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Abstract

Let{(X(1)
(k)
X ), n %% 11 be k-dimensional i d random vectors.

Necessary and sufficient conditions are found for the weak convergence of

the maxima le X(1)
j=1 j '

0

k)
V
n 

1 
X
( , 

suitably normed to a non-degenerate

limi.t df. The class of such limits is specified and conditions stated

for the limit joint df to be a product of marginal df' . Some results are

•

presented concerning extremal processes generated by multivariate df's.
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Introduction

Suppose {X ,
-n 

> 1} = { (x(1) ., x ), n>11 are independent,
(k)

n

identically distributed (iid) random vectors with k-dimensional distribution

function (df) F. Define the sample maxima as Y = (Y
(1), 

-n n 

(k)

n 

1 

(1) n (k)
(V. X. • .. V. X. ) We seek conditions under which 3 normalizing
3= 3 3=1 3

constants a > 0, b , > 1, 1 -‹ j < k such that
n n

(l) (1)
Y b
n n

(1)
a
n

(k) (k)
Y - b
n n

• (k)
a

converges weakly to a non-degenerate limit df and we seek specifications of

the class of such limits. To avoid trivialities we assume each marginal

sequence 
((j) 
Y
n 

- in (1) converges weakly to a non-degenerate
n n

limit. This problem has been considered previously by Geffroy (1958),

Tiago de Oliveira (1959) and Sibuya (1960) Their results are for

and do not extend in an obvious manner to higher dimensions.

A multivariate convergence to types argument (see Geffroy (1958))

quickly shows that the class of limit df's for (1) is the class of max-stable 

distributions where we define a df G in RI.c. to be max-stable iff for every

(j)
• 

n

(1

j k such that

(k) (k)
a x + )
n k n

Note that each marginal of G must be one of the three .classical extreme

value df's studied by Gnedenko (1943) and de Haan (1970, 1971). Max-stable

df's form a subclass of the max-infinitely divisible (max-id) df's

introduced and characterized in Balkema and Resnick (1975).

We begin in section 1 by deriving the form of max-stable df'

in R which have specified marginals. Several representations are given 

Therestriction on the marginals is next removed after which we take up

domain of attraction and asymptotic independence questions. Finally we



close with some observations about the extremal processes generated by

the max-stable and max id df'

The max id df's as discussed in Balkema and Resnick (1975) are a

proper subclass of the df's on R which can be defined as follows:

F(x
1 
, xk) is max id iff for every t > 0, Ft(xl, xk) is a df or

equivalently iff Vn F
l/n
 is a df. It is then immediate from (2) that

. max-stable df's are max id.

The following is a criterion for F to be max id:

Let A(xl, xk) = (-

v on [-00,00 
k 

called the exponent measure, such that

x
1 
ix x( xk}. Then there must exist a measure

V(Ac(xl, xk) < 00 for some (xl, xk) and

F(x . = exp{-v(A (x1, 
• 

xk))1.

From a process point of view the max id df's are precisely the class

of df's F which can be used to define a multivariate extremal process

Y(t) = (Y
1 
(t), Y (t)) Such a process is defined to have marginals:

V n, V 0 < t . . < t
1 n

(i)
k(ti) xki = 1,.

n .

1 
[ 

A
i=1 1 ' i=1 2

F
t2 -t1 A xi

(i)

i=2

• --t
n 
- (n)

F 
1

• • ,

i=2

A related viewpoint is that F is max id iff there exists a measure V. o

such that if we construct a Poisson random measure on R x [-00 00) with points

{Tn;
(k),
J 1 and mean measure dt x V(dx

the extremal process Y(t) by

• ,

-Co 00)

) then defining



(4)

-4-

Y.(t) = sup i ITk t}

we have Ft(x
1' 

x
k
) = P [Y (t) 

‹;x,
. i=1 ,k] = exp {-tv(AC(x

1
, .,x

1 

Our methods differ from those of previous authors because of

our reliance on the concept of max infinite divisibility and judicious

.use of polor coordinates. Also insight is gained by comparing the

multivariate stable Levy processes with certain of our extremal provesses Y

which satisfy fY(at), t > 01 =

positive parameter.

t
r aa 

Y(t), t > 01 V a > 0 where a is a

Max-stable df's with prescribed.marginals 

Call a max-stable df G in R simple if each marginal is equal to the

-x-1
extreme value df 0 (x) = e x > 0; i.e.

X"
. 00
i 

• ,

-xi
-1

We begin by deriving the form of a simple G. The reason why it is sensible

to start with a simple G becomes clear in section 4 where we remove this

restriction on the marginals.

Consideration of properties exhibited by (x) shows that (2) can be

written as

G nx , ..., nx = G(xl,

Vn and it is easy to switch to a continuous variable s in place of n so

that V s > 0

G
s 
sx • • • ,

Letting V be the exponent measure of G (5) becomes

(6) sV (A (sx .
'

• • xk)) =



1

where recall A(xl, = (- XkJ so that (6) entails

c 
x , x A)) = V 

c x
k
)).

1

For fixed s the measure sV(s-) agrees with V on a generating class closed

under intersections and hence we conclude VB G 13(Rk)

(7) sV(sB) = V(B) .

Let. 1
1T/2]kl andletT:R

coordinates: T(xl, .

. 2 2
and sin 0. = (x

1 i+1
• • •

x E be the transformation to polar

2 k 2
Cr, e) where r = E. 3. x. , e = (011.1= • • • ,

2 2 2
+ xk)/xi + + x) for i = k - 1. Fix

a Borel set C C E and set D(r,C) = { (s, 0)1s > r, e G C

> 0, V(T (D(r,C))) < 00 because for some x

-
we have T

1 
(D(r,C)) Ci A (x xk) and V(Ac(x ,

back to (7) we have

Note that for

x 01 i = 1 ..I

)

xk)) < 03. Referring

sV(sT D(r,C))) = sV(T(D(rs,C))) =

-1
i.e. if M(r) = V(T (D(r,C))) we have

M(r) = sM(rs).

Settings=r and S(C) = M(1) gives Mr) =r SC whereSisafinite

measure on E. Thus we have

Theorem 1: G is simple stable with exponent measure V iff there exists a

finite measure S on E such that

-
VoT(dr, de) = r 2 

dr S(de)

f sin .., sin e cos 0. S(d0) = 1
i-1

for i = 1, k-1 with the convention that ek = 0 and for i = 1 the

integrand is just cos 0
1 

Recall T is the transformation t polar coordinates.
.



The integral condition in Theorem 1 arises because of the

requirement that G be simple (cf. Theorem 2) and disappears when this

requirement is waived. To check that the integral must equal I note

that for i = 1, •

-1 c
x. =

TA

•

-2
r dr S(de

where TA l(r,e)Ir•sin e
1

gives the result.

X. m ocq)

sin 8 cos

-
Remark: For r > 0, 0< < Tr/2 we have vo T1 (Ac (r,

. Integrating on r

= 00• Thus Vo

cannot serve• as the exponent measure of a max id df.

The product measure appearing in Theorem 1 has the following

interpretation: Suppose G is the df of Y(1) where Y is related to the

(k)1

n
Poisson random measure (as described in (4)) with points {T

n' 
• J

(1) 

n

and mean measures dt x V(dxl, dx ). Transform these points into

{Tn; 
T(J(1)
' n

• •

j (k) ) . {T r } 
The resulting set of points

-n

constitute a Poisson random measure on R+ x x with mean measure

-
at x 

r2 
dr x S(de). Therefore {T k}, { k' 

} {0 I are independent sequences.
-k

Further understanding of the meaning of Theorem 1 is obtained from

the following considerations: For a function x(t) which is right continuous

with finite left limits Vt > 0 define the functional h via

(hx)(t) = sup

0 < s t

Corollary  : Let X(t) = (X
1 
(t),

- (s-) ) v 0) .

Xlc(t)) be a k-variate stable Levy

process of index 1; i.e. a process with stationary independent increments

and the property V a > 0 {X(at), t ›o} = {aX(t) + C(a), t 0 where C(a)

is a non-random vector. Suppose further that for i = 1, k the Levy

-1
measure Vi of Xi has the property that V1(x,00) = x for x > 0. The class

of extremal processes generated by the simple stable df's described in



-7-

Theorem 1 is precisely the class of extremal processes realized through

the scheme Y(t) = {Y (t), Y(t)1 = {(hX1)(t), (hXk)(t)}.

Proof: That Y is an extremal process follows (as in the 1-dimensional case

f. Dwass- 1964, Resnick and Rubinovitch 1973) from the fact that X induces

(1) (k)

'
Poisson random measure with points {T J, J where T i the

n n

(1) (k)
time of a jump and (J

n 
, J ) = X (Tn) - X (Tn-). The mean measure

is dt x 
V(dx1 " 

dx
k 
) where V is the Levy measure of X. However, if X

-
is stable with index 1, it is well known (Le.vy 1937) that Vol'

1 
(dr, de)

r 2dr dr S(de) where S is a finite measure on 7.

Remark: Corollary I was deduced as a consequence.of Theorem 1. The order

can be reversed. One can first show that (hX1, hXk) gives the totality

. of max stable extremal processes with prescribed marginals and use this to

deduce the criterion on the exponent measure.

In case k = 2, the criteria obtained in terms of V0 T 1 for G to be

max stable can be rephrased in terms of V:

Corollary  : G(x,y) is simple stable with exponent measure V iff

7/2
c x,y)) . x-1 farctan y/x -1 f

V A cos e S(de) + sin 0 S(de)

0 arctan y/x

-where -) is a finite measure on [OM such that

f11/2 cos 0 S(de)

0

r/2 sin 6 S(de)

0

r

Proof: The last two conditions arise because we require G(x,00) = expt-x y

-
= G(03 x). For the rest note that by Theorem 1 V 

1
DT (dr,d0) = r

2 
dr S(de)

so that

V(A(x,y)) = f fc r 4 dr S(de)

T(A (x,y))

= I I
{(r,O)ir cos 0 x, r sin 0 y

• =1 I
{(r,e)Ir cos 6 sine

dr S(de)

dr S(de)



and evaluating the integral on r for fixed 0 gives

Corollary 3:

cos 0 S(de)
y fir/2

arctan y/x

sin 0 S(d0)

If G is as in Corollary 2 and P(X x, Y y) = G(x,y) -0.1en

(i) X,Y are independent iff S{0} = Sfff/21 =L1 and S places no mass

elsewhere. This can be seen either from Corollary 2 or by checking directly

from G(x,Y) = exP f-(
1 + 2-)} that V{(t,$)It > x, s > = 0 for all x.Y
x y

(ii) P(X = Y) = 1 iff S{1114} = /2 and S places no mass elsewhere.

Remark: If the measure S concentrates on some point e
0 

Ei [0, i1/21 with 0

e
0 

4= ¶/4 we have Y = (tan eo)x a.s. and hence the marginals are both of type

(x), but are not equal. This means that G is not simple according to our
1

definition.

Remark: We can connect our results with those of Sibuya (1960) (see also

Geffroy (1958)) as follows: In Corollary 2 when k = 2 set

i.e.

farctant
W t cos 0 S(de) = ft cos arc tan y)d S(arc tan y)

0 0

1 1 .Goc,y exp — — + —
x.y Y

1+ — 
1
+ — 
1

x Y Y
(17- 

farctan y/x= cos e s(de) +
x.0

1 in/2

arctan y/x

t + 1 "I' X (t farctan;:tcos 0 S(d0) + Lff/2 sin s(a)
rctan

0

= tW(t) + r/2- tan 0 cos 0 S(d8) + S({7112})

arctan t

= tW + W(dy) + s(W21

0.

sine s(de)

,00
j (Y-t) W(dy) + t(1 - W(t)) + tW(t)• + S({ff/2})

t •

r
= t f°°(1 W(s) )ds + S({TT/2}) -

t



Example

Example 2:  • Take S[0, e]

•••

Therefore we conclude

x(t) = t W f y W(dy) + S({12"-}) 1 - t

Co

=1 (1 - W(s))ds + S({Tr/2}) - 1.

Note x has the properties specified by Sibuya:

flO) xis continuous and convexsince it is the integral of a monotone function

(11) max , -1) < X(t) 
V t

•

Conversely if G is of form (9) where X satisfies (10) and (11) then one

checks directly that G is max stable.

Example 1: (Cf. Geffroy 1958, p.71): Let S[0, e] = e for 0 <0 ‹ff/2 so

that 
0
ITT/2 cos 0 S(de) = fff/2 sin e s(a) . 1. Then x(t) = (l+t2)12 - (l+t)

0

- -1
and G(x,y) = exp {- (x

2 
+ 

2 
y )

1/2 } 
for x %% 0, y %% 0.

re= 3j cost sint dt, 0 e 7r/2. Then
0

- 
x(t) = - t(1 + t2)½ and for x 0,y> 0 G(x,y) = exp t-(x +y (x + y ) )

X(t) = -kt(l+t)-1 for 0 < k corresponds  (Sibuya 1960, p.208):

to S(t) =f 2k(cos y + sin y)-3dy and G(x,y) = exp + y-l-k(x+y)-10.

A constructive approach:

Next we follow a constructive approach which leads to a representation

of the simple stable df's in Cartesian coordinates. Recalling that the

-1
-

. required margipals are 01(x) = e
x
 , x > 0 observe that in R the Frechet df

G(x,y) = 01(x) A 01(y) = exp {- x-  V y for x, y > 0 is a simple stable

df. This df is concentrated on the line x = y. The df

-1 -1 -1 
-1 

-1
G(x,y) = exp {- (1+a) ((ax ) y + x V (ay ))}

-

is simple stable for a > 0 and concentrates on the lines x = ay and
 x = a

1 
y.

- (G is the product of two distribution functions each Of which 
concentratiqg on

one of the lines.) Generalizing this procedure we get the most general simple

-stable df in. Rk . Let Q =(x1, xk)Ixi 0, i = 1, , k, E x
2 
. =

1
•

1



U on Q with

f a. U(da ,
Q

and such that

G(x

-10-

is simple stable iff there exists a finite measure

• • ,

= exp

) = 1 for i=

max(a
1 1 '

• • • .1

• 1

akxk
U(d

Proof: That any G of the given form is simple can be verified easily.

prove the converse we use Theorem 1. We have

- log G , •••, x - fxi
fc-r,e)

and integrating on r gives

I.
eeE.:

{sin ... sin

r sin

COS

which completes the proo

dr S(de)

... sin O. cosO x i=
1-1 i

• 1• } S de)

Remark: .Independence of the k-marginals of G corresponds to a measure U

• • 1

concentrated on the k extreme points of Q. If U concentrates on a subset of 0,

then G concentrates on the straight lines through the origin and this subset

of Q.

Here are some examples in R:

Example 4: Suppose U{(1/12, 1/12, 0)} = U{(1/1/2, 0, 1/1/2)} = U{(0, 1/12, l/1/2)}

= 1/1/2 with 'U placing no mass elsewhere. Then

.Example 5: Let U concentrate on Q

density 1/2 there. Then

fl{

• -1

y, z)

-1
+ x V —1)}

or y=0 or z=OJ and have

}C



q(x, y, z) = exp -2 +

-11-

-2
+(x +z

-2 -2 -2 12
+ (y z 1.

.Example  : Let U have constant density 4" on Q. Then

G x y, z = exp -1/2(x-1 arcsin

+ z• arcsin

yz

2 2½2 2
x.+ y ) x + z

xy

2½ 2 2½
x + z ) (y + z )

-1
+ y arcsin  

XZ

22½ 2 2
x +y ) (y +z

for x, y, z >0.

Remark : Examples 4 and 5 are based on the observation that if Q is

partitioned into n measurable sets 01, • Q the stable df can be written
n'

as the product of n stable df's with angular measures concentrated on

Q. (i=1, n).

• Domains of attraction of simple max-stable distributions.

Here we characterize the domain of attraction of a simple stable

df G and again we recall that each marginal of G equals 01(x) - e-

Suppose F is in the domain of attraction of a simple stable df G;

i e El.a(j) > 0, b(j) n 1, j = 1, k such that

(k) (k)
. (12) Fri a.(1)x + bW, a x

k 
+ b G(xl, xk)

n n

for (x
- 1'

••, x ) a continuity point of G, 0, i=1, . k. Consideration

(j)
of the marginals shows that (12) still holds if b = 0, n>1,j=1,

(1) k)
(cf. Gnedenko (1943), de Haan (1970)). Suppose for the moment a

n 
= a = .=a

n

When this is the case we say F is in the domain of symmetric attraction of G.

Recall the notation A(xl, = ( xi]x x(-00, x ]. Note (12)

holds iff

lint n(1-F(anx , a
n
x ) = - log G x , oo,

n -)

so so that if V is the exponent measure of G we have

1/2



0. • v(AC
xl'• 

X]))

for for all A with V(A) = 0, where we suppose X is
 a random vector with df F.

Hence V B EiS(R) with v(6B) = 0 we have

Urn nP[XEaB
n

00

Now we switch to polar coordinates. Let C be a Borelsubset o E. and set

for r > 0

2
B(r,C) 

= (xl' 
)1 E x. > r

lim

,n m

nP

1

cc}

a r, C)1 limnP[XeaBr
n.

n n

= v(B(r,C)) = r S(C)

(by Theorem 1 provided S(C). = 0), i.e.

lim nP [fix 11

n 4' w

obtain

(14)

a. r, 0(X)E ci = r C)
n

are the polar coordinates of X. Setting r= 1 and C = we

anr] P [ 11 II > an]

and furthermore it follows from 13 that

(15) urn •P [II X > an, 0(X) e P [lixil > an]

n -'-°°

n

lim P [0(x)e CI II X 11 > an] = S (C)/S (Q)

co

It is not hard to see that a may be replaced by a continuous variable t

and that in this form (14) and (15) imply (13). Thus we have proved

Theorem 3: The random vector X with df F is in the domain of sy
mmetric

attraction of the simple stable df G with expon
ent measure V and

-1 -2
\)o T (dr de) = r dr S(de) iff



(16) lim P

t -,-co

-13-

[Ii X II > tr] P HI X lI > = r-1

(17) lim P [0(X) E CI !Ix!! > =
t 4- co

Corollary 3: In the case of symmetric attraction to G, the partial maxima

of Hx
1 
.11 where 

X, 
. i >1 are iid vectors from F, converge to (I)

- -1 la

Remark: The criteria for convergence of sums of iid vectors are the same.

See Rvabeva (1962,Theorem 4.2; set a=1)

The situation of non-symmetric attraction is discussed in the next•

section..

Sufficient conditions for convergence can be given in terms. of the

density of F when this density exists.

Corollary 4: Suppose G is simple stable and the measure S appearing in the

representation of Theorem 1 has density s(0), 0 = (0
1
,

k
) E .E.

Suppose F has density f. Then F is in the domain of symmetric attraction o

G if for all r > 0

(18) lim

÷PC)

(19) lim  

t4-03 f(t/12, t/(/2)2 t/(/2)k)

f trcose ,trsin cop ..,trsin

f(tcose
1 
,tsine cos ,...,tsin0 ...sinek_2cosek_i,tsinel...sine )de

-(k+1)
=r

f(cose1,tsine1cose2,...,tsine1...sine coalc..,:rtsine ...sin

= s(0)/s 4

k

Proof: Let f (r,e) be the density of 11x11 = (EX1.4)-2 and 0 = (01,- 

2
1

2 12
0. = arcsin ( E X2/ E Xk) and suppose

2=i+1 k=i

where



•••

-14-

s,) ds

and therefore

P [11)(11 > t, 0 E

-2

s (0)

(r,O)dx de

*(r, 141-)dr

s(0)d0

from which (17) follows and (16) follows directly from (20
) thus implying

F is symmetrically attracted to G. The conditions (20) and (21) readily

translate into (18) and (19) and the proof is complete.
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Example  : On R
2
 suppose S [0,0] = e , 0 <0 <2 for G. Then (19)

means

f(tcos 1, tsinel) — f(tcose , tsine

as t --°° v E [0, 71-]
el'

Stable df's that are not simple; domains of attraction.

We again suppose that (12) holds but now make no assumpt
ion

about the marginals of the limit G except that they be non-degenerate.

Denote the marginals of F by Fi, i=1, k and let U(x) be an

inverse of the monotone function 1/(1-Fi(x)). 
Then Ui satisfies

where

(22) T.

where

(23) lim (U.(nx

(i)
where a

appearing in (12

x -I

x)

1-x

e -1 1-e•

or log x

is a positive parameter (dejlaan, 1970

b
(i)

(i

n

in particular

j=1, k, n>1 are the normalizing constants

Therefore

1- •

(i)
< nx., i= k]

(i
lim P [ a(i)

n+00

G(T (x
1

• • • , •

1-1X
Ui



from (12) and (23)

are e

we have

-16-- •

If we suppose the marginals of G(T1(x1),

x > 0 (in any event, the marginals will be of th

symmetric convergence of the maxima of ,iF

i

n >11 to the simple stable df G(1111(x1), T (x )). Using this we can
k k

s type), then

1 k
(X );

1-F n

generalize the results in the previous two sections to the general case:

-•.The type of the most general max-stable df with non-degenerate marginals is

-1
of the 'form G (41

1
-7 ( 

1), 
Tk (xk)) with: G • a simple stable: df and

• 

one of the functions given in. .(22), k,• A df .F is in the domain

•Hof attraction of G.:• iff. FlUi(xi), )) is in the 'domain of

symmetric attraction of GITI(xi), yy)

We end thi:s section with a remark concerning our definition of the

simple Stable•df!- . We chose the approach used in section 2 because of the•

...links described in Corollary. 1 wi.th the stable Levy processes, However an

alternative approach would be to Start with df. s whose marginals are double

exponential . The transformation to polar coordinates is then replaced

by the :transformation

Z =

and all results can then be derived in an analogous fashion to the one given

2. For example in R
2
 if

= { (x,y) I x+y > 2w, x - > 2 }

replaced by

in section

where

s + log V(13(w + s z) log v(B(w, z))

is decreasing. There is a problem here however. In the previous
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-
case we had measures on the closed set 0,t 

k1 
so that. here we have to

consider measures on the closed set [-00,

In R
2 
the approach using marginals equal to exp {-

-x-1
linked to the approach using marginals equal to e

oik -1.

-x}
could be

directly if in the

latter approach we had used the transformation z = xy, w = arctan y/x instead

of the conventional transformation (x,y) (r,e) to polar coordinateS.

Similar remarks hold in higher dimensions.

. Asymptotic Independence

For completeness we derive by our methods two results of Sibuya

(l960) concerning asymptotic independence and asymptotic full dependence of

the components of the vector of maxima. We suppose that the vector of

maxima converges to a limit df and for ease of writing we assume symmetric

•convergence to a simple stable df. Asymptotic independence then carries

over to the general case. We confine ourselves to R
2 
as the generalization

to R is clear.

Theorem 4 (Sibuya): Suppose F is in the domain of. symmetric attraction of

the simple stable df G and (X,Y) has df F. Then asymptotic independence

holds i.e.,

(24) lim n(1-F a x, F(00,a y)) = lim n(1-F(a x, ay))

n 4' c° n °3

• iff

25) lim P [ Y >

x 00

-1 -1
+y log G(x,Y)

• P [Y x, X > 
X > x) --= urn r

PLX>x
x +00

Proof: Suppose asymptotic. independence holds. Then from the marginal

convergence
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-1 .

together with

lim (1-F (x, x))/(1-F(x,

n +00

in (1-F(x,oo))/(1_r(oc

x+00 .

we immediately get (25)

) =2

x

(1-F(x ) + 1-F 00, (17F(x, x))

Conversely suppose (25) holds. From marginal convergence we have

. in view of 26)

lint nP LX > ax,.Y•> 4

Iim n(1 -F(anx, any))

• 4-00

lim n( (1-F(anx 00)) + (1-F( a y))- P Ix>ax Y> a yl )

n 4-co

-1

:(using marginal convergence) and (24) ensues.

Example 8: Suppose F is the joint df of (X, -X) and is symmetrically.

attracted to a simple stable df G. Then (25) holds because

are. iid copies of xp [ x > x, > =.o for x > • us if { Xn, n 1}
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X.

- 1=

a
Y

and consequently a limit law for the range ensues:

x. A x.
1=1 i=1

a

Cf. de Haan 1974.

We have the following counterpart of Theorem 4:

Theorem 5 (Sibuya): Suppose F is in the domain of symmetric attraction

of the simple stable df G and (X,Y) has the df F. Then asymptotic full

dependence holds, i.e.

(27) lira n(1-F(a x, ay)) =
n n

n 4- 00

for x, y>O iff

-1
y
 

log G(x,y)

P 
(28) lim. P [ > xIX > 

[X > x, Y >] 
= = 1.

X +co
P [ X > xi

X C°

Proof: To see (27) implies (28) proceed in a manner analogous to th
e previous

•

proof. For the converse suppose (28) holds and note for t, x, y > 0 with

X:

P[x > ty, Y > ty] 

pfx> t
P Ex > tx, Y > ty]

P [x > t

X > ty, Y ty] ..p [ x ty, Y > ty]

P [x > ty, Y > ty]

P EX > ty, Y > ty]

Now lim P X < ty, Y > ty]/ P X > ty, Y > ty] = 0 from (28) and hence

0°
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X > tx, Y > tad/ P X > t

t 00

and replacing t by a we see

lim n(1-F(a x, ay)) =n n 
lim n( (1-F(a x, 00)) + 1-F(03, any))

n 4- co n-'-°°

=x

as required.

P [x > ax, Y > ay])
nn

Multidimensional Extremal Processes

Here we

_processes in R Let Y(t) = (Y
1 
(t),

collect some results about multidimensional extremal

• • .• Y
k
(
t
)) be an extremal process

generated by the max-id df F according to (3). From the form of the

joint distribution of y(ti), Y(tn) given by (3) it is clear that

• 
is a Markov process in R

k
 with stationary transition probabilities. Again

from (3) it follows that regular versions of the transition probabilities

are

• • • ,

:= P [ Yi (t±s) y., i=

=F
t.
(y1 ) 1

, Y;
1

• • • ,

, • • • ,

•••

The process Y is in fact a Markov jump process and we will compute

the parameters governing holding times and jumps. To facilitate this we

compute the generator S. The computation is conducted for k=2. For f

2
bounded and continuous function R R we have for Sf:



Sf(x
1 
, lim t . E = (f(Y

1  
t 0 

xx 
2

-1
lim t

t 0

•Since P
x1x 

2

p

+ P

+P

II f(y

Y t)) - f(x , 2))

- f(x x2)) P 
1 
(t) 2(t)Edy

x ,x
2

t E cly , Y2 (t) G dy

Y (t) E d E dy2
Y1 2 

(t

Yi(

t x

and recalling t

A

2
(t) E dy

G dy , Y (t) -x

P Y1 (t) Y2 (t) E

[y1 > x1, y2 > x21

y = x , y2 >

y > x , y2

V'(--=) as t 03 where V is the

exponent measure of F (8alkema and Resniak.,. (1976)1 we have:

Sf(x
2 =f (f (y1, - f(x , x2)) {1

ry > x y >

Y
l

y
x V (dy , -ccs, x2])

2

X2}

V(dyi, y )

• Comparing the form just obtained with the canonical form of the generator

for a Markov jump process (cf. Brennan p.331) we obtain the mean a (x

of the holding time in state (xl, x2) and the conditional probability

n((xl, x2); A) that starting from (xl, x2) the process jumps into A. For

arbitrary k these quantities are given by

a((x ,x
k
)) = v(A.

c 
x , ))d000,
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); A(171, Y )) = 1

for yi x., 1=1 k where as usual
1

A(y , ={ (t
1,

yk))

(Ac(x
1 
, x

k 
))

I t. ‹y., ,...,k} .

For processes Y generated by simple stable df's this result has the

following interpretation: Let •T be the time of the first jump After t=1.

Then

YT E A(y , yk)

P

for y. x., i=
1 1

If B = t

• • •

• • •

X X

. .

Y:'(1) = x
i
, i=1,...,k

T) e A(yi,

k. Therefore

Y T
04,

tk) t x

A
c
(y ,

y EE ri B
, xk)

•

• • •

kl then

V (A

V(Ac(Y y )
k)

x ))

yk))

V(Ac(xl, x )

V(A (x x
k
))

for any A EEB(R ). Supposing again that T is the transformation to polar

coordinates and that TY(T)

• • •

-
(IIYU,®) we have on sets A' such that T

1 
A' C B:

[ (II Yll, E = r- dr S(de)/V(Ac x
1 

x

A'

so that with respect to P (-) we have IIYll and 0 independent.
X )

1,
.10

Another independence result is given below which describes when

the jumps of Y are iid random vectors. Preparatory to this discussion we
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discuss the range 61 which we define as

61(y) = x I V open sets 0 x, P [ Y(t) G 0 for some t] > 01 } .

For what follows we denote the support of a measure V by supp V.

To characterize R(Y) we need hitting probabilities for rectangles.

This computation is done for k=2 and we seek P [Y hits (xl, x2] x (y1, y211

where xl < x2, y1 < y2. Assume Y is related to a Poisson random measure

as described in the introduction. Define a(A) = TA1), 42)) EEAl

to be the first time there is a point in A E 13(R.2). Then

P [ (t) E (x .x2] x (y1, y2] for some t]

= a( (-c°, x2] x (17 Y21) V a((xl, x2] x (-00, y2]
)

a(Ac (x2, y2))1 .

Note a((-00, x2] x (y1, y21) = a((- , x x (y1, y2] /V c((xl, x2] x

=: u A v and

a((x , ] x (-00, y2}) = a( (xi, x2] x (-00, y1]) A v =: w A v.

Set Z = a(Ac(x , y2)) and the required probability is

P [(U A v) V (4 A v) < zi

y1,

where U, V, W, Z are independent and for any A E 13(R2)  [a(A) > ti = 
e-tV(A)

Set X = V((x
l' 

x 
2 x (171, Y2]), X2 = \)( xl] (171, 1721),1

X3 = V((xl, 2] x (-00, y1]), A4 = V(Ac(x2, y2)). Performing the required

calculation by capitalizing on independence gives

P [Y hits (xl, x2] x (y1, y2]] = A {cm - .1.x 4.
1  1  1  1

4 1 2 4 1 4
X +X +

Assuming that A 0 we observe that the hitting probability is positive

iff + > 0 and A
1 
+ A

3 
> 0. This leads to:

1

1
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Theorem 6: Let Y be extremal in R
k 

with exponent measure V. Then

(x1, . . , x
k
) E 61(y) iff for all 6 > 0

x + Elx x(-m, x
i-1 

+ 6] x (x
i 
- 6, x. + 6] x x. +

1 1+1

Equivalently we have

63(y) = (xi,

x(-00, x
k 
+ > 0 for i=1, k.

x]) Ix. = sup f yi I y E , k for some A C supp

When Y is generated by a simple stable df, the range has the

following characterization. Recall the transformation to polar coordinates T:

(x
1
, 000, Xk) (r, 0).

Corollary 5: If Y is extremal generated by the simple stable df with

exponent measure \)°T-1(dr, de) = r-2dr S(d8) then

supp V = (x
1
, x3 )18 E supp sl

and WY) =(xi,  x )1e
k 

E closed convex hull of supp Sl.

We now consider the following problem: Let 1 < T
1 
< T

2 
< .

the times Y jumps past t=1. For convenience set T
0 
= 1. When is

{Y(T ) - Y(T ,n >1} a sequence of iid random vectors? We begin by
n n-1

reviewing and completing the situation for k=1 (cf. Resnick and Rubinovitch, 1973).

• If Y is extremal in one dimension generated by F(x) set

Q(x) = - log F(x) = V(x, co). Suppose a = inf {xIF(x) > 0}. If the jumps

of Y are iid then

(30) {N(l' ), n > 101 =t !Z + n.
0 3'

1

where {Z
n 

} are iid rv's with common df H(x). Note (30) holds iff

Vx G a(Y)
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(31) 1 - Q(y)/Q(x) = H(y-x)

for y %%x (cf. 29). The following facts are evident

(i) R(Y) = supp V

(ii) t EE supp H iff t %% 0 and t = x - x
1 

where x1, x
2 

supp V.
.2 

This follows from (31).

(iii) If x
1, 

x
2 
(E R(Y) and x < x

2 
then Vz (E R(Y)

z + (x
2 
- x1) E (R(Y)

This is clear since x
2 
- x

1 
EE supp H.

(iv) Either d'917) = (a, 00)

or (R(y) = { x0 + nd, -00 < n < 00 and x0 + nd a}, d > O.

This is easily seen once one defines

d = inf { y - xy > x, x, y E R(Y)} .

Thus one is led to the possible structure of (RCY) when independent

jumps are present. Analyzing (31) leads to functional equations which Q must

satisfy. These equations are easily solved and the result is: Y has iid

jumps iff

(i) 61(Y) = (a, 00), - 00 < a and F is of type

-x

F x

x< a

(ii) 6Z(Y) = { x0 + nd, Vn such that xo + nd }

and F concentrates on {x
0 
+ nd} and is of the form

F(x + nd) =

where 0 < p < 1.

for x
0 
+ nd a

0 otherwise

kWe now consider the problem in Rso suppose the jumps of

Y(-) = (Y
1
(' ) Y

k
(-)) are iid vectors. We are going to prove that the
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process is then one-dimensional; i.e. that WY) is contained in a

straight line. Pick two arbitrary components of Y. These components

constitute an extremal process in R
2
 and the jumps are iid pairs. The

desired result will be proved if we prove the result for any two components

of Y; i.e. it suffices to suppose k = 2.

Suppose in order to get a contradiction the process is not

concentrated on a line. Then there are points (xl, x2), (y1, y2) E 61(Y)

with (say) xl ‹;y1, x2 > y It is evident that the following points must

be in 61t(Y):

{z(n, m)1: ={ (yl + n(yi - x , x2 + m(x - y2

where n -1, m -1, n,m integers but we exclude n = m = -1. Define

r c
g(n,m) = vi A (z(n,m))1. Referring to (29) and using the asumption of iid

jumps we have that g(n + r, m + s)/g(n, m) does not depend on n, m(r,s.= 0,1,...).

Call this ratio f(r,$) so that

g(n + r = g(n, m)f(r, 0).

From this we deduce

f(r + s, = f(r, 0)f(s,

r
and thus f(r, 0) = e

a 
for some constant a which entails

a(n-l)
g(1, m).g(n, m) = e

Similar analysis on the second variable shows

á(n-1) b(m-1)
g(n m) = e e g(1, 1)

an bm
= e e

where c, a, b are constants and

Since g must be non-increasing in n and m we must have a< 0, b < 0.

Define sets

B•= { z
11 

z
2 
) I y + (n-1) (y --x

n,m 

+ (m-1) (x -y

n(Y1-x1),

x
2 
+ m (x2-y2)

for n, m = say and note
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V(B
n,m
) = -g(n-1, m-1) + g(n-1, m) + g(n, m-1) - g(n, m)

= -c e
an 

e
bm 

(1 - e
-a
)(a - e

-b
) < 0

which gives the desired contradiction.

Thus if Y has iid jumps then Y is one-dimensional. The

structure of (RCY) and the possible distributions of the process are then

obtained from the one-dimensional results.
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