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SUMMARY 

 

Wires have become a major source of bottleneck in current VLSI designs, and 

wire length prediction is therefore essential to overcome these bottlenecks. Wire length 

prediction is broadly classified into two types: macroscopic prediction, which is the 

prediction of wire length distribution, and microscopic prediction, which is the prediction 

of individual wires. The objective of this thesis is to develop a clear understanding of 

limitations to both macroscopic and microscopic a priori post-placement pre-routing wire 

length predictions, and thereby develop better wire length prediction models.  

Investigations carried out to understand the limitations to macroscopic prediction 

reveal that, in a given design (i) the variability of the wire length distribution increases 

with length and (ii) the use of Rent’s rule with a constant Rent’s exponent p, to calculate 

the terminal count of a given block size, limits the accuracy of the results from a 

macroscopic model. Therefore, a new model for the parameter p is developed to more 

accurately reflect the terminal count of a given block size in placement, and using this, a 

new more accurate macroscopic model is developed. In addition, a model to predict the 

variability is also incorporated into the macroscopic model. 

Studies to understand limitations to microscopic prediction reveal that (i) only a 

fraction of the wires in a given design are predictable, and these are mostly from shorter 

nets with smaller degrees and (ii) the current microscopic prediction models are built 

based on the assumption that a single metric could be used to accurately predict the 

individual length of all the wires in a design. In this thesis, an alternative microscopic 

model is developed for the predicting the shorter wires based on a hypothesis that there 



 xii

are multiple metrics that influence the length of the wires.  Three different metrics are 

developed and fitted into a heuristic classification tree framework to provide a unified 

and more accurate microscopic model. 
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CHAPTER 1 

INTRODUCTION 

 

The size of the worldwide electronics industry is estimated to be at roughly $1.3 

trillion which has grown at roughly 7.1% for the last two decades. Practically every 

product of this industry is built out of the $300 billion semiconductor industry, which 

grew at 24.8% in 2004 and has been growing at roughly 15.1% during the past two 

decades. And nearly 28% of the $300 billion semiconductor industry is the Application 

Specific Integrated Circuit (ASIC) Industry. To put the economic significance of the size 

of these numbers in perspective the total world Gross Domestic Product (GDP) value is 

estimated at roughly $46 trillion, just 39x times the size of the electronic industry, and the 

world GDP has grown at just 3.2% for the past two decades. However, in order to 

maintain this growth, one must challenge the frontiers of semiconductor chip design.  

With the advancements in semiconductor technology however, a bottleneck has 

been developing in the design process due to the influence of the wires in the overall 

specifications of a design [1]. One of the primary causes of this bottleneck is the lack of a 

clear perspective of the influence of the wires on the design’s specifications during the 

early stages of the design process. If the length of the wires could be predicted early on 

during the design process, it could help overcome some of the major bottlenecks. 

Therefore, in this research an attempt has been made to identify the limitations to wire 

length prediction, and based on the knowledge gained through the study of limitations, 

new wire length prediction models are developed. 

The core of the semiconductor design process is the Very Large Scale Integrated 

(VLSI) chip design flow, and the wire length problem manifests itself during this process. 

Therefore, in the first section of this chapter an overview of the VLSI Design flow is 

provided, followed by the subsections detailing the influence of the wires on the various 
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design specifications and the motivation for wire length prediction. In order to predict the 

length of the wires, it is essential to model the length of the wires, and subsequently the 

second section of the chapter defines the terminology used in various wire models. The 

third section then provides an overview of the history of various approaches to the wire 

length prediction problem. Finally, the chapter is concluded with an outline of the 

approach used in this research along with the assumptions and the basic experimental 

setups used in this work. 

VLSI Design Flow 

The design of a VLSI chip starts with setting target specifications for the chip and 

ends with a packaged chip after several design stages. Each design stage is aimed at 

simplifying the complexity of the design process to a manageable level. The various 

stages involved in this process are explained in this section along with a simplified design 

flow depicting the stages in Figure 1.1. 

1. System specification: Setting the target specifications of the design is the first 

step of the design process. The specifications include identification of the 

overall functionality of the chip, its performance requirements and its target 

physical dimensions. These are derived based on market requirements and 

economic feasibility. Performance specifications will usually include the 

specifications of speed, power consumption, heat dissipation, etc… The 

physical and performance specifications are set based on the limits of the 

available technology.  

2. Architectural Design: The second major step in the design process is to decide 

on the architectural specification of the chip. This includes decisions such as 

the instruction set, the number of pipeline stages, the number of ALU and or 

other such functional units and how they should be connected to each other.  
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Various architectural possibilities are explored at this stage to choose the best 

architecture to meet the target specifications.  

3. Functional Design: Functional design involves selection of the various 

functional units and their interrelationships in terms of timing, power, heat 

dissipation, noise etc… to meet the target specifications. For example, this 

step involves decisions about the inputs to a particular functional unit, the 

outputs of the unit, the connections to other functional units, the sequence in 

which the various functional units have to operate in order for the design to 

meet the targeted behavior of the design. 

4. Logic Design: The functional blocks developed at the previous stage are 

decomposed into Boolean expressions and is represented using the Register 

Transfer Level (RTL) description. This entails making decisions about the bit-

by-bit logical details of the functional blocks and the corresponding control 

signal details. The Boolean expressions are then optimized, using a process 

called synthesis, to yield the smallest logic design for the given behavioral 

design. The result is a gate level description of the design. 

5. Circuit Design: The circuit design stage involves designing circuits for the 

gates used in the design while considering the requirements of functionality, 

performance and physical specifications of the design. This stage produces 

transistor level details from the gate level description created during the logic 

design stage. This stage brings into view the detailed physics of the transistors 

and hence the performance of the gates in the design through the circuit level 

simulation. 

6. Physical Design: Physical design is the process of physically allocating space 

for transistors and wires in a multilevel layout in which the given design will 

be manufactured. Due to the complexity of this stage, it is further subdivided 

into various steps viz., floorplanning, partitioning, placement and routing. 
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Only at the end of these stages does the designer have a clear view of the 

layout of wires present in the design and therefore their dimensional attributes. 

a. Floorplanning is the process of planning where each of the major 

architectural and or functional blocks or partitions should be placed in 

the layout.  

b. Partitioning is the process of dividing the circuit into several groupings 

(i.e. partitions) to bring the cells that are highly connected closer 

together by including them within the same partition.  

c. Placement is the process of assigning an optimal location for each cell 

or gate in a design block or partition to the area allocated for that 

particular design block or partition in the layout. 

d. Routing is the process of assigning an optimal location for each wire in 

the multiple levels of metal available in the layout.  

7. Fabrication:  The layout details obtained from the previous stage is first 

transformed into a set of photolithographic masks. These masks are then used 

to guide the diffusion, deposition or removal of various chemicals in the 

substrate to build the multiple layers of chemicals which together form an 

electronic chip. Several hundred chips are manufactured on a single wafer 

substrate, which is then diced into individual chips. Only during testing at the 

end of this stage does the fabrication induced effects on chip performance 

come to light for the first time. 

8. Packaging: The individual chips are then packaged using the appropriate 

packaging technology or used directly in Multi-Chip Modules. The final chip 

is then tested against the target specifications. 
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Figure 1.1 Various design phases involved in a typical VLSI design flow 

The above step-by-step VLSI design process allows for a design to be evaluated 

at each stage, to check if the target specifications will be met at the end of the design 

process. In a case where the evaluation at the end of a design stage reveals that the 

targeted specifications cannot be met, additional design iteration is performed starting 

from an earlier stage after making some modifications to the design. However, increasing 

the number of iterations increases the cost of the design and its time-to-market, resulting 

in reduced marketability of the product.  
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Impact of Scaling 

As the technology advances over time, the functionality of the chip is increasing 

with a trend that follows Moore’s law [2], according to which the number of transistors in 

a chip doubles every 18 months. This rapid increase in the number of components within 

a chip is accompanied by a decrease in the feature size of the components and wires 

within the chip. Further, the connected gates are spread relatively farther apart in the 

layout as a consequence of the increased number of gates in the design. Consequently, as 

the size of the chips increase, so do the number of wires inside the chip and the relative 

length of the wires with respect to the size of the gates inside the chip. Coupled with the 

decreasing feature size, the resistance of the wires starts to increase dramatically since its 

cross-sectional area decreases and the number of longer wires increases from generation-

to-generation. Further, the capacitance contribution of the wires also increases with 

increasing length. Meanwhile, the reduction in the feature sizes causes the transistors to 

switch faster. The combined interaction of these changes has allowed the wires to 

strongly influence every aspect of a design specification in the following ways: 

1. Impact on Physical Specifications: The number of wires and their relative 

lengths increase from generation-to-generation and from design-to-design. To 

accommodate this, the number of metal levels allowed in the manufacturing 

technology also grows. But this growth rate is sometimes not commensurate 

with the amount of wire space required to accommodate the wires within the 

targeted physical dimensions of the chip based solely on gate occupied area. 

Furthermore, the increasing complexity of the designs increases the number of 

wires in some regions of the design, which in turn increases the wire 

congestion in those regions. This congestion, coupled with more wires getting 

longer, makes them more susceptible to noise. Therefore, increased spacing 

and shielding is needed between wires to alleviate possible noise problems. 

Consequently the wires are spread out within the available metal levels. As 
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the wires are being spread out, at some point the area of the wires start to 

dominate over the area of the gates. Moreover, repeaters inserted to speed up 

the longer wires will also start pushing the layout size [3]. The result is that 

the wires limit the physical specification (area) of the chip.  

2. Impact on Timing/Speed Specifications: As the resistance and capacitance of 

the wires increase, the time it takes for a signal to be transmitted through the 

wires increases. For example, wire delay degradation per scaled micron is of 

the order of 1.4x for every generation [3]. Further, since the time it takes for 

the signal to be transmitted through the transistors reduces, the propagation 

delay through the wires are playing a dominant role in the timing of the chip, 

which in turn is controlled by its length. A widely employed methodology 

used to reduce the propagation delay through longer wires is to insert a 

number of repeaters on the longer wires, where the repeaters function by 

allowing the signals to be accelerated through the wires. The number of 

repeaters that can be inserted, and hence the speed-up achieved, depends upon 

the length of the wires. 

3. Impact on Power Specifications: As the number of wires and the wire length 

increases from technology generation-to-generation, in order to overcome the 

propagation delay problem, an increasing number of repeaters are employed 

The number of repeaters deployed increases with the number and length of the 

longer wires. For example, it is predicted that 50% of the cell area at 32nm 

technology generation will be filled with repeaters [3]. Since each of these 

repeaters consume static and dynamic power, the power consumption of a 

design will be dominated by the number of repeaters in the design. Because 

the number of repeaters in the design depends upon the length of the wires in 

the design, the wires have started to play a major role in the power 

consumption specification of the chip [4]. 
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4. Impact on Thermal Specifications: A large fraction of the energy is dissipated 

as heat during each switching event in a design. And as the wire resistance per 

micron doubles with every technology generation [3], more of this heat 

dissipation occurs through the wires. Further as the designs get more complex, 

some of the regions are highly congested leading to possible hot spots in the 

design. For example, in [5] it is argued that a non negligible amount of heat 

dissipation occurs through the wires. Consequently, the thermal specifications 

of the system are also altered by the wires present in the system.  

5. Impact on Noise Specifications: With the increase in the length and the 

number of the wires, the wires are more likely to be adjacent to a number of 

other wires over long distances in the system. These wires are coupled with 

each other through a coupling capacitance and inductance and can thus induce 

noise on each other during switching transitions. Thus the wires are bound to 

influence the noise specifications of a chip design as well.  

6. Impact on Reliability Specifications: With the increase in wire length and wire 

resistance, wires dissipate energy in the form of heat. As the wires get 

overheated this could lead to problems such as electromigration, which could 

affect the conductivity of the wires and thus the reliability of the design. 

7. Impact on Functional Specification: The influence of wires as explained above 

in each of the performance specifications in turn influences the functionality 

of the overall design. For example, an unwanted time delay of the signal 

through the wires could change the function of  clocked logic that is set up to 

run with a different timing specification. In addition, unwanted noise from 

wires could result in an undesired effect in the functionality of the design. 

Thus it can be seen that the wires play a crucial role in determining the various 

specifications of a given design.  



 9 

Motivation for Wire Length Prediction 

In the process of a VLSI design, the designer needs to explore the design space 

for each stage of the design. For example, at the architectural design phase the designer 

needs to evaluate the impact of the different architectural choices on the final target 

specifications. A highly parallel architecture choice may result in a netlist structure that is 

very different from a less parallel architecture choice. One architecture might result in a 

fewer number of gates and lesser interconnection complexity between the gates than 

another. Consequently, the changes in these architectural design choices could affect the 

final specifications of the design. Similarly, the design choices in each of the other design 

stages such as alternative behavioral designs, logic designs, circuit designs, partitioning 

strategies, floorplanning strategies, placement and routing strategies have to be explored. 

Each of the design choices will have their own unique attributes that will influence the 

final characteristics of the design. 

Following the exploration of the various design choices, a decision has to be made 

as to which choice to use for the continued development of the design. In order to make 

such a decision, it is necessary to evaluate if a design choice will meet the target 

specifications at the end of the design process. If the design choice meets the targeted 

objectives, then the design is said to converge. If the evaluation stage indicates that 

design convergence cannot be achieved, the designer needs to go back to the previous 

design stages to alter the earlier design choices. 

To evaluate if a design choice will meet the target specifications of the design, it 

is necessary to model the influence of the wires in the specifications. This is because the 

wires practically influence every one of the target specification metrics. And for the most 

part, the magnitude of this influence is dependent primarily upon the physical 

characteristics of the wires because its electrical attributes are dependent upon its 

physical characteristics. However, the physical attributes are only available at the end of 

the physical design stage when the gates have finally been placed in the physical layout 
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and the wires have been routed through the multilayer metals. Therefore, it is impossible 

to include the exact effect of wires on the various specification metrics at the earlier 

stages of the design. At the same time any evaluation of the specification metrics at the 

earlier stages of the design flow without an appropriate model to include the impact of 

wires renders them useless. This lack of information in the design specifications at the 

earlier stages of the design flow is one of the major bottlenecks to design convergence 

leading to iterations in the design flow, as shown in Figure 1.2. A prediction model of the 

wire attributes could, therefore, allow the designer to design by including the effect of 

wires from the very early stages of the design flow, and thereby could help achieve a 

much faster design convergence. 

 

Figure 1.2 Relation between design space exploration and design choice evaluation 

Further, the advancements in chip design and manufacturing technology will 

create newer design challenges. To understand and predict these newer challenges, it is 

necessary to develop technology extrapolation models. Such early extrapolations of 

future technological problems will enable the designers to be better prepared to design 

future systems. Due to the increasing impact of wires with scaling, it is even more 

important to include models that would incorporate the effect of wires on the extrapolated 

design problems. Since the impact of wires on a design is strongly linked to wire length, 

it is necessary to develop wire length prediction models. 
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Wire Model Terminologies  

A wire is an equipotential connection that conducts a common electrical signal 

from one or more source (driver) gates to the one or more of its sink (driven) gates. 

During the chip design process, the design is often represented in the form of a graph 

with the gates or functional blocks being represented as the vertices of the graph and the 

edges or hyperedges between the vertices representing the wires connecting the 

corresponding blocks or gates. These graphical models of the wire can be classified into a 

net model, interconnect model and connection model. 

A net is the multi-terminal hyperedge model of the wire that connects all the gate 

nodes representing the source and sink gates of the common signal. Since the source of 

the common signal could be from more than one gate and since it could drive more than 

one gate, a net model of a given wire may have more than two terminals.  This is the 

most accurate representation of the wire in a graph. For example, consider a signal wire 

with gate G1 as its source and gates G2, G3 and G4 as its sink. Such a wire can be 

represented as a multi-terminal hyperedge between the four gates as shown in the Figure 

1.3(a). The first estimate of the length of the wire is possible only after the gates are 

placed on the layout. Now if the gates G1, G2, G3 and G4 are placed in a layout that is in 

the form of a grid, as shown in Figure 1.3(b), then the post-placement pre-routed length 

of the net can be computed using any of the following length estimation models shown in 

Figure 1.3(c), 1.3(d) and 1.3(e). Figure 1.3(c) represents the Rectilinear Steiner Tree 

based representation of the net. The length of the net based on the rectilinear Steiner tree 

is the sum of the length of the horizontal and vertical edge segments of the rectilinear 

Steiner tree. Figure 1.3(d) shows the spanning tree based representation of a net. The 

length of the net based on a spanning tree is the sum of the manhattan lengths of the 

edges in the spanning tree. And finally Figure 1.3(e) shows semi-perimeter bounding box 

based estimation of the net length. Here the length of the net is estimated as half the 

perimeter of the smallest rectangular box that encloses all the nodes of a given net. While 
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an estimation based on minimum rectilinear Steiner tree gives the minimum actual 

possible length between the nodes of the net, it is hard to find the actual minimal cost 

rectilinear Steiner tree, and the actual routed wire length may be greater than this value. 

However, finding a minimal rectilinear spanning tree is easier and is a close 

approximation to minimal rectilinear Steiner tree, but it still takes some computational 

power to estimate them. On the other hand, estimation of the semi-perimeter bounding 

box length takes significantly less computational power; but the pitfall of this method is 

that it could be inaccurate for nets with a large number of terminals. 

 

Figure 1.3 Net model of a wire and corresponding length estimation models 

G1 

G2 

G3 

G4 
1 4 

3 

2 

(a) Net model of a wire (b) Layout representation 

(c) Steiner tree (d) Spanning tree (e) Semi-perimeter 
bounding box 
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An interconnect model of the wire, see Figure 1.4(a) is a much simpler 

representation of the wire than a net. In this model, the wires with more than two 

terminals are decomposed into several two terminal edges. The two terminal edges run 

only between each pair of a source and sink gate in the net. The length estimates are then 

made individually for each interconnect as the manhattan distance between the two 

terminals of the two terminal edges as shown in figure 1.4(c). This model is similar to a 

spanning tree based model. The difference lies in the fact that the two terminal edges 

between the gates are treated individually, and also this model eliminates the computation 

required to find the minimal spanning tree by limiting the edges between source and sink 

gates of a net. 

 

Figure 1.4 Interconnect model of a wire and corresponding length estimation model 
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Finally, a connection model of a wire is shown in Figure 1.5(a). It is a simple 

representation similar to interconnect model in the sense that the hyperedge is 

decomposed into several two terminal edges. But this model includes a two terminal edge 

in between every pair of terminal gates in the net. This is unlike in the interconnect 

model, where the two terminal edge runs solely between a source-sink gate pairs. The 

length of each connection is estimated separately as the manhattan distance in between 

the two terminal nodes of the connection placed as shown in figure 1.5(b). Based on the 

application requirements, all of the above models have been used in the literature to 

estimate wire lengths. 

 

Figure 1.5 Connection model of a wire and corresponding length estimation model 

History of Wire Length Prediction 

Literature research reveals wire length prediction models that provide both the 

microscopic and macroscopic perspectives of wires in a design. Microscopic perspectives 

are provided by models that aim to predict individual wire length, and macroscopic 

perspectives are provided by models that aim to provide a more global view of the wires 

by predicting statistics such as the wire length distribution. However most of these 

methods have their limitations and are lacking in accuracy due to the difficulty involved 

in prediction of wire lengths.  
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Early work in interconnect length prediction was carried out in 1979 by Donath to 

help estimate the wiring space requirements, delay values and power dissipation [6]. In 

this work an upper bound for average interconnection length is estimated. It is based on 

hierarchically applying the relationship between the number of terminal and the number 

of gates for a given circuit size. The interpretation of this terminal-to-gate relationship 

known as Rent’s rule is described in [7], [8]. According to this interpretation, the number 

of input and output terminals of nets T leaving a block containing C cells is given by the 

expression in (Eq1.1), where k and p are empirical constants known as the Rent-

coefficient and the Rent- exponent respectively. 

 p
kCT =  (Eq1.1) 

While [6] gives an upper bound approximation on the average length of all 

interconnects in the circuit, in [9] Donath develops the early model of interconnect length 

distribution based on the Rent’s rule. According to this model the number of 

interconnects of length  l is given by the expression in Eq1.2, where α is a constant.  

 [ ] ( ) 32
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= p
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l
C

lI
α

 (Eq1.2) 

Unlike the macroscopic prediction by Donath, the method in [10], [11] increases 

the resolution of length prediction by predicting a different net length for each net degree. 

The length of a net of a given net degree is determined by considering all possible pin 

configurations of the net over its average neighborhood size, where the size of the 

neighborhood is measured as the number of gates present in the neighborhood. The 

neighborhood of a net refers to the cells directly connected to this net and its first-level 

neighbors. For example, Figure 1.6 shows a net (reference net) and its neighborhood as 

defined in [10], [11]. The first-level neighbors are those cells that are connected to the 

cells of the reference net through exactly one other net. In [12] Hamada et al., extend the 

neighborhood concept to include the second-level neighbors, where the second level 

neighbors of a net are those cells that are connected to the cells of the reference net 
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separated by two nets. The method in [12] predicts the connection length distribution of 

nets of different net degrees by assuming that the length distribution is a form of Weibull 

distribution and the results [12] are shown to be better than the model in [11]. However, it 

should be noted that the two methods use different wire length estimation models, and 

therefore, direct comparisons may not be accurate. In spite of the differences both the 

models are observed to perform poorly for the largest benchmark tested. One of the main 

drawbacks of these methods in [10], [11] and [12] is that they ignore the effect of those 

cells and nets that are outside this small neighborhood.  

 

Figure 1.6 A net and its first level neighborhood 

The authors in [13] make one more step forward in microscopic length prediction 

by estimating the mean and variance of an interconnect length for each interconnect 

separately. The interconnect lengths are calculated based on structural attributes extracted 

from its local neighborhood and some global parameters. The local attributes are the 

interconnect weight (IW) and the neighborhood population at the third-level of the 

neighborhood (Angh3). The interconnect weight is the sum of the number of unique nets 

connected to the terminals of an interconnect and degree of the interconnect’s net. The 

global attributes are the total number of cells in the circuit C and the total number of nets 

in the circuit N. This method establishes a linear relationship between the interconnect 

weight and both the mean and variance of the interconnect length as shown in 

expressions (Eq1.3 and Eq1.4). It involves extracting data from known placement results 

Reference net’s terminal gate  
 

First level neighbor gate 
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and then fitting them to a straight line to get the appropriate coefficients (am, bm, av, bv) 

for calculating the mean and variance for other circuits.  

 IWAnghbmamMean ⋅⋅+= 3   (Eq1.3) 

 
N

CIWAnghbv
avVariance

⋅⋅⋅
+=

3
  (Eq1.4) 

The last decade has seen a number of research efforts targeting the prediction of 

interconnect length distribution of a complete design. In [14] a new interconnect length 

distribution model was developed by taking into account the number of possible sites 

available for an interconnect to occupy at a particular length. The interconnection length 

distribution for a circuit with C cells is given by the product of the interconnect 

occupational probability function (Ip[l]) and the site density function (M[l]) as given by 

the expression in (Eq1.5). In the expression for occupational probability (Eq1.7) the 

parameters k and p are the Rent-parameters and the parameter α gives the fraction of 

terminals that are sinks (Eq1.8). This parameter α is used for converting the number of 

net terminals between blocks into number of interconnects between blocks. 
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The above model considered the entire system as a single block. In [15] however 

a model that takes into account the hierarchy of the system was developed by Stroobandt 
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et al. This was done to more closely approximate the multilevel partitioning and 

placement process which divides the system into hierarchical blocks. In spite of this 

difference, the model in [15] is still similar to the model in [14] both of them calculate the 

wire length distribution as a product of the site density function and occupational 

probability function. Further, the model in [15] also uses the Rent-exponent to calculate 

the number of interconnects at each hierarchical level and their corresponding length 

distribution. The overall length distribution is then obtained by the sum of the 

interconnect length distributions over all the hierarchical levels. This concepts from this 

model was then extended in [16] into a new model, also developed by Stroobandt, to 

predict the net length distributions. The length predicted in this model is the Steiner tree 

length of the nets. 

Since these distribution models were heavily dependent on the accuracy of the 

Rent’s exponent, Rent’s exponent extraction methods were studied in [17], [18] and [19]. 

It was observed that the Rent’s exponent extracted from placement was always greater 

than the Rent’s exponent extracted from partitioning. Further, it was also shown in [18] 

that among the two different Rent’s exponents extracted from placement, the average 

local Rent’s exponent was greater than the placement Rent’s exponent. It was also 

suggested that the hierarchy-unaware wire length estimation model of [14] should use the 

average local Rent’s exponent for interconnect length distribution calculation, and the 

hierarchy-aware wire length estimation model in [15] should use the partitioning Rent’s 

exponent for calculating the number of interconnects of a particular hierarchical level and 

the placement Rent’s exponent for calculating the occupational probability of the 

interconnects in that hierarchical level. However, the usage of Rent’s exponent is still 

only an approximation. Therefore, in [20] Dambre et al., improved upon the model 

developed by Stroobandt in [16] by eliminating the use of Rent exponent and thereby 

improving the accuracy in interconnect length distribution estimation. 
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The last decade has also seen a number of research efforts targeted at predicting 

the individual wire lengths. For example, the growth-limited multifold clustering 

methodology in [21] predicts the length of each net separately by performing a clustering 

based greedy local placement starting from each cell in the circuit. In [22], the post-

routing net length is estimated from a polynomial function of several parameters for each 

net. The parameters are based on the local properties such as the number of pins in the 

net, number of nets of each unique pin counts in the neighborhood, and global parameters 

such as the number of cells and pins in the design and the place and route tool. Recently 

in [23] a mutual contraction (MC) metric has been developed to identify the shorter 

connections in the given netlist.  

While the above explained methodologies were aimed at a priori interconnect 

length prediction, the methodology in [24] enables an online interconnect length 

estimation. In other words this prediction is done dynamically during the process of top-

down partitioning based hierarchical placement procedure. Consequently, this method 

results in more accurate estimations for online estimation purposes. Each of the above 

methodologies explained in this section is aimed at predicting the length of connections 

or interconnects or nets in the circuit at different stages of the design cycle with varying 

inputs resulting in varying accuracies. 

Proposed Research 

In spite of the wide variety of length prediction models proposed and developed 

most of them suffer from a severe lack of accuracy. However, the ideal solution to most 

of the problems arising out of lack of information about the wires would be an accurate 

prediction of the exact individual post-routing wire lengths of all the wires in the design, 

during the early stages of the design flow. This would provide a good perspective on all 

the relevant issues at stake, such as the timing, delay, repeater planning, power 

dissipation, and heat dissipation attributes of a given design choice.  
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While predicting the individual routed wire length is ideal, it is a very difficult 

proposition since it will necessitate bringing into account routing level details into the 

prediction model. This could complicate the prediction process. Further, it will make it 

harder to identify possible sources of error in the prediction model. Besides, placement is 

the primary phase that establishes the basic lower limits on the wire length. Therefore, 

this research is limited to pre-routing, post-placement wire length prediction.  

Most wire length prediction methods can be categorized into two types based on 

their objective. Microscopic models provide individual wire length prediction, while 

macroscopic models provide wire length distribution prediction. Another way to classify 

the wire length prediction models is a priori prediction and online prediction, where the 

former predicts the wire lengths before the physical design process, whereas the latter 

provides a continuously evolving wire length prediction during the hierarchical physical 

design procedure. The research in this work is limited to a priori prediction using both 

microscopic and macroscopic prediction models due to the larger scope of applicability. 

However, due to the large number of possible placement solutions, the lengths of the 

wires will vary from one solution to another. This will limit the accuracy of the 

prediction. Further, there are also limitations to prediction based on the modeling 

methodology. Consequently, these limitations to prediction are studied first, following 

which new models are developed.  

Subsequently, this thesis is organized into six chapters. Following this 

introductory chapter, the first two chapters deal with macroscopic prediction, and the next 

two chapters deal with microscopic prediction. In each of these pairs, the first chapter 

deals with the study on limitations to the corresponding prediction (macroscopic or 

microscopic), while the second deals with the corresponding new model development.  

Finally, chapter six summarizes the conclusion and future work of this thesis. 

The research in this thesis is carried out under the assumption that the individual 

cell (gate) size variations do not affect the quality of prediction by a huge margin. For the 



 21 

sake of simplicity in model development and investigation of limitations, it is assumed 

that the cells (gates) in a given design are of unit size with unit gate pitch width and 

height. Therefore, IBM placement benchmarks [25] modified to have cells of unit size are 

used in the investigations. Further, the layout area of the benchmarks is also modified by 

limiting them to square shapes with approximately 5% white space. The input/output 

terminals are also removed from the netlists to limit the prediction to wires inside the 

chip. The attributes of the resulting benchmarks are shown in Table 1.1. 

 

Finally, it should be noted that five different placement tools are used in this 

research to place these circuits. They are Dragon 3.01 [26], Capo8.8 [27], FengShui5.0 

[28], mPL5.0 [29] and an In-house Simulated Annealing based Placement Tool. 

Partitioning is performed using hMetis [30] and the Rent exponent is extracted using the 

Rent exponent calculator Rentc [31]. 

 

TABLE 1.1 
BENCHMARKS USED IN THE RESEARCH AND THEIR ATTRIBUTES 

Benchmark Gate Count Net Count Interconnect Count  
IBM01 12036 11507 28672 
IBM02 19062 18429 52823 
IBM03 21924 21621 50298 
IBM04 26346 26163 58533 
IBM05 28146 28446 79985 
IBM06 32019 33354 85392 
IBM07 44848 44394 108270 
IBM08 50691 47944 130565 
IBM09 51461 50393 123024 
IBM10 66948 64227 176722 
IBM11 68119 67016 154986 
IBM12 69026 67739 190052 
IBM13 81018 83806 196967 
IBM14 145492 143202 339640 
IBM15 157861 161196 423765 
IBM16 181633 181188 499030 
IBM17 182359 180684 540059 
IBM18 210051 200565 539258 
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CHAPTER 2 

LIMITATIONS OF MACROSCOPIC PREDICTION 

  

Macroscopic prediction of wire lengths have both inherent limitations and 

limitations arising out of the model used to make the prediction. A careful study of these 

limitations is necessary to understand the bounds to macroscopic prediction and to reduce 

the prediction error. Therefore, investigations were carried out to understand these 

limitations, and the results from the investigations are presented in this chapter. 

The ideal solution to all wire related problems would be an accurate prediction of 

the length of every wire. But only a fraction of the wires have reasonably similar and 

therefore predictable length from one placement solution to another (see Chapter 4). 

Therefore, the next best solution to the wire problem is to provide an accurate 

macroscopic perspective by predicting the length distribution accurately. However even 

this could be difficult, since the length of the individual wires and subsequently their 

length distribution will vary from one placement solution to another. It will vary both 

from run-to-run within a placement tool and from tool-to-tool. For example, in [32] it was 

reported that nearly 30% variation in solution quality was observed in commercial 

placement and routing tools due to non-functional changes in the tool input such as 

renaming variables or permuting lines of gate level netlist. Also in [33] a similar study 

was performed that resulted in a difference of up to 7% between the best and the worst 

placement result. 

Therefore, the first part of this chapter presents the results from a study of the 

inherent limitations to macroscopic prediction due to variability in the distributions from 

one placement tool to another and from one placement run to another. The second part of 

the chapter deals with the basics of the current wire length distribution models and the 

limitations to accuracy arising out of the model themselves. 
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Variability of Distributions 

Interconnect length distribution models dominate the current macroscopic model 

research due to the fact that modeling net lengths in macroscopic models is very difficult. 

Accurate prediction of interconnect length entails an accurate understanding of the 

variability associated with it. Therefore, in this section the variability in the average 

interconnect length is studied first, and then the variability in interconnect length 

distribution is studied. For each of the above cases, both intra-tool and inter-tool 

variability are studied. The Intra-tool variability, which is the variability in results within 

a placement tool, is studied using five different placement results extracted from 

Dragon3.01. Although it is possible for the intra-tool variability to change form one tool 

to another, it is assumed that the results from Dragon3.01 are a sufficient approximation 

to provide a basic understanding of the intra-tool variability. Inter-tool variability, which 

is the variability in results from one placement tool to another, is also studied using five 

different placement results, but with one result each from five different placement tools 

viz., Dragon3.01, Capo8.8, FengShui5.0, In-house Simulated Annealing and finally 

mPL5.0 global placement combined with FengShui5.0 based detailed placement. The 

detailed placement of the mPL5.0 global placement is done using FengShui5.0 because 

the detailed placer of mPL5.0 crashed when used on the modified benchmarks used for 

our experiments. 

Coefficient of Variation 

The metric used in this study to analyze the variation in a given variable is called 

the coefficient of variation (CoV). It is defined as the ratio of the standard deviation of a 

given variable to the average of that given variable. CoV is used to study the variation 

because the metric isolates the variation from the magnitude of the average value of the 

data by providing the standard deviation per unit value of the average. This is especially 

useful in applications that compare variables with a large range of average values.  
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Average Interconnect Length 

The average interconnect length is the most basic point measure of interconnect 

length, and its value, which is derived from interconnect length distribution is used in a 

variety of applications such as area estimation and power consumption [34]. Table 2.1 

gives the average and coefficient-of-variation of the average interconnect length for both 

inter-tool and intra-tool variability for the various benchmarks. It was observed that for 

the intra-tool variability, the CoV has a range of 0.025 with an average of 0.0183. The 

CoV of the inter-tool variability has a wider range of 0.0672 and a greater average of 

0.0815 that is nearly 4.5 times the intra-tool CoV. It can also be seen from these results 

that the average interconnect length for a given netlist has a worst case CoV of  0.0316 

for intra-tool variability and 0.1186 for inter-tool variability.  

TABLE 2.1 
AVERAGE INTERCONNECT LENGTH INTRA-TOOL AND INTER-TOOL VARIABILITY 

Intra-tool Variability Inter-tool  Variability Benchmark 
Average Coefficient of 

Variation 
Average Coefficient of 

Variation 

IBM01 7.72 0.0214 7.59 0.0619 
IBM02 13.96 0.0188 13.75 0.0797 
IBM03 12.98 0.0157 12.85 0.0750 
IBM04 11.91 0.0092 11.92 0.0604 
IBM05 22.38 0.0207 21.86 0.0514 
IBM06 13.81 0.0316 13.63 0.1034 
IBM07 12.69 0.0116 12.54 0.0899 
IBM08 15.69 0.0241 16.13 0.0785 
IBM09 10.78 0.0299 10.83 0.0719 
IBM10 12.20 0.0163 12.35 0.0755 
IBM11 11.14 0.0088 11.41 0.0764 
IBM12 14.62 0.0219 14.92 0.0894 
IBM13 12.21 0.0066 12.25 0.0766 
IBM14 15.49 0.0151 15.65 0.0766 
IBM15 15.07 0.0167 15.47 0.0878 
IBM16 16.17 0.0300 16.43 0.0983 
IBM17 18.98 0.0169 19.24 0.0957 
IBM18 17.73 0.0142 18.50 0.1186 
Average  0.0183  0.0815 
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Interconnect Length Distribution 

In this section, the variation in the distribution of interconnect lengths is analyzed 

by calculating the CoV of the distribution for each length. Figure 2.1 shows a sample 

relation between CoV of the length distribution and length of interconnects of IBM03 

benchmark for inter-tool variation. It can be observed from this figure that the coefficient 

of variation generally increases with length of the interconnect. Similar CoV relations 

were observed for the other benchmarks in both intra-tool and inter-tool variation study. 

Based on these observations it is possible to hypothesize that the distribution of shorter 

interconnects with higher frequency are more predictable (repeatable) due to its lower 

CoV than the distribution of longer interconnects. Also it was observed that the CoV of 

the individual length distributions is much higher for most lengths than the CoV of the 

average interconnect length; for this reason it can be hypothesized that the prediction of 

the distribution of interconnects will be more difficult than the average length.  
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Figure 2.1 Inter-tool length distribution variability for IBM03 
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Further analysis is therefore performed to develop a better understanding of 

distribution variability. This is done by dividing the entire length range in the distribution 

into two regions, those lengths with less variation in the distribution (predictable region) 

and those lengths with high variation in the distribution (unpredictable region). A fixed 

CoV value is used as a threshold (repeatable threshold) to separate the two regions. The 

predictable part of the distribution is defined as that part of the distribution starting from 

length one and extending until the length for which the five-point moving average of the 

CoV of the length distribution exceeds the repeatable threshold. The five-point moving 

average was used to smoothen the relationship between the CoV of length distribution 

and the length.  The value of repeatable threshold is varied from 0.1 to 0.5. This 

corresponds to a standard deviation that is less than 10% of its average distribution to less 

than 50% of its average distribution.   
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Figure 2.2 Percentile rank of length below which the distribution is repeatable 
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Figure 2.2 shows the relation between the repeatable threshold and the average of 

the percentile rank of length (from five different benchmarks IBM01 to IBM05) below 

which the distribution is repeatable for both intra-tool and inter-tool variation. Percentile 

rank of length is the percent value of the length with respect to the maximum possible 

length of an interconnect in the given design. On an average the shortest 14% of the 

lengths in a given design has a distribution value whose standard deviation is less than 

10% of the average distribution, for the case of intra-tool variation (see Figure 2.2 for a 

CoV of 0.1). However for the case of inter-tool variation (see Figure 2.2) on an average 

only the shortest 10% of the interconnect lengths meet the same repeatable threshold 

criteria of 0.1. 
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Figure 2.3 Percent interconnects in the repeatable part of distribution 

An interesting attribute of this repeatable part of the distribution in the inter-tool 

variation is that this shortest 10% of interconnect lengths constitute 88% of the total 
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number of interconnects on an average. This forms the predictable region (repeatable 

part) of the distribution, and the remaining 12% of interconnects constitute the part of the 

distribution that varies widely (non-repeatable part) from placement tool-to-tool. This 

result depicting the relation between the percent interconnects in the repeatable and non-

repeatable part of the distribution is shown in Figure 2.3 for five benchmark circuits.  

Yet another interesting aspect of this repeatable part is that the 88% of 

interconnects in the repeatable part constitutes only 52% of the total interconnect length, 

while the remaining 12% of interconnects in the non-repeatable part constitute nearly 

48% of the total interconnect length. This result in terms of the percent total interconnect 

length in the repeatable and non-repeatable part of a distribution is shown in Figure 2.4 

for five benchmark circuits.  
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Figure 2.4 Percent interconnect length in the repeatable part of distribution 

A typical application for wire length distribution such as repeater insertion 

planning would need the total wire length of the longer global interconnects and therefore 
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the distribution of the wires in the non-repeatable part of the distribution with longer 

wires. Table 2.2 gives the observed relationship between the best-case and worst-case 

scenario (minimum and maximum) of the percentage of total interconnect length in the 

non-repeatable part of the distribution among the set of five different distributions studied 

under both intra-tool and inter-tool variation.  From this table it can be seen that the 

maximum of total length of interconnects in the non-repeatable part of the distribution 

could be 13% more than the minimum in the case of intra-tool variation, and 39% more 

than the minimum in the case of inter-tool tool variation. Therefore if a length 

distribution is predicted with discrete values, even if it is accurate for one run, it could 

still underestimate the total length of the interconnects in the non-repeatable part of the 

distribution by as much as 13% for another run of the same tool or as much as 39% of for 

another run in a different tool. Consequently any repeater insertion planning done based 

on a discrete predicted interconnect length distribution without keeping these variations 

in consideration will suffer. 

In such scenarios, a model to predict the variation would greatly aid the 

interconnect length distribution application development effort. Figure 2.5 shows the 

relationship between the average of the distribution values of interconnect length from 

five placement results and their corresponding CoV’s observed for the five benchmark 

TABLE 2.2 
PERCENT TOTAL INTERCONNECT LENGTH IN NON-REPEATABLE PART OF DISTRIBUTION 

Inter-tool variation Intra-tool variation Netlist 
Minimum 

 (% Length) 
Maximum  
Minimum 

Minimum  
(% Length) 

Maximum  
Minimum 

IBM01 27.37 1.18 39.58 1.32 
IBM02 26.67 1.09 37.76 1.52 
IBM03 41.55 1.07 42.76 1.43 
IBM04 26.52 1.09 39.31 1.43 
IBM05 37.05 1.20 59.27 1.25 
Average 31.83 1.13 43.73 1.39 
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circuits in the inter-tool variation study. A clear relationship between the CoV and 

distribution of interconnect lengths can be observed from this figure. 
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Figure 2.5 Relation between length distribution and its coefficient of variation 

Consequently, a piecewise model is developed by dividing this data into two 

regions. Linear regression is then used to fit the logarithmic values of length distribution 

and its coefficient of variation. The resulting piecewise model is shown in Figure 2.6.  

For distribution values less than 1000, the model shows a strong negative correlation with 

an R2 value of 0.9028, while for distribution values greater than 1000, which are 

observed for very short lengths, the correlation is very weak with the CoV values being 

almost constant. Although the model is empirical, it still depicts some basic relations 

between the variation of the length distribution and the distribution for a given length. 

Therefore, given a reasonably accurate discrete length distribution model approximate 

estimations on the variation of these distributions is possible. 
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Figure 2.6 Piecewise model of the coefficient of variation of length distribution 

Macroscopic Models Overview 

Macroscopic models are mainly limited to interconnect length prediction due to 

the difficulty and time requirements involved in modeling the length of wires with more 

than two terminals as a net model in the prediction methodology. They generally model 

the length distribution of the wires. The earliest macroscopic model was developed by 

Donath [9]. Current state of the art macroscopic models were developed by Davis, De 

and Meindl (DDM model) [14], Stroobandt et al., (Stroobandt’s model) [15] and an 

improved version of the later developed by Dambre (Dambre’s model) [20]. All of the 

above three models are derived using a fundamentally common framework. They 

estimate the number of interconnects of a given length by using a combination of two 

functions. The first part called interconnect site density function calculates the number of 

interconnect sites of a given length available for the interconnects to occupy. The second 
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part called the interconnect occupational probability function gives the probability that 

an interconnect position of a given length is occupied.  

The major difference between these models lies in the nature of the derivation of 

the solution. Stroobandt’s model and Dambre’s model are derived using Donath model as 

the basis. Since the physical design process can be viewed as a hierarchical process 

corresponding to the partitioning of the circuit followed by the partitioning of its 

corresponding layout in which the partitioned block will be placed, the models adopt a 

hierarchical approach, assuming the system will be placed using such a methodology. 

The model works by estimating the number of interconnects newly cut at each 

partitioning level. This is followed by an estimation of the number of interconnect sites of 

different lengths available for these newly cut interconnects in the correspondingly newly 

partitioned layout blocks at each hierarchical partitioning level. The interconnect 

positions are counted such that they only include those positions that have one terminal 

each in each of the layout partitions of the correspondingly newly partitioned layout. An 

interconnect occupational probability function is then used to estimate the probability that 

one of the newly cut wires occupy one of the available positions in each hierarchical 

level. Thus an interconnect length distribution is estimated for each hierarchical 

partitioning level and the total interconnect length distribution is obtained as the sum of 

the interconnect length distributions of the individual hierarchical levels. DDM model on 

the other hand does not make any assumptions about the placement methodology used 

and calculates the interconnect site density and occupational probability for the entire 

design in one step, in a flat manner without any hierarchical modeling. In this section of 

the chapter, a closer look is taken at the DDM model and Dambre’s model to understand 

their limitations. 

All of these models ignore the variation in cell sizes and assume all the cells to be 

of a uniform size. The DDM model and Stroobandt model assume these cells to be of unit 

size with a square shape. Dambre’s model on the other hand includes the possibility to 
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model rectangular shaped cells [20]. The models assume that the cells are placed in a 

layout, which is in the form a grid with the sites for the cells having the same size and 

shape as the cells.  

DDM model 

The DDM model of interconnect length distribution for a given circuit is derived 

by using a principle of conservation of terminals between three blocks constructed over 

the layout. The three blocks A, B and C used in the development of the model, shown in 

Figure 2.7, have NA, NB and NC cells in them respectively. The blocks are constructed 

such that a single closed path can encircle one, two or all three of the blocks and together 

form a semi-manhattan circle with the single celled block A at the centre, the cells of 

block C at the periphery, and the cells in between forming block B. Consequently the 

cells in block C are at a fixed distance from the cell in block A. This block based system 

is used to derive an expression for estimating the number of terminals between blocks A 

and C. This function is then used to derive the expression for interconnect occupational 

probability function Ip[l], where l is the distance between the block A and block C. 

Finally the interconnect length distribution function is obtained by the combination of 

interconnect site density function M[l] and interconnect occupational probability function 

Ip[l]. 

According to the conservation of terminals, the terminals coming out of a block 

should either be connected to one of the other block’s terminals or to one of the terminals 

that lies outside the blocks. Applying this principle to the three block system in Figure 

2.7 yields Eq2.1, where TA, TB, TC and TABC represent the total number of terminals 

coming out of block A, B, C and ABC and TA-to-B, TB-to-C and TA-to-C represent the total 

number of terminals between blocks A and B, B and C and A and C respectively.  

 ABCBtoACtoBCtoACBA TTTTTTT +++=++ −−−−−−   (Eq2.1)  
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Figure 2.7 Blocks used in interconnect length distribution model derivation 

Upon simplification Eq2.1 yields Eq2.2, which gives the total number of 

terminals between blocks A and C, where the cells in block C are separated from the cell 

in block A by a constant distance, say l. 

 ABCBCBABCtoA TTTTT −+−=−−   (Eq2.2) 

The terminal count values used in Eq2.2 are based on the net models terminals. 

Assuming a single source terminal for each net, each sink terminal of the net will 

correspond to a single interconnect. Hence a factor α (Eq1.8), which gives the fraction of 

net terminals that are sink terminals is used to calculate the number of interconnects 

between block A and C (IA-to-C), that are of length l by multiplying the number of 

terminals between block A and C by α. 

 ( )ABCBCBABCtoA TTTTI −+−=−− α   (Eq2.3) 

Block A Block B Block C 
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The probability that there is an interconnect of length l (Ip[l]) in between a pair of 

cell positions separated by a distance l is given by the probability that there is an 

interconnect between one of the cells in block C and the cell in block A.  
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The total number of interconnects of a given length l in the system (I[l]) is then 

obtained by the product of the probability that there is an interconnect in between a pair 

of cell positions separated by length l given by Ip[l] and the total number of cell position 

pairs that are separated by a distance l given by M[l] (Eq2.5). The expression for number 

of pairs of cell positions separated by a given distance l is derived by counting the 

number of cell positions in Block C for all possible positions of block A in the layout, 

and is given by (Eq2.6)  

 [ ] [ ] [ ]lIplMlI ⋅=   (Eq2.5) 
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To calculate I[l] values, it is necessary to have a methodology to estimate the total 

number of terminals from blocks B, AB, BC and ABC required by Eq2.4. It is for this 

purpose that the Rent’s rule is used to estimate the total number of terminals coming out 

of the blocks B, AB, BC and ABC as shown in Eq2.7.  
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The original interpretation of the Rent’s rule in [2] is derived using a terminal-to-

gate relation (T-to-G) where the terminal count for a block with a given number of gates 

is counted based on the number of segments into which the net is cut among the various 

blocks, where each cut net segment has one terminal coming out of its block to connect to 

the other cut net segments. This type of interpretation of terminals will be referred to as 

net-terminal interpretation and is illustrated in Figure 2.8. 

 

Figure 2.8 Net model (left) and net-terminal interpretation (right) 

Given Eq2.7, values of the sizes of the blocks A, B and C are needed to estimate 

the required terminal count values. However the sizes of the cells will vary based on the 

position of block A within the layout. For example, if the block A in Figure 2.7 is placed 

close to the periphery of the layout and if the distance between block A and C that is 

considered is large enough, the semi manhattan circle forming the blocks may partially 

lie outside of the layout area. In order to make calculations simpler, the DDM model is 

derived assuming that the layout grid in which the cells are placed is infinitely large, and 

the block sizes can be approximated by assuming that the blocks B and C will always be 

entirely within the layout. Eq2.8 gives the expression for the size of the blocks based on 

this assumption. This approximation will be referred to as infinite plane block size 

approximation. Using Eq2.8 and Eq2.7, the expression for Ip[l] in Eq2.4 is simplified by 

binomial expansion to its final form shown in Eq2.9. 

Block 2 Block 1 

p q 

s r 

Block 2 Block 1 

p q 

s r 

Net-terminal interpretation 
Net source gate: p; Net sink gates: q, r, s 

Block 1: p, r; Block 2: q, s; Block terminal count: 2 (shaded squares) 
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In [14], the distribution model is fitted to an actual distribution, and the 

corresponding Rent exponent p is extracted. This Rent exponent value is then used to 

predict the length distribution of other designs. The main application of this technique in 

[14] was to predict wire length distributions for future generic systems to understand the 

limits of Moore’s law. However, for applications where a rapid estimation of a wire 

length distribution is needed for a specific netlist, a different methodology is used by 

researchers, which is shown below.  

Step 1: Extract the net-terminal interpretation based T-to-BS relation by performing 

partitioning of the netlist.  

Step 2: Use the T-to-G relation to get the Rent-exponent (p)  or use a generic p ~ 0.6 

(when netlist information is not available for partitioning).  

Step 3: Use Rent-exponent to calculate interconnect occupational probability and thus the 

length distribution.  

Step 4: Renormalize the distribution to match the total number of interconnects in the 

system. 

Dambre Model 

Dambre’s interconnect length prediction model [20] is derived using Donath’s 

model as the basis.  First, it explicitly converts all the wires with more than two terminals 

into two terminal interconnect model based wires. Then, the model relaxes some of the 

constraints of the Donath’s model. First, Dambre’s model allows the cells to be of a 

rectangular shape where the Donath’s model limited them to a square shape. Second, 

Dambre’s model allows the layout to take a rectangular shape, where Donath’s model 
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limited it to a square shape with a further restriction that the number of gates in the layout 

be a power of 4. 

In order to accommodate these architectural relaxations, Dambre’s model allows 

the block sizes to be non-uniform at different partitioning steps. Consequently, it does not 

strictly adhere to a hierarchical methodology, explained in the introduction of this 

section, to calculate the interconnect length distribution. Instead, it works by maintaining 

a list of partitioned layout module sizes with their frequency and partitioning the largest 

module from this list at each stage and calculating the interconnect length distribution of 

the cut interconnects for each such partitioning step. Initially this list contains the entire 

layout as a single module, and the partitioning is carried on until all the modules are of 

the size of a single cell.  

At each partitioning stage of this process, the partitioning of the layout module is 

done according to a set of cut rules to yield rectangular blocks. After each partitioning 

step, the number of interconnects that is newly cut at that level is calculated using the 

principle of conservation of terminals, which yields Eq2.10. 

 
2

ABBA
cut

TTT
N

−+
=   (Eq2.10) 

In Eq2.10 A and B are the two modules obtained by partitioning a larger module 

AB. The model then uses a scaled T’-to-G’ relation that accounts for the white space in 

actual layouts, instead of the actual partitioning based T-to-G relation, to estimate the 

terminal counts for blocks A, B and AB. This scaled T’-to-G’ relation is obtained from a 

partitioning based T-to-G relation by assuming that the white space will be uniformly 

distributed across the layout, and therefore among the different partitions. The expression 

used to transform this partitioning T-to-G relation into scaled T’-to-G’ relation is given 

by Eq2.11, where T(g) is the number of terminals of a block with g gates in the 

partitioning T-to-G relation. 
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Then, given the sizes of the partitioned modules A and B, the model estimates the 

number of interconnect sites that exist in between the gate positions in the two modules 

using an interconnect site density function. Expressions to estimate this inter-module site 

density are developed using generating polynomials and is explained in [35] by 

Stroobandt and Marck.  

And finally the model adapts an occupational probability function proposed by 

Verplaetse in [18] to calculate the probability that one of the cut interconnects occupy 

one of the interconnect sites available in between the partitioned layout modules A and B. 

If the module AB is cut horizontally, then the magnitude of its vertical dimension Y that 

is being cut is used to estimate the occupational probability as shown in Eq2.12. 
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It should be noted that as the length increases, the second term in the denominator 

of Eq2.12 starts to dominate and consequently it approaches the occupational probability 

values of Davis model and Stroobandt’s model. The later two models use an occupational 

probability function with the dependence shown in Eq2.13. 

 [ ] 42 −∝ pllIp   (Eq2.13) 

The interconnect length distribution of the cut interconnects is then calculated 

using the inter-module site density values calculated for the partitioned modules and the 

interconnect occupational probability values calculated from Eq2.12.  

However, to estimate the length distribution, a T-to-G relation extracted from 

actual partitioning is still necessary. This relation is necessary both to estimate the Rent 

exponent p value, which is used to estimate occupational probability, and to estimate the 

number of interconnects cut at each level of partitioning; however, partitioning takes 
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time. Therefore, a parametric model called β-model is suggested to quickly estimate the 

partitioning T-to-G relation. By using the β-model it is not necessary to partition the 

circuit completely. Instead it is sufficient to partition only a few levels and use the model 

to generate the relation for the smaller partitions. In fact, Dambre, Stroobandt and 

Campenhout argue that 4 levels of partitioning values are sufficient for generating a T-to-

G relation that is accurate enough for estimating the wire length distribution in [20]. 

The average interconnect length results estimated from this model have been 

shown to exhibit good correlation to actual average interconnect lengths. However, this 

correlation was observed for a netlist that was placed after modifying its structure, by 

replacing the nets with more than two terminals by nets of two terminals, based on the 

interconnect model of a wire. But in reality, the netlist is placed and optimized without 

modifying the structure of the wires. 

In any case, it can be observed that both of the above explained models (DDM 

model and Dambre’s model) uses an estimate of Rent’s exponent to calculate the 

occupational probability and therefore fundamentally similar to each other. But, the 

pseudo-hierarchical nature of the Dambre’s model adds layers of complexity to the 

model. While this layered approach helps reduce the error with respect to Donath’s 

model, it also leads to a difficulty in accurately pointing sources of error in the length 

distribution estimation process. On the other hand, DDM model is much simpler and 

therefore easier to analyze. Further the DDM model is more widely used in interconnect 

length distribution applications such as power estimation [4], thermal modeling [5], 

timing estimation [34], chip size estimation [34] and estimation of wiring demand and 

routability [36]. Therefore in the following subsection the results obtained using the 

DDM model is carefully evaluated. 
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Evaluation of DDM Model Results 

The first step in the estimation of the DDM model interconnect length distribution 

is the extraction of T-to-G relation. Figure 2.9 shows the net-terminal interpretation based 

T-to-G relation for the IBM01 benchmark circuit and the corresponding Rent’s rule with 

rent-coefficient (4.755) and rent-exponent (0.5371). The values of the Rent parameters 

are obtained by fitting a power law equation to a portion of the T-to-BS relation 

identified as Region I of the curve. This Region I is identified by the shaded region in 

Figure 2.9 and indicates the data points used to extract the Rent’s parameters.  
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Figure 2.9 Terminal-to-Gate relation and the Rent’s rule for IBM01 

The Region I is characterized by an almost constant exponent in the power law 

relation required to model the terminal count for the corresponding block sizes. This 

Region I typically does not include the region of the curve for very large and very small 

block sizes due to the fact that a single power law relation do not fit well with these two 

extremities. The region of the curve corresponding to the larger block sizes is referred to 
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as the Region II of the curve and the region corresponding to the smaller block sizes of 

the T-to-G relation is referred to as Region III of the T-to-G relation. 

Using the Rent’s parameters so measured, the interconnect length distribution for 

the IBM01 circuit is calculated using the methodology outlined earlier in this chapter. 

The resulting distribution is shown in Figure 2.10 along with the actual interconnect 

length distribution extracted from placement results of three placement tools (In-house-

simulated-annealing, Dragon3.01, Capo8.8). 
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Figure 2.10 Actual and model interconnect length distribution for IBM01 

It can be observed from this figure that the model distribution follows a certain 

trend when compared to the actual interconnect length distribution. Based on this inter-

relationship the distribution can be separated into three non-overlapping continuous zones 

of lengths. Zone 1 contains the distribution of shortest interconnects, where the model 

distribution unmistakably overestimates the actual distribution. Zone 2 spans the short to 

medium length range of the distribution, where the model recognizably underestimates 

the actual distribution. Zone 3 comprises the distribution of longest interconnect lengths, 
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where the model neither overestimates nor underestimates in a clear manner. The three 

regions can be characterized by the following attributes, viz, zone starting length (StartL), 

zone ending length (EndL), percent interconnects in the zone for actual placement 

distribution (%IC), percent error in the cumulative distribution of the zone in model 

distribution with respect to the cumulative distribution of the zone in actual distribution 

(%ErrorCD). Similar trends were observed between the model and actual interconnect 

length distributions on other benchmark circuits as well, and the values of these zone 

attributes for the DDM model length distribution with respect to the interconnect length 

distribution of in-house-simulated-annealing placement results is shown in table 2.3 for 

five benchmark circuits. 

 

From Table 2.3 it can be observed that slightly more than one third of the 

interconnects fall within zone 1 which is made up of the very short interconnects. 

TABLE 2.3 
ZONE ATTRIBUTES OF DDM MODEL LENGTH DISTRIBUTION 

Zone Circuit StartL EndL %IC* %ErrorCD* 

IBM01 1 2 39.42 +91.77 
IBM02 1 3 31.74 +113.48 
IBM03 1 3 41.99 +71.79 
IBM04 1 2 34.20 +85.88 
IBM05 1 4 33.65 +109.07 

 
 

1 

Average 1 2.8 36.21 +94.39 

IBM01 3 66 60.33 -59.86 
IBM02 4 74 67.04 -53.39 
IBM03 4 118 57.67 -52.01 
IBM04 3 128 65.56 -44.72 
IBM05 5 203 66.26 -55.33 

 
 

2 

Average 3.8 117.8 63.37 -53.06 

IBM01 67 218 0.25 -25.68 
IBM02 75 275 1.20 -19.22 
IBM03 119 295 0.32 -45.85 
IBM04 129 323 0.23 -22.20 
IBM05 204 335 0.07 -63.66 

 
 

3 

Average 118.8 289.4 0.42 -35.14 
* * %IC: % Interconnect count (cumulative distribution) in zone; %ErrorCD: % Error in cumulative 
distribution between model results and actual simulated annealing based placement results in a zone 
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However, the model, on an average, overestimates the number of interconnects in this 

zone to twice its original value. Consequently the distribution of the remaining two thirds 

of the interconnects in zone 2 and zone 3 is underestimated by a factor of 53.06% and 

35.14% respectively.  

It is interesting to note that ideally zone 1 of the distribution must be derived 

using the Region III of the T-to-G relation. Therefore any accurate modeling of this 

region of the T-to-G relation and using it directly in modeling the distribution could 

reduce the nearly 100% over estimation in the zone 1 of the distribution. Consequently, 

this must also reduce the error in the other zones of the distribution. 

Since the distribution is calculated as a product of the occupational probability 

and the site density, and since the site density function has been shown to be accurate in 

[14], the above observed errors must arise from the occupational probably estimates. 

Therefore in the following section the various limitations, to modeling the distribution 

accurately, that arise from within the occupational probability function are examined. 

Limitations of Macroscopic Models 

For a macroscopic model such as the DDM model to be accurate, the following 

conditions must be met: (1) since it needs to calculate the interconnect length 

distribution, it needs to use the T-to-G relation in which the terminals for a given block 

size are counted based on the cut interconnect segments between blocks and not the cut 

net segments; (2) since it needs to calculate the distribution at the end of placement, the 

T-to-G relation used needs to be based on the placed layout and not based on an 

optimized partition; (3) since it calculates the distribution for each length based on 

conservation of terminals between the blocks B, AB, BC and ABC, it needs the exact 

terminal count for the four blocks B, AB, BC, ABC for each length and not the Rent’s 

Rule based approximation; (4) since it calculates the terminal count based on the size of 

the block, it needs an accurate estimate of the average size of the blocks corresponding to 
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various lengths under the finite layout size constraint and not the approximations based 

on the infinitely large layout size approximation. Each of these limitations is examined in 

greater detail in the following subsections. 

Terminal interpretation (Net vs. Interconnect) 

The interconnect based terminal interpretation required to accurately model the 

interconnect length distribution is illustrated in Figure 2.11 and will be referred to as 

interconnect-terminal interpretation.  

Figure 2.11 Interconnect model (left) and interconnect-terminal interpretation (right) 

The problem with using net-terminal interpretation is that not only does the DDM 

model not need the net-terminal based terminal count, the conservation of the terminals 

also does not hold true for net-terminal interpretation. For the principle to hold true, each 

terminal must be connected to only one other terminal. It cannot be connected to more 

than one terminal as in net-terminal interpretation. An example illustrating the 

conservation of terminals principle with the two terminal interpretation methods is shown 

in Figure 2.12. Unlike DDM model, Dambre’s model is not expected to suffer due to the 

terminal interpretation method because the model is applied to a netlist only after 

explicitly converting nets with more than two terminals into two terminal interconnects. 

Interconnect-terminal interpretation: 
Net source gate: p; Net sink gates: q, r, s; Interconnects: (p, q), (p, r), (p, s) 
Block 1: p, r; Block 2: q, s; Block terminal count: 4 

Block 1 Block 2 

p q 

s r 

Block 2 Block 1 

p q 

s r 
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Figure 2.12 Validity of conservation of terminals  

Physical design information (Partition vs. Placement) 

Figure 2.13 shows the Terminal-to-Gate (T-to-G) relation based on both 

interconnect-terminal interpretation and net-terminal interpretation for partitioning results 

of IBM01 benchmark circuit. It also depicts a Terminal-to-Block Size (T-to-BS) relation 

based on interconnect-terminal interpretation of placement result for the same circuit. The 

relation is depicted with respect to block size because the DDM model requires the 

terminal count for a give block size in the placement, which is based on the total number 

of gate positions within the block and not merely the number of gates within the block. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From figure above, 
Tp = 2; Tr = 1; Tp-to-r = 2; Tpr =1 
Principle of conservation of terminals 
=> Tp-to-r = Tp+Tr-Tpr 

L.H.S = 2; 
R.H.S = 2+1-1 = 2; 

  L.H.S = R.H.S 
=> For interconnect-terminal 
interpretation Tp-to-r = Tp+Tr-Tpr 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From figure above, 
Tp = 1; Tr = 1; Tp-to-r= 2; Tpr=1 
Principle of conservation of terminals 
=> Tp-to-r = Tp+Tr-Tpr 

L.H.S = 2; 
R.H.S = 1+1-1 = 1; 

 L.H.S ≠ R.H.S 
=> For net-terminal interpretation  

Tp-to-r ≠ Tp+Tr-Tpr 

Net-terminal interpretation vs. Interconnect-terminal interpretation: 

Net source gate: p; Net sink gates: q, r; Interconnects: (p, q), (p, r) 
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Figure 2.13 Terminal-to-Gate and Terminal-to-Block Size relation for IBM01 

In this figure, the difference between plots Partition: Net-terminal interpretation 

and Partition: Interconnect-terminal interpretation reveals the impact of the terminal 

interpretation methods singularly on the T-to-G relationship. Partition based relation is 

extracted from partitioning the netlist into blocks that are non-overlapping in nature (see 

Figure 2.14 (a)). In partition, each cell in the design is assigned to one of the blocks at a 

given hierarchical level and the number of terminal coming out of these blocks is 

minimized. 

 

Figure 2.14 Terminal count extraction strategies 

(a) From partitioning (b) From placement (c) From placement 
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The DDM model requires the average number of terminals per block over all of 

its possible positions in a placement. It should not be extracted by dividing the placement 

into non overlapping hierarchical blocks as shown in Figure 2.14(b). Therefore, the 

placement based T-to-BS relation shown in Figure 2.13 is extracted by overlaying a 

rectangular block, of a given size and aspect ratio closest to one, on all possible positions 

within the layout of placed cells, and counting the number of terminals coming out of the 

overlaid block (see Figure 2.14 (c)). The placement of the overlaid block over all possible 

position results in several suboptimal block formation (in terms of number of terminals 

coming out of the block) when compared to partitioning. Further, the placement 

optimization causes an increase in the number of terminals coming out of a block because 

the placement cost function has to minimize the distance between the terminals of 

different blocks, when the blocks are placed on a two dimensional layout. While the 

above two factors tends to increase the average terminal count for a given block size, the 

presence of white space in the actual layout causes the average terminal count to drop, 

since it reduces the number of terminals coming out of a block. Consequently, there is a 

difference between Partition: Interconnect-terminal interpretation and Placement: 

Interconnect-terminal interpretation in Figure 2.13, and the use of partition based T-to-G 

relation instead of placement based T-to-BS relation introduces significant error into the 

model. This subject of different T-to-G relations is also treated in [18] and [19]. 

Terminal count (Actual Terminal-to-Block Size relation vs. Rent’s Rule) 

Figure 2.15 shows the error in terminal count for a given block size when the 

Rent’s rule is used instead of the actual placement based interconnect-terminal-to-block-

size relation for IBM01 benchmark circuit. It can be seen that the absolute error 

consistently increases with block size. It is clear therefore that the model in fact uses a 

largely erroneous terminal count by using the Rent’s rule in place of the required 

placement based interconnect-terminal-to-block-size relation. 
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Figure 2.15 Error in terminal count as a result of using Rent’s rule for IBM01  

Block size (Infinite layout size vs. Finite layout size) 

The DDM model needs the block size to estimate the number of terminal count of 

the block. But, the size of the blocks in the model varies with the distance between blocks 

A and C, where the distance is the same as the interconnect length whose distribution is 

estimated. For each such length, the basic shapes used in the model are similar to that of 

block B (see Fig 2.7). The DDM model assumes that for any position of the block A, all 

of the four blocks B, AB, BC, ABC used by the model will be completely within the 

layout area. However, in reality this is not true, since as the length increases and when the 

block A is closer to the periphery, only part of the block will fall within the layout and 

hence the actual average area of a block for each length will be lesser than the area of the 

blocks used by the DDM model.  Figure 2.16 shows the error in the size of the block B 

with respect to the distance between blocks A and C. The error is the percent difference 

between the block size from infinite layout size approximation and the actual finite layout 



 50 

size based block size. It is clear from this plot that there is a significant error in the block 

size used by the model, and that it increases continuously with distance between blocks A 

and C.  
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Figure 2.16 Error in average block size of block B for IBM01  

Summary 

 
Wire length varies from one placement solution to another. As a result there is 

variability in the wire length distribution. This could consequently be a limiting factor to 

achievable prediction accuracy. The intra-tool variability is generally less than the inter-

tool variability. Further, the variability for shorter wires is lesser than that of longer 

wires, and that the variability increases with a decrease in distribution. However, most 

often the longer wires are the sources of bottlenecks in a design. Therefore, when 

developing applications using predictions of longer wires, such as repeater planning it is 

necessary to keep this variability into account. To aid in such scenarios, an empirical 

model that provides an idea of the variability of the distribution is also developed.  
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Accuracy of macroscopic wire length prediction could also be limited due to the 

modeling methodology used. Most of the current state-of-the-art wire length distribution 

prediction models calculate the distribution as a product of two functions viz., site density 

function and interconnect occupational probability function. The interconnect 

occupational probability values are most often calculated from a Terminal-to-Gate 

relation provided by the Rent’s rule. The model developed by Davis, De and Meindl 

(DDM) is one of the very popular wire length distribution models. Investigations were 

carried out to study the limitations to prediction accuracy due to the methodologies used 

in this model. If Rent’s exponent is extracted using a partitioning method, it was shown 

that the DDM model overestimates the distribution of very short wires, normally 

constituting 36% of the wires, by 94% on an average. Consequently, the distributions of 

the remaining wires were found to be underestimated. In addition to partitioning Rent’s 

exponent, further investigations also revealed the use of Rent’s rule approximation and 

incorrect block sizes used in deriving the terminal counts as potential sources of errors. 
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CHAPTER 3 

NEW MACROSCOPIC MODEL 

 

On-chip interconnect’s increasing influence on the circuit performance and design 

time have been well documented. The primary interconnect attribute that is the source of 

this influence is its length. Therefore, to understand the macroscopic impact of 

interconnects on the overall system design, length distributions of interconnects have 

been studied and models to predict them have been developed [9] [12] [14] [15] [16] 

[20]. But the length distribution results from these models are characterized by a lack of 

correlation with results from individual circuits [37]. Consequently wire length 

distribution models are not as widely adopted for optimization of current designs as for 

technology extrapolation applications such as GTX [38] [39], BACPAC [40] AND 

GENESYS [41]. An accurate estimate of the interconnect length distribution can be used 

in a number of ways during the process of design planning and design optimization, such 

as for (i) estimating the wiring demand and routablity, [36] (ii) estimating the power 

consumption [4], (iii) estimating the number of repeaters needed in the given design [4], 

(iv) estimating the thermal requirements [5], (v) estimating clock cycle [42] etc...  

Therefore, based on the analysis of limitations to macroscopic models presented 

in the previous chapter, a new interconnect length distribution prediction model was 

developed as part of this research. The new model is developed based on the Davis, De 

and Meindl (DDM) model [14] because it is widely used in a number of applications [4] 

[5] [43] [44] [45] [46] [47] [48]. The initial part of this chapter is devoted to the theory 

behind this new model, while the results produced by the model are presented towards 

the end of the chapter. Because all of the identified limitations of the DDM model are 

related to the Terminal-to-Gate relation used, the fundamental improvements are made 

possible from fixing these limitations and are explained in the following section. 
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Terminal-to-Block Size Relation 

The objective of DDM model is to predict accurately the interconnect length 

distribution at the end of placement. Therefore it needs a T-to-G relation that reflects the 

placement results. Further, the relation should give the number of interconnect terminals 

for a block of given size in the placement. Since the block may include both gates and 

empty gate positions, a Terminal-to-Block Size (T-to-BS) relation is required instead of a 

Terminal-to-Gate (T-to-G) relation. In order to model the T-to-BS relation, the actual T-

to-BS relation is first extracted and then a model is developed for this relation. A sample 

T-to-BS relation extracted from a placement using the actual basic block shapes of B[l] 

and AB[l] of the DDM model is given in Figure 3.1. The figure also shows the Rent’s 

rule based models for the IBM01 benchmark circuit.  
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Figure 3.1 Actual and Model T-to-BS relation of IBM01  

For a block comprised of a single cell position, based on Rent’s rule, the number 

of terminals from the block is equal to the Rent’s coefficient k.  
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 [ ] ( ) kkT
p

== 11   (Eq3.1) 

Given a netlist with I interconnects that has to be placed in a square layout array 

with Ncellposition number of cell positions,  the average number of terminals per cell 

position is given by Eq.3.2 
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Combining Eq.3.1 and Eq3.2 yields an expression for the parameter k as shown in 

Eq3.3. 
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The expression for Rent’s rule can then be manipulated to provide Eq3.4. This is 

an expression for calculating the actual value of the exponent p for a given block size S 

(the number of cell positions within the block), given the terminal count for the block size 

and the value of k, where the value of k can be calculated from Eq3.3. 
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Block shape impact on exponent 

Now given a T-to-BS relation, the actual p values can be calculated as a function 

of the block size. For example, two such relations are extracted using two different T-to-

BS relations of IBM01 benchmark circuit and is shown in the Figure 3.2. The two 

different T-to-BS relations shown in Figure 2.13 and Figure 3.1 (as Placement: 

Interconnect-terminal interpretation) were extracted from the simulated annealing based 

placement result of the IBM01 benchmark using interconnect terminal interpretation. The 

result in Figure 2.13 is based on rectangular blocks (see Figure 2.14 (c)) and Figure 3.1 is 

based on actual block shapes B and AB (see Figure 2.7). The difference between the two 
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T-to-BS relationships is difficult to observe directly in a Terminal count vs. Block size 

graph. However, the difference is clearer in the Exponent vs. Block size graph. 
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Figure 3.2 Actual exponent values for various block sizes of IBM01  

It can be observed from Figure 3.2 that these p[S] values extracted from the 

placement are much higher than the Rent exponent value of 0.548 extracted by curve 

fitting the partitioning T-to-G relation of IBM01 benchmark. It can also be observed that 

they p[S] values vary with the block size. Furthermore, it can also be seen that for very 

small block sizes the p values of the actual block B follow a different trend when 

compared to that of block AB and the rectangular blocks. As seen in Figure3.3, this 

difference is due to the fact that, for very small block sizes, the cells are not tightly 

packed within the block B when compared to the block AB and the rectangular blocks of 

similar size. When the cells are loosely packed in the form of odd shapes( i.e., semi 

manhattan circles) to form a block as in the case of block B, the distances between the 

cells are greater than in a tightly packed block. Consequently, due to placement 
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optimization the rate at which the terminals are absorbed is lesser. As a result, the factor 

p, which is an indicator of the number of terminals coming out of the block, is greater 

than a block that is much tightly packed where the cell positions are closer. However, as 

the block sizes increase this difference reduces because most of the cells are surrounded 

by the cells within the block, and therefore the terminals are absorbed more or less the 

same. However for very large block sizes, blocks B and AB have lesser p values than the 

rectangular blocks. This is because the average terminal count is calculated over all 

possible positions of the basic block shape over the layout. In the case of rectangular 

blocks, all of its positions remain within the layout (see Figure 2.14 (c)). However, for 

positions with block A close to the periphery of the layout, as shown in Figure 3.3 only 

part of the block B fall inside the layout.  Further as the length l used to characterize the 

blocks B and C increases, the number of positions at which only part of block B[l] and 

AB[l] remains within the layout increases. Consequently, in comparison to rectangular 

blocks, the average block size decreases and with it the average terminal count decreases 

as well. Similar relations between the three p values where observed on the other 

benchmarks as well. Given this relationship between the exponent p and block sizes, it is 

necessary to develop a model for the exponent. 

 

Figure 3.3 Actual block shapes used by model and rectangular blocks of small sizes 
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Exponent Model 

According to the differential equation based interpretation of Rent’s Rule, p is the 

fraction that reflects the level of placement optimization [49] such that when a new cell is 

added to a block with S cells and T terminals, the rate of change of terminals is given by 

p(T/S). From this, the parameter p can be interpreted as the fraction of terminals that are 

not absorbed inside the block when a cell is added to a block X of S cells, and so the 

fraction given by the parameter p can also be viewed as the unabsorbed terminals factor. 

Subsequently, the fraction (1-p) can be viewed to as the absorbed terminal factor, 

referring to the fraction of terminals that are absorbed within the block from the single 

cell added to the block. 

 

Figure 3.4. Blocks used to derive exponent p model 

The relation between the parameter p and S can be understood by carefully 

examining the possible causes for the change in p (dp) with respect to an incremental 

change in the size of the block (dS). From Figure 3.4, let X be the block with S cells and 

Y be a cell adjacent to X such that the inclusion of Y to X will be characterized by a 

terminal increase of p(T/S). High p value indicates that a large fraction of terminals of 

cell Y are connected to the cells outside block X and vice versa.  

Therefore, if the factor p is large, an incremental block dX of size dS adjacent to 

X will have an increased probability of absorbing these unabsorbed terminals because of 

Block dX  
dS Cells 

Cell Y 

Block X  
S Cells 
T Terminals 
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the presence of a larger number of unabsorbed terminals by the original block X. 

However, if the factor p is small reflecting a smaller fraction of unabsorbed terminals by 

block X, the probability of absorbing these terminals by the incremental block dX will be 

less. Therefore, the change in the absorbed terminal factor (1-p) with respect to the 

incremental block dX of size dS will vary directly proportional to the unabsorbed 

terminal factor p, or 
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dS
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−∝⇒∝

−1
  (Eq3.5) 

As the size of block X increases, the cells of the incremental block dX will tend to 

be at a farther distance from the cell Y. But at the same time, due to placement 

optimization, most of the terminals of Y will be absorbed by the cells that are closer to Y 

and therefore fewer terminals will be left to be absorbed by cells that are far from cell Y.  

Accordingly, the rate at which the terminals of Y are absorbed by dX decreases as the 

distance increases. As a result the rate at which the terminals are not absorbed into dX 

also decreases. Therefore, the change in unabsorbed terminals factor p with respect to 

incremental change in X will have an inverse relation to the distance from the cell Y to 

the cells of block dX, which varies directly in proportion to the block size S, or  

 SdX to Ydistance ∝)(   (Eq3.6) 
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Combining equations Eq3.5, Eq3.6 and Eq3.7 gives 
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A proportionality constant q is introduced in the above equation to yield Eq3.9. 
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The above equation can be solved for p and is given by Eq3.10.  

 qjSp −=   (Eq3.10) 
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This model is fitted to actual p values of rectangular blocks of IBM01 benchmark 

and the result is shown in Figure 3.5. Since the p values of the blocks ABC are closer to 

the p values of the rectangular blocks than that of block BC, as observed from Figure 3.2, 

Eq 3.10 is used to directly model p[ABC[l]]. The values for p[BC[l]] are then estimated 

from these values 
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Figure 3.5 Model of exponent p fitted to actual p values of rectangular blocks 

Exponent Model Parameters 

Given the model for exponent p, it is necessary to develop a methodology to 

extract the values of the parameters of the model (j, q). This is done using a four step 

process outlined below and explained in detailed in the following subsections. 

1. The value of the parameter q is estimated empirically. 

2. A lookup table based model is developed to estimate a pair of exponent values 

p[B[l=2]] and p[AB[l=2]] referred to as the initial exponent pair.  
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3. The value of parameter j is obtained using Eq3.10 together with p[AB[l=2]] 

and q to yield the p model for block ABC, p[ABC[l]]. 

4. The values of p for block BC p[BC[l]] is obtained using p[ABC[l]] and 

p[B[l=2]]. 

Parameter q extraction  

The q values are extracted for the smallest nine benchmark circuits by fitting 

Eq3.10 to the relation between the factor p and the block size C extracted for rectangular 

block shapes. The rectangular block shapes are used because, for the most part, the values 

of p for the rectangular block shapes are very close to the values of p for the actual block 

shapes as shown in Figure 3.2. The corrections to take care of the deviation in p values 

for very small sizes of the actual blocks will be made using alternate strategies explained 

in the following subsections. The resulting q values have an average of 0.0253 and a 

standard deviation of 0.0036.   Further, they also exhibit a moderate correlation 

(correlation coefficient ~ 0.664) with the partitioning based Rent exponent calculated 

using publicly available Rent exponent calculator [31].  To avoid confusion between the 

new interpretation of p as a function of block size and the conventional Rent exponent 

interpretation with a single value for p, the later will be referred to as prent.  

The plot depicting the relation between parameter q and prent with a linear curve 

fitted to this data is shown in Figure 3.6. With the lack of any other information, the 

average q value or the value derived by taking advantage of parameter q’s correlation 

with the Rent’s exponent prent (Eq3.11) could be used as an estimate of the actual q value. 
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q = -0.0411p rent + 0.0502
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Figure 3.6 Parameter q vs. partitioning Rent exponent using IBM01-IBM09 

Initial exponent pair model  

It is the hypothesis of this research that the upper and lower limit of p values for 

the smallest blocks B[l=2] and AB[l=2] can be extracted from synthetic trees that share a 

single attribute with a real logic graph.  This attribute is the number of interconnects per 

cell. It is believed that this is possible because the maximum number of very short 

interconnects in a graph is limited by the local nature of the graph and the limitations of 

the placement layout architecture.  Furthermore, once the p-values for these small blocks 

are known, they can be used in conjunction with Eq3.11 to calculate j in Eq3.10.  

For example, consider a simple tree graph formed by a reference gate with only 

its first level neighbor (Figure 3.7 (a)) and another that includes its second level 

neighbors as well (Figure 3.7 (b) and (c)). Assume that each gate, except the peripheral 

gates, is connected to the same number of gates and is equal to the average number of 

interconnects connected to a gate in a netlist (e.g. four).  
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Figure 3.7 Influence of layout architecture and netlist structure on interconnects 

Figure 3.7 shows three possible placement configurations for these graphs. Figure 

3.7 (a) shows the optimal configuration for the reference gate and its first level neighbors 

with all interconnects being of length one. This arrangement can be obtained by greedily 

placing all the gates closest to each other.  Figure 3.7 (b) shows a greedy placement with 

the second level of neighbors included; resulting in four interconnects of length two gate 

pitches each. Finally, Figure 3.7 (c) shows a better placement configuration for the same 

graph, with only three interconnects of length two gate pitches. Based on these, it can be 

said that the proportion of the shortest interconnects (l=1) is limited in the later cases (3.7 

(b) and (c)) because (i) in 2-dimensional placement layout architecture there are only so 

many empty positions adjacent to the first level gates for the second level gate to occupy 

and (ii) the number of neighbors at a given level of the graph grows faster than the 

number of sites available, in this case at a rate of 4·3d-1, where d is the number of levels of 

neighbors in the graph  As a result, as the graph grows, a smaller proportion of the cells 

could be placed closer to each other and more cells have to be placed farther away 

resulting in longer interconnects. 

From Figures 3.7 (b) and (c), it is clear that a measure of the occupation 

probability for length one or the corresponding p values p[BC[l=1]] and p[ABC[l=1]] 

extracted based on the greedy method would be suboptimal.  Here, it should be noted that 

(a) (b) (c) 

Reference gate 

First level neighbor to reference gate 

Second level neighbor to reference gate 

Interconnect of length 2 
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p[BC[l=1]] is the same as p[B[l=2]], and p[ABC[l=1]] is the same as p[AB[l=2]] (see 

Figure 3.3). Therefore, such a mini-graph (local graph) placed using a greedy strategy 

would give an approximate upper bound of p for the blocks BC[l=1] and ABC[l=1] (see 

Figure 3.3 case l=1). However, due to the fact that the local graph is small and because it 

ignores many of the global netlist details, when placed using an effective optimization 

strategy such as Dragon the local graph would give the upper bound of the proportion of 

interconnects of length one, and therefore the lower bound of p for the blocks BC[l=1] 

and ABC[l=1]. 

Based on the above theory, tree based graphs were generated for different values 

of the average number of interconnects per cell Iavg (four, five, six, seven and eight), and 

placed using a greedy method and Dragon3.01. The number of levels of neighbors in the 

graph starting from a reference gate was set to either three or four so that the number of 

gates in the graph was at least hundred. This minimum limit of hundred cells was 

established empirically to ensure that the graph will be a reasonable representation of 

actual netlists. Each of the gates, excluding the gates at the periphery, where connected to 

the same number of gates (Iavg). Ten placement runs were performed using Dragon3.01 

and five runs using the greedy method. The p values for blocks BC[l=1] and ABC[l=1] 

were then calculated from the placement results and then averaged over the results from 

different placements. In order to calculate the p values, first the average number of 

absorbed terminals<Tabs[S]> is extracted for different orientations of block BC and ABC 

(shown in Figure 3.3 case l=1), where the corresponding block is of size S. The absorbed 

terminals are those interconnect terminals that are used to connect between the various 

cells within the block. Then using <Tabs[S]>, the average number of unabsorbed terminals 

<Tunabs[S]> is calculated for the blocks BC and ABC by using Eq3.12.  The unabsorbed 

terminals refer to those terminals that come out of the block to be connected to the cells 

outside the block. 

 [ ] [ ] ><−⋅>=< STISST absavgunabs   (Eq3.12) 
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Eq3.12 is used to get <Tunabs[S]> instead of directly counting the terminals of each 

block because the gates at the periphery (outermost level neighbors) are connected to 

only one other cell. So if the number of unabsorbed terminals Tunabs is counted directly, 

for blocks that include the peripheral gates, it will be lesser than the actual average values 

observed in a real netlist. However the number of absorbed terminals Tabs will not be 

affected by the missing terminals of the peripheral gates, because if they do exist, they 

will have to be connected to the cells outside the block. If they connect to the already 

existing cells within the block, because these cells share a common parent node, the 

resulting graph will have a cycle. Because the graph that is constructed is a tree, and if 

missing terminals do exist, they will not be connected to the already existing cells within 

the block. The already existing cells share a common parent node in the graph because 

they are all part of a tree. Therefore, Eq3.12 is used to calculate <Tunabs>[S]. The p values 

for blocks BC[l=1] and ABC[l=1] can then be calculated using Eq3.13 with block size 

S=2 and S=3 respectively, where Eq3.13 is identical to Eq3.4. 
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Figures 3.8 and 3.9 gives the p[2] and p[3] values as a function of the average 

number of interconnects connected to a cell position extracted from the synthetic graph. 

The figure also includes the actual values of p[BC[l=1]] and p[ABC[l=1]] from the 

different IBM benchmark circuits. Just as predicted by the theory, the results from the 

Greedy placement produce the approximate upper bound, while the results from Dragon 

produce the lower bound values for the initial exponent pair p[BC[l=1]] and 

p[ABC[l=1]].  
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Figure 3.8 Exponent p[BC[l=1]] vs. average interconnects per cell position 
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Figure 3.9 Exponent p[ABC[l=1]] vs. average interconnects per cell position 



 66 

It can be seen that while the actual p[BC[l=1]] values are closer to greedy results, 

the p[ABC[l=1]] values are much closer to Dragon results. A possible reason for this 

could be the fact that the actual netlist is generally not a tree as used in the experiments 

but a graph with cycles. The presence of cycles could increase the number of short 

interconnects due to higher connectivity. This in turn could increase the number of 

terminals absorbed, and consequently the value of p[ABC[l=1]] is reduced. The greedy 

results of p[2] also exhibit a moderate correlation coefficient of 0.52 against actual 

p[BC[l=1]] values.  A high correlation, with a coefficient of 0.84, was observed between 

the average results of p[3] and actual p[ABC[l=1]] values. Therefore a lookup table is 

constructed such that given the average source-sink pair terminal count per gate position, 

the greedy model results are used to look up the p[BC[l=1]] values and the average of 

Greedy and Dragon results is used to model p[ABC[l=1]].  

Complete p model 

The j value to be used in the model for p[ABC[l]] is calculated using Eq3.14 by 

substituting the values of p[ABC[l=1]] from the initial exponent pair and  q into Eq3.10. 

 
[ ][ ]

[ ]( ) q

lABCN

lABCp
j

−

=

=
=

1

1
  (Eq3.14) 

The term NABC[l] refers to the size of the block ABC[l] in Eq3.14 and Eq3.15, 

where Eq3.15 is the p model for block ABC. 
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It was observed from Figure 3.2 that the blocks BC[l] (same as B[l+1]) exhibit a 

considerably different p value trend from ABC[l] (same as AB[l+1]). Therefore, the 

values of p[BC[l]] is estimated by using an approximation technique. From Figure 3.3 it 

can be seen that there is a BC[l] corresponding to every ABC[l]. It is assumed that each 

group of p[BC[1]], p[BC[l]] and p[ABC[l]] can be fitted to an expression Eq3.16, which 

is of the form of Eq3.10.  



 67 
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So Eq3.16 is fitted to the pair of p[ABC[l]] and p[BC[l=1]] to yield a jBC[l] 

(Eq3.20)and qBC[l] (Eq3.21), which is then used to estimate p[BC[l]] (Eq3.21).  
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Similarly, [ ][ ]( ) [ ]( ) [ ] [ ]( )lABClBClBC NqjlABCp logloglog −=  (Eq3.19) 

 
[ ][ ]( ) [ ][ ]( )

[ ]( ) [ ]( )1

][
loglog

log1log

BClABC

lBC
NN

lABCpBCp
q

−

−
=   (Eq3.20) 

 [ ]
[ ][ ]

[ ]( ) [ ]lBCq

BC

lBC
N

BCp
j

−
=

1

1
  (Eq3.21) 

 [ ][ ] [ ] [ ]( ) [ ]lBCq

lBClBC NjlBCp
−

=   (Eq3.22) 

New Wire Length Distribution Model 

Given the p values, the number of terminals can be estimated using a modified 

Rent’s expression shown in Eq3.23 

 [ ] ( ) [ ]Blockp
BlocksizekBlockT =   (Eq3.23) 

But for a given length, the size of blocks B and C varies based on the position of 

block A within the layout (see Figure 3.3). This is due to the fact that as the block A gets 

closer to the periphery of the layout, only a partial part of the blocks B, BC, AB and ABC 

will lie within the layout. In order to account for these variations in block size, the 

terminal count of the block of given length is calculated as the weighted average of the 

terminal counts for various areas of the blocks. The weight used is the frequency 

F[NBlock[l]] of each possible area (NBlock[l]), for a given block (Block[l]) of a given length 

(l), which is counted using a simple counting algorithm. The algorithm counts the 

frequency of the block sizes for each of the blocks BC[l] and ABC[l] and for each length 

l, based on all the possible positions of block A. 
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The results from Eq 3.24 can then be used along with law of conservation of 

terminals to calculate the number of interconnects between each pair of block A and 

Block C separated by a distance l as shown in Eq3.25 or Eq3.26. The interconnect length 

distribution is then calculated as a product of the total number of cell positions Ncellpositions 

and  IA-to-C[l] as shown in Eq3.27, where the total cell positions also gives the total 

number of possible positions of block A, and hence the total number of pairs of block A 

and block C. 
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Variability model 

It was seen in the previous chapter that there exists a variation in the distribution 

of the interconnect lengths from run-to-run and from placement tool-to-tool. The 

coefficient of variation (CoV(I[l])) of the distribution was also observed to have relation 

with the distribution. The plot highlighting the relation between the two is shown in 

Figure 3.10, and an expression for the coefficient of variation as a function of the 

interconnect length distribution is derived from this relation is given by Eq3.29.  
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Figure 3.10 Coefficient of variation as a function interconnect length distribution 

Given the expression for the coefficient of variation CoV(I[l]), the standard 

deviation of the interconnect length distribution σ(I[l]) can be calculated using Eq3.30. 

 [ ]( ) [ ] [ ]( )lICoVlIlI ⋅=σ   (Eq3.30) 

Using the expression for standard deviation and the calculated I[l] values, an 

approximate upper and lower bound can be calculated for the length distributions. For 

each length l, the upper bound is estimated as three standard deviations above the 

calculated I[l] value and the lower bound is estimated as three standard deviation below 

the I[l] value. 

Interconnect length distribution calculation methodology 

The procedure for calculating the distribution for a given netlist is given below: 

Step 1. Get number of interconnects I 

Step 2. Get number of cell positions in the layout Ncellposition 

Step 3. Calculate k using Eq3.3 
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Step 4. Calculate q from Eq3.11 

Step 5. Get the initial exponent pair p[ABC[1]] and p[BC[1]] using k in the 

look up table model 

Step 6. Calculate j using Eq3.14 

Step 7. For each length l (1 to X+Y-2) (X, Y dimensions of the layout grid) 

a. Calculate p[ABC[l]] using Eq3.15 

b. Calculate T[ABC[l]] using Eq3.23 

c. If( l=1)  

i.  p[BC[l]] = p[BC[1]] 

else if (l>1) 

i. Calculate qBC[l] using Eq3.20 

ii. Calculate jBC[l] using Eq3.21 

iii. Calculate p[BC[l]] by interpolation using Eq3.22 

d. Calculate T[BC[l]] using Eq3.23 

e. Calculate the frequency of the areas of block BC[l] F[NBC[l]] 

f. Calculate the frequency of the areas of block ABC[l] F[NABC[l]] 

g. Calculate the average terminal count Tavg [BC[l]] using Eq3.24 

h. Calculate the average terminal counts Tavg[ABC[l]] using Eq3.24 

i. Calculate IA-to-C[l] using Eq3.26 

j. Calculate I[l] using Eq3.27 

Step 8. Renormalize distribution to match the total number of interconnects if 

necessary 

Step 9. Calculate CoV (I[l]) usingEq3.29 and  σ(I[l]) using Eq3.30 

Step 10. Calculate the approximate bounds to I[l] as I[l]+ 3σ(I[l]) and I[l]-

3σ(I[l]) 

It should be remembered that the parameter q in (Step 4) is derived from a model 

developed based on values extracted from a set of sample benchmark results. 
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New Model Results 

The interconnect length distribution result from the new model (New) is shown in 

Figure 3.11 for IBM10 benchmark circuit along with the results from the DDM model. 

The figure also includes the results from the simulated annealing based placement (SA). 

It can be clearly seen that the new model predicts more accurately for the shorter and 

medium length interconnects. But as the length increases the prediction accuracy of the 

new model suffers.  
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Figure 3.11 New model results against the DDM model results for IBM10  

New model vs. DDM model 

A closer evaluation of the improvement provided by the new model can be made 

using the analysis of the DDM model from Chapter 2.  The DDM model was analyzed by 

dividing the distribution into three zones, and estimating its zone attributes. It was 

observed that while only slightly more than one third of the interconnects actually belong 

to zone 1, comprised of very short interconnects, the DDM model overestimates this to 
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almost double its original frequency. Consequently due to normalization, the nearly two 

thirds of the interconnects present in zone 2 was found to be under estimated to 

approximately half its original value and the less than 0.5% of interconnects in zone 3 

was found to be underestimated by a factor of 35.14% respectively. These zone attribute 

values are given again in Table 3.1 along with the zone attribute values, of these same 

zones as defined by the DDM model, calculated with the new model. It can be seen that 

with the new model, the absolute error in zone 1 and 2, which comprises of more than 

99.5% of interconnects, is drastically reduced to 9.47% and 5.44% on an average from 

+94% and -53% respectively. This corresponds to a 10x reduction in error in interconnect 

length distribution prediction of these zones. 

However, with the new model, for zone 3 comprising less than .5% of 

interconnects the error is increased to 426%. This is due to the error in modeling the 

p[BC[l]] values for large block sizes. It was observed that as the block sizes become very 

large, the difference between the number of terminals of a block BC and block ABC 

tends to zero. In other words, when the block A with a single cell at the center of the 

semi-manhattan circle is added to the block BC that is the semi manhattan circle, on an 

average, half of the single cell’s terminals in block A is connected to the cells within the 

block BC and the remaining half to the cells outside. Consequently the number of 

terminals of block BC and ABC tend to be the same. But the approximated interpolation 

based model for p[BC[l]] used in the new model is not a very good representation of the 

actual p[BC[l]]values. This is the primary cause for the huge error among the distribution 

of interconnects of very long lengths. A secondary issue is that for the distribution of 

interconnects vary widely for very long interconnects. For example, there will be no 

interconnects of certain length and there will be few for the immediately adjacent length. 

But the model always predicts this value to be positive, which again can cause the error 

to be high for zone 3. 
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New model with variability  

Figure 3.12 shows the results produced by the new model with the variability 

model incorporated into it for IBM18 benchmark circuit. It gives the bounds based on 

both three times the standard deviation and two times the standard deviation. The figure 

also gives the results from the simulated annealing based placement result. It can be seen 

that with the variability model included, the actual distribution of most of the lengths fall 

within the bounds. Similar trend was observed in the placement results of a lot of other 

benchmark circuits. However, even with the variability model incorporated into the new 

model, sometimes for some placement tools, the distributions are still difficult to 

accurately predict. This can be seen from Figure 3.13. 

TABLE 3.1 
LENGTH DISTRIBUTION’S ZONE ATTRIBUTES DDM VS. NEW MODEL  

%ErrorCD* Zone Circuit EndL %IC* 

Actual DDM New Model 

IBM01 2 39.42 +91.77 -22.54 
IBM02 3 31.74 +113.48 +3.83 
IBM03 3 41.99 +71.79 -5.73 
IBM04 2 34.20 +85.88 -8.33 
IBM05 4 33.65 +109.07 +6.92 

 
 
1 

Average 2.8 36.21 +94.39 9.47(absolute) 

IBM01 66 60.33 -59.86 +10.73 
IBM02 74 67.04 -53.39 -7.22 
IBM03 118 57.67 -52.01 +2.68 
IBM04 128 65.56 -44.72 +2.88 
IBM05 203 66.26 -55.33 +3.70 

 
 
2 

Average 117.8 63.37 -53.06 5.44(absolute) 

IBM01 218 0.25 -25.68 +987.73 
IBM02 275 1.20 -19.22 +300.28 
IBM03 295 0.32 -45.85 +262.37 
IBM04 323 0.23 -22.20 +415.02 
IBM05 335 0.07 -63.66 +166.25 

 
 
3 

Average 289.4 0.42 -35.14 +426.33 
* %IC: % Interconnect count (cumulative distribution) in zone; %ErrorCD: % Error in cumulative 
distribution between model results and actual simulated annealing based placement results 
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Figure 3.12 Results of new model with variability for IBM18  
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Figure 3.13 New model against results from different placements for IBM18  
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Figure 3.13 gives the distribution plot of the result from the new model compared 

against the results from five different placement tools for IBM18 benchmark circuit. It 

can be seen from this figure that, for the distributions calculated from the results of some 

of the placement tools, the actual distributions fall outside the variability range for very 

long interconnects. This proves the earlier stated theory about over prediction for very 

long interconnects due to error in modeling p[BC[l]]. Therefore, it is possible to improve 

the accuracy further by improving the model for predicting p[BC[l]]. 

Summary 

Using the limitations to prediction accuracy identified from earlier investigations, 

a new interconnect length distribution model is developed as an improvement over the 

DDM model. The key corner stones of the new model are (i) a new model for parameters 

p[ABC[l]] and p[BC[l]], which are used in a modified Rent’s rule to calculate the 

Interconnect-terminal-to-Block-size relation of a placed netlist, (ii) a look-up table that 

provides the p values of the two smallest block sizes used in model (p[ABC[l=1]] and 

p[BC[l=1]]) and (iii) incorporation of the empirical variability model into the wire length 

distribution model. The result is a highly accurate prediction of the distributions of the 

shorter wires. However the model still suffers from a loss of accuracy for the longer 

wires. 
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CHAPTER 4 

LIMITATIONS OF MICROSCOPIC PREDICTION 

 

Early and accurate individual wire length prediction (i.e. microscopic prediction) 

could solve many of the problems due to the lack of physical design information at early 

stages of the design cycle. This chapter deals with the investigations pertaining to the 

limitations of predicting the length of the wires individually. These investigations are 

carried out from two different perspectives. First, the set of investigations discussed in 

the initial part of the chapter pertain to the difficulties in microscopic length prediction 

independent of the prediction methodology. The second part of the chapter reviews the 

state-of-the-art in current microscopic wire length prediction models to develop an 

understanding of limitations inherent in current prediction methods. 

Microscopic Repeatability 

To be able to predict the length of a wire, the wire must have consistently similar 

lengths in the optimized placement solutions obtained using different placement tools and 

at the end of different placement runs. If the length of the wire varied widely from one 

placement solution to another, prediction of the length would be next to impossible. 

Therefore, it is imperative to find out if there are wires that have consistently similar 

lengths or in other words repeatable wires from one placement solution to another.  

If there are such wires with consistently similar lengths, answers to the following 

questions will shed more light on the limitations for individual wire length prediction: (i) 

what fraction of wires have similar lengths? (ii) what are the net degrees of these wires? 

(iii) what is the length distribution of these wires? This will also enable the development 

of more robust prediction models based on a solid understanding of the possibilities for 
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microscopic length prediction. Therefore, in the following subsections, results from the 

investigations that were carried out to evaluate these attributes are explained.  

Since there are three different wire models: net, interconnect and connection, the 

investigations are performed for each of the three wire models. The benchmarks placed 

using the five different placement tools viz., In-house Simulated Annealing, Dragon3.01, 

Capo8.8, FengShui5.0 and finally mPL5.0 based global placement combined with 

FengShui5.0 based detailed placement are used for these investigations. 

Investigation methodology 

The following procedure is used to analyze the repeatability of wire lengths of all 

the three wire models (i.e. net, interconnect and connection). For each netlist, the wire 

length of each wire is extracted from each of the five different placement solutions. The 

semi-perimeter bounding box length is extracted for a net, and the length between the two 

terminals of the interconnect or the connection is extracted for an interconnect or a 

connection wire model. Let Lact, w, placement be the length of the wire w obtained from a 

given placement solution. Then, the average length of each wire Lavg, w over the five 

placement solutions is calculated as 

 
5

placements 

,,

,

∑
∀

=

placementwact

wavg

L

L   (Eq4.1) 

The maximum length deviation ∆w for the given wire w is calculated as the 

maximum of the absolute difference between the actual length of the wire from each of 

the placement solution and its average length. 

 placementsLL wavgplacementwactw ∀−=∆ :max ,,,   (Eq4.2) 

Intuitively, it could be stated that the wire w has a length that is highly repeatable, 

and therefore predictable, if maximum length deviation for that wire is very small. But 

there is no clear guideline as to what constitutes a small enough margin for the wire to be 

considered predictable. A margin parameter ∆m is therefore introduced and used as a 
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guideline to define the margin, which has to be met by the maximum length deviation of 

a wire to be considered as predictable. This margin parameter is varied as a fraction δ of 

the maximum length of all the wires in a given netlist as shown in Eq4.3. 

 ( ) 2.001.0:,,,max ≤≤∀∀∀⋅=∆ δδ pwpwLactm   (Eq4.3) 

Given a margin parameter, the wires that have maximum length deviation ∆w less 

than the margin parameter ∆m can be identified, and these wires represent the predictable 

wires. Once these wires are identified, the various statistics such as the percent of wires 

that are predictable, their length distribution and the degrees of the nets from which these 

wires are obtained can be extracted. These results are then used to understand the 

limitations to microscopic prediction for each of the three wire models are discussed in 

the following subsections. 

Predictability of nets 

The variation of the percentage of nets that are classified as repeatable for various 

values of the fraction δ is shown in Figure 4.1. As the fraction δ is increased the margin 

parameter is increased and consequently the number of nets with absolute maximum 

deviation less than the margin increases steeply at first and then slowly. It can be seen 

from this figure that for a very small value of 0.01 for the fraction δ approximately 40% 

of the nets have semi perimeter bounding box net lengths that are highly repeatable. 

For the sake of simplicity, it is assumed that this fraction of 0.01 corresponds to 

the margin of allowable repeatability. Based on the results from the margin set by this 

fraction value, the percent share of repeatable nets as a function of their length and their 

net degrees are extracted, along with the percentage of nets that are repeatable for each 

net degree  It should also be noted that this  fraction value of 0.01 corresponds to a very 

narrow margin of ± 1 to 3 gate pitches, for the five benchmarks analyzed based on the 

maximum net length in the netlist.  
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Figure 4.1 Percent of repeatable nets vs. fraction δ 

Figure 4.2 depicts the cumulative percent share of repeatable nets as a function of 

degree of the net for a fraction δ = 0.01. It can be seen from this figure that more than 

90% of the highly repeatable 40% of the nets are from nets of degree 2 or 3.  Figure 4.3, 

on the other hand gives the percent of nets classified as repeatable for each net degree for 

the same fraction value of δ = 0.01. It can be observed that in all the test cases nearly 60 

to 70% of the 2 pin nets are highly repeatable, while only a much lesser percent of the 

higher degree nets are repeatable. Finally, Figure 4.4 plots the relation between 

cumulative percent of repeatable nets and the average length of the net for the fixed 

fraction value of δ =0.01. It can be observed from this figure that nearly all, roughly 90%, 

of the repeatable 40% of the nets are very short and are of length less than 5 gate pitches. 

Based on these results, it can be summarized that slightly less than half the nets are 

predictable and almost all of them are from shorter nets and have smaller net degrees. 
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Figure 4.2 Cumulative percent share of repeatable nets vs. net degree 
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Figure 4.3 Percent of repeatable nets among each net degree for δ = 0.01 



 81 

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20
Net length

C
u

m
u

la
ti

v
e 

%
 o

f 
re

p
ea

ta
b

le
 n

et
s

ibm01

ibm02

ibm03

ibm04

ibm05

 

Figure 4.4 Cumulative percent share of repeatable nets as a function of net length 

Predictability of interconnects 

The variation of percent of interconnects that are classified as repeatable for 

various values of the fraction δ is shown in Figure 4.5. Similar to the relation observed in 

the nets, as the fraction δ is increased the number of interconnects with absolute 

maximum deviation less than the margin increases steeply at first and then slowly. It can 

be seen from this figure that approximately 20 to 35% of the interconnects have lengths 

that are highly repeatable. This corresponds to a very small δ value of 0.01, which in turn 

corresponds to a very narrow margin of ± 1 to 3 gate pitches from the average length. 

Figure 4.6 shows the cumulative percent share of these highly repeatable interconnects as 

a function of degree of the net of which the interconnect is part of. It can be seen from 

this figure that unlike nets, a lesser fraction of approximately 55% to 65% of the highly 

repeatable interconnects are from nets of degree 2 or 3.  
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Figure 4.5 Percent of repeatable interconnects vs. fraction δ 
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Figure 4.6 Cumulative percent share of repeatable interconnects vs. net degree 
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 Finally, Figure 4.7 gives the cumulative percent of repeatable interconnects as 

function of interconnect length. Similar to the relation observed for nets, this figure 

shows that approximately 90% of the repeatable interconnects are of length less than 5 

gate pitches. However, it should be noted that the percent of interconnects that are highly 

repeatable is less than the percent of repeatable nets. 
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Figure 4.7 Cumulative percent share of repeatable interconnects vs. length 

Predictability of connections 

The variation in percent connections that are classified as repeatable for various 

values of the fraction δ is shown in Figure 4.8. Similar to the relation observed in the nets 

and interconnects, as the fraction δ is increased, the number of connections with absolute 

maximum deviation less than the margin increases steeply at first and then slowly. 

Similar to nets and interconnects, the highly repeatable connections are identified with 

the δ value set at 0.01. It can be seen that only 10 to 25% of the connections have lengths 

that are highly repeatable, which is smaller than that observed for interconnects and nets.  
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Figure 4.8 Percent of repeatable connections vs. fraction δ 

Figure 4.9 shows the relation between the cumulative percent share of the highly 

repeatable connections and the degree of the net of which the connection is part of. It can 

be seen from this figure that 20% to 35% of the repeatable connections are from nets of 

degree 2 or 3. Finally, Figure 4.10 gives the cumulative percent share of connections that 

are classified as repeatable as a function of its length, and it is observed that at least 70% 

of the connections classified as highly repeatable are of length less than 5 gate pitches.   

A careful analysis of all of the above data revealed that, on an average, there are 

at least 28% more interconnects that are repeatable than the sum total of the interconnects 

of the repeatable nets. Similarly, on an average, at least 51% more connections are 

repeatable than the sum total of the number of connections of the repeatable nets. Bosed 

on this data it can be inferred that although nets have a higher prediction probability of 

approximately 40%, more information about the distances between the various terminal 

gates of the wires can be gleaned by trying to predict connections than nets. 
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Figure 4.9 Cumulative percent share of repeatable connections vs. net degree 
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Figure 4.10 Cumulative percent share of repeatable connections vs. length 
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Based on the above results it is possible to conclude that microscopic prediction 

of wire length may be inherently difficult to achieve for all of the wires in a netlist. 

However, there certainly remains a subset of the wires in netlist that are easier to predict, 

and most of them are very short in nature and are part of nets of smaller degrees. Finally, 

although a larger percentage of nets are predictable than the interconnects or connections, 

more information about the distances between cells can be gained by prediction of 

connections or interconnects. 

Microscopic Models Overview 

The current state of the art in microscopic wire length prediction models can be 

classified into two different categories based on the output provided by the model. The 

first category provides length values for each individual wire as the output, based on a set 

of attributes extracted form the netlist. The models in the second category do not provide 

an exact value for the length of the wire, but instead they provide an ordering of the wires 

from the shortest to longest based on a metric. The individual wire length model 

developed by Bodapati and Najm [22] is a good example of the former while the mutual 

contraction model developed by  Hu and Marek-Sadowska [23] is a good example of the 

later. The above two models are reviewed in the following section to understand the 

limitations to microscopic prediction inherently present in the modeling methodology. 

Bodapati and Najm model 

Bodapati and Najm developed a model to predict the routed length of each 

individual net. The underlying concept behind their method is to build a linear regression 

based model, characterized for a given place and route tool. The model takes as its input 

several metrics extracted from the structural attributes of the netlist and physical cell 

characteristics. It then predicts the length of the nets in this new netlist when placed using 

the characterized place and route tool. The model is built using the following attributes 
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classified as local and global parameters. The global parameters are parameters that are 

constant across the entire netlist and are listed below: 

Number of cells in the design: Nc 

Number of 2-pin nets in the design: N2agg 

Number of 3-pin nets in the design: N3aggt 

Number of 4-pin nets in the design: N4agg 

Number of 5-pin nets in the design: N5agg 

Number of 6 or more pin nets in the design: N6agg 

Average width of the cells in the design: Wavg 

Height of the cell: Hc 

Width of the core sites: Wcore 

Aspect ratio of the given design: R 

Expected row utilization factor: U 

The local parameters usually pertain to the net in question or its neighborhood, 

where the neighborhood of a net n is defined as the union of its first level neighbors and 

its second level neighbors. First level neighbors are the nets which are directly connected 

to the terminal cells of the net n and Second level neighbors are the nets which are 

connected to the terminal cells of the first level neighbors. The local parameters are: 

Number of pins (terminals) on the net: Pnet 

Number of 2-pin nets in the neighborhood of the net: N2net 

Number of 3-pin nets in the neighborhood of the net: N3net 

Number of 4-pin nets in the neighborhood of the net: N4net 

Number of 5-pin nets in the neighborhood of the net: N5net 

Number of 6 or more pin nets in the neighborhood of the net: N6net 

Number of nets in the neighborhood of the net: Nnet 

The prediction model is developed as a function of a set of metrics derived from 

the global and local parameters, the details of which are explained in the following 
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paragraphs. The first metric is developed based on the number of pins in the net, since it 

is a very basic measure of how long the net is going to be.  The number of pins of a net 

gives the number of cells connected to the net. Therefore, a base length Lnbase is 

calculated for every net as an average of the length of all the cells of a net placed 

horizontally or vertically adjacent to each other.  
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Figure 4.11 Possible placement configurations of 2, 3 and 4 pin nets 

While Bodapati and Najm note that the wire lengths show a strong dependence on 

the base length of the nets, they also mention that nets with more than 7 pins have to be 

treated separately.  Further they also observe that a majority of the 2 pin nets, 3 pin nets 

and 4 pin nets are placed such that their terminal cells are right next to each other as 

shown in Figure 4.11. Based on this, an estimate is made on all the possible positions of 

placing these lesser degree nets, and from this a degree of freedom measure is obtained 

for the cells connected to these nets. This degree of freedom measure is referred to as the 

congestion metric and is developed for 2 pin, 3 pin, 4 pin, 5 pin and 6 pin nets. The idea 

behind development of these metrics being, if the degree of freedom is large for say the 2 

pin nets in the neighborhood of a given reference net, then the 2 pin nets will most likely 

be distributed over a large region. Since these 2 pin nets are observed to be short and 
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since the terminals of the given reference net are connected to these 2 pin nets, the 

terminals of the given net will also be distributed over the large region. As a result the 

reference net will be long.  

In order to derive an expression for the congestion metrics, an expression for the 

number of rows in the given layout Nrows and, an expression for the number of core sites 

in the layout Ncore are derived at first. The total length of the standard cell rows can be 

obtained using the two expressions as shown on either side of the equation below, from 

which the expression for Nrows is derived and subsequently an expression for Ncore is 

derived as well.  
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Assuming that the 2-pin nets can only be placed in one of the 2 configurations 

shown in Figure 4.11, the number of possible positions for a 2 pin net in the vertical 

configuration is P2cona and in the horizontal configuration is P2conb. 
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Now since the entire netlist is characterized by N2agg 2 pin nets and since a given 

net neighborhood is characterized by N2net 2-pin nets, the average number of positions 

available for the 2 pin nets in the given net’s neighborhood can be approximately given 

by 2 pin congestion P2con. 
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Similarly expressions are derived for 3 pin congestion P3con, 4 pin congestion 

P4con, 5 pin congestion P5con, 6 pin congestion P6con. The expression for P3con and P4con is 

derived similar to P2con except that the influence fewer pin nets are taken into account as 

well. For example for 3 pin congestion, this is done by calculating the proportion of nets 

of pin less than or equal to 3 in the neighborhood with respect to the total number of 3 or 

lesser pin nets. And the degree of freedom is estimated as directly proportional to this 

fraction, instead of just the fraction of just the 3 pin nets only. Also for P4con only three 

possible placement configurations are considered.  
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For P5con and P6con no unique placement configurations are considered. Instead an 

approximate estimate of the total number of positions available is obtained by deducting 

the number of possible sites taken away by 4 or lesser pin nets from an approximate 

estimate of the total number of possible positions for a single cell.  
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Finally, in order to account for the positions taken away from one 2 pin net by 

other 2 pin nets the metric N2oth is derived as a fraction of the total number of 2 pin nets 

that are outside the neighborhood of the given net, where this fraction is given by the 

ratio of the number of nets in the neighborhood to the total number of nets in the design. 
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The length prediction model is then developed as a third order polynomial 

function of all of the above metrics. But then, the cross product terms that do not include 

Lnbase are ignored from this function to reduce the complexity. The authors report that this 

reduced the total number of terms in the equation by half to 20 without significantly 

affecting the quality of the fit. The coefficients of the polynomial are then derived by 

using the least squares fit of the equation to the actual lengths of nets extracted from a 

placed and routed design using a given place and route tool.  

 ( )othconconconconconnbasenet NPPPPPLfL 265432 ,,,,,,=   (Eq4.22) 

The above model however was observed to not work well for the nets of degree 

greater than 7. Therefore, a different model was developed for nets of degree greater than 

7. It was based on estimating the dimensions of the bounding box of these nets and using 

it to approximate the value of the net length. First, the bounding box size is estimated by 

assuming that the number of cells inside the bounding box (Nbox) will include all the cells 

in the neighborhood of the net, and in addition other 2 pin and 3 pin nets in the circuit 

proportional to the fraction of the total number of nets in the neighborhood with respect 

to the total number of cells in the design. The fraction of 2 pin nets to be included in Nbox 
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is already given by N2oth, and that of 3 pin nets given by N3oth is estimated using a similar 

expression.  
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The dimension of the bounding box is then estimated based on the assumption 

that each cell in a net of degree greater than 7 will be placed in a different row, and 

therefore the height of the bounding box will at least span the minimum of Pnet or Nrows 

rows. Given the number of cells inside the bounding box Nbox the area of the bounding 

box can be estimated, and given the the height of the bounding box, the width of the 

bounding box can be estimated as well. Finally, the net length is estimated as the 

Rectilinear Steiner Minimal Tree length using the model from [32] based on the 

dimensions of the bounding box Hbbox, Wbbox. 
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It was shown in [22] that the model cannot be used to predict the length of shorter 

wires. However for longer wires, average errors of the order of 20% to 30% were 

observed. However, it should be noted that the circuits tested were very small by current 

standards with no more than a thousand gates and a thousand nets. 

Mutual contraction 

The mutual contraction model, developed by Hu and Marek-Sadowska [23], is a 

metric to calculate the contraction force between every pair of cells connected through a 

net in the netlist. The value of this metric is then used as a guide to predict the order of 

connections from shortest to longest. But, the model is especially useful for predicting the 

shortest connections in the netlist because a pair of cells connected through a high mutual 

contraction connection tends to be short.  
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The model works by first estimating a weight for each connection w’(c) as shown 

in Eq4.26, where n is the net from which the connection c is modeled and d(n) gives the 

degree of the net. 
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Figure 4.12 Illustration for relative weight estimation 

The model then estimates the relative weight of a connection with respect to all 

the connections that are connected to one of its terminal nodes as shown in Eq4.27. In 

Eq4.27, u and x0 represents the terminal cells of the connection c, and xi represents the 

cells connected to u through a connection (see Figure 4.12).  
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This relative weight estimates a ratio of the weight of the reference connection c 

between nodes u and x0 with respect to the sum total of the weights of all the connections 

connected to u. Finally the mutual contraction of a connection is estimated as the product 

of the relative weight of the connection with respect to each of its two terminal nodes. 

( ) ( ) ( )uvwvuwvumc rr ,,, ⋅=                 (Eq4.28) 

Therefore, given the mutual contraction value for all the connections, the 

connections could be sorted in descending order based on their mutual contraction value. 

This sorted list is then used as a prediction of the connections length from the shortest to 

the longest. In fact, it was shown in [23] that the mutual contraction model performs 
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better in identifying the shorter connections than other models such as connectivity [51] 

and edge-separability [52]. 

Limitations of Microscopic Models 

The individual length of a wire at the end of a placement is dependent on a 

number of factors that are based on the netlist and the placement process. The mutual 

contraction model, however, aims to make a prediction based on a simple metric that 

takes into account just the local neighborhood of the connection. This could be the source 

of a potential limitation of the mutual contraction model. However, this is not to say that 

the mutual contraction model does not add any value. On the contrary, the value and 

information gained though mutual contraction model can be combined with other models 

to gain additional insight into prediction. Further, the usefulness of the model has already 

been proven through its use in applications such as wire length driven placement [23] 

[53], timing driven placement [54] and technology mapping [55]. 

Figure 4.13 shows a plot of the cumulative length of the x number of shortest 

connections as predicted by the mutual contraction model and the connectivity model 

against the number of connections x for the IBM01 benchmark circuit. The lengths used 

in the plot are extracted from a simulated annealing based placement result. Because 

these models are more suited for predicting the shortest connections, the number of 

connections shown in the plot is limited to twice the number of cells in IBM01 

benchmark circuit corresponding to the shortest connections in the netlist. It can be seen 

from this plot that, the mutual contraction model outperforms the connectivity model in 

[51].   

Figure 4.13 also gives the cumulative length of the actual x shortest connections 

against the x number of shortest connections. It can be seen that this cumulative length of 

the actual shortest connections is much smaller than the cumulative length of the shortest 



 95 

connections predicted by the mutual contraction model. This indicates that there is a vast 

scope for improvement in the model. 
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Figure 4.13 Cumulative length of shortest connections for IBM01 

In fact, the percent difference in the cumulative length between the shortest 

connections predicted by mutual contraction model and the actual shortest connections is 

calculated for five different IBM benchmark circuits, and is shown in Table 4.1. For a 

netlist with G gates, this percent difference in cumulative length is calculated for the first 

G and 2G shortest connections. It can be seen from this table that the ideal prediction of 

the order of the connections from the shortest to the longest has a 78% smaller 

cumulative length than the mutual contraction model after the first G and 2G connections. 

Based on this quantitative evaluation, it is possible to conclude that the current model is 

in fact quite far of from optimal. 
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Unlike the mutual contraction model, the model by Bodapati and Najm takes into 

account both global parameters and local parameters. Thus more information is brought 

into the model to be used for prediction. In spite of the additional information, it was 

shown in [22] that the model still cannot be used for prediction of the length of short 

wires. Further, it assumes that there exists a polynomial relation between the length of the 

wires and factors derived from the global and local parameters. This could be a potential 

limitation of this model. For example, several relations might exist between the lengths 

and the various factors that control the lengths, and each of that relation might be valid 

only under a certain condition. In such a scenario prediction accuracy might be lost by 

using a single polynomial expression. In fact, the model already acknowledges the 

presence of multiple relationships, between length and prediction metrics, by using 

different prediction models for nets with degree less than 7 and nets with degree greater 

than or equal to 7.  

Summary 

An individual wire length could be predicted with reasonable accuracy only if the 

length of the wire does not vary widely from one optimal placement solution to another. 

Therefore an investigation is performed to evaluate this variability in individual wire 

lengths from one placement solution to another independent of placement tool. Based on 

these investigations it can be concluded that microscopic prediction is possible only for a 

TABLE 4.1 
DIFFERENCE IN CUMULATIVE LENGTH (MUTUAL CONTRACTION VS. ACTUAL SHORTEST)  

Percent Difference in cumulative length Circuit 

After first G
*
 connections After first 2G

*
 connections 

IBM01 68.11 65.71 
IBM02 77.51 80.01 
IBM03 78.31 79.34 
IBM04 80.34 78.42 
IBM05 85.97 87.18 

Average 78.05 78.13 
*
 G represents the number of gates/cells in a given netlist 
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subset of the wires, corresponding to nearly 40% of nets or 20 to 35% of interconnects or 

10 to 20% of connections in a given design. It is also shown that most of the predictable 

wires are from nets of smaller degrees and are short in nature.  

Besides the limitations from variability, microscopic prediction accuracy can also 

be limited due to the modeling methodology. Most of the current models assume that 

individual wire length could be predicted using a single metric.  For example, Bodapati 

and Najm’s model uses a single complex polynomial function to predict the longer nets 

and takes as input several parameters derived from a given netlist, and mutual contraction 

model aims to predict the order of the connections from the shortest to longest solely 

based on a simple mathematical expression that takes as its input the degree of a 

connection’s net and its neighboring connection’s net degrees. However placement of 

gates is a complex process driven by the connectivity of the entire system. The resulting 

wire lengths may be a result of a number of different parameters that cannot be combined 

into a single mathematical expression. Consequently this strategy to model them using a 

single metric could be a bottleneck in prediction accuracy. 
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CHAPTER 5 

NEW MICROSCOPIC MODEL 

 

Accurate individual wire length prediction would be the best possible wire length 

prediction because it would provide an accurate physical perspective of the wires in the 

system. However it was shown in Chapter 4 that only a fraction of the wires can be 

predicted because the length of the remaining wires vary widely from one placement 

solution to another. But it was also shown in Chapter 4 that there exists a large scope for 

improvement in the individual wire length prediction model over current models, such as 

such as mutual contraction.  

 

Figure 5.1 Ideal relation between microscopic prediction metric and wire length 

For ideal prediction, the relation between the prediction metric and the actual 

lengths must appear as shown in Figure 5.1, where the length of the wire follows a 

perfect trend dependent on the metric. But in reality, what appears in such a plot between 

the actual prediction metrics and the wire length is as shown in Figure 5.2, where the 

colored dots represent the mispredictions.  

Microscopic prediction metric 

Wire length 
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Figure 5.2 Relation observed between prediction metrics and actual wire length 

For example, the connections in the IBM01 benchmark, ordered based on the 

mutual contraction metric, are divided among hundred bins with equal number of 

connections in each bin.  The shortest connections predicted are in the first bin (bin 1) 

and the longest connections predicted are in the last bin (bin 100). Figure 5.3 shows the 

scatter plot of the length of the connections in each of these bins, which is ordered based 

on the mutual contraction metric. The figure also shows the average length of the 

connections in each of the bins. It can be seen from this plot that in fact the average 

length of the connections in each bin does increase from bin 1 to bin 100 with increasing 

mutual contraction. In spite of this, it is clear from the figure that there are a wide range 

of lengths in each of the bins. In fact the longest connection (length ~ 120 Gate Pitches) 

is predicted to be among the first 10% of connections, which ideally should include only 

the shortest 10% of connections. In spite of these errors, individual wire length prediction 

by mutual contraction model has already been used to effectively improve placement 

efficiency [22] [54], placement runtime [22], and synthesis [55]. Now if the huge 

mispredictions in the model could be reduced, or ideally eliminated, the effectiveness of 

Microscopic prediction metric 

Wire length 
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these applications could be improved and other advantages could be gained in the design 

process, by developing applications that take advantage of the improved accuracy. 

 

Figure 5.3 Connections sorted based on mutual contraction and arranged in bins 

The objective in the development of a new microscopic prediction model is 

therefore to eliminate as many of these mispredictions as possible. It is shown in Chapter 

4 that most of the wires that are predictable are very short in nature. Therefore, a new 

model is developed to predict the shorter wires more accurately than the mutual 

contraction model. The new model is based on several different prediction metrics, each 

of which can be used to identify a different group of shorter connections. They are 

combined together into a single model using a heuristic classification tree (HCT). 

Classification tree’s are widely used in statistics for prediction purposes. The details of 

this model are presented in the first part of this chapter. The model is then used in a 

coarsening stage of a very simplified placement framework similar to the FPI framework 

in [53]. The details of this experiment are presented in the final part of the chapter. 
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New Heuristic Classification Tree 

This new methodology of predicting shorter connections is based on identifying 

topological properties that result in shorter connections. The following methodology is 

adopted for the development and testing of the model. IBM01 benchmark is used as a 

sample circuit to study the structural properties of a netlist and their influence on the 

length of the connections. Those properties that are identified to make a connection short 

are then used to build the decision nodes of the new heuristic classification tree. The 

predictive ability of the model is then tested on the remaining seventeen benchmarks of 

the IBM benchmark suite.   

The lengths of the connections for analyzing the properties are extracted from a 

simulated annealing based placement result. It is assumed that the length values extracted 

from simulated annealing based placement should be representative of the length 

achieved by the connections across different placement tools. The connection lengths are 

then used along with the topological attributes of the neighborhood of the connection to 

identify the properties that could cause the connection to be short.  

Floating nodes  

With current technologies the primary input or output (I/O) pins of the netlist 

need not be placed at the periphery of the chip. This is because the I/O terminals are not 

constrained to any fixed position and are free to move (float) about. For example, Figure 

5.4 shows a sample graph where the vertices represent the cells in a netlist and the 

hyperedges represent the nets in the netlist. In this figure, vertex a is connected to only 

two other vertices, and one of them I/O1 is an input/output terminal that is not limited to 

a fixed position. Therefore vertex a will be pulled only in one direction, which is towards 

vertex b during placement. Because node a is free to move, it is a floating node. Since 

vertex b is connected to only two other vertices and since one of them (vertex a) is a 

floating node, vertex b will also be pulled only in a single direction i.e., towards vertex c. 
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Similarly vertex c will be pulled only towards vertex d, vertex d towards vertex e and so 

on. Consequently, nets (a,b), (b,c), (c,d), (d,e) and (e,f) will be short because there are no 

conflicting forces experienced by the nodes of these 2 pin nets. As a result, whenever a 

set of 2 pin nets are connected to each other in the form of a chain, and if one of them is 

terminated by an I/O pin as shown in Figure 5.4, the 2 pin nets can be assumed to be 

shorter in optimal placement solutions.  

 

Figure 5.4 Direct and Indirect Paths 

Based on this, the 2 pin net between vertices 1 and 2 in Figure 5.4 will also be 

short. However, the floating node concept cannot be extended to vertex 2. This is because 

vertex 2 is influenced by more than one another vertex, viz., vertices 3, 4 and 5, and each 

of these vertices may be pulled in a different direction by other vertices connected to 

them that are not free to move about. As a result, even if a vertex is connected to a 

floating node, if it is connected to more than 2 vertices including the floating node, it 

cannot be considered as a floating node. In other words, a floating node (FN) is defined 

as either an I/O pin or a vertex that is connected to only two nets, where both the nets are 

of degree 2 and one of them is connected to a floating node.  This provides the first level 

of classification (FN Prediction criterion) in our new heuristic classification tree and is 
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shown in Figure 5.5. The details of the number of connections classified under each 

group and the average length of those connections identified in the group for IBM01 

benchmark are also included in this figure. The data in the figure shows that 463 

connections met the criteria and their average length was 1.15 Gate Pitches in IBM01. 

 

Figure 5.5. New Heuristic Classification Tree (Stage 1) 

Alternative paths 

An undirected graph can be generated from any netlist with vertices representing 

the nodes in the netlist and hyperedges representing the nets in the netlist. A closer look 

at such an undirected graph generated from IBM benchmark netlists reveals the presence 

of multiple paths between several pairs of nodes. Intuitively, in a wire length optimized 

placement, the nodes involved in multiple paths between them will have to be placed 

closer together. This is because by placing these nodes closer more than one wire’s length 

is minimized. Further it was shown in Chapter 4 that most of the predicable connections 

which are short are from nets of smaller degrees. Based on this it is possible to 

hypothesize that whenever there are multiple paths between two nodes and whenever the 

paths involve lower degree nets it is highly probable that these two nodes will be placed 

close together in an optimized placement.  

More generally, the paths between the two nodes could be either direct or indirect. 

A direct path is defined as a path that results from two nodes being part of the same net. 
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An indirect path is defined as a path that occurs when the two nodes are connected 

through a set of intermediate vertices and nets. For example, in Figure 5.4 there are two 

paths between vertices 3 and 4. The path through the connection (3, 4) in the hyperedge 

(2, 3, 4, 5) is a direct path. And the path from 3 to 4 through intermediate nodes 6 and 8 

and intermediate hyperedges (4, 6, 7), (6, 8) and (8, 3) is the indirect path. 

Direct paths 

It is quite natural to assume that a direct path will result in more force between 

two nodes than an indirect path. This results in the second metric which relies upon the 

presence of multiple direct paths (MDP) between two nodes. The resulting classification 

tree is shown as the first split in Figure 5.6. It can be seen from this figure that, in the 

case of IBM01 benchmark placed using simulated annealing, the average length of 

connections between a pair of terminals connected with multiple direct paths is 7.36 gate 

pitches. This is in fact lesser than average length of connections between a pair of 

terminals connected with a single direct path. 

 

Figure 5.6. New Heuristic Classification Tree (Stage 2) 
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Figure 5.7 Average length of a net for different net degrees in IBM01 

In a netlist, a net of lower degree generally has a smaller length than a net of 

higher degree. For example, Figure 5.7 gives the relation between the net degree and the 

average length of the nets of that degree in IBM01 benchmark circuit. Based on this it is 

possible to hypothesize that a lower degree net has a higher force of attraction between its 

cells. Consequently, when multiple direct paths exist in between a pair of terminals, the 

connections in the multiple direct paths are characterized by the lowest net degree of the 

connections that exist between the two terminals. The parameter used to represent the 

lowest net degree of the connections among the multiple direct paths is called the direct 

path degree (DPdeg).  

Further, it is also possible to postulate that a pair of terminals will be placed closer 

together if there exists a large number of direct paths in between them. Therefore, the 

number of direct paths between the two terminals is also used to characterize the 
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connections in between the two terminals and the parameter direct path count (DPcount) is 

used to represent the number of connections between a pair of terminals. 

Table 5.1 and Table 5.2 shows the average length and standard deviation for the 

connections characterized by these two parameters for IBM01. Data for connections of 

degree greater than 10 are excluded due to larger average lengths. It is clearly seen that, 

as expected, on average the connections with lower net degree and higher direct path 

counts are consistently short.  

 

 

TABLE 5.2 
STANDARD DEVIATION OF LENGTH OF CONNECTIONS IN MULTIPLE DIRECT PATHS  

DPcount 
DPdeg 2 3 4 5 6 7 

2 1.37 2.17 0.49 0 0 0 
3 1.48 1.09 1.64 0.47 0 0 
4 3.19 1.45 1.19 1.22 0 0.49 
5 4.42 1.6 1.32 0.5 0 0 
6 4.1 1.26 1.94 0.88 0.82 0 
7 3.17 1.85 1.59 1.09 0.9 0.83 
8 4.19 3.36 1.47 0 0  0 
9 5.42 5.89 5.78 1  0  0 

10 10.53 4.2 2.6 0 0 0 

 

TABLE 5.1 
AVERAGE LENGTH OF CONNECTIONS IN MULTIPLE DIRECT PATHS  

DPcount DPdeg 

2 3 4 5 6 7 

2 1.49 1.76 1.24 1 1 0 
3 2.01 1.62 1.66 1.19 1 1 
4 2.52 2.05 2.01 2 1 1.4 
5 3.2 2.26 2.15 1.56 1 1 
6 4.08 2.06 2.97 2.29 2 1 
7 3.61 2.76 2.51 2.25 2.43 1.75 
8 5.33 4.5 2.59 0 2 0 
9 5.69 5.27 5.55 2 0 0 

10 10.25 5.37 3.91 0 0 0 
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Based on the Tables 5.1 and 5.2 certain groups of connections can be identified to 

be short depending on the values of the parameters DPdeg and DPcount. These groups are 

shown as shaded entries (both light and dark shades) in the tables. Connections that meet 

this criterion (MDP prediction criterion) is then used to predict the second set of short 

connections and is shown as the second decision split in the heuristic classification tree 

(stage 2) shown in Figure 5.6. 

Further analysis on those connections identified as short in the IBM01 benchmark 

is carried out to evaluate the quality of the prediction. In this analysis, among the 

connections predicted as short, those with an actual length of 1 to 5 gate pitches are 

identified as correct prediction, those of length 6 to 10 gate pitches are identified as minor 

violation, those of length 11 to 50 gate pitches as moderate violation and those of length 

greater than 50 gate pitches as major violation. Given these definitions, the distribution of 

correct predictions, minor violations, moderate violations and major violations among 

those connections predicted as short is extracted as a function of the parameter DPdeg, and 

is given in Table 5.3. It is clearly seen that there are very few violations among those 

identified as short. In fact among the connections identified as short in the case IBM01 

benchmark circuit, there are no connections of length greater than 50 gate pitches. 

Further, in total only 3.5% of the connections predicted as short are misclassified. This 

result can be viewed as the potential quality of the prediction possible in the second stage. 

 

TABLE 5.3 
DISTRIBUTION OF VIOLATIONS AMONG THE CONNECTIONS PREDICTED AS SHORT 

(BASED ON A MULTIPLE DIRECT PATH CHARACTERIZING PARAMETER)  

DPdeg 

 

Correct 

Prediction 

Minor 

Violation 

Moderate 

Violation 

Major 

Violation 

2 507 6 2 0 
3 1061 20 4 0 
4 903 33 7 0 
5 366 15 0 0 
6 267 15 0 0 
7 212 16 0 0 
8 45 2 0 0 
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Indirect paths 

While the previous section dealt with multiple direct paths between two nodes, 

this section deals with multiple paths, where one is a direct path and the others are 

indirect paths. Based on reasoning similar to that used in the case of multiple direct paths, 

it can be argued that whenever there are additional indirect paths (AIP) between two 

terminals, this could force the connections between the two terminals to be shorter under 

certain conditions.  

There can be many indirect paths between two nodes and it will be time 

consuming to find all of them. Therefore, in this investigation, only the shortest indirect 

path with less than four nets along the path is considered for the creation of this heuristic 

classification tree. Because there can be many indirect paths between a pair of terminals 

connected by a direct path, and because each of the net in the indirect path can come from 

a different net degree and can be influenced by a number of other nets, it is necessary to 

have a figure of merit to characterize the connections in the path. 

It was shown in Figure 5.7 that the lower degree nets tend to be shorter. 

Consequently, it can be assumed that a net of lower degree has a higher force pulling its 

cells together. Based on this assumption, a force weight is associated with each 

connection from a given net.  A connection between the nodes (u, v) that is part of the net 

n of degree d(n) is given a weight f(u, v) given by the following expression. 

 ( ) ( )
( )nd

nfvuf
2

, ==   (Eq5.1) 

This metric assigns a larger weight to connections from smaller degree nets, with 

the weights never exceeding 1. Whenever there is more than one path present in between 

two nodes, it is possible to presume that the effect of the pulling force between the nodes 

will be influenced by all the connections involved in the path. A simple mathematical 

way to perform this function would be either to sum the weights of the connections in the 

path or to get a product of the weight of the connections.  
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A sum function would give a greater weight to a connection when the indirect 

path between the connections terminals has more nets in it. On the other hand, the 

product of weights function would give a lesser weight to a connection when the indirect 

path between the connections terminals has more nets in it.  However, in an indirect path 

with a large number of nets, each of the number of nodes of the nets in the path will be 

subjected to a set of varied forces that determine their location. Consequently, it can be 

argued that the actual contraction force between the nodes in the path will be weaker 

when the indirect path has more nets. This will be contrary to the results produced by a 

sum function and concordant with the results produced by a product function.  

Therefore, the product of weights of the nets that form the direct path (dp) and 

indirect path ip1 between the pair of terminals (u, v) is chosen to represent the combined 

weight of the paths ftotal(u, v) on the terminals (u, v). However if there is more than one 

indirect path, then the maximum of the combined weights of the paths is used as the 

metric as shown in Eq5.2. 
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vuf
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The number of unique weight values could be large since ftotal(u, v) is a fraction 

less than 1. Therefore, for the sake of easier analysis ftotal(u, v) is converted into an integer 

parameter called rank using the expression in Eq5.4.  

( )
( )






=

vuf
vuRank

total ,

2
,                (Eq5.4) 

The distribution of connections, average length of the connections and standard 

deviation of the length of the connections characterized by rank of the connection is 

shown in Table 5.4. It can be seen from this table that the average length of the 

connections and the standard deviation of the length of the connections increases with the 

rank of the connections. This agrees with the hypothesis that the more the nets in the 
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indirect paths, the smaller the combined weight ftotal(u, v), and hence longer the 

connections and greater the rank. Based on the values in Table 5.4, connections with a 

rank less than 14 are predicted as short and are shown shaded in the table. This criterion 

(AIP prediction criterion) is then used as the next prediction metric and the resulting 

heuristic classification tree is shown in Figure 5.8.  

 

Given this set of connections predicted as short based on the AIP prediction 

criterion, they are further analyzed using the violation definitions that were used for 

analyzing the quality of prediction of the MDP prediction criterion. The distribution of 

violations among the connections predicted short using the AIP prediction criterion is 

extracted and is shown in Table 5.5 characterized by the rank of the connection.  It is 

clear from this table that there are very few violations in the group of connections 

predicted as short based on presence of indirect paths. Again, similar to MDP prediction 

criterion, the AIP prediction criterion makes no major violations and results in less than 

4% of misclassification in total. This result shows that, similar to the MDP criterion, the 

TABLE 5.4 
STATISTICS OF LENGTH OF CONNECTIONS FOR EACH RANK 

Rank Number of 

connections 

Average length Standard 

deviation of length  

3 246 1.63  0.95 
4 666 1.64 1.75 
5 1257 1.84 1.46 
6 810 1.99 1.43 
7 699 1.98 1.43 
8 996 2.15 1.52 
9 566 2.23 1.63 

10 436 2.56 2.34 
11 301 2.47 1.66 
12 685 2.70 2.10 
13 479 3.24 3.04 
14 373 3.40 2.76 
15 661 3.28 2.53 

>16 24956 5.51 6.30 
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new AIP prediction criterion could potentially make very accurate predictions of the 

shorter connections as well.  

 

Figure 5.8. New Heuristic Classification Tree (Stage 3) 

 

 
TABLE 5.5 

DISTRIBUTION OF VIOLATIONS AMONG THE CONNECTIONS PREDICTED AS SHORT  
(BASED ON ADDITIONAL INDIRECT PATH CHARACTERIZING PARAMETER) 

Rank 

 

Correct 

Prediction 

Minor 

Violation 

Moderate 

Violation 

Major 

Violation 

3 244 2 0 0 
4 661 3 2 0 
5 1217 34 6 0 
6 790 18 2 0 
7 687 10 2 0 
8 961 31 4 0 
9 545 16 5 0 

10 406 25 5 0 
11 284 17 0 0 
12 640 38 7 0 
13 423 47 9 0 

 

Connections not identified as short using 
floating node or direct path criteria 

(99321, 10.97) 

 
 
 
 
 
 
 
 
 
 
 
Connections not in predicted set 

of short connections 

Connections with additional 
indirect paths (AIP) 

(33131, 4.72) 

Connections with no 
identified indirect path 

(66190, 14.09) 

AIP prediction criterion: 
Connections with Rank < 14 

(7141, 2.16) 

Connections with additional 
indirect path not identified as 

short 
(25990, 5.42) 
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Complete Heuristic Classification Tree Model 

Figure 5.9 below shows the complete heuristic classification tree model for 

predicting the very short connections in a netlist. 

 

Figure 5.9 Complete Heuristic Classification Tree Model  

All connections in the graph 

 
 
 
 

 
Connections to next level 

Connections not connected to 
floating node 

FN prediction criterion: 
Connections connected to 

floating nodes 

 
 
 
 
 
 
 
 
 
 
 

Connections to next level 

Connections with multiple 
direct paths (MDP) 

Connections with one direct 
path only 

MDP prediction criterion:  
(DPdeg<5 & DPcount>1) or  

(4< DPdeg <8 & DPcount >2) 

or (DPdeg =8 & DPcount >3) 

Connections with multiple 
direct paths not identified as 

short  
 

 
 
 
 
 
 
 
 
 
 
Connections not in predicted set 

of short connections 

Connections with additional 
indirect paths (AIP) 

Connections with no 
identified indirect path 

AIP prediction criterion: 
Connections with Rank < 14 

Connections with additional 
indirect path not identified as 

short 
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New Model Results 

The connections with the properties identified in the heuristic classification tree 

are arranged with the connections from the floating node at first followed by those with 

multiple direct paths and then those with an additional indirect path. The plot of 

cumulative length of these ordered connections produced by the new Heuristic 

Classification Tree is shown in Figure 5.10 and Figure 5.11 along with the cumulative 

length of the connections sorted by the mutual contraction metric. Although the model 

itself was tuned using the simulated annealing placement results of IBM01, the plot in 

Figure 5.10 is produced using the Dragon placement result of IBM16 benchmark and the 

plot in Figure 5.11 is produced using the Capo placement result of IBM18 benchmark. 

The plot shows the cumulative length of the connections predicted as short by the new 

model is smaller than the same number of shortest connections predicted by the mutual 

contraction model.  
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Figure 5.10 Cumulative length of connections from Dragon placement of IBM16 
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Figure 5.11 Cumulative length of connections from Capo placement of IBM18 

A more quantitative comparison between the heuristic classification tree model 

and the mutual contraction model is provided in Table 5.6. The table provides the percent 

difference between the total length of the connections identified by the new heuristic 

classification tree with respect to the total length of the same number of short connections 

from mutual contraction model. The lengths of connections predicted by the new model 

are extracted from the placement results of three different placement tools viz., simulated 

annealing, Dragon and Capo, while the length of connections predicted by mutual 

contraction, used as the reference, is extracted only from the simulated annealing 

placement results. It can be seen from these results that the connections predicted as short 

by the new model have 28%, 27%, and 25% lesser total length than the connections 

identified by mutual contraction for the three different placement tools. However, it 

should be noted that results of IBM05 benchmark was not consistent with the other 

benchmarks. This could be attributed to the anomalous netlist properties of IBM05 
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benchmark which has a larger fraction of its connections derived from the higher degree 

nets, and has fewer connections that satisfy the heuristic classification prediction criteria. 

Excluding IBM05 results from the average for the percent cumulative length difference 

increases the average to 36%, 33% and 33% reduction for placement results from 

Simulated Annealing, Capo8.8 and Dragon respectively. 

 

An advantage of the heuristic classification tree is that it is easy to change the 

criteria used in the tree or add other new classification criteria to the tree to make the 

prediction more aggressive or to add other target prediction lengths. For example, an 

aggressive classification tree can be built by including only those groups identified by the 

darkly shaded regions in Tables 5.1 and 5.2. This classification has fewer mispredictions 

and fewer connections than the more conservative classification tree. In fact the 

cumulative length of the predicted shorter connections is less than those predicted by 

TABLE 5.6 
HEURISTIC CLASSIFICATION TREE VS. MUTUAL CONTRACTION MODEL 

% Difference in cumulative length 

(with respect to mutual contraction) 

Circuit 

SA Dragon Capo8.8 

IBM02 -6.22 2.75 11.37 
IBM03 -21.35   -6.45 -11.53 
IBM04 -24.73 -15.81 -18.27 

IBM05 87.17 100.76 71.58 

IBM06 -25.23 -13.9 -15.74 
IBM07 -40.22 -32.2 -35.59 
IBM08 -38.12 -33.89 -33.66 
IBM09 -10.88 -6 -7.99 
IBM10 -49.74 -52.69 -49.34 
IBM11 -35.03 -41.37 -37.13 
IBM12 -43.23 -43.31 -35.64 

IBM13 -30.25 -31.22 -32.18 
IBM14 -40.01 -42.08 -45.8 
IBM15 -48.33 -51.69 -54.99 
IBM16 -46.85 -48.84 -51.23 
IBM17 -55.7 -54.49 -54.98 

IBM18 -55.79 -61.62 -60.97 
Average -28.89 -25.49 -27.09 
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mutual contraction by 50%, 44% and 38% with the placement results of simulated 

annealing, Capo and Dragon respectively.  

The final analysis of the results is done to evaluate the quality of the prediction by 

estimating the number of mispredictions. For the sake of this analysis, a parameter called 

misprediction threshold Lthreshold is defined, such that if the actual length of a connection 

predicted as short is greater than this threshold, the connection is said to be mispredicted. 

Figure 5.12 shows the percentage of connections that are mispredicted for various values 

of the misprediction threshold in IBM12 benchmark using lengths from a simulated 

annealing placement. The plot shows the mispredicted data among the short connections 

predicted by the heuristic classification tree and the same number of shortest connections 

as predicted by the mutual contraction model. It can be seen from this figure that for any 

reasonable misprediction threshold the percentage of mispredictions in the new model is 

lesser than that observed in the mutual contraction model. 
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Figure 5.12 Difference in prediction quality observed in IBM16 
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Figure 5.13 Ratio of major violation in the prediction  

Results similar to that observed for IBM16 in Figure 5.12 were observed in other 

benchmarks as well and in shown condensed into a single plot in Figures 5.13 for the 10 

largest benchmarks. Figure 5.13 shows the ratio of the number of major violations 

(mispredictions estimated with the misprediction threshold set to 50 gate pitches) among 

the predicted short connections in the mutual contraction with respect to the new heuristic 

classification tree model. It can be seen from this figure that the new model consistently 

outperforms the mutual contraction model and on an average has one fifth the number of 

major violations as a mutual contraction model. Based on these results it is possible to 

infer that the new heuristic model indeed improves the accuracy of the shorter 

connections prediction. However it should be mentioned that prediction using the new 

heuristic classification tree will take longer than the mutual contraction model. This is 

due to the fact that more information about the local neighborhood of a connection needs 

to be extracted to make a prediction with a heuristic classification tree. 
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New Model Application 

One of the earliest applications of the mutual contraction model was its use in a 

multilevel placement framework FPI [53], where the mutual contraction model results are 

used to drive the coarsening decisions in a netlist. Given a netlist for placement, the idea 

was to first reduce the size of the netlist by coarsening and then apply a standard 

placement tool to the smaller coarsened netlist. Once the coarsened netlist is placed, it is 

un-coarsened and given to a detailed placer to further optimize the placement. Mutual 

contraction model was successfully used in this model along with a special coarsening 

algorithm to show effective reductions in the placement runtime.  

 

Figure 5.14 Placement application framework of the heuristic classification tree 

A placement application that utilizes the heuristic classification tree model in a 

similar manner is developed, and its framework is shown in Figure 5.14. In this 

framework, the heuristic classification tree model is used in the first stage to predict the 

shorter connections in netlist. The list of connections predicted as short is then used to 

reduce the size of the netlist. The coarsened netlist, which is smaller, is then fed to 

Predict short connections in the netlist using 
Heuristic Classification Tree 

Coarsen the netlist using the predicted short 
connections 

Place the coarsened netlist using Fengshui 
placement tool 

Un-coarsen the netlist to yield the original netlist 
with a global placement 

Optimize the global placement using Fengshui 
detailed placer to yield the final placement 
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Fengshui5.0 placement tool to find an optimal placement solution. After an optimal 

placement solution is found for the coarsened netlist, the cells in the coarsened netlist are 

un-coarsened to yield the original netlist. The cells of the original netlist are then 

assigned a position in the layout based on their parent cells in the coarsened netlist to 

yield a global placement for the original netlist. This global placement solution is then 

fed to the detailed placer of Fengshui5.0 placement tool to find the final optimal 

placement solution.  

In this methodology, a very simple coarsening strategy is used to reduce the size 

of the netlist. The idea behind the coarsening step is that, since the connection predicted 

as short are most likely to be short in an optimized placement, the terminal cells of the 

connection will be placed closer together and therefore can be treated as a single cell. 

Therefore, if a connection is predicted as short, then the two terminal cells of the 

connection are merged into a single coarsened cell. However if one of the terminal cells 

is already merged into a different coarsened cell, then the number of cells in the 

coarsened cell is checked. If there are less than five cells in this coarsened cell, the cell 

that is not part of any coarsened cell is merged to the coarsened cell. In a case where both 

the cells are part of a coarsened cell, the two coarsened cells are merged if and only if a 

merger of the two coarsened cells will not create a coarsened cell that has more than 5 

cells. In other words, the size of a coarsened cell is limited to 5 cells of the original 

netlist. The process is continued until all the connections that are predicted as short have 

been checked for possible coarsening. Once the cells are coarsened, the new netlist is 

created by replacing the original terminal cells of the nets with the coarsened cells. It is 

made sure that each net is connected to its coarsened cell through not more than one 

terminal. If all the terminals of the net are connected to the original cells within a single 

coarsened cell, the net is eliminated from the coarsened netlist. Thus the number of cells, 

number of nets and number of net terminals in the netlist are reduced by coarsening. 

Furthermore, the time taken to optimize a netlist is proportional to its size and therefore a 
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reduced netlist will take lesser time to optimize. After the coarsened netlist placement, 

the coarsened cells are replaced by the original cells that are part of it to yield the global 

placement solution of the original netlist.  

The whole framework is implemented in C++, and its results in terms of wire 

length and run time is compared with the results produced by Fengshui5.0 with the 

original netlist as its direct input. These results are shown in Table 5.7 for 11 different 

IBM benchmarks. It can be seen from this table that the wire length increases marginally 

with the new framework. However, the run time was reduced by as much as 19%, and on 

an average the run time was reduced by nearly 10% accompanied by a 2% increase in 

wire length.  

 

Further improvement in wire length should be possible by fine tuning the input 

control parameters given to Fengshui5.0 for detailed placement optimization and 

improving the coarsening strategy used. Although time taken by prediction and 

coarsening is a small fraction of the total placement, it should be possible to improve the 

runtime by optimizing the prediction, coarsening and uncoarsening stages. Additional 

improvements may also be possible if the framework is completely integrated into the 

placement tool. 

TABLE 5.7 
PLACEMENT APPLICATION RESULT OF HEURISTIC CLASSIFICATION TREE 

Wire length in Gate Pitches Runtime Circuit 

New 
Framework 

Fengshui % 
Difference 

New 
Framework 

Fengshui % 
Difference 

IBM01 94977 93365 1.72 100.53 113.63 -11.53 
IBM02 285573 270143 5.71 265.59 277.50 -4.29 
IBM03 266170 265860 1.70 254.18 280.10 -9.25 
IBM04 335008 328793 1.89 319.80 325.22 -1.66 
IBM05 655584 628304 4.34 416.35 430.87 -3.37 
IBM06 425186 425721 -0.12 432.56 474.83 -8.90 
IBM07 619389 619647 -0.04 568.30 671.24 -15.33 
IBM08 689410 673100 2.42 643.31 756.53 -14.96 
IBM09 579720 573924 1.01 747.01 774.05 -3.49 
IBM10 959854 943565 1.58 935.25 1042.85 -10.31 
IBM18 3.466e6 3.339e6 1.97 2713.41 3339.14 -18.73 
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Summary 

Based on the results from previous investigations, a new microscopic prediction 

model is developed. The new model is developed to predict the shorter connections since 

earlier investigations revealed that the shorter wires are more predictable, and more 

information could be gained by predicting connections than interconnects or nets. Unlike 

the earlier models, the new model is designed as a set of several metrics organized in the 

form of a classification tree. Each node in the classification tree is a decision criterion and 

the connections that meet the criterion are predicted to be in a certain length range. The 

metrics are based on the connectivity of input/output terminals and the presence of 

additional paths between a pair of gates connected through a connection. The corner 

stones of this model are (i) Floating Node Criterion, (ii) Multiple Direct Paths Criterion 

and (iii) Additional Indirect Path Criterion. The resultant classification tree is much more 

accurate in predicting the shorter connections than the comparable mutual contraction 

model. In fact the new model has 1/5th the number of major mispredictions than the 

mutual contraction model. Further the new model performs better than the mutual 

contraction independent of the placement tool used. In fact, the new model reduced the 

placement runtime by as much as 19% when used in a placement framework to perform 

coarsening. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

The primary objectives of the research performed as part of this thesis are (i) to 

carefully investigate the limitations to wire length prediction and (ii) identify 

opportunities and develop models to perform better wire length prediction. The results of 

the investigations performed to this effect were discussed in the previous chapters. Based 

on these investigations, this chapter presents the conclusion of this thesis and provides an 

overview of possible opportunities for future research work in the field of wire length 

prediction. 

The chapter is organized into three main sections. The first section deals with 

macroscopic prediction, while the second deals with microscopic prediction. Each of the 

two sections provides a summary of the various conclusions that can be drawn form the 

investigations pertaining to the corresponding topic and future research work 

possibilities. Finally all of these results are tied together in the third and final conclusion 

section. 

Macroscopic Prediction Summary 

Macroscopic prediction refers to wire length prediction models that provide a 

global perspective on the wiring requirements of a given design. These models predict the 

wire length statistics, usually the wire length distribution. Most of the current wire length 

distribution models predict the less accurate interconnect length distribution because it is 

difficult to incorporate the more accurate net models into a wire length distribution 

prediction model. Although, ideally it is necessary to predict the post routing wire 

lengths, predicting them would be more difficult due to potentially larger variability as a 

result of the larger number of possible routed solutions. Therefore, the macroscopic 
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prediction research in this thesis is limited to a priori post-placement pre-routing 

interconnect length distribution prediction.  

Interconnect length distribution is dependent on the actual final placement of the 

gates in the layout. Therefore, the length distribution will vary from one placement 

solution to another. This variation could be observed either between the placement results 

of the same placement tool (Intra-tool variability) or between the placement results from 

different placement tools (Inter-tool variability). This could consequently be a limiting 

factor to achievable prediction accuracy. Therefore, the variations from these causes were 

investigated. Based on these investigations it can be concluded that the intra-tool 

variability is generally less than the inter-tool variability. As a result, it is possible to 

hypothesize that the margin of prediction error could be reduced when a designer 

consistently uses the same placement tool. It was also shown that the variability for 

shorter wires is lesser than that of longer wires, and that the variability increases with a 

decrease in distribution. However, most often the longer wires are the sources of 

bottlenecks in a design. Therefore, when developing applications using predictions of 

longer wires, it is necessary to keep this variability into account. To aid in such scenarios, 

an empirical model that provides an idea of the variability of the distribution is also 

developed.  

Accuracy of macroscopic wire length prediction could also be limited due to the 

modeling methodology used. Most of the current state-of-the-art wire length distribution 

prediction models calculate the distribution as a product of two functions viz., site density 

function and interconnect occupational probability function. The interconnect 

occupational probability values are most often calculated from a Terminal-to-Gate 

relation provided by the Rent’s rule. The model developed by Davis, De and Meindl 

(DDM) is one of the very popular wire length distribution models. It calculates the 

interconnect occupational probability by applying the law of conservation of terminals to 

an imaginary set of three basic blocks A, B and C overlaid on the actual layout of the 
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placed netlist. Investigations were carried out to study the limitations to prediction 

accuracy due to the methodologies used in the model. It was shown that the DDM model 

overestimated the distribution of very short wires normally constituting 36% of the wires, 

by 94% on an average. Consequently, the distributions of the remaining wires were found 

to be underestimated. Further investigations revealed that the errors are due to the use of 

Rent’s rule approximation and incorrect block sizes used in deriving the terminal counts.  

Using the limitations to prediction accuracy identified from these investigations, a 

new interconnect length distribution model is developed as an improvement over the 

DDM model. The key corner stones of the new model are (i) a new model for parameters 

p[ABC[l]] and p[BC[l]], which are used in a modified Rent’s rule to calculate the 

Interconnect-terminal-to-Block-size relation of a placed netlist, (ii) a look-up table that 

provides the p values of the two smallest block sizes used in model (p[ABC[l=1]] and 

p[BC[l=1]]) and (iii) incorporation of the empirical variability model into the wire length 

distribution model. The result is a very highly accurate prediction of the distributions of 

the shorter wires. However the model has a poorer accuracy for the longer wires. This is 

due to the fact that the new model uses an approximation to model the parameter 

p[BC[l]], which causes an over estimation of the difference in the terminal counts 

between blocks BC[l] and ABC[l] for very large length values. Consequently the length 

distribution of longer interconnects is overestimated.  

Therefore, to improve the accuracy of macroscopic prediction in the current 

model, it is necessary to improve the model for p[BC[l]]. An alternative strategy would 

be to investigate possibilities for modeling the difference between the terminal counts of 

blocks BC[l] and ABC[l]. However, ideally it is necessary to develop a priori post-

routing wire length distribution model. Therefore, variability in the post-routing wire 

length distribution must be studied as well. Further, since the final actual wire length that 

influences the design specifications is based on a net model and not an interconnect 

model, a methodology to incorporate net models into wire length distribution models 
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must be investigated. This could result in much improved a priori post-routing wire 

length distribution models. Another area of possible future research is to develop a model 

by relaxing the assumptions used to build the current model, such as uniform square gate 

sizes and layouts.  

Microscopic Prediction Summary 

Microscopic predictions models provide a local perspective on the wiring 

requirements of the design. These models predict the length of each individual wires or 

predict the order of the wires from the shortest to the longest. Similar to macroscopic 

prediction, the microscopic prediction research performed as part of this thesis is limited 

to a priori post-placement pre-routing microscopic prediction. 

An individual wire length could be predicted with reasonable accuracy only if the 

length of the wire does not vary widely from one optimal placement solution to another. 

Therefore an investigation is performed to evaluate this variability in individual wire 

lengths from one placement solution to another independent of placement tool. Based on 

these investigations it can be concluded that microscopic prediction is possible only for a 

subset of the wires, corresponding to nearly 40% of nets or 20 to 35% of interconnects or 

10 to 20% of connections in a given design. It is also shown that most of the predictable 

wires are from nets of smaller degrees and are short in nature.  

Although a larger percentage of nets are predictable, more information about the 

distances between cells could be gained by predicting connections or interconnections. 

Predictable interconnects could provide 40% more information than predictable nets, and 

predictable connections could provide 124% more information than predictable nets. 

These values are calculated by estimating the number of interconnects or connections of 

the predictable nets, and then comparing them to the number of predictable interconnects 

or predictable connections.  
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Besides the limitations from variability, microscopic prediction accuracy can also 

be limited due to the modeling methodology. Most of the current models assume that 

individual wire length could be predicted using a single metric.  For example, Bodapati 

and Najm’s model uses a single complex polynomial function to predict the longer nets 

and takes as input several parameters derived from a given netlist, and mutual contraction 

model aims to predict the order of the connections from the shortest to longest solely 

based on a simple mathematical expression that takes as its input the degree of a 

connection’s net and its neighboring connection’s net degrees. However placement of 

gates is a complex process driven by the connectivity of the entire system. The resulting 

wire lengths may be a result of a number of different parameters that cannot be combined 

into a single mathematical expression. Consequently this strategy to model them using a 

single metric could be a drawback to prediction accuracy. 

Based on the results from these investigations, a new microscopic prediction 

model is developed. The new model is developed to predict the shorter connections since 

earlier investigations revealed that the shorter wires are more predictable, and more 

information could be gained by predicting connections than interconnects or nets. Unlike 

the earlier models, the new model is designed as a set of several metrics organized in the 

form of a classification tree. Each node in the classification tree is a decision criterion and 

the connections that meet the criterion are predicted to be in a certain length range. The 

metrics are based on the connectivity of input/output terminals and the presence of 

additional paths between a pair of gates connected through a connection. The corner 

stones of this model are (i) Floating Node Criterion, (ii) Multiple Direct Paths Criterion 

and (iii) Additional Indirect Path Criterion. The resultant classification tree is much more 

accurate in predicting the shorter connections than the comparable mutual contraction 

model. In fact the new model has 1/5th the number of major mispredictions than the 

mutual contraction model. Further the new model performs better than the mutual 

contraction independent of the placement tool used. In fact, the new model reduced the 
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placement runtime by as much as 19% when used in a placement framework to perform 

coarsening.  

Potential future research opportunities in the field of microscopic prediction 

include investigations of individual wire length variability with respect to timing instead 

of length. This could shed better light on the impact of the variability in timing. Currently 

the new microscopic model is limited to prediction of very short wires based on a set of 

three criteria. Future work could include research on additional criteria to the heuristic 

classification tree. This could increase the number of connections predicted, and could 

also help classify the connections into different length ranges. Further research could also 

be directed towards developing additional applications for the new heuristic classification 

tree model. 

Key Knowledge Contributions 

1. Inherent limitations to macroscopic prediction: For the first time, it is shown 

that the longer wires in a wire length distribution can have significant deviations for 

different placement runs and placement tools. The normalized standard deviation of the 

distribution of longer wires can be orders of magnitude larger than that of the short wires. 

2. New macroscopic prediction model: A new wire length prediction model has 

been developed than can rapidly estimate the wire length distribution for a given netlist. 

In addition, this model includes the variations in the distribution. This model can be used 

to enhance system level simulators such as GENESYS and MINDS. 

3. Inherent limitations to microscopic prediction: For the first time, the existence 

of a predictable set of wires that is independent of the placement run and placement tool 

is clearly identified. The predictable wires are usually short in nature and are from nets of 

smaller degrees. 
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4. New microscopic prediction model: A new HCT model has been developed 

that consistently predicts the shorter wires in a netlist. This new models shows 30-50% 

better prediction than current state-of-the-art models. 

5. Application to microscopic prediction: It is shown that this new HCT model 

can be used to reduce placement time by up to 19% without significantly affecting 

placement quality. 

Future Work 

Wire length prediction is inherently difficult, limited by the modeling 

methodologies and the variability in wire lengths. Although models targeting 

macroscopic and microscopic prediction are developed separately in this thesis, more 

insight could be gained by combining these models into a single hybrid prediction model. 

For example, when the microscopic model predicts the length of shorter wires the length 

distribution of the shorter wires could be subtracted from the over all length distribution 

to provide the length distribution of the unpredicted wires. This could provide a better 

perspective of the wires whose individual lengths cannot be predicted directly. Thus 

hybrid wire length prediction models could largely improve the effectiveness of wire 

length prediction.  
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