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LIMIT THEORY, FOR MULTIVARTATE SAMPLE EXTREMES
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Limit Theory for Multivariate Sample Extremes

by Laurens de Haan* and Sidney I. Resnick**

- Abstract
| (1) k) 11w o . S |
Le_t{(Xn Y Xn ), n = 1} be k-dimensional iid random vectors.
Necéssary'and sufficient conditions are found for the weak convergencebof
the maxima {V?=1 X;l), ceey V?_l X;k)} suitably normed to a nonQdegenérate
limit df. The class of such limits is specified and conditions stated

for the limit joint df to be a product of marginal df's. Some results are

presented concerning extremal processes generated by multivariate df's.
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1. - Introduction

% (1) (k)

Suppose {Xn, n =1} = {( v eeer X ) m 2 1} are independent,

idéntically distributed (iid) random vectors with k-dimensional distribution

(1) (k)

function (df) F. Define the sample maxima as Yn = (Yn ; eear Yn ) =

n (1) n (k)
L X2, ele, V. X
(V'J=1 J j=1 3

constants ar(xj) > 0, br(lj) , n=1, 1 <3j <k such that

). We seek conditions under which =} normalizing

L @ R RN )
n o n ’ n n

(1) B R I SRR
~ 2D a(k)

n ’ n
donverges weakly to a non-degenerate limit df and we seek specifications of
the class of such limits. To avoid trivialities we assume each marginal

(3) _ p)y 3
n n

sequence (Yn

in (1) converges weakly to a non—degenerate
limit. This problem has been consideredrpreviously by Geffroy (1958),
.fiago’de-Oliveira (1959) and SibuYa (1960). . Their results.areﬁfor k=2
ana do not extend in an obvious manner to higher‘dimensioné.

A multivariate couvergence,to types a:gument (see Geffroy (1958))
quickly shqws that the class of limit df's for (1) is the class uf méx—stuble

distributions where we define a df G in Rk to be max-stable iff for every

n, 3 AL 0, B(.J), 1 < j <k such that
n n :

(1) (k) (k)
n * ...,.an xk + Bn

8 n, (1)
(2) k G (an xl + B

) = G(xl, .,.,‘xk) .

_Noté that euch‘marginal of G must be one of the three clussical'extreme
value af's studied by Gnedenko‘(1943) and de Haan (1970, 1971). Max-stable
df's form a subclass of the max-infinitely divisible (max-id) dfis
: iuttoduued and charaétérized’in Balkema and Resnick (1975).
We begin in section 1 by deriving the form of max—stablé df's“
iu Rk which have specified marginals. Several representations are given.
" The resttiction on the marginals is next removed after which we take up

domain of attraction and asymptotic independence questions. Finally we




close withlsOme observations about the extremal processes generated by
the max-stable and max id df's.

The max id df's as discussed ianalkema aﬁleesnick (1975) are a
proper subclass of the df's on Rk which can be defined as fqllows: |
F(xl, ceey xk) is max id iff for every t > 0, Ft(glf ...,‘xk) is a df or
equiyalenfly iff ¥n Fl/ is a df. It is then immediate from (2).tha£
A max¥stable df's are max id.

Thekfollowing is a criterion for F to be max id:

Let A(xy, -.vy %) = (= x, 1% PRI Gl x ]. Then there must exist a measure

V on [fw,m)k, called’the exponent measure, such that V([hm,w)k) = 0,

' c o : .

V(A»(xl, ey xk) < o fgr some (xl, ooy xk) apd
CF(x., x. ) = ex {4v(Ac(x % 0}

10 e X pl-V 1r e K

' From a process point of view the max id df's are .precisely the class
of df's F which can be used to define a multivariate extremal process
r(t) = (Yl(t), Cies Yk(t)). Such a process is defined to have marginals:

¥n ¥0<t, <...<t

1 n

(1)
l 7

(1)
<
vear Y (ti) X,

X , i=1,...,n]

L
(3): ‘P[Yl(ti) P

A

- ptntne (x{n) e,

A related vieWpoint is that F is max id iff there exists a measure V on [-oo;oo)k

. . : . k.. L
such that if we construct a Poisson random measure on R+ X | -o,0) 7 with points

(1)

SRR Jék)} and mean measure dt x V(dxy, ..., dx) then defining

{Tn;'J

. the extréhal process Y(t) by




@ v =sw 3| <t

we have Ft(xl, ceer X ) =P [Yi(t) <§xi, i=l{...{k] = exp'{;tv(gixl;_._’ xk))}~.
| Our methods differ from those of previous authors because‘bf

our reliance on the concept of max infinite divisibility and judicious

‘use:of’polor coordinates. Also insight is gained by comparing the

multivariate stable Lévy processes with certain of our extremal provesses Y

which satisfy {Y(at),; t > 0} = (% y(v), t > o} ¥ a > 0 where o is a

positive parameter.

"2, Max-stable df's with prescribed marginals

' k. . . . ‘
Call a max-stable df G in R simple if each marginal is egual. to the
. - —_— ,
extreme value d4f Ql(x) = e * o, X>0; i.e.

-1
-X'
et x; >0 .
_ i

We begin by deriﬁing'the form of a simple-G.‘ The reason why it is senéible
to start with avgimple G becomes clear in section 4.where-we remove this
restricéion on the marginals.

. _;Consideration of propertieé exhibited by.Ql(x)_Shows that (2)'can Bé

] r. ***7 ] 14 14 x]{

. ¥n and it is easy to switch to a continuous variable s in place of n so

. that ¥ s > 0
(5) GZ(sXy, +eey 8X) =GRy, wenr X)) .
-Lettihg V- be the exponent measure Of‘G (5) becomes

(6) sV (sxy, +.u s%)) = VA Ky, -eey Xy

ll




" where recall A(xl, ceos xk)'= (=00, xl] X eee X (=0, xk] so that (6) entails
v (saS( )) = vatx %))
s (SA xll seeyg Xk —, £ lr LR 4 k .

For fixed s the measure sV (s-.) agrees with v on a generating class closed

under intersections and hence we conclude ¥B € B(Rk)
(7) _ sv(sB) = V(B) .

Iet 2 : =‘[0, 'rr/2]k—l and let T : Rk > R+ x 5 be the transformation to polar

2 k2
» cooxdlnateg. T(xl, e s xk) = (r, 9) where r~ = Ei=lﬁxi , 9 = (6
2

i+l

17 e ek)

L2 2, ,.2 2 . :
and sin Gi = (x + ...+ xk)/xi + ...+ xk) for i =1, ..., k - 1. Fix

—
~

a Borel set C C 5 and set D(r,c) = {(s, 6)|s >r, 8 €c}. Note'that for

r >0, v(T_l(D(r,C))) < © because for some X., ..., X Z0,i=1...%k

1’ k' *i

o 1 ‘ . o . ‘ - n
C
we havelT _(D(r,C)) A (xl, e xk) and V(A (xl, ooy xk)) < o, Referring

back to (7) we have

sv(sT T (D(x,0)) = V(T (D(rs,0))) = v oo,
ie: if‘M(ri = V(T_l(ﬁ(r,C)s) we have )

M(r) = sM(rs).

- . !
- Setting s = r 1 and S(C) = M(l) gives M(r) = r "S(C) where S is a finite
measure on 2. Thus we have
Theorem 1l: G is simple stable with exponent measure V iff there exists a

finite measure S on £ such that
Ve T (dr, d6) = r “dr s(de6)

‘sin 91—1 cos ei S(dg) =

for i = 1, ..., k-1 with the convention that Gk = 0 and for i = 1 the

integrand is just cos 61. Recall T is the transformation to polar coordinates.




The integral condition in Theorem 1 arises because of the
requirement that G be simple (cf. Theorem 2) and disappears when this
requirement is waived. To check that the integral must equal 1 note

that for i =1, ...,k

oo=1 c '
X, = VA (®, .., ©, X,
l : ( ‘ ( ’ r 14 l’v

f r24r s(de)-
TaC o

where TAS =1{(r,6)|r'sin 61 ... sin ei-l cos Gi'> xi}. Integrating on r -

giveS»the iesult.
| Remark.: For r >0, 0<6 <17/2 we have VoT_l(Aé(r,e 3)
canhpt Sérve.as>the e#ponent measure of avméx id daf.
The product measurevappearing in Theorem 1 has the following
interpretation: = Suppose G is the df of X(l) where Y is related to. the

J(l) (k)}
n

Poisson random measure (as described in (4)) with points'{Tn; ,’...,’Jn

aMm%ﬁmmu%dtxwwr.”,&Q.Tmm%th%pﬁMsmm

(1)

| {Tn; T(I " e Jék))} = {Tn, o Qn}' The resulting set of points

.constitute a.Poisson random measure on'R.+ X R+ b4 E»with mean measure

at x r-2drbx S(d). Therefore {Tk}”{rk}’ {Qk} are independent sequenéés.
Further understanding‘of the meaning of Theorem l‘is obtained fromk

.fhe following considerations: For a fuﬁctioﬂ x(t) which is right‘continuous

Qitﬁbfinite léft 1imits‘Vt > 0 define the functional h via

o) = swp ((x(s) - x(s=)) v O) .
: T 0<s<t.

Corollary 1l: Let X(t) = (Xl(t), . edy Xk(t)) be a k-variate stable Lévy

_proqess of index i; i.e. a process with stationary indepéndent increments
,and_the.prqperty ¥ a> O_{g(atj, t = 0} =-{$§(t) + g(a), f 2 0} where g(é).
ié a non-random vegtor. Supbose further.that for i = 1, ..., k the Lévy
X heésure Vi of Xi has tﬁe property that vi(x,w) = x_1 for x > 0. The class

of extremal processes generated by the simple stable df's described in




-Theoiem 1is preéisely the class of extremal processes realized through
the scheme Y(t) = {¥;(8), ..., v (0)} = {hx) (1), ..., (X)) ()}
Proof: That Y is an extremal process follows (as in the 1l-dimensional case -
‘cf. Dwass - 1964, Resnick and Rubinovitch 1973) from the fact that X induces
J(l)
n

: . . . k .
-Poisson random measure with points {Tn; ’ ...,-Jé )} where Tn is the

time bf a jump and (Jél),v..;, J;k)) = X (Tn) - X (Tn—). The mean'measure

is dt x v(dxl,‘..., dxk) where v is the Lévy measure of §. quever,‘if §
. is stable with index 1, it is well known (Lévy 1937) that vt (dr, a)
rar S(dg) where S is a finite measure oﬁ 5.
.Remark: Corollary‘l was deduced as a cbﬁsequence4of‘Theqremvl. ‘The order
can 5e revetsed. One can.first show that (hx1, veer hxk) gives the totalify
of.maxvstable extremal proéesses with prescribed marginals and use this to
deduce the criterion on the exponent measure.

In case k = 2) the criteria obtained in terms of v°T-l for G to be
max stable can be'rephraéed in terms of v:
Corollary 2: G(x,y) is simple stablé with exponeht measuré 9 iff

. § -

cos 6 S(d0) + y—l / : sin 6 s(498)
0 arctan y/x

V(Ac(x,y)) - x-l farctan v/x

‘where S(+) is a finite measure on [0,5] such that

[™? cos 0 s(a®) = [™? sin 6 s(a0) =
0 0

‘Proof: The laét two conditions arise because we requiré G(x,®) = ekp{-x—l}

24r s(d6)

= G(°,x). For the rest note that by Theorem 1 V>T_l(dr,d6) =r.

so that
v,y = [ [ ™2 ar s(ae)
oL T(A (x,y)) '
. _ r~2 ar S (do)
{(x,0)|r cos 8 <x, r sin 8 <y}°

2 dr s(dd)

g v
: to x> cos 6 /\.sin 0 }




and evaluating. the integral on r for fixed 0 gives

: #—1 farctan y/x cos 6 S(d0) + Y—l fn/z

sin O s(49)
0 , - arctan y/x
" as éssexted.
..cOrollarstz _Ibe is as in Corollary 2 and P(X < x, Y <y) = G(x,y) then
| (i) X,f are independént iff s{o} = s{ﬁ/z} =11 and S places no mass’
.elsgwhe:e; This can be seen either-from‘Corollary 2 or by checking directly
vfrpm G(x,y) = exp {—(§-+'%)} that v{(t,s) |t > X, s > y} = 0 for all‘x,y > 0.
| (ii) P(X =7Y) = 1 iff s{n/4} =2 and s placesvnq mass elsewhere.
Remark: If thé measure S concentrates on some point 90 € o, /2] with i
60v¥?ﬂ/4 we-have Y = (tan GO)X'A.S. and hence the marginals are both of type
. @i(x), but. are not equal. This means thgt G is not simple according to our
'definition.
Remark: - We can connect our resuits with théée of Sibuya (1960) (see aiso

. Geffroy (1958)) as follows: In Corollary 2 when k = 2 set

(8) :  W(t) = farctant cos 6 s(ad) = ft cos (arc tan y)d S(arc tan'y)
e 0 0 ' '

--and

1,1

(@  Gley) =exp -+ TS XN},

%9 - farctan y/x c

os 0O S(de) + l—fﬂ/z . .~ sin 6 s(d6)
5 . _ o

1
x arctan y/x
/2

rctan t

farctantt

Tt 1l xR =t
*X !

coé_e s(ad) + £ sin 6 s(d8)

J'TT/Z— :

arctan t

tan 0 cos 6 s(d6) + s({m/2})

= tW(t) +
wi(t) + [y way) + s({n/2}h

[P(y-t) W(dy) + £(1 - W(E) + ew(e) + s({m/2h
t .

t+ [T(1 - w(s)ds + s{n/2h). .
t -




Therefore we conclude

x(t) =t w(t) + [ ywdy) +s({fH) -1 -t
: t . : .

[>e]

[ @ -w(s)as + s({n/2}) - 1.
t _

. Note X ‘has the properties spécified byv Sibuya:

{(10) © ¥ .is continuous and convex since it is the "integral of a monotone function
(11) max (-t, -1) < x(t) <O, ¥t=0.

Copverseiy if G is of form (9) where X satisfies (10) and (11) then one
' checks directly that G is max' stable.

Example 1: (Cf. Geffroy 1958, p.71): Let sl o, 6] 8 for 0 <6 <1/2 so

‘that f'g/Z cos 6 s(df) :fg(z sin 6 s(d6) = 1. Then Y (t) = (l+t2)15 - (1+t)

and Gv(x,y') = exp {- (x-2>+ y-z)l:} for x 20, y 2 0.
Example 2: - Tak_e slo, 8] = 3f(e) cost sint dt, O < 0 < T7/2. Then

x(t) = - €(1 + t2)_1!‘ and for x = 0,y = 0 G(x,y) = exp {-(x'-'.L +'y

2 -%)}.

Lo (x2”+ v

Example 3: (Sibuya 1960, p.208): X(t) = -kt(1+t)—1 for 0 < k < 1 corresponds

t . - e - -1, :
to S(t) = fO 2k(cos y + sin y) 3dy and G(x,y) = exp {-(x 1 + vy 1—k(x+y) 1)}.

A constructive approé.ch:

Next we follow a constructive approach which Vl_eads to a _représentat;‘.on.

of the simple stable df's in Cartesian coordinates. Recalling that the
-1 c
- required marginals are @l(x) =.e x , X > 0 observe that in R2 the Frechet df

o _ : -1 -1 ,
G(x,Y) -=_®1(x) N 0, (y) = exp {-x "V y "} for x, y> 0 is a simple stable

df. This df is éoncentrated on the line x = y. The df

gy = exp (- ) e V oyt IV @y )

is simple stable for a > 0 and concentrates on the lines x = ay and x = a",ly.

) (G is. the product c;f two distribution functions each of which concehtn'a‘tin'g on

one of the lines.) Generélizing this procedure we get the most generalv simple
: X 2. ‘

stable df in . RE. . Let Q-={(xl, ey xk)|xi >0,i=1, ..., k I %" = 1}.
. ‘ » v




Theorem 2: G(xl, ;..,’xk)-is simple stable iff there exists a finite measure
U on  with
fQ ai U(da;, ..., Q) =1 foris=1, ..., k

and .such that
G(x.' x.) =exp {- | max (a. %+ 1y ua: ) d )}'
’ l, ..’., X a 1*1 I --‘-l akxk ) al, e ey ak -‘

Proof: That any G of the given form is simple can be verified easily. To

prove the converse we use Theorem l. We have

- log G(xl’ ceay xk) = f ) r-2 dr S(de) B . : .
' ‘ ﬂa;?)lr sin 91'... sin 8;_1 cos Gi'Sixi, i=1, ,..fk}c

and intégrating on r gives

sin 61 ... Sin ei_l cos Gi

= f Amax' { — " , i=1, ...,.'k} S(do)

which completes the ptoof.

Remark: JIndependence of the k-marginals of G corresponds to a measure U
 concentrated on the k extréme points of Q. If U concentrates on a subset of Q,
then G concentrates on the straight lines through the origih and this subset

- of Q.
Here are some examples in R :

. Example 4: Suppose U{(1/v2, 1/¥2, 0)} = u{(1/¥2, 0, 1//2)} = vl (0, 1/¥2, 1/vV2)}

= 1//? with U placing no mass elsewhere. Then

-1., - - - - =1
G(x, ¥y, 2) = exp {- %(x -Vylfyle_l+x1-Vzl)}'
fOr_xr Y Z>0-
' ,ExémEle 5: Let U-cqncentraté on Q N {(x, Y z)|x=0 or y=0 or z=0} and have .

density % there. Then




G(x, y, z) = exp -4{x 2 + v AT 22 HE

.Ekamgle 6: Let U have conStant'density 4/ on .. Then

| -1 . vz | -1 . f XZ
G(x, vy, z) = exp {—%(x arcsin +y arcsin
ks R y2)1;(x2+ 22)% (x2+y2)%(y2+22)%

+ zrl.arcsin __xy }
: (x2+_zz)%(y2+ 22 %

for x, Y, 2 ‘> 0.
IRgmaik: Exampies 4 and 5 are baséd on the obsgrvationbthat_if Q is

. partitioned intb n measurable sets Ql, .. Qn’ the;sﬁable af can be‘writteh
as éhé product of n stable df's with angular measures concentrated on

Qi*(i=l, ceey D).

3. Domains of attraction of simple'max—stable distributions.

Here we characterize the domain of attraction of a éimple stable
: _ . S 1 _
"df G and again we recall that each marginal of G equals ®l(x) =e * ;x> 0.

Suppose F is in the domain of attraction of a simple stable df G;

_i.e.‘ElaéJ) >0, béj), n=1, j=1, ..., k such that

e n, (1) (1) (k) (k)
- (12) . F (an_._x1 + bn ’ a x + bn

) f G(xl, ;'°f xk)
_'for(xl,/,.., xk)ba continuity point of G,in.>’0, i=1, ..., k. Cénsidération
) 0, n>1,51, ..., k

n -
L)
n

of the marginals shows that (12) still holds if b

(cf. Gnedenko (1943), de Haan (1970)). -Suppose for the moment a =

When this is the case we say F is in the domain of symmetric attraction of G.

Recall the notation A(xl,'..., xk) = (—00, xllx eeo X(=, xk]. Note (12)
‘holds iff

, lim n(1-F(a x
.~ n

A ""'anxk) = - log G(xl, ceey xk)

1I

_so that if v is the exponent measure of G we have




im ne [X €a a%(x,, ..., x)] = v@aT(x i x)
e =~ %n 1 *k , 1 k

'fof all A with V(9A) = 0, where we suppose X is a random vector with df F.
Hence ¥ B € B(Rk) with V(3B) = 0 we have

" 1im nP [X € a B] = v(B).
. -~ n.
»n-)oo

Now we switch to polar coordinates. - Let C be a Borel subset of Z and set

for ¥ > 0

: ' k2 2 ’
_Mr&)?{(ﬂj..uikﬂ\ixi >r, 0 €c} .

‘7f_ Then

‘lim nP [X € B (a.r, €)] =1lim np [X € a B(r, O]
.n > ® R n. n > ® ~ n

= V(@B (,0) = r 150
‘(by Theorem 1 provided S(3C) = 0), i.e.
(13) lim ne (Xl > ar, OWEC = s
: n > w ~ n SR .
" where HX”,v O are the polar coordinates of X. Setting r=1 and C = Q we
obtain
-1

(14) - 1lim P [Ixl >'anr]/ plIxll>al=r
n>o : ~ e

and furthermore it follows from (13) . that
(1) lim P [lxll>a , 6(X €cl/pllxli>al=
g e ~ ~ _ ~ n

1in P lOX €cllixll>al =sE@/s@ .

. n > ®
‘Ittis’hotkhara to see that a, may be replaced by a continuous variable tq
-and ﬁhét in this form (14) and (le imply (13). Thué wé have proved '
Theorem 3: - The random vector X with df F is in the domain of‘symmetric
attraction of the simple stable df G with exponent measure V and

Vo L (ar, a0) = £ 2ar S(d8) iff

~




(16)  1lim P [ixll > el /2 [l > ¢ =
t+oo

17 1m ploE €c | Izl > €l = sw@)/s@.

o
Corollary 3: in the case of'Symmétric attraction to G, the partiai maxima
of "Si" where §i' i 2 1 are iid vec#ors from_F} conveige to @l.

: Remark: The criteria for convergence of sums.of iid vectors are the same.
See Rvateva (1962 Theorem 4.2; set a=1).

The situafion of non—symmetric attraction is discussed in the next:
section. .
Sufficient conditions for convergence can be given in terms of the

.»density of F when this-denéity exists.

) Coroliafz 4:  Suppose G is simple stable and the measure S apéearing in the
representatlon of Theorem 1 has density s(e), 6 = (6 e ek).e =,
Suppose F has density f£. Then F is in the domain of symmetric attraétion 6f.

.G if for all r > 0

f f(txcose tr51n6 cosez,,..,tr51n6 ...51n6 _2

-
e

cosB l,trslnel...s1nek;fdg

"f(tcosel,t51nelcosez,...,t51n61...51n6k_zcosek_l,t51n61...51n8k)d9

- Ot

,t31n6 ...51n6

COS%?l

f(tcosel,t51n91cosez,...,t;lnel...51n6 k=2

-1

(19) lim 5 —
o £(t/V2, t/(V2)4, ..., t/(V2))

= s(0)/s(8) .

’ : 2 CLl
Proof: Let f, (r,e) be the density of lIxll = (ZXi )12 and O = (@l, .eel C&) where
‘ k k ~ 1 ~
Oi = arcsin ( Z X / L X%)% and suppose

Q—1+l =3




i'f*(ft,e)de

8

(20) lim
vt »—)- 0 I f*(t,g)dg
pE

(21) lim £,(£,0)/ £,(t, §) = s(0)/ s@) .
B ol o ) : :

‘Note that (21) and L'Hospital's rule give

- £ (s,0)ds
: J:=t A s(9)

Jlim -

| _ :
S ETE r £, (s,5)ds 8(1)
- ), T

-and therefore

P liixlh> ¢, © €d

i lim
g > [
S Ee(x dr

-~

t .

,-fi [n ~£,(z,0)ar do
BEC - .

~

r f* (xr, g-)dr
& ~

S(C)

s®

from which (17) follows and (16) follows directly from (20): thus implying
F is symmetrically attracted to G. The conditions (20) and (21) readily

translate into (18) and (19) and the proof is complete.




Examgle 7: On'R? suppose s [0,0] =6, 0<¥6 <% for G. Then (19)
means
f(tqosel, t31n61) “’f(tcosez, ts;nez)

aste ¥ 6,r 6, €lo, %1.

4. stable df's that are not simple; domaihs'of attracﬁion.
We agein euppose that (12) holds but now make no assumption
'about the marginals of the llmlt G except that they be non- degenerate.
Denote the marglnals of F by F. it i=l, ..., k and let U (x) be an

1nverse of the monotone function 1/(1 F (x)).  Then . Ui satisfies

Ui‘tx) - Ui(t)

Lim
t:+ @ Ui(te) - Ui(t)

xﬂl ,lﬂ;p

ePar 1P

or log x
"for x > 0 where p is a positive parameter (de Haan, 1970); -in particular

(1)

(i)
bn )/ 8

(23)  lim (U, (nx)

noo

= }Wi(X)’

 where Meél) >0, béj), 3=1, ..., k, n =1 are the normalizing constants

appearing in (12). Therefore

~1im P [
n > 0 v 1 F

1)

n

1n e [P by M < oy mxg) -piys ot

n -=>

, i=1, secr k]'

G(Tl(xl), R Tk(xk)?




‘from (12) and (23). If we suppose the marginals of G(¥, (x;), ..., ¥ (%))
are ‘e ﬁf ; X > 0 (in any event, the marginals will be of this type), then:

1 1, - 1k
(X7, (%) 5.

we have symmetric convergence of the maxima of { ey
o . : l—Fi n l-Fk

n 2’1}’to the simplé stable daf G(Wl(xl), ...,.Wk(xk)). Using this we éan
generalize the results in the preVioué.two sectiohs‘to'the general case:
Thg typé 6f thé moét general max—~-stable 4f Qith non-degenerate ma;ginals is
.of the form G*(Tzl(xl), ceay W;l(xk)) with G, aksimple_stablg af and Ti
~one of fhe functions given in (22), i=1, ee., k. A df F. is in.the doméin
bf éttréctiop of G iff. F‘Ul(xl)’ ...,'Uk(xk?) is in the domain,of
'symmetfic attractién of G(?l(xl), ..;, Wk(xk))'_ |

We end this section with a remark concerning our definition of the
:siméle Stéble df's. We chose the approach used in section 2 because of fhe
linksideéc:ibed in Corollary 1 with the stable Lévy érécesses. However an
‘élternative approach would be to staft with df's whose marginals are douBle
exponehtiai df's. The transformation to poiar coordinatés is then replaced

by the transformation
z., = X, + ...+ xk, Z, = Xy = Xyy eees Z =X - X

‘1 2 k k-1 k

*and all results can then be derived in an analogous fashion to the one .given

5 . ‘ , ' 2
in section 2.. For example in R if

B(w,z) ={ (x,v) | x+y > 2w, x - y > 2z}

“then (6) is replaced by

.s + log V(B(w + é, z) = iog V(B(w, z))
;which entails
V(B(w, 2)) = e "p(z)

where P 'is decreasing. There is a problem here however. In the previous




S _ e
case we had measures on the closed set [0.F 1 so that. here we have to

" consider measures on the closed set [-%, co]k_l.

In R® the approach using mérginals equal to exb {-e™*} could be
linked to;the approach using marginalé equal to e_x—lbdirectly if in’the _
“latter appréach we had used the transformation z = Xy, w = arctan yv/x insﬁead

of the conventional transformation (x,y) > (x,8) to polar coordinates.

Similar remarks hold in higher dimensions.

5. Asymptotic Independence

For completeness we derive by our methods two results of Sibuya

(1960)cohceining asymptotic independence and asymptotic fullvdepéndence of
'the comenenﬁs of the vector of maxima. We suppose that the vector of
:maXima.converges to a limit df and fér ease 6f writing we assume symmetric_

conVeréehce to é simple stable df. Asymptotic independence then éafries

over tb the general case. We confine ourselves to R2 as the genéralization
toARk is ciear. | ’

‘Theorem 4 (Sibuya): Sﬁppose F is in tﬁe domain.of_3ymmétric attraction of
the simple stable df G and (X,Y) has df F. Then astptotié indépendence

holds i.e.,

(24)  lim n(l-F(a x,®)F(®,a y)) = lim n(l-F(a x, a_y))
p n “n > w n" Tntl0

1
= - log G(x,y)
iff

Ply > x, x> x|
PlX> %

(25)  lim PlY > x|x>x) = lim

=0
X ’ X = © .

Proof: Suppose asymptoticfindependence holds. Then from the marginal; -

. convergence




(26)  lim n(-F(a_x,®)) = x 7t

together with (24) we obtain

lim  (1-F(x, x))/(1-F(x, ©))
n o

lim  (1-F(x, ®))/(1-F(®, x)) -

" From

Plx>x,¥Y > x] = (1-F(x, ®)) + (14F(®, x)) - (1-F(x, X)i

 >we immediately get (25).
: _Conversely suppose (25) holds. From marginal convergence we have

Plx>ta] ~a " P [x>t], t+=, ¥ a>0 so that (25) entails

PIlx > tx, ¥ > tyl
P[x>t]

lim
't-}oo'

i.e. in view of (26)
s s >
“llm np [X ax, Y gnyl
‘Therefore

_lim n(l-F(a_x, a_y))

lim n((1-F(a_x, ©)) + (1-F(®, a y))- P[X > ax, ¥ >ayl)
N> o ; ) n- n n

'_(uSing mérginal'conVergenCé) and . (24)  ensues.
Example 8: Suppose F is the joint df of (X, -X) and is symmetrically.
attracted to a simple stable df G. “Then (25) holds because A

p[x>x, -X>x] =0 for x> 0. Thus if'[xn, n =1} are iid copies of




we have

: . ' X.
N4 - '/ﬁ.“d
i : i=

n

< o |
y1 > 2 (x) &(y)

‘P-[

,and'ccnsequently a limit law for the range ensues:

n .
V Xi -
P [l=1

a
n
Cf. de Haan 1974.

"We have the following counterpart of Theorem 4:

‘Theorem 5 (Sibuya): Suppose F is in the domain of symmetric attraction
of the simple stable df G and (X,Y) has the df F. Then asymptotic full

dependence holds, i.e.

(27) lim n(l-F(anx, ay)) = x 1 y—1'= - log G(x,y)
n - ® n :

for x, ¥y >0 iff

plx>x, vy > xl
P[x>x]_

(28) 1lim P[Y > x|x>x] = lim

= 1.
x > o0 X > ® ) :

Proof: To see (27) implies (28) proceed in a manner analogous to the previous
proof. . For the converse suppose (28) holds andnote for t, x, y > 0 with
y > x:

Pplx>ty, Y > tyl < PIxX > tx, ¥ > tyl
Pplx > t] Pix > t]

P x>ty ¥>tyl , PIx<ty, v>ty] plx>ty, v>tyl
plx >t Plx>ty, ¥> ty] T P[X>t] :

=

Now lim P[Xx<ty, ¥ > tyl/P[X>ty, ¥ >tyl =0 from (28) and hence
> : o ' v




1lim P[x > tx, Y > ¢tyl/ pl[x > ¢t] = y—l
t. > o -

and replacing t. by an ‘we see
lim n(l-F(a %, a_y)) .= 1lim n((1-F(a_x, ©)) + (1-F(®, a_y))
n > . n o n—> o n . ' n° "’

- > >
PIx ax, Y any])

-1 -1
x "~V y

as required.

O Muifidiménsional Extremal Processes

Here wé cbllect some fesulﬁs about muitidimensional extremali'
Lbrbéesées ih Rk.. Let Y(t) = (Y (), ..., Y, (£)) be an extremal process
.éenerated by the max-id df F . according to (3).‘vFrom the forﬁ of the
j__o;i_ht diStribution ofiz(tl), ceer Y(E) given 5y‘(3) it is ciear that Y

,;is_a Mérkév process in Rk with stationary transition probabilities. Again
f;ftbm (3) it follows that regular versions of the transition probabilities
are |

xk [Yi(t) <Yil i=1, ..., k]

=P [Yi(t+s) <y, i=l, ... k]Yi(s) =x., i=l, ..., Kl

= F (Yllwoo[‘yk) l[Yi>Xi’ i=1, Cees k] .

“The process Y is in fact a Markov jump process and we will compute'
'3the parameters gbverning holding times and jumps. To facilitate this we
‘ compute the genérator S. The computation-is conducted for k=2. For f a

'boﬁnded and continuous function R2 + R we have for Sf:




' -1
Sf(xy, x,) = 1lim t — E_ _ (£(Y,(t), Y () - £(x,, X))
SEGer X)) = MPOT Taaxy L 2 17 %2

E L » - v
= lim t f f(f(y r Yy) = E(x,, %)) P [v,(0)€dy,, ¥, (£)€ay.] .
b o 1 2 1 2 Xq1%, 1 1" 72 2

i | (t) € (t) €
Since PX1,X2 [Yl(t) _dyl, Yz(t) dy2]

- € € -
= P Ly, (t) €ay,, ¥, (1) dy2]1[yl > %y, ¥, > %)

>
1 Yy 7 Xl

<
Ply (v) <xp, v (t) € dyzl;[yl - x

]

Ty (f) € o <x]1
- P [Yl(t)' dy s ¥, (%) ><2]1[Y1 S

¥11 ¥ T %

and recalling t_-l b [Yl(t), Y2(t) €] =>v() as t *® where V is the
exponent measure of F (Balkema and Resnick, (1976).) we have:

Sf(,->Hf, - £(x., 1
*1' %2 J (Elrys 3p) = £lrge ) Ly, > %0 v, > %

l[yl > xll y2’= xz]v(dyl' (dw' Xz]}

V((~o, xl], dyz)} .

1
= >
lyy = xpvy 2wl
. Comparing the form just obtained with the canonical form of the geperatot
for a Markov jump process (cf. Breiman p.331) we obtain the mean_a_l(xl', x2)
of the holding time in state (xl, xz) "and the conditional probability
H((xl, 32); A) that starting from (xl, x2) the process jumps into A. For

arbitrary k these quantities are given by

O((xy, «onyr %)) = VAT(xy, ...,.xk))




o
V(A (yl.

(29) n((xll ceey xk); A(YI, ceey Yk)) =1 - p
V(A (xl,

for y, >’xi, i=1 ... k where as usual
Alygr «oer y) =0 (e, ceey e, Sy, d=l,0 0k}

For processes Y generated by simple stable df's this result has the
following interpretation: Let T be the time of the first jump after t=1.
Then

P [Y(D) €aly, ...,Vyk)IYi(l) = x., i=l,....K]

c .
V(A (Yll “esy Yk))

'=:‘P‘x L, )[X(T) € A(Y s +oes yk)] =1 -

[
1 V(A (Xy, «eer X))

for '8 >=xi, i=l; .o, k. Therefore .

v(Ac(yl, ;-.. yk))

. : c _
x )[g(T) €a (Y7 +oes yk)] =

P(x
17 e c

k , VAT(Xy, «ees X, )

£ B ={(t, ..., tk)lti =>x,, i=1, ..., k} then

v(A N B)

P [¥(r) EaNB] =
e RO R VAT(xy, eeey X))

for any A € B(Rk). Supposing again that T is the transformation to polar

1

coordinates and that TY(T) = ("Y“,Q) we have on sets A' such that T "A' C B:

[(HYH,@) €Ea'l = J J r2ar S@)/NV@A (X, ..., %)
AR . ~ B k

p .
(xl, eseeys X
_ . ~

(-) we have Y]l and © independent.

so that with respect to P
: » (xl, ooy xk)

Another independence result is given.below which describes when

the jumps of Y are iid random vectors. Preparatory to this discussion we




discuss the range ®(Y) which we define as
&) ={x|V open sets 02 x, P [Y(t) € O for some t} > 0]} .

For what follows we denote the support of a measure V by supp V.
To characterize 61(Y) we need hitting probabilities for rectangles.
This computation is done for k=2 and we seek P [Y hits (%, x2] x (yqs y2]]

where x1 < Xy yl < Y- Assume Y is related to a Poisson random measure

as described in the introduction. Define G(A) = inf{ Tk|(J(l) ' J]iz)) € a}

to be the first time there is a point in A € B(sz. Then
c B
Ply(r) (xl,.xz] x (yqs y2] for some t]
=P [o((->, x,]'x (v;, y,1) V 0((xl._x2] x (=, y,l)

< om(x Nl.

27 Yy

Note o((-=, x,] x (v, v,]) = 0((==, x,] x (v, v,] N otlxy, %] x (v, v,])

=: UAV and

P

al(x,, x2] x (-, y. 1) = o((x,, x2] x (-, yll)./\ V=: WAV.

2

Set Z = U(Ac (x )) and the required probability is

2’ ¥p

PLWAY V WAV < Z]

where U, V, W, Z are independent and for any A € B(R2) plo@ > t] = e_t\)(A) .

set A; = V((x;, x,] x (v, Y100 Ay = V(== x,] x (v, v, 1)y

AL = V((x

3 ’ x2] X (—°°; y1]), )\4 = \)(Ac(xz, yz)). Performing the required

1

calculation by capitalizing on independence gives

1 1 1 1
P[Yhits(x,x]x(y,y]]=}\{_+ - _ }
1 2 l' 2 4 k4 A1+A2+A3+A4 A1+A3+A4 A1+A2+A4

Assuming that }\4"> 0 we observe that the hitting probability is positive

i > >0. i :
iff Al + Az 0 and Al + A3 0. This leads to




. k . :
Theorem 6: Let Y Dbe extremal in R with exponent measure V. Then

(xl, cees xk) € R(Y) iff for all € > 0

vi{ (-2, x + €lx ... x(-°, x__ + €] x

i-1

+ €]} >0 for i=1, ..., k.

+ €] x (x, - €, x, + -0 .
1 ] (x, p %, + el x (=, x

i+l

eve X(=, xk

- Equivalently we have

R(y) F'f(xl, ceey xk)lxi = sup{fyi|y € a}, i=1, ..., k for some A C supp v}.

When Y is generated by a simple stable df, the range has the
following characterization. Recall the transformation to polar coordinates T:

(xl, ey xk) > (x, 6).

Corollary 5: If Y ' is extremal generated by the simple stable df with

exponent measure v°T-l(dr, de) = r—zdr S(db) then
supp V = { (xl, veus xk)IG € supp s}
and &(y) = {(xl, ey xk)le € closed convex hull of supp S}.

We now consider the following problem: Let 1 < T1 < T2'< ... be

 the times Y jumps past t=1. For convenience set TO = 1. When is
{Y(Tn) - Y(Tn_l), n=1} a sequence of iid random vectors? We begin by
reviewing and completing the situation for k=1 (cf. Resnick and Rubinovitch, 1973).
If Y is extremal in one dimension generated by F(x) set

0(x) = - log F(x) = V(x, ©). Suppose a = inf {x|F(x) > 0}. If the jumps
of Y are iid then

. B a .n .

(30) - {y(r),n=20}={z_+ I Z,, n=0}

n 0 J
1
where ‘{Zn’ n =1} are iid rv's with common df H(x). Note (30) holds iff

vx € R(Y)




(31 1 - Q(y)/Q(x) = H(y-x)

for v = x (cf. 29). The following facts are evident
(i) &(¥) = supp v

(ii) t € supp H iff t 2 0 and t = x_ - x, where x_, x_ € supp V.

2 1 1 2

This follows from (31).

x. € 8(Y) and x, < x_ then ¥z € &(Y)

(iii) If Xy 2 1 2

z + (x2 - xl) E(ﬁ(y).

This is clear since X, = %X € supp H.

(iv) Either &(y) = (a, «)

or &(y) ={x0+nd, -0 < n<°°andx0+nd>a}, da > 0.

This is easily seen once one defines

d=inf{y -x|ly>x%x, x, yERWM} .

Thus one is 1led to the possible structure of ®(Y) when independent
jumps. are present. Analyzing (31) leads to functional equations which' Q must
satisfy. These equations are easily solved and the result is: Y “has iid
jumps 1iff

(1) Q¥ = (a, ®»), ~*<aand F is of type

F(x) =
0

(i1) R(y) = {xo + nd, ¥n such that x, + nd > a}
_concentrates on {xo + nd} and is of the form

n’ —
for Xy + nd = a

otherwise
where 0 < p < 1.
| : ok |
We now consider the problem in R  so suppose the jumps of

Y(+) = (Yl('), ey Yk(-)) are iid vectors. We are going to prove that the




p;ocess is then one-dimensional; i.e. that R(g) is cqntained in a'
straight line. Pick two arbitrary components of Y. These components
constitute an extremal process in R2 and the jumps are iid pairs. The
desired result will be proved if we prove the result for any two components
of Y¥; i.e. it suffices to suppose k = 2.

Suppoée in order to get a contradiction the process is not
concentrated on a line. Then there are points (xl, x2), (yl, y2) 155 ﬁ(z)

with (say) Xy <§yl, x, > Y,- It is evident that the following points must

be in &(Y):
{z(n, m}: ={ (v, + nly; = %)), %, + m(x, - Y‘z))}

where n 2 ~1, m 2 -1, n,m integers but we exclude n = m = -1. Define
g(n,m) = v-{AC(z(n,m))}. Referring to (29) and using the asumption of iid_
jumps we have that g(n + r, m + s)/g(n, m) does not depend on n, m(r,s:= 0,1,...).
Call this ratio f(r,s) so that
| gn + xr, m) = g(n, m)f(r, 0).
frdm this we deauCe
£(r + s, 0) = £(r, 0)£(s, 0)
and thus,f(r, 0)»= ear for some constant a which entails

a(n-1)

g{n, m) = e g(l, m).

Similar analysis on the second variable shows

_ (-1 b1

g(n, m) g(l, 1)

an bm
c e e

where ¢, a, b are constants and ¢ > 0.
Since g must be non-increasing in n and m we must have a< 0, b < 0.

‘Define sets

={ Zy0 Zz) |yl' + (n-1) (yl~x1) < zy < v, *+ n(yl-xl) ’

- - < -
x, + (m-1) (x,-y,) < z, S x, + m(x, yz)}

m=1, 2, ... say and note




-g(n-1, m-1) + g(n-1, m) + g(n, m~-1) - g(n, m)

-C ean ebm (1 - e_a)(a - e—b) < 0

which gives the desired contradiction.

Thus if Y has iid jumps then Y is one-dimensional. The
structure of &(Y) and the possible distributions of the process are then

obtained from the one-dimensional results.
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