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Abstract An asymptotic theory was given by Phillips and Magdalinos (J Econom
136(1):115-130, 2007) for autoregressive time series Y, = pY,_| +u,t=1,...,n,
with p = p, = 1 + ¢/ k,, under (2 + §)-order moment condition for the innovations
u;, where § > 0 when ¢ <0 and § =0 when ¢ > 0, {u,} is a sequence of indepen-
dent and identically distributed random variables, and (k,),en is a deterministic
sequence increasing to infinity at a rate slower than n. In the present paper, we
established similar results when the truncated second moment of the innovations
l(x) = E[u%] {lu1] < x}]is a slowly varying function at co, which may tend to infinity
as x — oo. More interestingly, we proposed a new pivotal for the coefficient p in case
¢ < 0, and formally proved that it has an asymptotically standard normal distribution
and is nuisance parameter free. Our numerical simulation results show that the
distribution of this pivotal approximates the standard normal distribution well under
normal innovations.
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1 Introduction

Consider the following autoregressive model with order one AR(1):
Y, =pY, 1 +u, t=1,...,n, (1.1)

where Y/, is the observation at time ¢, {1} is a sequence of independent and identically
distributed (i.i.d.) random variables and p is an unknown parameter. Usually, p is
estimated by its least square estimate (LSE)
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If the u,’s are normally distributed, p is also the maximum likelihood estimate of p.
There has been considerable interest in the asymptotic properties of p both in the
statistics and in the econometrics literature.

When E[u,] = 0,0 < E[u}] = 0 < 00 and Y is a constant, it is well known that
the AR(1) process 1.1 with |p| < 1is asymptotically stationary and the LSE p satisfies
the following limiting property:

Jn(p — p) 4 N, 1—p?), as n— oo; (1.3)

. . od
see Anderson (1959). Here and in what follows, the notation — denotes convergence

in distribution, and % denotes convergence in probability, respectively. When p = 1,
model 1.1 becomes a unit root model, which is non-stationary, and the convergence
rate of p is quite different from the stationary case. In this case,

2 _
np — p) 4 M as n — oo, (1.4)
2 [, W2(rydr

where {W(¢)} is a standard Wiener process; see White (1958) and Rao (1978).

Over the last two decades, regression asymptotics with root near unity have been
playing an important role in time series analysis. Motivated by the classical Poisson
approximation, Chan and Wei (1987) considered AR(1) process with p =1+ ¢/n
and a fixed constant ¢ so that

Yo=(+¢/mYe +u, (1.5)

which is called nearly non-stationary AR(1) process in their paper. By assuming {u,}
to be a martingale difference sequence with respect to an increasing sequence of
o-fields {F;} such that

1 n
;ZE[qu]—'H] | (1.6)
t=1
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as n — oo and Yy = 0, Chan and Wei (1987) established the following results:

n 1 -1
T, = ZY?_I(,é —p) 4 Lo 4 +b0" WwdW @ as n — oo, (1.7)
p \/fol(l + bty 2W2(t)dt
and
, ¢ [LA+bD "W Hdw ()
T, =n(p —p) —> = as n — 0o, (1.8)

fy (1L + b0y 2W2(ndt

where b = ¢* — 1. The convergence result 1.8 is not explicitly expressed in their
paper, but it can be easily recovered from their proof for Eq. 1.7.

Lately, motivated by bridging the \/n and n convergence rates for the stationary
case and non-stationary case, Giraitis and Phillips (2006) and Phillips and Magdalinos
(2007) proposed a model similar to Eq. 1.5 by assuming p = p, = 1 + ¢/k, with
a constant ¢, Yy = op(\/H), and (k,).ey 1S a sequence increasing to oo such that
k, = o(n). For ¢ < 0, Phillips and Magdalinos (2007) established

\/;Tk,,(,a —p) 4 N(, —2¢), as n — oo, (1.9)
under i.i.d. innovations u; with E[u;] =0 and E [lu,|2+5] < oo for some § > 0. Note
that, by taking k, = n® with 0 < « < 1, the above result indeed bridges the /n and
n convergence rates. It is also worth mentioning that the limiting distributions are
substantial different between these two cases k, = n® with 0 <« <1 and k,, = n.
For ¢ < 0, similar results have been established by Giraitis and Phillips (2006) for the
innovations to be a martingale difference sequence with a finite second moment. In
the case with ¢ > 0, Phillips and Magdalinos (2007) established

k n
';C) B—p)5C asn— oo, (1.10)

where the random variable C is a standard Cauchy random variable.

Motivated by and Phillips and Magdalinos (2007), we are interested in the follow-
ing two questions. First, we shall investigate whether the results 1.9 and 1.10 are still
valid when the i.i.d. innovation sequence {u,} has a second moment which is possibly
infinite. By adopting the truncation approach, we successfully achieve the results;
for more details, see Theorem 2.1 in the sequel. Second, we are interested in the
statistical inference on the parameter p in the model. It would be difficult to conduct
any hypothesis test or construct confidence intervals for the interesting parameter
p by directly using result 1.9, since there is one unknown nuisance parameter c in
the limiting distribution. To overcome such an obstacle, we proposed a new pivot
for p and, for the case with ¢ < 0, we formally established its limiting distribution,
which is a standard normal distribution and hence nuisance parameter free; the
findings are summarized in Theorem 2.2 in the sequel. To demonstrate the finite
sample properties of the pivotal, a simulation study is presented in the second part
of Section 2. The results show that the distribution of this pivotal approximates the
standard normal distribution well under normal innovations.
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The rest of the paper is organized as follows. Section 2 are our main results and
the numerical example. All the lemmas and proof are relegated to an Appendix.

2 Main Results and a Numerical Example
2.1 Main Results

To introduce our main results, we impose the following conditions:

Cl. Inp:=p, =1+c/k,, cis a constant, (k,),cn is a real sequence increasing to
oo with k, = o(n);

C2. The innovations {u,} are i.i.d. random variables with E[u;] =0, and their
truncated second moment /(x) = E[u?I{|u;| < x}] is a slowly varying function
of x at oo, where I{-} stands for the indicator function,;

C3. Yo =o0,(Vky).

Remark 2.1 Although the above condition C2 allows the second moment of the
innovations to be infinite, it implies that E [|u;]°] < oo for any 0 < § < 2. Hence, the
innovation random variables which are in the domain of attraction of a stable law
with index o < 2 are ruled out by this condition. This means that our results do not
apply to a model with very heavy-tailed innovations.

Theorem 2.1 Assume that conditions C1-C3 are satisfied by process 1.1.

(a) If additionally c < 0, the asymptotic normality of the LSE p given in Eq. 1.9 is
satisfied.

(b) If additionally ¢ > 0, the limiting property of the LSE p given in Eq. 1.10 is
satisfied.

Remark 2.2 The result in part (a) of Theorem 2.1 bridges the /n and n convergence
rates for p respectively in an asymptotically stationary AR(1) model and the corre-
sponding unit root process when the innovations {i,} are i.i.d. with zero mean and a
truncated second moment /(x) slowly varying function at co. The proofs in these two
special cases can be found in Davis and Resnick (1985) and Wang (2006) respectively.

As mentioned in the introduction section, we may be interested in the statistical
inference on the parameter p in process 1.1. To this end, we propose an innovative
pivot for p as shown below:

ny" Y: A
— . Zl—l At 1 > (p _ p) (21)
Z[:](Yl - th—l)

We formally established its limiting distribution as stated in Theorem 2.2 below.

Bn:

Theorem 2.2 Assume that conditions C1-C3 are satisfied by process 1.1, and ¢ < 0.
Then the pivot B, given in Eq. 2.1 is asymptotically normal:

By > N, 1), as n— oo. (2.2)
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Remark 2.3 Note that the pivotal quantity 8, only contains the interesting parameter
p, and the limiting distribution is nuisance parameter free. Thus, 8, is a potentially
useful statistics for conducting hypothesis test and constructing confidence intervals
for the parameter p. A simulation study is conducted in the subsequent numerical
example to illustrate the finite sample properties of 3.

2.2 A Numerical Example

To demonstrate the finite sample properties of the pivot g, defined in Eq. 2.1, we
experiment on the AR(1) process 1.1 with the following numerical setup:

c={-0.1, —1.0},
Yy =0,

ky € {logn, n%5, n07), (2.3)
u, € {N(, 1), t(2)},

where £(2) denotes a student-f random variable of freedom 2 and hence its variance
is infinite. It is easy to verify that each combination in the above numerical setup
satisfies all the conditions in Theorem 2.2.

In our numerical experiment, we consider a set of different sample size n, and for
each n, we independently generate 100,000 sequences of {Yy, Y, -+, Y,} according
to the AR(1) process 1.1 with parameter values as specified in Eq. 2.3, and then
compute the values of statistics p and g, for each of those generated sequences
so that we have 100,000 values of p and B,. To investigate how well the standard
normal distribution approximates that of g,, we use those 100,000 values of g, to
estimate its moments (mean, standard deviation, skewness, and kurtosis), and the
probability Pr (8, < ®~'(7)) for a set of different values of r, where ®~!(r) denotes
the r-quantile of the standard normal distribution. If the approximation works well,
Pr(B, < ®~'(1)) is expected to be very close to 7. To illustrate how useful the pivot
B, can be in estimating the parameter p, we construct the asymptotic confidence
interval for p by using the limiting distribution of 8,, and then compute the empirical
coverage probability (ECP) of such an asymptotic confidence interval. Specifically,
we first construct a 95 % confidence interval [[,,, u,] of p for each of those 100,000
generated sequences of {Yy, Yy, -+, Y,}, where

n _5 2
L, =p—U0.975) -6, un=p+ ¥ '0.975) -6,, and G, = \/Z’=1(Yj, pf’”)
ny i Y,
Then, we compute the ECP as the proportion of those intervals including the true
value of p, and ideally it is expected to be close to 95 %.
All the experiment results are reported in Tables 1 and 2, on which we have the
following observations and comments.

(i) The normal approximation has fairly similar overall validity (or lack thereof)
for both the normal and ¢ innovations. First, the mean values of B, in both
tables are all negative and diminish to 0 as the sample size n increases.
Such an observation is consistent to the well known fact that the LSE p is
asymptotically unbiased and yet always negatively biased particularly when p
is close to 1. Second, except the kurtosis column with k, = logn in Table 2, all
the moments (mean, standard deviation, skewness and kurtosis) of g, in both
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tables show a reasonably small deviation from their corresponding nominal
values (0, 1, 0 and 3 respectively) in the standard normal distribution. Third,
the probability Pr (ﬁn < o! ('L’)) is always larger than t throughout both tables,
with a deviation smaller in some cases and larger in the others under normal
innovations than under #(2) innovations.

(ii) If we were use the asymptotic result from Theorem 2.2 to conduct a hypothesis
test on the parameter p, we will be more concerned on those probabilities
around the lower and upper 1 %—5 % regions in the tables than the others.
To see this, consider a null hypothesis Hy : p = p for some constant py and
an alternative hypothesis H; : p < po. We will reject the null hypothesis Hy, if
B, < W~!(a) is observed for a given significant level «, which is usually either
5 % or 1 %. Obviously, the probability of type one error in such a hypothesis
test is Pr(B, < ¥~ '(«)), which, as shown in Tables 1 and 2, is unanimously
estimated to be larger than «, the expected significant level we set at the
inception of the hypothesis test. If we change the alternative hypothesis H,
to be p > py, we will then reject the null hypothesis upon a sample with g, >
¥~!(1 — o). In this case, the probability of type one error Pr (8, = ¥~'(1 — «))
is unanimously estimated to be smaller than the expected significant level «,
according to the upper 1 %—5 % regions in Tables 1 and 2.

(iii) Finally, we note that the empirical coverage probabilities displayed in the last
column of the tables are all close to its nominal value of 95 %, particularly
in the case with normal innovations. It implies that the limiting distribution we
established in Theorem 2.2 works very well in terms of constructing confidence
intervals for the parameter p, even under a moderate sample size of 100. It is
worth noting that, although the probability Pr (8, < V' ()) deviates from «
quite substantially at both & = 0.025 and 0.975 in some panels of the tables
(e.g., k, = n®7), the resulting confidence interval still leads to an ECP very
close to its nominal value of 95 %.
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Appendix: Lemmas and Proofs

The proofs of our main results are based on the idea of using truncated random
variables. Let

I(x) = E[ujl{lu)| <x}], b =inf{x>1:{(x) >0}, (A1)
and
1
r,j:inf{s:szb—i—l,l(—i)gf},forj:1,2,3,~~, (A2)
s J
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then it is easy to see that nl(n,) < nﬁ for all n > 1. In addition, we denote
i=1
and

{ugl) = u, I{|u;| < 1} — E [ I{|u;| < na}l, (A4)

u® = u I{u,| > np} — E [ d{|us] > na}].

Throughout the rest of the Appendix, we denote A a positive constant whose value
can be different in different places, and p, always denotes 1 4 ¢/ k,. Moreover, we
will use [¢] to denote the integer part of a real number ¢.

The following four lemmas will be useful in our proofs of the main results and the
first one is due to Csorgg et al. (2003).

Lemma A.1 Let X be a random variable. Then the following statements are equiva-
lent:

(a) E[X*I{|X| < x}] is a slowly varying function of x at oo,
(b) ¥ P(X| > x) = o(l(x),

(©) xE[X|I{|X]| > x}] =o((x)),

(d) ENX|"I{|X| < x}] =o(x"(x)) forn > 2,

where l(x) is as defined in Eq. A.1 with u, replaced by X.

Lemma A.2 Assume that conditions C1, C2 and C3 are satisfied by process 1.1 with
¢ < 0, we have for each s € [0, 1], as n — oo,

0 s T e 20

; [ns] = @\, P
() ikl (1) Zfﬁ(z":‘ o )u o

! ts] =1 i @\.@ P
© i e (L o Ju? S0

Lemma A.3 Assume that conditions C1, C2 and C3 are satisfied by process 1.1 with
¢ < 0, we have for each s € [0, 1], as n — oo,
@) Yig/Vi>0,

[ns]

[ns]
®) > Y/ Vi 50,

Lemma A.4 Assume that conditions C1, C2 and C3 are satisfied by process 1.1 with
c <0, we have as n — o0,

@ Y VYD B 1 (-20)
(b) ﬁz; thlut/(\/FnV,%) —d> N, 1/(=2¢)).
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Proof of Lemma A.2 Before we proceed, we first recall that V,zl /(nl(n,)) L lasn—
oo; see (3.4) in Giné et al. (1997). Now, let us consider the part (a). Obviously, it
follows from Lemma A.1 that

[ns]
1—i (1> (2)
«/nk [(nn) Z (Z o ) “

=2 i=1
1 [ns] t—1 (1)
= i u I{|u;| > np
mzwn);(;"” ) | > na}
l(nn)) O 4D
+0< oy
Nn /nk, l(nn) [22:1 1
=1+ 11

A direct application of Cauchy—Schwarz inequality yields

[ns] t—1 2
Vin i
= i B (B -

L

where V|, is as defined in Eq. A.3. Moreover, using Jensen inequality and recalling
nl(n,) < n2, we have

1 [ns] 2
i JZ@" ) >

[ns] t—1

2(t—1—i)
Pn L)1 4+ o(WIP (1| > n,)
= Ve JZZ f

< A\/[ns]knl(nn) -0 <l> =o(1),
vV knl(ﬂn) n

since 1 — p2 = —2¢/ku[1 + O(k,")], which together with V2/(nl(n,)) L lasn—

yields 7 £ 0. Hence, we only need to show I/ £ 0 for part (a). To this end, we
calculate the variance of /1 as follows,

2

_ 12(7}”) 1 [ns] [ns] i
Var(D = o(—5 )'nknP(nn)i:Z] ”ZHp )11+ o(D)]

l(nn)) [nsk?

= ol n nknl(n,)

= o(1),
by which the proof of part (a) is complete.
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The proof of part (b) can be achieved by a similar argument, and hence omitted.
Finally, the proof of part (c) follows from Lemma A.1 as follows:

[ns]
Z(Zpt 1—i 1(2)) (2):|

=2 i=1
[ns] t—1 2
—1—i [ (nn))
W [(n2) 220 ( M

t=2 i=1

Alnslkn — (1(a) ) _ \/kin _
= kl(n) 0( n >_0< n)_o(l)'

1
RY nknl(nn) |:

]
Proof of Lemma A.3 To prove part (a), obviously it is sufficient to show
Y/ (nl(n) = 0,(1). (A.5)
To this end, for each s € [0, 1], we write
2 [ns] :
Y 1 e :
Tnsl [ns]Y + p[ns]—/u .
nl(n,) — niG,) ( P70 ; n
2 [ns] g
< 7102["5] p[m] /u . A6
nl(ny) nl(nn) Z ! ( )

The first term on the right hand side of Eq. A.6 is obviously equal to o,(k,/n) =
0,(1), since Yy = op(\/kj,). Thus, by the second term on the right hand side of Eq.
A.6, we only need to show

[ns]

W D ok iy = o0,(1). (A7)
n j_

To this end, we first write

[ns] [ns] [ns]
[ns]— 1 _ [ns]—j (l) [ns]— ] (2)
Pp Pn u; Pn
T LA = g LA s Y
=111+ 1V. (A.8)

In view of Lemma A.1, we have

2 l(nn)> al -
E[|IV . nsl=j
IPAZI e ( E

Ak, l(%))_ (ﬁ)_ ) A9
< FoR) 0(% =o(-, =o(l) (A.9)
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by recalling that nl/(n,) < n2 for n > 1. Moreover,

[ns]
Var(I11) = 1( ;2 Zpﬂ["ﬂ DAl + o] = O (%) =o(1). (A.10)

Combining Egs. A.8-A.10 yields Eq. A.7. Hence, part (a) is proved.
For part (b), it suffices to show

[ns]
Y, u
an(n;)l L= o0,(). (A.11)
To this end, we write
[m] Yt 1U
”l(nn)
1 [ns] t—1
—1 —1—j
= S Yo+ ok iy | w4 0,(1)
nl(n,) — =
Yo \/E 1 [ns] 1 [ns] t—1 1
= o —_ 0 uj | us+o,(1),
e 0 i 2 ki 2 ]:Z, S R
(A12)

and further express the first term on the right hand side of Eq. A.12 as follows

[ns] [ns] [ns]
1 -1 1 -1, (1) i-1,,(2)
p, U P, U+ p, U
/il (1) ; NN ,22: C il ; t
=V4+VL (A.13)

It follows from Lemma A.1 again that

c ), < ke
E[VI . : =l = o(1). Al4
(VI <~ o) ,;p” O(n W)) o).  (A14)

In addition,

[ns]
Var(V) = — > o Pl + o(h)] = 0(

nl? () = ) =o(l). (A.15)

kn
nl(n,)
Combining Egs. A.14 and A.15 with the assumptions Yy/v/k, = 0,(1) and k,, = o(n)

implies that the first term on the right hand side of Eq. A.12 converges to zero in
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probability as n — oo. The second term on the right hand side of Eq. A.12 can be
rewritten as follows:

1 [ns] t—1

nl(ny) Z ]ZPZ] ]u, u,

1 3f(a o m, | (5 PR OR
_nl(nn),; ,;p" S nl(n)z ; K

| [ns] f t—1 @) (]) 1 [ns] [ t—1 (2) (2)
+nl(’7n);: Zp R ”l(”)z 21: "

(A.16)

It follows from Lemma A.2 that all the terms except the first one on the above
expression converge to zero in probability as n — oo, by noting that k, = o(n).
Regarding its first term, we have

[ns] t—1

1 —1—j. | M
o W'D u
nl (i) ; Z U

] —
< ﬂz Z Z 2e-1-p — (%) =o(l). (A.17)

This implies that the second term on the right hand side of Eq. A.12 also converges
to zero in probability as n — oo. Thus, the proof of part (b) is complete. O

Proof of Lemma A.4 For part (a), by squaring Eq. 1.1 and summing over ¢ €

{1, ..., n}, it follows from the given conditions and Lemma A.3 that
1—p2 & Y2 vY: o1 20n
A DA N
noo=1 ” ” =1
Y; nl(n,)
=1 1 0
o i, V2
=1+o0,(1), (A.18)

which together with the fact 1 — p? = —2¢/k,[1 + O(k;;')] leads to the desired result.
For part (b), it suffices to show

\/Wl(n ;2 ZYt 1t 5 NGO, 1/(=20)). (A.19)
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To this end, we write

«/YWI(W) ZY[ i

n

| 1 t—1 )
O S S o p Yo ) u
el o 2 (Z t

— 1 t—1—i ; .
M zmn)Z(Z" )

=2 =2 \i=l
(A.20)
Applying Eqgs. A.13-A.15 with s = 1, one has
1 t—1 P
—— > pu— 0, (A21)
\/ﬁl(nn) ; '

which together with the assumption Yy = 0,(+v/k,) implies that the second term on
the right hand side of Eq. A.20 converges to zero in probability as n — co. As for the
third term on the right hand side of Eq. A.20, we can do the decomposition as we did
in Eq. A.16 as follows:

: —1—i
i 5 ()
- o 2 () T 2 (D)

n n

t—1—i (2) (D t—1-i, () @2
s zm%(zp ) VT TON) z(nn)z<zp ’)”’ '

t=2

(A22)

From Lemma A.2, all the terms except the first one in the above equation converge
to 0 in probability. Hence, we only need to consider the first term on the right hand
side of Eq. A.22. Define

Sm =

1 t—1 o uﬁl)
R Zp’t;lﬂli ,
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which is clearly a martingale difference array with respect to the filtration F; =
o(uy,...,u) for t > 2. Since the mean of &, is zero and the variance of Z:’zz En 1S
given by

n (1 1
pt 1—i i t
(vnkn ,Zz (,Zl \/K’]n)) \/l(nn))
n t—1

e LA o)

t=2 i=1

1

it is sufficient to show the Lindeberg condition

ZEfH (&2 1{|&x| > n}] = 0p(1) foranyn > 0

=2
holds for proving
- t—1—i (1) 1 d
———— > (o | S N, 1/(=20), (A.24)
nk l(nn) =2 (l 1 )

which, combined with the decomposition in Eq. A.22, will lead to the desired result
of part (b). To this end, we write

Y Ex [E2 gl > n}]

=2

n

2
- Z(Zp’ - f“) Fir [(uf“)zl{m > n}]

M \?2 n 2
u
< max E ! H{|&,] > =1-y, (D)
< max B, ( l(nn)> {1l > m}|- kl(nn)E (; O ;

(A.25)

Using the same argument we used in the proof of part (a), it is not difficult to show

- - 1
nk l(nn)2<zp . (”) = (A.26)

by recalling again that V2/(nl(n,)) — 1 in probability. Thus, we only need to show

uh 2
21151[3;1 Bz, (\/m) & > n} | = 0p(1).
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Observe that

1
ug"|

1 t—1 ) MFI) 1
> M|+ 1] Y s L
l(nn) } { Vnk, i—1 \/l(nn) M

L

Kgm| > n} < I:

for any fixed M > 0; thus, we have

M \?2
Uy
gglEﬂ, {(W) I{|&n] > n}}

( " ) ,{ 1 }
> Mn
\/l(nn) \/l(nn)

t—1 (1)
Z o1 U;

n
Pt Vi)

since E(uil) /v/I(n)? = O(1). Obviously, the first term on the right hand side of
Eq. A.27is o(1) as M — oo. Thus, we only need to show

1
+ A -max [ [
2<t=n nk,

> ;4} (A27)

2
1

-1 0
—1—i_Yi
max —— o =] =o0,(). (A.28)
2<t<n nk, (; /l(ﬂn)> b
Since the second moment of ufl) /+/1(nn) is finite, we can follow the proof of (15) in
Phillips and Magdalinos (2007) and use Eq. A.26 to show Eq. A.28 easily with details
omitted. O

Proof of Theorem 2.1

(a) Since

\/Irkn(,ﬁ )= %Z%I Y _ «/ﬁz%l Yt—lut/(\/EV,%)’
S Y S Y2/ VR)
the desirable result follows immediately from Lemma A.4.

(b) Following the idea in the proof of Theorem 4.3 in Phillips and Magdalinos
(2007), and using the truncation approach we applied in the proof of part (a),
the proof of this part can be obtained in a similar way. The key step is to modify
the definitions of X,, and Y,, in Phillips and Magdalinos (2007) as follows,

X, =071y, and Y, =

1 n
= v, &°

t
Uy,

1 o
\/Evn,;p"

and to show that (X,,Y,) 4 (X,Y), as n — oo, where X and Y are two
independent N(0, 1/(2¢)) random variable. We omit the details. O
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Proof of Theorem 2.2 Note that

PR DV SR/ NP
TV = Y )
_ Vn \/ﬁzl:zl Yt—lut/(\/avyzl)
NS O PR RN S I GRS
and
vyl Yiau/ Wk V) 4 NGO, 1)
VI YR R VD)
by Lemma A .4. It suffices to show
n _ A 2
LV = PYe)” 1y (A29)

Vi
To this end, we write

n n

D Y=Y ) =) (Y= pYe) + (0 — PYi )P

=1 =1
n n
=V24+20 -9 Yiau+(p—pP Yy Y2,
=1 t=1

Hence, in view of the Cauchy-Schwarz inequality, we only need to prove

_ A2 n Y2
(0 =P szf:‘ =12 (A.30)

for showing Eq. A.29. Observe that

V2 n k, V2

Theorem 2.1 and Lemma A.4 guarantee that Eq. A.30 is true, and the proof is
complete. O

A2 n Y2 n YZ
(=P Yoy 1 2 Vi Wrkn(p — )P
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