→∞−→ 0.

(f) SinceE(ξ n) = 0m, an application of(d) results in

lim
n→∞

n(nhn)
−1/2‖E(ξ n1{‖ξ n‖≤

√
nhnx})‖= lim

n→∞
n(nhn)

−1/2‖E(ξ n1{‖ξn‖>
√

nhnx})‖ = 0.

(g) Gut [21], Theorem 3.1, and

lim
n→∞

h−1
n E(ξ nξ ′

n) = lim
n→∞

h−1
n

∫ hn

0
f(s)Σf(s)′ ds= f(0)Σf(0)′

gives(nhn)
−1 ∑n

k=1 ξ n,kξ ′
n,k

P−→ f(0)Σf(0)′ asn→ ∞. 2

A.2. Infinite second moments

Moreover, we present some asymptotic results forL(1) ∈ R−α(an,µ), α ∈ (0,2).

Proposition A.2. Let (L(t))t≥0 be anRd-valued Ĺevy process withL(1) ∈ R−α(an,µ), 0< α < 2. Sup-
pose(hn)n∈N is a sequence of positive constants such that hn ↓ 0 and limn→∞ nhn = ∞. Set at := a⌊t⌋
for t ≥ 0. Let f : R → Rm×d be a measurable and bounded function withlimx→0 f(x) = f(0). Define
ξ n =

∫ hn
0 f(s)dL(s) for n∈ N.

(a) Then

nP(a−1
nhn

ξ n ∈ ·) v
=⇒ µ ◦ f(0)−1(·) onB(R

m\{0m}).

(b) There exists a finite positive constant K such that

lim
n→∞

nP(‖ξ n‖> anhnx) = Kx−α for x> 0.

(c) Let eitherδ ≥ 2, or δ > α and(L(t))t≥0 be a compound Poisson process. Then there exists for any
x> 0 a finite positive constant Kδ such that

na−δ
nhn

E(‖ξ n‖δ
1{‖ξ n‖≤anhnx})≤ Kδ xδ−α ∀n∈ N.

(d) Letδ ∈ (0,α). Then there exists for any x> 0 a finite positive constant Kδ such that

na−δ
nhn

E(‖ξ n‖δ
1{‖ξ n‖>anhnx})≤ Kδ xδ−α ∀n∈ N.

(e) Suppose thatα 6= 1 andE(L(1)) = 0d if 1< α < 2. Then there exists for any x> 0 a finite positive
constant K such that

na−1
nhn

‖E(ξ n1{‖ξ n‖≤anhnx})‖ ≤ Kx|1−α | ∀n∈N.

The proof of Proposition A.2 uses the next two Lemmatas.
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Lemma A.3. Let (L(t))t≥0 be anRd-valued Ĺevy process withE‖L(1)‖2 < ∞, (at)t≥0 be an increasing
sequence of positive constants inR1/α , 0< α < 2, and(hn)n∈N be a sequence of positive constants such
that hn ↓ 0 as n→ ∞ and limn→∞ nhn = ∞. Moreover, letf : R → Rm×d be a measurable and bounded
function withlimx→0 f(x) = f(0). Defineξ n =

∫ hn
0 f(s)dL(s) for n∈N. Finally, let (α −1)+ < δ < 2.

(a) Thenlimn→∞ nP(a−1
nhn

ξ n ∈ B) = 0 for any relatively compact set B∈ B(R
m\{0m}).

(b) limn→∞ na−δ
nhn

E(‖ξ n‖δ
1{‖ξn‖>anhnx}) = 0 for x> 0.

Proof.
(a) Let γB := infx∈B‖x‖, which is larger than 0, and 0< ε < 2/α − 1. Markov’s inequality, Proposi-
tion A.1 (a) and Potter’s Theorem result in

nP(a−1
nhn

ξ n ∈ B)≤ nP(‖ξn‖> anhnγB)≤
n

a2
nhn

1

γ2
B

E‖ξ n‖2 ≤ C1

γ2
B

n

(nhn)
2
α −ε

hn
n→∞−→ 0,

which we had to show.
(b) Moreover,

na−δ
nhn

E(‖ξ n‖δ
1{‖ξ n‖>anhnx}) = na−δ

nhn
(anhnx)

δ
P(‖ξ n‖> anhnx)+na−δ

nhn

∫ ∞

anhnx
P(‖ξ n‖> z)δzδ−1dz

≤ nxδ
E‖ξ n‖2a−2

nhn
x−2+na−δ

nhn

∫ ∞

anhnx
E‖ξ n‖2z−2δzδ−1dz

≤ C2nhna−2
nhn

n→∞−→ 0,

where we also used Markov’s inequality. 2

Lemma A.4. Let L1 = (∑N(t)
k=1 Jk)t≥0 be anRd-valued compound Poisson process andf : R→ Rm×d be a

measurable and bounded function withlimx→0 f(x) = f(0). Defineξ n =
∫ hn

0 f(s)dL1(s) for n∈N. Then for
any0< δ ≤ 1 with E‖L(1)‖δ < ∞ there exists a finite positive constant K such that

E‖ξ n‖δ ≤ Khn.

Proof. We define the Lévy processLδ (t) := ∑N(t)
k=1 ‖Jk‖δ for t ≥ 0, which satisfiesE(Lδ (1)) < ∞ by

Sato [42], Corollary 2.5.8. Let the increasing sequence(Γk)k∈N denote the jump times of(N(t))t≥0. Then

‖ξ n‖δ ≤
N(hn)

∑
k=1

‖f(Γk)‖δ‖Jk‖δ =
∫ hn

0
‖f(s)‖δ Lδ (ds).

SinceE
(∫ hn

0 ‖f(s)‖δ Lδ (ds)
)
= E(Lδ (1))

∫ hn
0 ‖f(s)‖δ ds≤Chn, we get alsoE‖ξ n‖δ ≤Chn. 2

Note, for an arbitrary driving Lévy process the result is not valid, e.g., Brownian motion. In general we

only haveE‖ξ n‖δ ≤Ch
δ
2
n .

Proof of Proposition A.2. (a) We use the decomposition ofξ n = ξ (1)
n + ξ (2)

n as given in the proof
of Proposition A.1 and the notation there. Moreover,f(0)J1 ∈ R−α(an,λ−1µ ◦ f(0)−1(·)) due to Hult
and Lindskog [22], Lemma 2.1 and‖J1‖ ∈ R−α(an) as well. First, we will show thatξ (1)

n satisfies the
statement. Now, letB be a relatively compact set inB(R

m\{0m}) with µ(∂B) = 0 andγB = infx∈B‖x‖,
which is larger than 0. We define

nP(a−1
nhn

ξ (1)
n ∈ B) =

∞

∑
l=1

nP

(
a−1

nhn

l

∑
k=1

f(hnUl ,k)Jk ∈ B

)
P(N(hn) = l) =:

∞

∑
l=1

a∗n,l . (A.12)
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Furthermore, (A.6) gives for anyl ≥ 1,

0≤ a∗n,l ≤C1nhnP

(
a−1

nhn
f ∗

l

∑
k=1

‖Jk‖> γB

)
P(N(1) = l) =: b∗n,l ,

and for some finite constantsC2,C3,C4 > 0,

lim
n→∞

b∗n,l = C2l f ∗α γ−α
B P(N(1) = l),

lim
n→∞

∞

∑
l=1

b∗n,l = C3 lim
n→∞

nhnP

(
a−1

nhn

N(1)

∑
k=1

‖Jk‖> f ∗−1γB

)
=C4 f ∗α γ−α

B ,

where we used that∑l
k=1‖Jk‖ and∑N(1)

k=1 ‖Jk‖ are inR−α(an) by Resnick [40], Theorem 6.1 and Proposi-
tion 7.4, and by Hult and Lindskog [22], Lemma 2.1, respectively. Since (A.8), (A.12) and limn→∞ f(hnU1,1)=
f(0) P-a.s. yield

lim
n→∞

a∗n,1 = lim
n→∞

nhnP

(
a−1

nhn
f(0)J1 ∈ B

)
λ = µ ◦ f(0)−1(B),

and moreover (A.7) results in

lim
n→∞

a∗n,l = 0 for l ≥ 2,

a conclusion of Pratt’s Theorem (see Pratt [35]) is

lim
n→∞

nP
(

a−1
nhn

ξ (1)
n ∈ B

)
=

∞

∑
l=1

lim
n→∞

a∗n,l = µ ◦ f(0)−1(B). (A.13)

Furthermore, the Lévy measure ofL (2) has compact support. Thus, Sato [42], Corollary 25.8, givesthat all
moments of‖L (2)(1)‖ exist. The statement follows then from Lemma A.3(a), (A.4) and (A.13).
(b) is a conclusion of(a) and Resnick [39], Proposition 3.12.
(c) Step 1.Let (L(t))t≥0 be a compound Poisson process as given in (A.5),f(s) = Id×d andδ > α (if
δ ≥ 2 then in particularlyδ > α). Keep in mind thatL(1) ∈ R−α(an,µ) andJ1 ∈ R−α(an,µ/λ ) by Hult
and Lindskog [22], Lemma 2.1. Then

E(‖L(hn)‖δ
1{‖L(hn)‖≤anhnx}) = E(‖J1‖δ

1{‖J1‖≤anhnx})
P(N(hn) = 1)

hn
(A.14)

+
∞

∑
l=2

E



∥∥∥∥∥

l

∑
k=1

Jk

∥∥∥∥∥

δ

1{‖∑l
k=1Jk‖≤anhnx}


 P(N(hn) = l)

hn
.

By Resnick [40], Theorem 6.1 and Proposition 7.4,‖∑l
k=1Jk‖ ∈ R−α(an), a conclusion of Karamata’s

Theorem is for anyl ≥ 1,

lim
n→∞

nhna−δ
nhn

E



∥∥∥∥∥

l

∑
k=1

Jk

∥∥∥∥∥

δ

1{‖∑l
k=1 Jk‖≤anhnx}


= lC5xδ−α . (A.15)

As in (a) we are allowed to apply Pratt’s Theorem, such that (A.7), (A.8), (A.14) and (A.15) result in

lim
n→∞

na−δ
nhn

E(‖L(hn)‖δ
1{‖L(hn)‖≤anhnx}) = λC5xδ−α . (A.16)
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Step 2.Let (L(t))t≥0 be a compound Poisson process as given in (A.5),f be arbitrary andδ > α. Since

P(‖ξ n‖> y)≤ P

(
f ∗

N(hn)

∑
k=1

‖Jk‖> y

)
for anyy> 0

andL∗(t) := f ∗ ∑N(t)
k=1 ‖Jk‖ for t ≥ 0 is a compound Poisson process withL∗(1) ∈ R−α(an), we have

na−δ
nhn

E(‖ξ n‖δ
1{‖ξ n‖≤anhnx})≤ nxδ

P(L∗(hn)> anhnx)+na−δ
nhn

E

(
L∗(hn)

δ
1{L∗(hn)≤anhnx}

)
,

which converges toC6xδ−α due to(b) and Step 1.
Step 3. Let (L(t))t≥0 be a Lévy process,f be arbitrary,δ ≥ 2 andξ n = ξ (1)

n + ξ (2)
n as given in (A.4).

Further, letε > 0. Then the decomposition

na−δ
nhn

E(‖ξ n‖δ
1{‖ξn‖≤anhnx}) = na−δ

nhn
E(‖ξ n‖δ

1{‖ξ n‖≤anhnx}1{‖ξ (1)
n ‖≤anhn(x+ε)})

+na−δ
nhn

E(‖ξ n‖δ
1{‖ξn‖≤anhnx}1{‖ξ (1)

n ‖>anhn(x+ε)})

=: In,1+ In,2

holds. Further,

In,1 ≤ na−δ
nhn

2δ
E(‖ξ (1)

n ‖δ
1{‖ξ (1)

n ‖≤anhn(x+ε)})+n2δ(2x+ ε)δ
E



∥∥∥∥∥

ξ (2)
n

an(2x+ ε)

∥∥∥∥∥

δ

1{‖ξ (2)
n ‖≤an(2x+ε)}




≤ na−δ
nhn

2δ
E(‖ξ (1)

n ‖δ
1{‖ξ (1)

n ‖≤anhn(x+ε)})+nC7a
−2
nhn

E‖ξ (2)
n ‖2 n→∞−→C8(x+ ε)δ−α

by Step 2 and Proposition A.1(a). In the last inequality we requiredδ ≥ 2. Moreover, applying(b) and
Proposition A.1(a) results in

In,2 ≤ nP(‖ξ (2)
n ‖> anhnε)P(‖ξ (1)

n ‖> anhn(x+ ε))≤C9ε−2hna−2
nhn

nP(‖ξ (1)
n ‖> anhn(x+ ε)) n→∞−→ 0.

Thus,(c) follows.
(d) Let ε ∈ (0,1). We use the upper bound

na−δ
nhn

E(‖ξ n‖δ
1{‖ξn‖>anhnx})

≤ na−δ
nhn

2δ
E(‖ξ (1)

n ‖δ
1{‖ξ (1)

n ‖>anhnx(1−ε)})+na−δ
nhn

2δ
E(‖ξ (2)

n ‖δ
1{‖ξ (1)

n ‖>anhnx(1−ε)})

+na−δ
nhn

2δ
E(‖ξ (1)

n ‖δ
1{‖ξ (2)

n ‖>anhnxε})+na−δ
nhn

2δ
E(‖ξ (2)

n ‖δ
1{‖ξ (2)

n ‖>anhnxε})

=: In,1+ In,2+ In,3+ In,4. (A.17)

As in (c) we can show that by Karamata’s and Pratt’s Theorem the compound Poisson process(L∗(t))t≥0

satisfies

lim
n→∞

na−δ
nhn

E(‖L∗(hn)‖δ
1{‖L∗(hn)‖>anhnx}) = λC10x

δ−α , (A.18)

and

In,1 ≤ 2δ na−δ
nhn

E(‖L∗(hn)‖δ
1{‖L∗(hn)‖>anhnx})≤C11x

δ−α ∀n∈ N.

Further, by(b) and Proposition A.1(a)

In,2 ≤ 2δ a−δ
nhn

(E‖ξ (2)
n ‖2)

δ
2 nP(‖ξ (1)

n ‖> anhnx(1− ε)) n→∞−→ 0 (A.19)
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holds. Moreover, by Lemma A.4

In,3 = a−δ
nhn

2δ
E‖ξ (1)

n ‖δ nP(‖ξ (2)
n ‖> anhnxε)≤C12a

−δ
nhn

hδ/2
n nhna−2

nhn
x−2ε−2 n→∞−→ 0. (A.20)

Finally, by Lemma A.3(b), limn→∞ In,4 = 0. Statement(d) is then a consequence from (A.17)-(A.20).
(e) Step 1.Let 1< α < 2. ThenE(ξ n) = 0m. Hence,

na−1
nhn

‖E(ξ n1{‖ξn‖≤anhnx})‖= na−1
nhn

‖E(ξ n1{‖ξn‖>anhnx})‖ ≤ na−1
nhn

E(‖ξ n‖1{‖ξn‖>anhnx})

such that we can apply(d).
Step 2.Let α ∈ (0,1). Again we use the decomposition ofξ n = ξ (1)

n + ξ (2)
n as given in (A.4). Thus,

E(ξ n1{‖ξn‖≤anhnx}) = E(ξ (1)
n 1{‖ξn‖≤anhnx})+E(ξ (2)

n 1{‖ξn‖≤anhnx}) =: In,1+ In,2.

On the one hand, let for someε > 0,

‖In,1‖ ≤
∫ anhn(x+ε)

0
P(‖ξ (1)

n ‖> y,‖ξ n‖ ≤ anhnx)dy+
∫ ∞

anhn(x+ε)
P(‖ξ (1)

n ‖> y,‖ξ n‖ ≤ anhnx)dy

=: In,1,1+ In,1,2.

Then

In,1,1 ≤ E(‖ξ (1)
n ‖1{‖ξ(1)

n ‖≤anhn(x+ε)})+
∫ anhn(x+ε)

0
P(‖ξ (1)

n ‖> y,‖ξ (2)
n ‖> anhnε)dy

≤ E(‖ξ (1)
n ‖1{‖ξ(1)

n ‖≤anhn(x+ε)})+anhn(x+ ε)P(‖ξ (2)
n ‖> anhnε).

Hence, by(c) and Proposition A.1(a)

limsup
n→∞

na−1
nhn

In,1,1 ≤C13x
1−α +C14limsup

n→∞
nE‖ξ (2)

n ‖2a−1
nhn

=C13x
1−α .

Furthermore,

In,1,2 ≤
∫ ∞

anhn(1+ε)
P(‖ξ (1)

n ‖> y,‖ξ (2)
n ‖> y−anhnx)dy≤ P(‖ξ (1)

n ‖> anhn(x+ ε))E‖ξ (2)
n ‖,

such that by(b) and Proposition A.1(a),

limsup
n→∞

na−1
nhn

In,1,2 = 0.

To conclude,na−1
nhn

In,1 ≤C14x1−α ∀ n∈N. On the other hand, we have

‖In,2‖ ≤ ‖E((ξ (2)
n −E(ξ (2)

n ))1{‖ξ n‖>anhnx})‖+ ‖E(E(ξ (2)
n )1{‖ξ n‖≤anhnx})‖

≤ E(‖ξ (2)
n ‖1{‖ξ(1)

n ‖>anhnx/2})+E(‖ξ (2)
n ‖1{‖ξ (2)

n ‖>anhnx/2})+2‖E(ξ (2)
n )‖

=: In,2,1+ In,2,2+ In,2,3.

Then by(b), Proposition A.1(a), ‖E(ξ (2)
n )‖ ≤C15hn andα ∈ (0,1),

na−1
nhn

In,2,1 = a−1
nhn

E‖ξ (2)
n ‖nP(‖ξ (1)

n ‖> anhnx/2)
n→∞−→ 0,

na−1
nhn

In,2,3 ≤ C16nhna−1
nhn

n→∞−→ 0.
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Finally, by Markov’s inequality

na−1
nhn

In,2,2 = nx/2P(‖ξ (2)
n ‖> anhnx/2)+na−1

nhn

∫ ∞

anhnx/2
P(‖ξ (2)

n ‖> y)dy≤C17nhna−2
nhn

n→∞−→ 0,

and thus, limn→∞ na−1
nhn

In,2 = 0. 2
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[5] BROCKWELL, P., FERRAZZANO, V., AND KLÜPPELBERG, C. (2012). High frequency sampling of
a continuous-time ARMA process.J. Time Ser. Anal.33, 152–160.
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average processes and supOU stochastic volatility models.Adv. Appl. Probab.43, 1109–1135.

[31] PAULAUSKAS , V. AND RACHEV, S. (1998). Cointegrated processes with infinite variance innova-
tions. Ann. Appl. Probab.8, 775–792.

[32] PHILLIPS, P. C. B. (1974). The estimation of some continuous time models. Econometrica42,
803–823.

[33] PHILLIPS, P. C. B. (1991). Error correction and long-run equilibriumin continuous time.Econo-
metrica59, 967–980.

[34] PHILLIPS, P. C. B.AND SOLO, V. (1992). Asymptotics for linear processes.Ann. Statist.20, 971–
1001.

[35] PRATT, J. (1960). On interchanging limits and integrals.Ann. Math. Statist.31, 74–77.

[36] RAHBEK , A. AND KESSLER, M. (2001). Asymptotic likelihood based inference for co-integrated
homogenous Gaussian diffusions.Scand. J. Statist.28, 455–470.

[37] RAJPUT, B. S. AND ROSINSKI, J. (1989). Spectral representation of infinitely divisible processes.
Probab. Th. Rel. Fields82, 452–487.

[38] RESNICK, S. I. (1986). Point processes, regular variation and weak convergence.Adv. Appl. Probab.
18 (6), 66–138.

34



[39] RESNICK, S. I. (1987). Extreme Values, Regular Variation, and Point Processes. Springer, New
York.

[40] RESNICK, S. I. (2007).Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer,
New York.
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