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We show that photorefractive waveguide devices are subject to a limitation on their holographic storage capabil-
ity owing to transversely nonuniform nonlinear losses to evanescent and radiation modes.

Recent developments in the growth of photorefrac-
tive (PR) thin films,' as well as in optical fibers,**
offer practical uses of the PR waveguides for ap-
plications such as multimode-to-single-mode con-
version,*”” low-power all-optical switching,® and
high-capacity holographic storage.’

In this Letter we draw attention to the fact that
there exists a basic limitation on the performance of
PR waveguide devices, which is due to the irrevers-
ible coupling of power from the guided modes to
evanescent and radiation modes. The resulting non-
linear loss reduces the storage capability and the
resolution of the stored images in PR slab wave-
guides and fibers, especially in the proposed PR fiber
bundles.” The limitation arises from transversely
nonuniform losses, which cannot be compensated
for, even by an ideal phase-conjugate reconstruc-
tion’ of the stored hologram. This translates to re-
ductions in the resolution of the stored images, in
the angular selectivity, and in the multiple-image
storage capability. We analyze the sources for this
loss and its dynamics and demonstrate its influence
in two applications: as a nonlinear mode coupler (a
funneling device®) and as a holographic memory with
an ideal phase-conjugate reconstruction.’® As an
example we demonstrate the loss of pictorial infor-
mation in a crude image that consists of two spatial
guided modes stored in a two-dimensional (slab)
waveguide.

Consider a simplified model of a slab dielectric
waveguide, in which the guided modes are repre-
sented by their propagation constant B;, where i is
the guided-mode serial number (i = 1 is the lowest-
order mode), and form a discrete set. The propaga-
tion constant is 8; = & cos 6;, where 6; is the angle of
propagation with respect to the waveguide axis z
and 2 = wn/c (n is the refractive index of the slab).
The spectrum of guided modes is restricted to the
range |0;| =< |0.|, where 6. is the critical angle for prop-
agation in the waveguide. For angles larger than 6,
(and smaller than #/2), the light propagates in a
continuum of radiation modes. Both guided and
radiation modes are characterized by a real propa-
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gation constant B. The complete spectrum of
waveguide modes also includes a continuum of evan-
escent modes.”! These propagate in the waveguide
at angles occupying the same range as the guided
modes but that consists of the complementary plane-
wave basis, i.e., at all angles that do not correspond
to guided modes. The evanescent modes have com-
plex propagation constants, since they do not satisfy
the waveguide boundary condition for real 8. They
represent plane waves with equal-amplitude planes
perpendicular to their phase fronts (equal-phase
planes), and hence they are sometimes called inho-
mogeneous waves.! As a result of their complex S,
the intensity of the evanescent modes decays expo-
nentially with z, and they all but disappear within a
distance of a few wavelengths. Their influence is
significant only as spatial transients in the vicinity
of inhomogeneities and discontinuities in the wave-
guide. We represent these modes by their complex
propagation constant B, + ia,, where 8, = k cos 6,
and g = k sin 6,, with 6, their angle of propagation.
The holographic recording in a PR waveguide is
made through the interaction between the pairs of
guided modes. The role of a reference wave can be
played by each of the guided modes or any subgroup
of them. For simplicity, we restrict ourselves to
transmission gratings only. This recording process
results in a dynamic volume hologram, which is, in
principle, identical to the one that caused the non-
linear mode-coupling effects.*%® Note that our
analysis remains valid for reflection gratings, as
demonstrated in the storage scheme of Ref. 9. Con-
sidering the interaction between pairs of guided
modes only, and assuming that the nonlinear inter-
action (the dynamic volume hologram) is solely a
power exchange between pairs of modes,*® one can
write a dynamic equation for the intensity I; of each
individual guided mode i:
da, 1%
&I ELIJRJ, m
where I, = 3y I; and is constant with z (we neglect
here the normalization to I; given in Refs. 1 and 2).
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The PR intensity coupling coefficient, I};; = I};(g;, g,
between each pair of plane waves ¢; and g; is calcu-
lated given the materlal parameters and the polar-
ization of the waves,* and its values are real. In
Eq. (1) we neglect all the uniform losses to the guided
modes, including material absorption and light
scattering owing to inhomogeneities. The es-
sential reason for this is that in an ideal hologram
reconstruction, transversely uniform losses can be
tolerated, since they affect only the efficiency,
whereas a nonuniform loss degrades the reconstruc-
tion quality.

Inclusion of the interaction with the continua of
both the ordinary radiation and the evanescent
modes [represented by their intensities I,(2)] yields

dl;  Ii(2) %
dz Io(Z) [ EI (Z)Ej(qn QJ J:qu(z)l‘(q“q)dq]
@

for each individual guided mode i. Note that the
absolute intensity guided in the waveguide [1,(2)]
may vary with z since light power is constantly es-
caping from the waveguide core owing to coupling to
the radiative modes, which do not confine their
power to the vicinity of the core. Equation (2) can
be simplified by recalling that in any waveguide the
intensity of both the radiation and the evanescent
modes decays much faster than can be replenished
by the PR gain. Nevertheless, we assume that there
is always a small amount of guided energy in these
modes, owing to scattering from the guided modes.
Assuming homogeneous distribution of scattering
centers, we may take the ratio of the intensity
within these modes I,(z) to the total intensity I,(2)
to be a constant for a given system: n = I,(2)/I(2).
This constant can be calculated if the scatterers are
assumed to be known'®" (this scattered noise was
used to explain and analyze the Fanning effect'®
and the PR backscattering®®). Under this assump-
tion Eq. (2) simplifies to

ar, _ (2)
dz I()Z[I()"

where G; = [*,T'(q;, ¢)dq.

In principle, a radiative mode can either “milk”
energy from a guided mode or transfer power to it
(the direction of the energy transfer is determined
by the sign of I;). However, while energy scattered
out of a coherent guided mode is almost entirely lost,
electromagnetic energy scattered randomly into
that mode is not phase matched to the propagating
mode (the phase of the light in the radiative mode is
random), and thus its contribution is negligible. As
a result, this nonlinear process is not reciprocal, i.e.,
energy that escaped from the guided modes cannot
be recovered [for the same reason that we neglected
the nonlinear interaction between pairs of non-
guided modes in Eq. (2)]. The effective nonlinear
loss is calculated by accounting for I; = T3(g;,q) > 0
only, and G; is defined as an integral over the loss
region only,

(ql ’ qj) nGt] ’ (3)

G = I I'(g:, @) dq, 4
Vag;

August 1, 1992 / Vol. 17, No. 15 / OPTICS LETTERS 1077

where Vg; is the modal region for which I} > 0, for an
individual guided mode i. The total nonlinear loss
as a result of the coupling to the nonguided modes is
given by the change in the abolute light intensity,

I N 4r, N
d (;f) => ﬁi"’) = 12 L@G:. (5)
i=1 i=

Since in general G; depends on the mode number i,
the nonlinear loss is transversely nonuniform. Each
individual guided mode experiences its own loss,
which is not necessarily identical to the losses of the
other guided modes, and this loss does not depend
on z only but depends on the transverse coordinate
as well.

Up to this point we have formulated the mode-
coupling process in a PR waveguide. For the given
boundary conditions at z = 0, one can refer to it as a
recording process of the PR volume hologram in the
waveguide. The ideal reconstruction process con-
sists of a propagation in the opposite direction, start-
ing with a mode distribution that is the output of the
recording process, i.e., a phase-conjugate reconstruc-
tion.® When the modes propagate in the negative
z direction, the mode-coupling dynamics in Eq. (3) is
changed. The coupling between pairs of guided
modes simply reverses the sign (I — —T};), but the
nonlinear effective loss term, —7nG;, remains nega-
tive (G; > 0), yet it may differ from the one for
propagation in the positive z direction. In any case,
the nonlinear loss remains nonuniform and does not
turn into effective gain for the reason described
above. In general, a nonuniform loss deteriorates
the quality of the reconstructed hologram in any
reconstruction scheme, including an ideal phase-
conjugate reconstruction.'

As an example, we demonstrate the degradation of
a simple stored image, as a result of the nonuniform
nonlinear loss, for an ideal phase-conjugate recon-
struction. Consider a BaTiO3 PR slab waveguide of
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Fig. 1. Dynamics of the guided modes’ intensity along
the PR slab waveguide. The solid curves show the evolu-
tion of the funneling and antifunneling effects for the
noise-free case, where the original intensities are per-
fectly reconstructed at each point along the propagation
direction z; the dashed curves show the reconstruction for
the case of a background noise ratio of 7 = 107
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the material parameters of Ref. 4 and of a thickness
that permits only two guided modes. We launch a
crude image that consists of two guided modes of
identical intensity from the facet z = 0 and observe
its dynamics in a 5-cm-long waveguide, where the
2 axis coincides with the +c¢ crystalline axis. The
two guided modes, I; and I, satisfy Eq. (3), with
the boundary conditions I;(0) = I,(0) = 1. The re-
construction of this volume hologram is made
by feeding back the mode outputs, by a phase-
conjugate mirror with a reflectivity of unity, and ex-
amining the reconstruction at the front facet z = 0.
The solid curves in Fig. 1 show the calculated mode-
coupling dynamics I; and I, versus z (only the range
0 = z = 0.5 cm is shown) for the case of n = 0 (no
energy in the nonguided modes). The geometry
of this proposed experiment is of a funneling de-
vice,*® and all the energy is transfered from the
higher-order mode I, to the lower-order one I;. The
reconstruction, as expected, restores the original
inputs, and the evolution of the mode intensities re-
traces itself until full reconstruction I;*(0) =
I,%(0) = 1 (where the asterisk represents the phase-
conjugate nature of the reconstruction) is obtained.
A real-life experiment is demonstrated by the
dashed curves in Fig. 1, where we assumed that the
background scattered noise results in a value of
1 = 107* (see Refs. 12 and 13). This time the mode
evolution did not retrace itself, and the recon-
structed values were I,*(0) = 1.0757 and I,*(0) =
0.9057 (in the forward positive z propagation the
dashed and the solid curves almost coincide and are
practically indistinguishable). The overall power
loss in this process is 0.0188, which corresponds to
less than 1% of the input power, but the modes show
intensity deviations of +7.57% and —9.43% from the
optimal reconstructed values. The nonuniform loss
affects the mode-coupling process between the
guided modes and thus gives rise to a nonreciprocity
in this process.

Examination of the above results for the two ap-
plications of interest (nonlinear mode couplers and
holographic memories) finds the former to be less af-
fected by coupling to evanescent modes. The mode
conversion efficiency, from the higher mode (2) to
the lower one (1), is almost unaffected by the nonlin-
ear loss, but the distortion of the reconstructed im-
age is large. The interaction with the radiative
modes can be somewhat reduced by a reduction in
the density of the scattering centers, which thus re-
duces the seeding of these modes. Nevertheless a
finite amount of light will always exist in these
evanescent modes, and it will always interact with,
and lead to a milking of, the guided modes. The
lowest limit on the density of the scattering centers
in the PR crystals is the dopants’ density (which also

determines the storage capacity), but in practice the
actual scatterer density is much higher. The non-
linear loss affects thin waveguides more than thick
ones, and it disappears completely in bulk media.
Therefore the proposed storage scheme,” which uses
bundles of thin waveguides, is affected by it more
strongly than is the multimode fiber scheme. In
both cases, one should reconsider the figure of merit
obtained by using PR waveguides instead of bulk
crystals as storage media. It is not obvious that the
benefits of uniformity in the material,’ which are
improved in waveguides, are worth the limitations
on the resolution and the storage capacity that are
introduced by the nonlinear loss.

In conclusion, we described a basic limitation on
the performance of photorefractive waveguide
devices and its influence on their storage capability
and their operation as nonlinear mode couplers. We
suggest that the storage capacity and the resolution
of stored images in photorefractive waveguide
devices are limited by effective nonlinear loss, in-
duced by coupling to radiative and evanescent
modes, rather than strictly by the material volume.
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