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Abstract.  
High levels of fine particulate matter (PM2.5) pollution in East Asia often exceed local air quality standards. Observations from 

the Korea United States-Air Quality (KORUS-AQ) field campaign in May and June 2016 showed that development of extreme 30 

pollution (haze) occurred through a combination of long-range transport and favorable meteorological conditions that enhanced 

local production of PM2.5. Atmospheric models often have difficulty simulating PM2.5 chemical composition during haze, 

which is of concern for the development of successful control measures. We use observations from KORUS-AQ to examine 

the ability of the GEOS-Chem chemical transport model to simulate PM2.5 composition throughout the campaign and identify 

the mechanisms driving the pollution event. In the surface level, the model underestimates campaign average sulfate aerosol 35 

by -64% but overestimates nitrate aerosol by 36%. The largest underestimate in sulfate occurs during the pollution event in 

conditions of high relative humidity, where models typically struggle to generate the high concentrations due to missing 
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heterogeneous chemistry in aerosol liquid water in the polluted boundary layer. Hourly surface observations show that the 

model nitrate bias is driven by an overestimation of the nighttime peak. In the model, nitrate formation is limited by the supply 

of nitric acid, which is biased by +100% against aircraft observations. We hypothesize that this is due to a missing sink, which 40 

we implement here as a factor of five increase in dry deposition. We show that the resulting increased deposition velocity is 

consistent with observations of total nitrate as a function of photochemical age. The model does not account for factors such 

as the urban heat island effect or the heterogeneity of the built-up urban landscape resulting in insufficient model turbulence 

and surface area over the study area that likely results in insufficient dry deposition. Other species such as NH3 could be 

similarly affected but were not measured during the campaign. Nighttime production of nitrate is driven by NO2 hydrolysis in 45 

the model, while observations show that unexpectedly elevated nighttime ozone (not present in the model) should result in 

N2O5 hydrolysis as the primary pathway. The model is unable to represent nighttime ozone due to an overly rapid collapse of 

the afternoon mixed layer and excessive titration by NO. We attribute this to missing nighttime heating driving deeper 

nocturnal mixing that would be expected to occur in a city like Seoul. This urban heating is not considered in air quality models 

run at large enough scales to treat both local chemistry and long-range transport. Key model failures in simulating nitrate, 50 

mainly overestimated daytime nitric acid, incorrect representation of nighttime chemistry, and an overly shallow and 

insufficiently turbulent nighttime mixed layer, exacerbate the model’s inability to simulate the buildup of PM2.5 during haze 

pollution. To address the underestimate in sulfate most evident during the haze event, heterogeneous aerosol uptake of SO2 is 

added to the model which previously only considered aqueous production of sulfate from SO2 in cloud water. Implementing a 

simple parameterization of this chemistry improves the model abundance of sulfate but degrades the SO2 simulation implying 55 

that emissions are underestimated. We find that improving model simulations of sulfate has direct relevance to determining 

local vs. transboundary contributions to PM2.5. During the haze pollution event, the inclusion of heterogeneous aerosol uptake 

of SO2 decreases the fraction of PM2.5 attributable to long-range transport from 66% to 54%. Locally-produced sulfate 

increased from 1% to 46% of locally-produced PM2.5, implying that local emissions controls would have a larger effect than 

previously thought. However, this additional uptake of SO2 is coupled to the model nitrate prediction which affects the aerosol 60 

liquid water abundance and chemistry driving sulfate-nitrate-ammonium partitioning. An additional simulation of the haze 

pollution with heterogeneous uptake of SO2 to aerosol and simple improvements to the model nitrate simulation results in 30% 

less sulfate due to 40% less nitrate and aerosol water, and results in an underestimate of sulfate during the haze event. Future 

studies need to better consider the impact of model physical processes such as dry deposition and boundary layer mixing on 

the simulation of nitrate and the effect of improved nitrate simulations on the overall simulation of secondary inorganic aerosol 65 

(sulfate+nitrate+ammonium) in East Asia. Foreign emissions are rapidly changing, increasing the need to understand the 

impact of local emissions on PM2.5 in South Korea to ensure continued air quality improvements. 
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1 1 Introduction 

South Korea enacted legislation in 2018 to address local air pollution, which ranked 13th in the world for the worst annual 

average fine particulate matter (PM2.5) exposure levels (Energy Policy Institute, 2019). Ambient PM2.5 was the 5th highest risk 70 

factor for human health in South Korea in 2018, leading to over 20,000 attributable deaths (GBD, 2021). The government 

plans to reduce the number of days with pollution warnings (PM2.5 > 90 µg m-3 for two hours) by 50% in 2022 from the 89 that 

occurred in 2016 (Kim et al., 2018). The reduction of PM2.5 levels through policy measures relies on a thorough understanding 

of pollution sources and the ability of models to simulate potential control measures. Modeling studies have concluded that on 

average, approximately half of observed PM2.5 in South Korea is attributable to long-range transport from China (Lee et al., 75 

2017; Choi et al., 2019; Jung et al., 2019; Kumar et al., 2021). This finding is based on models that have received limited 

testing of their ability to simulate PM2.5 chemical composition, particularly during extreme pollution events. Quantifying the 

effect of long-range transport relies on regional to global-scale models that trade-off the high resolution needed to resolve 

urban scales with a large enough domain to represent both the study area and upwind source regions. This evaluation is critical 

as the contribution of long-range transport to PM2.5 in South Korea may be declining due to effective emission controls in 80 

China (Han et al., 2021), increasing the need to understand the impact of local emissions on pollution events.  

 

Across East Asia, densely populated regions experience haze events with extremely high levels of PM2.5 frequently associated 

with periods of elevated relative humidity and low daytime mixed layer heights (An et al., 2019). These conditions are 

favorable for increasing gas-particle partitioning of aerosol precursors. In haze, secondary inorganic aerosol (secondary 85 

sulfate+nitrate+ammonium ≡	SNA) is often the dominant component of PM2.5, but models have difficulty SNA, particularly 

sulfate, during these periods (Wang et al., 2014; Zheng et al., 2015a, 2015b; Shao et al., 2019). More generally, the MICS-

Asia multi-model comparison showed that the annual contribution of SNA to total PM2.5 varied by a factor of two across 

models and the models also overpredicted the gas-particle partitioning of nitrate (Chen et al., 2019). In the global AeroCom 

III intercomparison, models differed in their annual concentrations of nitrate and its precursor, nitric acid, by factors of thirteen 90 

and nine, respectively (Bian et al., 2017). Models also struggle to represent organic aerosol, overestimating primary organic 

aerosol (POA) but underestimating secondary organic aerosol (SOA, Zhao et al., 2016), possibly due to missing sources from 

anthropogenic precursors (Nault et al., 2020). This wide range of model performance in simulating PM2.5 composition 

emphasizes the urgent need to improve our understanding of the sources and conditions driving haze events.  

 95 

Improving model representation of sulfate chemistry cannot be considered entirely separately from model nitrate biases. In the 

atmosphere, aqueous-phase chemistry is a major source of sulfate, where clouds provide the dominant source of liquid water 

(Herrmann et al., 2015). Recent studies have hypothesized that the high aerosol liquid water content (ALWC) associated with 

PM2.5 during extreme pollution events in East Asia allows for significant sulfate production not considered in most models 

(Wang et al., 2014; Zheng et al., 2015a, 2015b; Shao et al., 2019). Levels of ALWC are very sensitive to aerosol nitrate (Ge 100 
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et al., 2012; Sun et al., 2018). The aqueous pathway(s) for SO2 oxidation in ALWC are uncertain in part due to poor 

understanding of aerosol acidity (An et al., 2019), a key factor controlling nitric acid - nitrate partitioning (Guo et al., 2016). 

Accurate simulation of aerosol composition and water uptake is required to interpret satellite observations of aerosol optical 

depth (AOD) (Saide et al., 2020) and evaluate the reponse to emission changes.  

The Korea United States-Air Quality campaign (KORUS-AQ), conducted in May and June 2016 in South Korea (Crawford et 105 

al., 2021), provides an extensive set of ground and aircraft-based observations that can further constrain model simulations of 

the chemical and physical drivers of PM2.5. The campaign included a haze event with concentrations exceeding local air quality 

standards, characterized by rapid buildup of SNA aerosol. Throughout KORUS-AQ, surprisingly high levels of nighttime 

ozone, particularly prevalent during haze, appeared to drive nighttime nitrate formation through N2O5 hydrolysis (Jordan et 

al., 2020). This was attributed to elevated nocturnal mixed layer heights (MLH). Zhai et al. (2021) found a severe model 110 

overestimate in nighttime nitrate during KORUS-AQ, implying a failure to correctly simulate these conditions. We use the 

GEOS-Chem chemical transport model applied at high resolution (0.25o × 0.3125o) over East Asia to investigate model 

representation of PM2.5 mass and chemical composition during KORUS-AQ. We specifically evaluate model performance 

during the conditions governing the development of haze pollution such as elevated relative humidity, increased SNA, and 

high nighttime ozone levels. We demonstrate how addressing deficiencies in model physical processes (e.g., nighttime mixing, 115 

deposition) are fundamental to the successful simulation of PM2.5. 

2 KORUS-AQ observations 

The KORUS-AQ campaign (Crawford et al., 2021) was a joint field campaign organized by South Korea’s National Institute 

of Environmental Research (NIER) and the United States National Aeronautics and Space Administration (NASA). KORUS-

AQ included twenty flights using the NASA DC-8 aircraft from May 1 to June 9, 2016, complemented by heavily instrumented 120 

ground sites including aerosol composition at Olympic Park and the Korea Institute of Science and Technology (KIST) in 

Seoul. The NIER maintains the extensive AirKorea monitoring network for hourly observations of PM2.5 mass, ozone, and 

other pollutants, with 329 sites available during the campaign, including locations near Olympic Park and KIST. There were 

four distinct meteorological periods during KORUS-AQ, described in Peterson et al. (2019). These included a dynamic period 

characterized by a series of frontal passages (Dynamic Period, May 1-16), dry, clear, and stagnant conditions (Stagnant Period, 125 

May 17-22), long-range transport and haze conditions with high humidity and extensive cloud cover (Transport/Haze Period, 

May 25-31), and blocking conditions limiting transport (Blocking Period, June 1-7). Details on the impact of the different 

meteorological periods on PM2.5 are provided in Jordan et al. (2020). We focus on the Seoul Metropolitan Area (SMA) with 

the highest density of KORUS-AQ observations and the highest PM2.5 levels observed by the AirKorea network during the 

campaign. Crawford et al. (2021) provides a full listing of all observations made during KORUS-AQ. Table 1 describes the 130 

aircraft and ground observations used in this work.  
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3 GEOS-Chem model  

We use the GEOS-Chem chemical transport model (CTM) in version 12.7.2 (doi: 10.5281/zenodo.3701669) to simulate 

KORUS-AQ. The model is driven by assimilated meteorological data from the NASA Global Modeling and Assimilation 

Office (GMAO) Goddard Earth Observing System Forward-Processing (GEOS-FP) atmospheric data assimilation system. 135 

GEOS-FP has a native horizontal resolution of 0.25o × 0.3125o, which we apply with the nested version of GEOS-Chem (Chen 

et al., 2009) over East Asia (70° - 140°E, 15°S - 55°N) using boundary conditions from a global simulation at 2.0° × 2.5° with 

a 1-month initialization period. The model has 47 vertical layers, with the first layer centered at approximately 60 m above the 

surface. Model timesteps are 20 min (chemistry) and 10 min (transport) as recommended by Philip et al. (2016).  

 140 

Global emissions are from the Community Emissions Database System (CEDS) inventory (Hoesly et al., 2018) overwritten 

by the KORUSv5 anthropogenic and shipping emissions (Woo et al., 2020) for Asia (60° - 146°E, 10°S - 54°N) developed for 

the KORUS-AQ campaign. The translation from KORUSv5, provided using the SAPRC99 chemical mechanism, to the GEOS-

Chem mechanism is given in Table S1. We apply sector-specific diurnal variation from the Multi-resolution Emission 

Inventory for China (MEIC) as in Miao et al. (2020) to the monthly KORUSv5 emissions. Natural emissions are from the 145 

Global Emissions Initiative (GEIA, Bouwman et al., 1997) for ammonia and from MEGANv2.1 (Guenther et al., 2012) for 

biogenic species. We include lightning emissions (Murray et al., 2012), biomass burning emissions (GFED4s, Werf et al., 

2017), soil NOx emissions (Hudman et al., 2012), and volcanic SO2 emissions (Carn et al., 2015). Table 2 shows the emissions 

inventory for key emitted species in the nested East Asia domain for May 2016.  

 150 

Model dry deposition for gas-phase species is based on the resistance-in-series scheme from Wesely (1989) as implemented 

by Wang et al. (1998), where species deposition is limited by aerodynamic resistance, quasi-laminar layer resistance, and 

canopy or surface resistance. Species with low surface resistance, such as HNO3, are limited in their deposition velocity by 

aerodynamic resistance only. Aerosol deposition is from Zhang et al. (2001). The original model wet deposition scheme is 

described by Liu et al. (2001) for water-soluble aerosols and Amos et al. (2012) for gases. Wet deposition includes scavenging 155 

from moist convective updrafts and rainout and washout from precipitation. We include the revised wet deposition scheme of 

Luo et al. (2019) that uses an empirical washout rate for nitric acid two orders of magnitude higher than the previous value 

and replaces the standard constant value for in-cloud condensation water content with the value calculated by the 

meteorological fields (GEOS-FP). GEOS-Chem uses a non-local boundary layer mixing scheme (Holtslag and Boville, 1993; 

Lin and McElroy, 2010) where mixing is calculated explicitly from meteorological variables provided by GEOS-FP (i.e. 160 

sensible and latent heat flux, temperature, friction velocity). The mixing height is restricted from dropping below a minimum 

mechanical mixing depth, defined as a function of local friction velocity (Lin and McElroy, 2010). 
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The GEOS-Chem HOx-NOx-VOC-ozone-halogen-aerosol mechanism includes improvements to PAN chemistry (Fischer et 

al., 2014), isoprene oxidation (Fisher et al., 2016; Travis et al., 2016; Chan Miller et al., 2017), halogen chemistry (Sherwen 165 

et al., 2016), Criegee intermediates (Millet et al., 2015), and methyl, ethyl, and propyl nitrates (Fisher et al., 2018). 

Heterogeneous aerosol uptake of HO2 produces H2O2 (Mao et al., 2013), with a reactive uptake coefficient (𝛾) of 0.2 (Jacob, 

2000). We implement aromatic chemistry from Yan et al. (2019) for the simulation of KORUS-AQ. 

 

We use the model “simple scheme” for organic aerosol (OA) where OA is generated using fixed empirically derived yields 170 

from isoprene, monoterpenes, biomass burning, and anthropogenic fuel combustion (Pai et al., 2020). This scheme includes 

an emitted hydrophobic component (OCPO) with an assumed organic-mass-to-organic carbon (OM:OC) ratio of 1.4 that is 

aged to a hydrophilic oxygenated component (OCPI) with an OM:OC ratio of 2.1. Secondary organic aerosol (SOA) is a 

lumped product (SOAS) with a molecular weight of 150 g mol-1. For comparison to observations, primary organic aerosol 

(POA) is defined as OCPO and SOA is the sum of OCPI and SOAS. The sulfate-nitrate-ammonium (SNA) aerosol simulation 175 

(Park, 2004) includes the addition of metal-catalyzed oxidation of SO2 (Alexander et al., 2009), sulfur oxidation by reactive 

halogens (Chen et al., 2017), and improved implementation of aerosol cloud-processing and revised uptake coefficients for 

NO2 (Holmes et al., 2019). Uptake of N2O5 on SNA includes dependence on aerosol water, organic coatings, nitrate aerosol 

fraction, and particulate chloride (McDuffie et al., 2018). SNA partitioning is calculated with ISORROPIA v2.2 (Pye et al., 

2009). The model includes accumulation mode (SALA) and coarse mode (SALC) sea salt aerosol (Alexander et al., 2005; 180 

Jaeglé et al., 2011) and dust in four size bins (DST1 to 4) (Fairlie et al., 2010), where the first bin and 38% of the second bin 

are included in PM2.5. The recommended definition of dry PM2.5 is given by Eq 1. 

 

𝑃𝑀!.# = 𝑆𝑂$!% +𝑁𝑂&% +𝑁𝐻$' + 𝐵𝐶 + 𝑂𝐶𝑃𝑂 ∗ 1.4 + 𝑂𝐶𝑃𝐼 ∗ 2.1 + 𝑆𝑂𝐴𝑆 + 𝑆𝐴𝐿𝐴 + 𝐷𝑆𝑇1 + 𝐷𝑆𝑇2 ∗ 0.38,                          (1) 

 185 

The AirKorea PM2.5 observations provided by NIER are obtained using the beta-ray attenuation method (BAM-1020, Table 

1). We do not adjust modeled PM2.5 for any measurement relative humidity effects as the BAM-1020 has been shown to 

perform well against federal reference method monitors (Le et al., 2020). 

 

Specific details of production of model nitric acid (HNO3), the gas-phase precursor to aerosol nitrate (𝑁𝑂&% = pNO3), are 190 

provided below as KORUS-AQ provides detailed observations of this chemistry. Reactions R1-R6 describe model production 

of HNO3 from oxidation of NO2 (R1), aqueous uptake and reaction of N2O5, NO2, and NO3 on aerosol (R2, R4, R5), aqueous 

uptake and reaction of N2O5 and NO3 in cloud water (R3, R5), heterogeneous halogen chemistry (Table S2), and oxidation of 

VOCs by the nitrate radical (R6). In R2, aqueous uptake and reaction of N2O5 with particle chloride (Cl-) produces nitryl 

chloride (ClNO2) with a yield (∅) of 1 on sea salt aerosol and zero on all other aerosol types. 195 

𝑁𝑂! + 𝑂𝐻
(
→𝐻𝑁𝑂&                                                         (R1) 
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𝑁𝑂& + 𝑉𝑂𝐶	 → 𝐻𝑁𝑂&	                 (R6) 

4 Simulation of PM2.5 during KORUS-AQ 

Figure 1a shows the model simulation of daily average PM2.5 (Eq. 1) compared to the observed average of the 15 AirKorea 

sites within the GEOS-Chem grid box containing the major SMA monitoring sites (KIST and Olympic Park). These two sites 

are in close proximity to the AirKorea monitors (Fig. 1b). Campaign average PM2.5 is 29 µg m-3, but this increases to 53 µg 205 

m-3 during the Transport/Haze period. The model reproduces the low PM2.5 during the Dynamic period, the increase during 

the Transport/Haze period, and the variable concentrations during the Blocking period. Across the campaign, the model 

underestimates PM2.5 (NMB = -15%) due to a low bias during the Stagnant period and the initial build-up during the 

Transport/Haze period. This model performance is similar to Choi et al. (2019) using a different GEOS-Chem configuration.  

Figure 2 compares observed PM2.5 composition against the model for the gridbox containing the KIST ground site. Measured 210 

composition from the KIST HR-ToF-AMS instrument (Table 1), representative of PM1 (Guo et al., 2021), is used to speciate 

daily average PM2.5 from the AirKorea sites (Fig. 1a). Jordan et al. (2020) showed that speciated PM1 was generally 

representative of PM2.5 mass throughout KORUS-AQ, except for the Transport/Haze period when PM2.5 significantly exceeded 

PM1. The strong correlation between PM2.5 and PM1 during the campaign implied growth of PM1 to larger sizes. Dust is not a 

major component of PM2.5 at the surface after May 9th, as further discussed in Section S1. Therefore PM1 composition likely 215 

represents the composition of PM2.5 with the exception of a small contribution from primary aerosol species. Sun et al. (2020) 

showed that PM2.5 can be up to 50% greater than PM1 in polluted, humid environments and the mass at sizes >PM1 is secondary 

(not BC or POA). We remove BC and POA from observed PM2.5 and scale the remaining components (SNA, SOA) to the 

remaining PM2.5. The resulting speciated PM2.5, derived from KIST PM1 composition and AirKorea PM2.5 mass, is provided 

for each meteorological period in Table 3. Figure 2 and Table 3 include the ALWC associated with PM2.5, calculated for the 220 

observations using the E-AIM IV thermodynamic model (Clegg and Brimblecombe, 1990; Clegg et al., 1998; Massucci et al., 

1999; Wexler and Clegg, 2002), and ISORROPIAv2.2 (Pye et al., 2009) in GEOS-Chem. During KORUS-AQ, Kim et al. 

(2022) found that ISORROPIAv2.2 provided similar results as the E-AIM model, reproducing E-AIM pH within ~0.4 units. 

The primary campaign average model biases are underestimated sulfate (-64%), overestimated nitrate (+36%), and 

underestimated SOA (-43%). The excess model nitrate is the primary driver of overestimated ALWC (+82%). During the 225 
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Stagnant period, the model low bias is due to underestimated SOA (-9 µg m-3). This may be due to missing local production 

from emissions of semi- and intermediate-volatility volatile organic compounds (S/IVOCs, McDonald et al., 2018) and 

aromatics (Nault et al., 2018), primarily attributable to solvents and vehicle emissions (Shin et al., 2013a, 2013b; Simpson et 

al., 2020). During the Dynamic and Blocking periods, the model PM2.5 bias is within 20% of the observations but with 

overestimated nitrate and underestimated sulfate. The model severely underestimates sulfate during the Transport/Haze period 230 

(-11 µg m-3, Table 3) suggesting that the model fails to reproduce the processes driving the pollution episode. As described by 

Jordan et al. (2020), both ground and aircraft observations during KORUS-AQ showed that cloudy and humid conditions 

during the Transport/Haze period increased PM2.5 through heterogeneous production of SNA. 

The KORUS-AQ aircraft observations included detailed daytime (available from ~8am to 4pm KST) aerosol and gas-phase 

observations that we use to determine the cause of model sulfate and nitrate biases and their regional extent. Model SOA biases 235 

will be the subject of future work as here they do not contribute to PM2.5 exceedances (50 µg m-3 daily average in 2016). The 

KORUS-AQ campaign included frequent sampling along a repeated flight pattern or “stereoroute” over the SMA up to three 

times a day, supplemented by less frequent flights to investigate specific source regions or transport events (Crawford et al., 

2021). Figure S2 shows the high data density in the SMA compared to the rest of the study region. We use the 55 descents 

over Olympic Park from the SMA stereoroute to compare against the daily surface observations shown in Fig. 2. 240 

 

Figure 3 shows the mean daytime aircraft profiles of sulfate and nitrate for the descents over Olympic Park below 2 km 

separated by the same meteorological periods as Fig. 2. The corresponding profiles for SO2 and nitric acid are shown in Fig. 

S3. The model is sampled along the flight tracks and both the model and the observations are averaged to the model grid, 

timestep and nearest vertical 0.5 km. Similar to the daily surface average, the model underestimates daytime sulfate below 2 245 

km with the most severe bias (-8 µg m-3 in the lowest altitude bin of 0.5 km) occurring during the Transport/Haze period. 

Unlike in the daily surface average, the model underestimates daytime nitrate below ~1 km with the exception of the Dynamic 

period when nitrate is in good agreement. The model nitrate underestimate could be partially related to the low bias in model 

RH of up to -8% (Blocking period, 39 vs. 47%) below 0.5 km (Fig. S3) or overestimated mixed layer height (Oak et al., 2019). 

If the model RH simulation was unbiased, we would expect an improved simulation of nitrate as the minimal RH bias during 250 

the Dynamic period corresponds to the best nitrate simulation (Fig. 3, Fig. S3). Model aerosol dry deposition may also be too 

fast but this effect would increase model concentrations by only ~10% (Emerson et al., 2020).  

There is no available measurement of PM2.5 from the aircraft to provide a similar scaling from PM1 to PM2.5 as was done in 

Fig. 2. However, any increase to the observed profiles of PM1 sulfate or nitrate to account for possible growth to larger sizes 

would exacerbate the model underestimate of these species. The discrepancy between the model low to minimal bias against 255 

daytime aircraft nitrate observations (Fig. 3) and the overestimate against daily average nitrate at the KIST ground site (Fig. 
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2) implies a failure of the model to represent nighttime chemical production. We investigate the possible causes of 

overestimated daily average model nitrate in Section 5 and underestimated model sulfate in Section 6.  

5 Model errors representing the nitrate diurnal cycle 

The discrepancy between the model daytime and daily performance for nitrate demonstrates the need to compare the model 260 

mean nitrate diurnal cycle against the nitrate fraction of PM2.5 derived from KIST observations as described in Section 4. 

Figure 4a shows that between 6am and 6pm KST (daytime) the model bias minimal (< -1 µg m-3) while the bias from 6pm to 

6am KST (nighttime) is +3 µg m-3. As described in Section 3, the model has a newly revised treatment of wet scavenging that 

significantly reduces the model nitrate and nitric acid biases present in previous model versions (Luo et al., 2019). Without 

this improvement, the model would have an average nighttime bias of +7 µg m-3. Figure S4 shows daily precipitation in Seoul 265 

from the Korea Meteorological Administration (KMA, 2021) which is infrequent and negligible in the later part of the 

campaign. The model underestimate in total precipitation across the campaign is minimal (121 vs. 112 mm). Insufficient wet 

scavenging is unlikely to be the cause of the remaining model nitrate bias. 

We perform a sensitivity test to determine the relative impact of daytime (R1) vs. nighttime (R2-R5, Section 3) production of 

HNO3 on the model bias by shutting off the nighttime reactions. Figure 4c shows that the main model nighttime pathway is 270 

aerosol uptake of NO2 (R4) with a small contribution from N2O5 hydrolysis (R2/3) in the early morning hours. Figure 4a shows 

that removing nighttime chemistry results in improved early morning agreement (1am to 8am KST) but the evening 

overestimate (8pm to 1am KST) is less affected. Jordan et al. (2020) showed observational evidence for significant nighttime 

production of nitrate by N2O5 hydrolysis (R2). We use the removal of nighttime chemistry to hypothesize that part of the model 

nighttime bias is due to excess daytime HNO3 that has not yet been lost to deposition and is converted to nitrate as conditions 275 

become thermodynamically favorable for partitioning to the aerosol-phase. The dominance of NO2 uptake over N2O5 

hydrolysis in the model suggests that there are additional errors in simulated nighttime chemistry. 

5.1 Sensitivity of model nitrate bias to gas-phase precursors 

Inorganic aerosol ammonium nitrate (NH4NO3) is formed by dissolution of HNO3, which reacts in the aqueous phase with 

ammonia (NH3) to establish a thermal equilibrium with NH4NO3. The conditions that favor NH4NO3 are generally cool and 280 

humid (i.e., nighttime) and characterized by high NH3 and HNO3 concentrations relative to sulfate (Guo et al., 2016). We 

calculate that average nighttime RH (temperature) in the SMA is 74% (290K) compared to the model value of 71% (288K), 

indicating that significant errors in RH or temperature are not the cause of nighttime biases. Overproduction of model nighttime 

nitrate could be due to overestimated NH3 if this species limits NH4NO3 production. In South Korea, and generally East Asia, 

NH4NO3 is limited by availability of HNO3. This due to high levels of NH3 (~10 ppb) observed in East Asia, attributable to 285 

non-agricultural sources such as transportation (Song et al., 2009; Phan et al., 2013; Link et al., 2017; Sun et al., 2017; Chang 
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et al., 2019). The model reproduces the expected high concentration of NH3 with an average of 9 ppb at Olympic Park. Ibikunle 

et al. (2020) performed a rigorous thermodynamic assessment of KORUS-AQ observations confirming that aerosol was always 

sensitive to HNO3 in polluted conditions. Nitrate-limited SNA thermodynamics were observed in similar conditions in China 

and successfully represented by ISORROPIA v2.2 in GEOS-Chem (Zhai et al., 2021). 290 

 

Few datasets exist to further test the performance of HNO3-pNO3 partitioning in the model but KORUS-AQ observations 

provide this opportunity. This partitioning is described by Eq. 2, where the ratio of pNO3 to total nitrate (TNO3 = HNO3 and 

pNO3), known as εNO3, is impacted by temperature, relative humidity, and aerosol composition (Guo et al., 2016, 2017). 

𝜀𝑁𝑂& =
345!

645!'345!
                                  (2) 295 

Accurate simulation of εNO3 is critical to regulating the deposition of TNO3 as HNO3 deposits more rapidly than pNO3 (Nenes 

et al., 2021). Figure 5 shows ɛNO3 as a function of RH for the observations and the model for the same domain as Fig. 3 below 

1.5 km. While the model represents the increase of ɛNO3 with RH, model ɛNO3 is generally underestimated, particularly at 

lower RH (<50%). This low bias in ɛNO3 could be due to overestimated HNO3, as the lower RH and associated higher 

temperatures generally prevent excess HNO3 (denominator of Eq. 2) from partitioning to the aerosol-phase. We discuss the 300 

possibility of overestimated model HNO3 below. As ɛNO3 is underestimated in the model, excess partitioning to the aerosol-

phase is not a cause of the model nitrate overestimate shown in Fig. 2. The successful performance of ISORROPIAv2.2 during 

KORUS-AQ is also evident from the comparison against the E-AIM model in Kim et al. (2022).  

 

Figure 6a shows vertical profiles of observed and modeled HNO3 for the Olympic Park descents. The model overestimates 305 

HNO3 in the lowest bin (0.5 km) by +1600 ppt or +100%. This high bias persists across most of the study domain except over 

the ocean south of 34oN (Fig. 7) where local emissions have a small impact and loss to deposition is slow. During average 

daytime conditions (~50% RH, 295K), model ɛNO3 is ~0.3, indicating that while the aerosol is HNO3-limited, higher 

temperatures and low RH also prevent the excess model HNO3 from partitioning to aerosol. A simulation turning off South 

Korean emissions shows that local sources contribute ~50% to model HNO3 concentrations below 0.5 km (Fig. 6a). Thus while 310 

model errors in emissions or chemistry could be a cause of the bias, an overestimated lifetime of HNO3 against dry or wet 

deposition could also play a role. We evaluate these possibilities further in Section 5.2. 

5.2 Causes of overestimated daytime HNO3  

KORUS-AQ provides aircraft and surface observations that provide additional constraints on the model HNO3 bias of +100% 

described in Section 5.1. We use observations of NO2 and OH from aircraft to evaluate whether NOx emissions or production 315 

from R1 (NO2 + OH) are overestimated. Figure 6b shows that model NO2 is underestimated by -40% below 0.5 km. This is 

partially due to the expected model inability to resolve the highest observed levels of NO2 in an urban region, illustrated by 

the larger standard deviation in the observations compared to the model. However, given the same emissions inventory used 
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here (KORUSv5), a set of eight models varied in their biases for NOx against KORUS-AQ aircraft observations from a minimal 

underestimate (-7%) to a large overestimate (+56%) depending on model configuration (Park et al., 2021). Thus, model biases 320 

could be due to a range of factors including underestimated emissions, inaccuracies in the emission diurnal cycle, or 

overestimated mixed layer heights. Errors in any of these factors that could increase model NO2, such as decreased mixed layer 

heights or increased emissions, would be expected to increase the model overestimate of HNO3. Fig 6c shows that the model 

bias in OH is small (+20%) and well within measurement uncertainty (+32%) and therefore it is unlikely that model errors in 

R1 could cause the model HNO3 bias +100%.  325 

The fastest removal pathways for HNO3 are wet and dry deposition. The model implementation of these processes is described 

in Section 2. The revised wet scavenging scheme has improved annual average model simulations of HNO3, but the effect on 

HNO3 during KORUS-AQ is limited as precipitation was infrequent after the beginning of the campaign as discussed above. 

Section S2 further discusses the impact of this scheme on KORUS-AQ nitrate and HNO3 but errors in wet deposition are 

unlikely to be the cause of overestimated model HNO3. Section S2 also describes other possible loss pathways to dust, seasalt, 330 

or production of ClNO2 from N2O5 hydrolysis that have negligible effects on the model HNO3 and nitrate. 

 

Previous attempts to improve model nitrate invoked an unknown sink of HNO3 in the model (Heald et al., 2012; Weagle et al., 

2018), as uncertainties in precursor emissions, the rate of N2O5 hydrolysis (R2/R3) or gas-phase production (R1), OH 

concentrations, and HNO3 dry deposition velocity (VdHNO3) could not explain model nitrate biases. We similarly conclude that 335 

an unknown loss process must be a main cause of the daytime model overestimate in HNO3 and associated evening nitrate bias 

during KORUS-AQ that occurs as conditions become more favorable for partitioning HNO3 to pNO3. This unknown loss 

process could be a larger underestimate in dry deposition than has been previously considered, as constraints from KORUS-

AQ show that uncertainties in emissions, nighttime production (R1-R5), and wet deposition are not the cause. Heald et al. 

(2012) ruled out dry deposition after assuming an uncertainty of a factor of two. Here, the increase in VdHNO3 required to 340 

reproduce observed HNO3 (Fig. 6a) is a factor of five. A similar increase in VdHNO3 was invoked by Itahashi et al. (2017) in 

their model study of wintertime nitrate in East Asia based on the finding from Shimadera et al. (2014) that VdHNO3 (as well as 

NH3 emissions and dry deposition) were the main factors driving model nitrate performance. 

 

The increase in VdHNO3 suggested above would result in an average value of 7.5 cm s-1 compared to the standard model value 345 

of 1.5 cm s-1. This corresponds to a maximum midday rate of 15.4 cm s-1 cm s-1 compared to the original value of 3.1 cm s-1 

(Fig S8). Deposition of HNO3 is limited only by aerodynamic resistance (and available surface area), as it readily adheres to 

surfaces. While the increase to VdHNO3 we suggest here is large, this could arise from factors such as increased surface area in 

urban or heavily forested regions and increased vertical mixing over cities due to turbulence induced by the urban heat island 

effect. These factors are not accounted for in the limited existing deposition velocity measurements that have been compared 350 

against models (Nguyen et al., 2015). Increased turbulence over forested regions results in higher deposition velocities 
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(Sievering et al., 2001; Yazbeck et al., 2021), which would also be expected in an urban environment (i.e. Keuken et al., 1990). 

The model does not account for increased available surface area for deposition contributed by urban buildings, or the elevated 

vertical mixing over cities due to the urban heat island effect (Hong and Hong, 2016; Halios and Barlow, 2018). Dry deposition 

rates thus may be much higher than in model parameterizations that do not include a specific treatment of the urban canopy 355 

(Cherin et al., 2015) and this is the case in GEOS-Chem.  

 

Neuman et al. (2004) derived VdHNO3 from aircraft observations of power plant plumes in eastern Texas, obtaining values 

between 8 and 26 cm s-1, values at least four times faster than reported previously. We take a similar approach to Neuman et 

al. (2004) to calculate VdHNO3 from KORUS-AQ observations in the SMA using the rate equation for TNO3 as a function of 360 

photochemical age (Fig. 8, Eq. 3).  

𝑇𝑁𝑂&(𝑡) = 	
45"(8)
#
$%:

H𝑒%/; − 𝑒%<;J                        (3) 

NOx(0) is the initial NOx mixing ratio normalized to CO (Fig. 8, 0.24 ppbv / ppbv CO), ꞵ is the first order loss rate for TNO3, 

c is the first order production rate for TNO3 (pTNO3 = pHNO3 = kR1[OH]), and TNO3(t) is observed TNO3 as a function of 

photochemical age (t). As the production of TNO3 was constrained by observed OH, and assuming the main loss of TNO3 (ꞵ) 365 

is from deposition of HNO3, the unknown for TNO3 evolution is the deposition rate. The full details of this calculation are 

provided in Section S3.  

 

Figure 8 shows NOx, TNO3, and the other NOx oxidation products of total peroxy nitrates (ΣPNs) and the sum of alkyl- and 

multi-functional nitrates (ΣANs) as a function of photochemical age. All species are normalized by background subtracted 370 

CO. NOx is continuously depleted at a rate of 0.31 hr-1, implying continued production of TNO3, ΣPNs, and ΣANs. This loss 

rate corresponds to a lifetime of 3.2 hrs that is similar to the lifetime of 4.8 hrs for NO2 against conversion to HNO3 (R1) using 

the SMA average OH of 5.2×10-6 molec cm-3. From Eq. 3, we derive a loss rate (ꞵ) of 13.9 cm s-1 that best fits the observed 

change in TNO3 with aging. As deposition of pNO3 is slow, we assume that VdHNO3=VdTNO3. All three NOx oxidation products 

(TNO3, ΣPNs, ΣANs) exhibit similar behavior with production outpacing loss until approximately three hours of aging, where 375 

loss appears to balance production and concentrations remain relatively constant. There is likely large uncertainty in the derived 

photochemical ages shown in Fig 8, as the aircraft did not follow plumes as in Neuman et al. (2004). However, our derived 

NOx lifetime is consistent with average SMA conditions and is not affected by our choice of observed altitude range, suggesting 

that the aging represents true chemical processing. 

 380 

Figure 8 shows that the slower value for midday VdHNO3 in the original model (3.1 cm s-1) poorly represents observations 

compared to the faster value obtained in Fig. 6 (15.4 cm s-1). We calculate that the original deposition rate would correspond 

to a first order loss rate for TNO3 of only 0.07 hr-1 (assuming a 1.5 km boundary layer height) and thus observed TNO3 should 

increase with photochemical age, which is not supported by the observed relationship in Fig. 8. The factor of five increase in 
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VdHNO3, constrained only using observed HNO3, implies a similar loss rate of TNO3 as derived in Fig. 8 and leads to the 385 

observed behavior where after initial production, the normalized mixing ratio remains constant. This analysis supports the 

hypothesis given above, that existing observations supporting lower values for VdHNO3 (Nguyen et al., 2015) may 

underrepresent deposition in regions with greater turbulence and available surface area such as in cities like Seoul. Deposition 

of atmospheric pollutants such as nitric acid on buildings generates ‘urban grime’ that may photolyze and produce NOx and 

HONO (Baergen and Donaldson, 2013, 2016). This urban grime could be a source of HONO (Zhang et al., 2016) and may be 390 

larger than previously thought if models underestimate nitric acid deposition.  

 

Figure 4a shows the impact to the diurnal cycle of model nitrate from increasing model VdHNO3 by a factor of five. The rapid 

late afternoon /early evening increase in model nitrate (Fig. 4a) is largely resolved and the model simulation of HNO3 is now 

in good agreement with aircraft observations (Fig. 6) due to a significant dampening of the HNO3 diurnal cycle (Fig. 4b). This 395 

reduction in the HNO3 diurnal cycle is better supported by observations of TNO3 as discussed above. We conclude that a key 

reason for the overestimated daily average model nitrate shown in Fig. 2 is overestimated daytime HNO3 that results in excess 

nighttime nitrate when conditions become favorable (cool and humid) for gas to aerosol partitioning. The model overestimate 

is due to insufficient loss, likely underestimated dry deposition. This finding does not address possible errors in model 

nighttime production pathways (NO2 vs. N2O5), and KORUS-AQ provides detailed ground observations that can be used to 400 

constrain the model representation of nighttime chemistry.  

5.3 Errors in model nighttime production of HNO3 

Figure 4c shows that model nighttime production of HNO3 by aerosol uptake of NO2 (R4) is approximately twice as large as 

R2 (N2O5 hydrolysis). This contradicts the calculation from Jordan et al. (2020) that R2 is the driver of nitrate production 

during KORUS-AQ, particularly during the Transport/Haze period due to sufficient nighttime ozone concentrations that allow 405 

for production of the nitrate radical and N2O5 through R8 and R9.  

O& +𝑁𝑂 → NO!                               (R7) 

𝑁𝑂! + O& → 	𝑁𝑂& + 𝑂!	                 (R8) 

𝑁𝑂! +𝑁𝑂&
(
→	𝑁!𝑂#	                 (R9) 

Production of nitrate by N2O5 hydrolysis is supported by observations of ClNO2, thought to be produced primarily by this 410 

reaction (Thornton et al., 2010). As discussed above in Section 5.2, observations of ClNO2 at Olympic Park are elevated at 

night (Fig. S7). Despite recent large reductions of the uptake coefficient (𝛾) for NO2 in the model (Holmes et al., 2019), NO2 

uptake still is the dominant nighttime pathway for HNO3 production in the model. We use observations of ozone, NO, and 

NO2 at Olympic Park to determine whether errors in R7-R9 are impacting model ability to produce N2O5. 

 415 
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Figure 9 shows the mean modeled and observed diurnal cycles of ozone and NO2 for the AirKorea sites in the model grid box 

(Fig. 1b) and for ozone, NO, NO2, and NOx at Olympic Park. Ozone might be expected to be titrated in an urban area by R7 

as the mixed layer collapses in the evening, resulting in elevated NO and shutting down production of the nitrate radical (R8). 

This is the case in the model where nighttime ozone is <2 ppb approximately 20% of the time but this never occurs in the 

observations (Fig. S9). As a result, average observed nighttime ozone is 24 ppb but only 13 ppb in the model (Fig. 9). The 420 

time series of observed and modeled ozone in Fig. S9 shows while the model does succeed in simulating high nighttime ozone 

concentrations during the Dynamic Period, characterized by higher windspeeds, ozone is incorrectly titrated at other times 

particularly during the buildup of the haze pollution following a frontal passage on May 24th. The implications of this excess 

ozone titration for the simulation of PM2.5 specifically during haze conditions will be further discussed in Section 6.  

 425 

As shown in Fig. 9b+c, model ozone titration corresponds to excess model NO and NO2 at night and explains the dominance 

of NO2 uptake in the model over N2O5 hydrolysis for nighttime HNO3 production. The model bias for NOx is minimal during 

the day, providing additional support for the level of emissions in the model, but is overestimated by a factor of two at night. 

The excess model ozone titration and overestimated nighttime NOx implies an error in nocturnal mixing. Figure 10a shows the 

mixed layer height (MLH) diurnal cycle measured by ceilometers at Olympic Park and Seoul National University. The aerosol 430 

gradients detected by the ceilometer to estimate MLH are less reliable at night due to the possible presence of aerosols in the 

residual layer (Jordan et al., 2020). We support these measurements with additional calculations of nighttime MLH from 

radiosonde observations of temperature and RH four times a day (Section S4, Fig. S10), showing that the average MLH at 3 

KST could be ~300m compared to 220m in the model. As previously discussed in Section 5.2, in urban regions such as Seoul, 

the anthropogenic heat island effect and the heterogeneity of the urban land cover increase sensible heat fluxes and turbulence 435 

over non-urban areas (Halios and Barlow, 2018) and create an unstable mixed layer even at night. Min et al. (2020) showed 

that the nighttime mixed layer in Seoul is elevated in all seasons, and that nighttime conditions are generally unstable due to 

urban heat storage and anthropogenic heat release and this could explain the observed elevated nighttime MLH (Fig. 10a, Fig. 

S11). This effect is not captured in many meteorological models including the one used here (GEOS-CF, Section 3). Nighttime 

sensible heat flux in the model is always negative (stable conditions) (Fig. 10b).   440 

 

Starting at 17 KST, the model mixed layer collapses early, causing a more rapid decline in ozone than in the observations (Fig. 

9a, Fig. 10a). The transition from convective daytime mixed-layer to stable nocturnal boundary layer is poorly understood 

(Lothon et al., 2014). The early collapse of the mixed layer has been observed in other models including the widely-used 

Weather Research and Forecasting (WRF) model over the Baltimore-Washington, D.C. region during the NASA DISCOVER-445 

AQ mission (Hegarty et al., 2018). One possibility for the delay in this collapse is continued mixing from the last eddy of the 

day formed just before the sensible heat flux changes sign during the evening transition (Blay-Carreras et al., 2014). This has 

been hypothesized as reasons for errors in the model diurnal cycle of ozone in the Southeast United States (Travis and Jacob, 

2019). Here, this early collapse drives excess production of nitrate from NO2 (R4).  
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 450 

While addressing the shortcomings of the model mixing scheme is beyond the scope of this study, we test the sensitivity of 

model nitrate production to the main two problems identified above, 1) the overly rapid collapse of the afternoon mixed layer, 

and 2) insufficient nocturnal mixing. While model meteorology is calculated offline, mixing in the boundary layer is calculated 

online (Section 2), allowing us to perturb mixing parameters. We increase the nighttime MLH to 500m to examine the impact 

on model ozone, NO, and NO2. The effect of this change on these species is minimal (Fig. 9), similar to the findings of other 455 

model sensitivity studies that performed this same test (Oak et al., 2019; Miao et al., 2020). While the strength of model vertical 

mixing is sensitive to MLH, the model sensible heat flux and friction velocity have a larger impact (Holtslag and Boville, 

1993), and the nighttime mixed layer will remain stable while the sensible heat flux is negative regardless of MLH.  

 

The increase in nighttime mixing in urban vs. rural regions has been addressed in the CMAQ model (Li and Rappenglueck, 460 

2018) by using a higher value for the minimum mixing strength (eddy diffusivity) over urban areas. However, we find that 

this approach is insufficient to address model ozone titration without increasing the sensible heat flux to a positive value to 

produce an unstable mixed layer. This is illustrated in Fig. S12, where we scale the model MLH to match the profile at Olympic 

Park (Fig. 10a) and raise the model minimum eddy diffusivity from 0.01 m2 s-1 to 1 m2 s-1 over the SMA. Reducing the collapse 

of the evening MLH without a change to the drivers of mixing (i.e., heat fluxes, friction velocity) has negligible impact on 465 

decreasing model ozone titration (Fig. S12). In addition, the MLH at Olympic Park in the early morning hours appears 

inconsistent with observed ozone, likely due to the uncertainties in the measurement technique discussed above and supported 

by the lower values obtained from radiosonde profiles (Fig. S11). Errors in model nighttime mixing are difficult to remedy 

without significant revisions to the model mixing parameterizations, including implementing continued mixing from daytime 

eddies into the evening hours (Blay-Carreras et al., 2014) and parameterizing the excess sensible heat flux in urban areas 470 

(Halios and Barlow, 2018). We address the implications of these errors in the simulation of haze pollution events in Section 6. 

6 Model simulation of haze buildup  

The failure of models to simulate sulfate production in haze in East Asia is a current topic of intensive research and is 

attributable to missing sulfate production in aerosol water (Wang et al., 2014; Zheng et al., 2015a; Chen et al., 2016; Shao et 

al., 2019; Miao et al., 2020). There has been less attention paid to the ability of models to simulate nitrate in haze as nitrate-475 

dominated haze is a more recent phenomenon due to the reductions in SO2 in East Asia (Wang et al., 2020). Figure 2 and Table 

3 show that the model can reproduce the increase in the nitrate component of PM2.5 during the Transport/Haze period but 

overestimates absolute concentrations by ~20%. This contributes to an 80% overestimate in ALWC. Efforts to explicitly 

simulate SO2 oxidation in ALWC may be hindered by this model bias, which also impacts the rates of all other heterogeneous 

reactions through the increase in aerosol surface area.   480 
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Figure 11a shows the hourly time series of observed and modeled nitrate at Olympic Park during the Transport/Haze period. 

During the haze buildup, the model initially overestimates nitrate during the day (5/24) followed by large nighttime 

underestimates (5/24-5/25). This is opposite to the nighttime overestimate but daytime agreement shown in the campaign 

average (Fig. 4a). During the haze buildup, daytime RH remained elevated (>50%, Fig. S13) and the daytime mixed layer was 485 

suppressed (Fig. S14 and Jordan et al. 2020). The model reproduces both conditions, which are favorable for SNA production. 

Model nitrate biases here are likely due to the errors identified in Section 5.2 (overestimated daytime HNO3) and Section 5.3 

(incorrect representation of nighttime conditions), but here the excess daytime HNO3 in the model results in higher daytime 

nitrate than in the campaign average. Insufficient model sulfate during the haze event results in overestimated model pH and 

excess partitioning of HNO3 to the particle phase (Guo et al., 2016). Fig. S15 shows that ɛNO3 (the calculated fraction of TNO3 490 

in the aerosol phase) decreases as sulfate increases and the model sulfate bias corresponds to a difference in ɛNO3 of ~0.3.  

 

The model underestimate of nighttime nitrate concentrations during the haze buildup must be because the rate of observed 

N2O5 hydrolysis (R2) exceeds even the erroneously high model rate of NO2 aerosol uptake (R4). The haze buildup was 

characterized by a lower daytime MLH and a deeper nocturnal MLH (inferred from the lack of ozone titration) that resulted 495 

in higher nitrate production from N2O5 hydrolysis (Jordan et al., 2020). The model overly titrates ozone (Fig. 11c) due to 

insufficient nighttime mixing. We drive additional nocturnal mixing by increasing the sensible heat flux at night from slightly 

negative (-4 W m-2) to weakly positive (+10 W m-2), representative of anthropogenic heat fluxes in this region (Hong and 

Hong, 2016; Varquez et al., 2021). To reduce the rate of R4 from overestimated NO2 and allow for a high rate of R2, we 

increase the nighttime MLH over land to 300 m as suggested by the observations. This largely resolves the incorrect model 500 

ozone titration and the severe model overestimate of nighttime NO2 on 5/23-5/24 and on 5/24-5/25 but does not remedy the 

early model collapse of the evening mixed layer (Fig. 11). Extending this sensitivity test past the haze buildup results in excess 

nighttime ozone. This may be due to the increased cloud cover during the haze buildup (Fig. S16), that could cause additional 

nighttime mixing over average conditions through enhancement of the urban heat island effect (Theeuwes et al., 2019).  

 505 

Figure 11b shows that increased nighttime mixing allows for N2O5 hydrolysis (R2) to become the main nighttime pathway for 

HNO3, with a rate three times greater than NO2 uptake (R4) in the base model. The raised mixed layer height of 300 m prevents 

this high rate from resulting in overestimated model nitrate. Increased model nighttime nitrate corresponds to an increase in 

ALWC of 40%. We use the simulations shown in in Fig. 11 to illustrate that model errors in simulating mixed layer dynamics 

(overly rapid collapse of the evening mixed layer and insufficient nighttime mixing) result in errors in model chemistry. 510 

Nighttime measurements of the vertical structure of key species such as ozone, NO2, N2O5, and HNO3, complemented by 

sensible heat flux observations, are needed to further constrain model simulations of nighttime nitrate production. 

 

As discussed in Section 4, in addition to the above difficulties in simulating nitrate, the model fails to reproduce observed 
sulfate during the Transport/Haze period and this corresponds to a 15 µg m-3 underestimate in PM2.5 (Table 3). Studies have 515 
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shown a strong relationship between increasing RH and conversion of gas-phase precursors to SNA in haze, indicating the 
occurrence of heterogeneous chemistry in ALWC (Sun et al. Liu et al., 2015; Quan et al., 2015; 2015a; Chen et al., 2016; Wu 

et al., 2018a). Figure 12 shows the sulfate oxidation ratio, SOR ≡ M =5%&'

=5&'=5%&'
N as a function of RH at Olympic Park and from 

aircraft observations. In the observations, SOR increases with RH, but this is missing from the model. We take the approach 
of Wang et al. (2014) and implement heterogeneous uptake of SO2 on aerosol (not present in the standard model) as a function 520 
of RH according to Eq. 4, 

𝑘> = P )
?(
+ $

@A
Q
%:

  ,                   (4) 

where the mass transfer rate (kT) at which a species is lost from the gas-phase is a function of the particle radius (a), the 
molecular diffusion coefficient (Dg), the mean molecular speed (v), and the reactive uptake coefficient (γ), or the probability 
of irreversible reaction. The value for γ depends on RH (Wang et al., 2014) according to Eq. 5.  525 
𝛾 = 	𝛾B6)*% + H𝛾B6,**% − 𝛾B6)*%J (100%− 50%) × (𝑅𝐻 − 50%)⁄                                                                                            (5) 

The values 𝛾B6,**%  = 3 × 10%$ and 𝛾B6)*%= 3 × 10%#	best fit the observations using the model without the aforementioned 

adjustments for nitrate simulation. These values are two orders of magnitude slower than in the original formulation of Wang 
et al. (2014) but similar to more recent studies (Zheng et al., 2015a; Chen et al., 2016). During the Transport/Haze period, this 
improves model agreement with average surface (Table 3, 15.4 µg m-3 vs. 14.7 µg m-3) and daytime aircraft (Fig. S17) sulfate 530 
observations. Model agreement with daytime aircraft SO2 observations is degraded, implying that model emissions during the 
Transport/Haze period are insufficient to produce both the amount of observed SO2 and sulfate. 
 
During the Transport/Haze period, Choi et al. (2019) estimated a contribution from transported pollution of 68%. However, 
the inclusion of heterogeneous uptake of SO2 on aerosol would increase the amount of both locally produced and transported 535 
pollution, as the model attributes ~60% of SO2 to foreign sources and ~40% to local emissions (Fig. S17). We simulate PM2.5 
with heterogeneous conversion of SO2 as described above, and then remove South Korean emissions in order to investigate 
changes to the fraction of transported pollution. Figure 13 shows the model PM2.5 composition for each case during the 
Transport/Haze period, with an additional 15 µg m-3 of PM2.5 in the model with heterogeneous uptake of SO2. In the original 
model, foreign transport accounts for 66% of PM2.5 (25 µg m-3), but this fraction is reduced to 54% (29 µg m-3) in the revised 540 
model as the local contribution (13 vs. 24 µg m-3) makes up a greater fraction of the increase. Locally produced sulfate increases 
from only 1% (<1 µg m-3) to 25% (6 µg m-3) of local PM2.5, implying that local SO2 controls could have an effect on PM2.5 
levels. Locally produced nitrate increases from 6 µg m-3 to 8 µg m-3. The total amount of model nitrate (local + foreign) 
decreases slightly at the surface and aloft (Fig. S17) which we attribute to the impact of sulfate on reducing ɛNO3 described 
above and shown in Fig. S15 but this does not resolve the model nitrate biases described in Section 5. 545 
 
The previous calculations only account for the missing model sulfate during the Transport/Haze period, and do not account 
for the incorrect model representation of nighttime nitrate production or overestimated model HNO3. This accounts for the 
dramatic increase in ALWC in Fig. 13, which is already overestimated in the original model formulation as shown in Fig 2. 
Given the uncertainties in revising the model nitrate simulation, we did not assess the policy implications for improving model 550 

https://doi.org/10.5194/acp-2021-946
Preprint. Discussion started: 7 January 2022
c© Author(s) 2022. CC BY 4.0 License.



18 
 

nitrate on local vs. transported pollution. A simple test however of the haze buildup with the inclusion of a factor of five 
increase to VdHNO3, increased nighttime mixing, and the addition of heterogeneous SO2 uptake described above, results in 40% 
less nitrate and ALWC. As a result, sulfate concentrations are 30% less than in the simulation with heterogeneous SO2 uptake 
alone. Therefore, studies attempting to determine γ to improve sulfate simulations of haze must also consider the impact of 
model nitrate biases on their parameterization.  555 

7 Conclusions 

We used aircraft and surface observations from the NIER-NASA KORUS-AQ field campaign in May and June 2016 to 

evaluate GEOS-Chem simulations of PM2.5 composition in the Seoul Metropolitan Area, including during a haze pollution 

event characterized by high levels of secondary inorganic aerosol. Models generally overestimate nitric acid and the gas-

particle partitioning of nitric acid to aerosol and underestimate sulfate during haze events across East Asia (An et al., 2019). 560 

This is of concern for using models to determine the fraction of PM2.5 pollution that can be controlled using local policy 

measures in South Korea, and the level to which exceedances of PM2.5 standards are caused by long-range transport. 

 

The model underestimated PM2.5 in Seoul during the campaign (NMB = -15%) with larger errors in composition. On average, 

the model underestimated sulfate (-64%) and SOA (-43%) but overestimated nitrate (+36%). Models typically underestimate 565 

secondary organic aerosol (SOA, Zhao et al., 2016), and this could be due to missing sources from anthropogenic precursors 

(Nault et al., 2020). This SOA bias will be investigated in future studies. Aircraft observations, only available during daytime 

hours, showed model underestimates in sulfate comparable to the bias at the surface. However, modeled nitrate was 

underestimated aloft, contradicting the model overestimate in the campaign average (which includes nighttime observations). 

Hourly surface observations showed that this was due to a model overestimate at night. During the campaign, nitrate formation 570 

was limited by the supply of nitric acid, which was overestimated against daytime aircraft observations by +100% and 

contributed to the model nighttime bias. Recent developments to the model wet deposition scheme have significantly improved 

the simulation of nitrate and nitric acid, but further improvements are unlikely to resolve the model bias. 

 

The model overestimate in nitric acid was not due to overestimated production, insufficient loss to wet deposition, or uptake 575 

to dust or seasalt. Increasing the nitric acid dry deposition velocity by a factor of five was required to reconcile the model with 

observations. Aircraft observations of total nitrate (TNO3 = HNO3 and pNO3) as a function of photochemical age support this 

increase. The model underestimate in deposition could be explained by missing treatment of turbulence driven by the urban 

heat island effect and the heterogeneity of the urban landscape, which would also increase the surface area available for 

deposition. Here, we only consider the effect on HNO3, but these factors would also impact other species that readily deposit 580 

to surfaces such as NH3, which was not measured during the campaign.  
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Observations of ozone, NO2, and ClNO2 showed that N2O5 hydrolysis should be the main driver of nighttime nitrate production 

while the model primarily produced nitrate through aerosol uptake of NO2. The model overly titrated ozone, with an average 

nighttime concentration of 13 ppb compared to 24 ppb in the observations. This resulted in excess model NO2 and prevented 585 

the production of N2O5. Observations of ozone and of the nighttime mixed layer height implied insufficient nighttime mixing 

and an overly rapid collapse of the afternoon mixed layer in the model. We attributed these errors to the premature shutdown 

of afternoon eddies and missing treatment of the urban heat island effect that typically generates a positive nighttime heat flux 

that is not present in the model. Nighttime measurements of the vertical structure of key species such as ozone, NO2, N2O5, 

and HNO3, ideally complemented by surface heat flux observations, are needed to further constrain model nighttime nitrate 590 

production, and determine the extent to which the model underestimates nighttime heating and mixing depth.  

 

The model errors in simulating nitrate and nitric acid, mainly arising from overestimated daytime nitric acid and excess 

nighttime ozone titration, are exacerbated in the simulation of haze pollution. Overestimated nitric acid results in larger values 

of daytime nitrate during the haze buildup. This could be due to the model underestimate in sulfate as overestimated model pH 595 

would allow for increased partitioning of nitric acid to the particle phase. Nighttime nitrate in the model is underestimated 

during the haze buildup likely due to missing rapid N2O5 hydrolysis. Sensitivity simulations showed that raising the nighttime 

mixed layer and providing a positive nighttime sensible heat flux of +10 W m-2 improved the model simulation of nitrate, 

ozone, and the N2O5 pathway for nitrate production during haze. Previous studies have simply raised the nighttime mixed layer 

and found little effect on simulated pollution (Oak et al., 2019; Miao et al., 2020) but this may be due to missing nocturnal 600 

heating from anthropogenic heat release.  

 

The underestimate in model sulfate during the KORUS-AQ haze event is typical of models that often do not include 
heterogeneous aerosol uptake of SO2 (Wang et al., 2014; Zheng et al., 2015a, 2015b; Shao et al., 2019). Observations of the 
sulfate oxidation ratio (SOR) as a function of RH supported the need for this pathway as the strong increase in SOR with RH 605 
was not present in the model. A simple parameterization of this process increased model sulfate levels from 4 to 15 µg m-3 
during the haze, in better agreement with observations. However, the success of this parameterization was complicated by 
model nitrate biases. A simulation of the haze with both improved model nitrate and heterogeneous uptake of SO2 resulted in 
a 30% reduction in model sulfate over the simulation with heterogeneous uptake of SO2, illustrating the need to consider model 
biases in sulfate and nitrate simultaneously. GEOS-Chem parameterizations of the urban environment are lacking and cannot 610 
be currently adjusted to robustly simulate nitrate during the campaign. However, future studies attempting to simulate sulfate 
in haze should consider the impact of model nitrate biases on their parameterizations. These studies require models that are 
able to simulate a large domain to calculate long-range transport but include the detailed parameterizations of the urban 
environment (urban heat island effect etc.) required to successfully simulate nitrate.  
 615 

Determining the contribution of local vs. transported PM2.5 is essential to the development of successful policy measures to 

reduce unhealthy pollution levels. Significant effort has gone into this evaluation in South Korea, but with models that have 
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errors in PM2.5 composition (Choi et al., 2019; Kumar et al., 2021). The local PM2.5 contribution may be underestimated 

without including heterogeneous uptake of SO2 on aerosol to produce sulfate during haze. Locally-produced PM2.5 increased 

from 13 to 24 µg m-3, decreasing the fraction of foreign pollution from 66% to 54%. Locally-produced sulfate increased from 620 

<1 µg m-3 to 6 µg m-3, implying that controls on SO2 could have a larger impact than in model formulations without this 

chemistry. As a consequence of the 2013 Clean Air Action plan implemented in China, emissions of inorganic aerosol 

precursors have been decreasing (Zheng et al., 2018) and concentrations of PM2.5 in China have declined by approximately -5 

µg m-3 per year from 2013-2018 (Zhai et al., 2019). Emission reductions in South Korea may be less rapid (Bae et al., 2021), 

and thus the impact of long-range transport on future PM2.5 pollution events could decline in the future. It is critical for models 625 

to improve representations of the interactions between physical processes and chemical production of PM2.5 production to 

support continued local air quality improvements. 
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Table 1. Description of the ground site and aircraft observations used in this work1 

Instrument PI Species Reference2 
Ground Observations 

Korea Institute of Science and Technology (KIST)3 
Aerodyne High-Resolution Time-of-Flight 
Aerosol Mass Spectrometer (HR-ToF-AMS)  

Hwajin Kim OA, pNH4, pNO3, 
pSO4 

Kim et al., 2018 

Multi-angle absorption spectrometer 
(MAAP) 

Hwajin Kim BC Kim et al., 2018 

Olympic Park4 
Monitor for AeRosols and Gases in ambient 
Air (MARGA) 

Seogju Cho SO2, SO42- N/A 

Chemical Ionization Mass Spectrometry 
(CIMS) 

Saewung Kim ClNO2 Slusher et al., 2004 

Vaisala CL51 James Szykman  MLH N/A 
2B Tech 211, Teledyne T200U, Teledyne 
T500U CAPS, Aerodyne QCL 

James Szykman 
and Andrew 
Whitehill 

O3, NO, NO2 N/A 

Dasibi Model 2108 Oxides of Nitrogen 
Analyzer 

NIER O3, NO2 N/A 

BAM-1020 instruments (Met One 
Instruments, Inc., Grants Pass, OR, USA) 

NIER PM2.5 N/A 

DC8 Aircraft 
High-Resolution Time-of-Flight Aerosol 
Mass Spectrometer (HRToF-AMS) 5 

Jose Jimenez pNO3, pSO4 Nault et al., 2018  
Guo et al., 2021 

Soluble Acidic Gases and Aerosol (SAGA) Jack Dibb Na+, Cl- Dibb et al., 2003 
Caltech CIMS (CIT-CIMS) Paul Wennberg HNO3, propene 

hydroxynitrate  
St. Clair et al., 2010; 
Crounse et al., 2006 

Airborne Tropospheric Hydrogen Oxides 
Sensor (ATHOS) 

William Brune OH Faloona et al., 2004; 
Brune et al., 2020 

NCAR 4-Channel chemiluminescence 
instrument 

Andrew 
Weinheimer 

NO, NO2 Weinheimer et al., 1993, 
1994 

Georgia Tech–Chemical Ionization Mass 
Spectrometer (GT-CIMS)  

L. Greg Huey SO2 Kim et al., 2007 

Diode laser spectrometer (Differential 
Absorption Carbon monOxide Measurement, 
DACOM) 

Glenn Diskin CO Sachse et al., 1987 
 

Diode Laser Hygrometer measurements of 
H2O(v) (DLH) 

Glenn Diskin RH% Diskin et al., 2002 

Thermal Dissociation–Laser-Induced 
Fluorescence (TD-LIF) 

Ron Cohen 
 

ΣANs, ΣPNs 
 

Wooldridge et al., 2010; 
Day et al., 2002 

Whole Air Sampler (WAS) Donald Blake propene Simpson et al., 2020 
1For a full description of all KORUS-AQ observations, see Crawford et al., 2021. 
2For specific measurement descriptions including uncertainty information, see the KORUS-AQ data archive (doi: 1100 
10.5067/Suborbital/KORUSAQ/DATA01) 
3Korea Institute of Standards and Technology (KIST), 37.602°N, 127.126°E  

4Olympic Park site in Seoul, 37.522°N,127.124°E 
5AMS data is written without the charge, see http://cires1.colorado.edu/jimenez-
group/wiki/index.php/FAQ_for_AMS_Data_Users#Why_do_you_write_SO4_.26_NO3_and_not_SO42-_.26_NO3-.3F. 1105 
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Table 2. KORUS-AQ emissions over the domain 70o to 140oE, 15oS to 55oN 

May 2016 (Gg) NOx CO SO2 NH3 
Natural 7631 NA 1433 155 
Biomass burning 92 7122 53 137 
Fossil fuel combustion2 1921 16163 2133 17054 

Total 2776 23285 2329 1997 
1Lightning, soil and fertilizer emissions 
2Point, area, mobile sources, ships, aircraft from the KORUSv5 inventory 
3Volcanic eruptions + degassing 1110 
4Includes agricultural emissions 
 

 
Figure 1. a) Model simulation of PM2.5 during KORUS-AQ compared against the mean observations at the 15 AirKorea sites 
in the b) GEOS-Chem model grid-box containing Olympic Park and KIST. The gray shading shows the observed standard 1115 
deviation. The correlation coefficient (R) and normalized mean bias (NMB) are inset. Map tiles by Stamen Design, under CC 
BY 3.0. Data by © OpenStreetMap contributors, under ODbL. 
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Figure 2. Model simulation of PM2.5 compared against observations where the fractional source contributions are calculated 1120 
from KIST and applied to the mean AirKorea PM2.5 observations from Figure 1 during the four meteorological periods. Figure 
values are shown in Table 3. The radius of each pie chart is scaled to the maximum value of modeled or observed PM2.5 (53 
μg m-3). The blue circles show the aerosol liquid water content (ALWC) associated with PM2.5. The sulfate-nitrate-ammonium 
components are bordered in black to guide the reader. 
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Table 3. Modeled vs. observed PM2.5 composition  

 Observations (µg m-3)  Model (µg m-3)  
Species Dynamic Stagnant Transport/ 

Haze 
Blocking Avg Dynamic Stagnant Transport/ 

Haze 
Blocking Avg 

Sulfate 3.9 3.6 14.7 5.5 6.1 1.7 1.4 4.1 2.1 2.2 
Nitrate 2.4 3.4 11.2 3.1 4.5 4.2 4.0 12.9 6.2 6.1 

Ammonium 1.9 2.2 8.2 2.7 3.3 1.8 1.7 5.3 2.6 2.6 
SOA 6.0 14.2 11.5 8.6 9.5 3.9 4.8 10.0 5.1 5.4 
POA 3.3 4.3 4.8 2.8 3.7 2.8 2.8 3.3 3.3 3.0 
BC 1.2 1.7 2.2 1.3 1.5 1.0 1.2 2.1 1.5 1.3 

PM2.5 18.7 29.4 52.6 24.0 28.6 15.4 15.9 37.7 20.8 20.6 
ALWC1 12.0 4.1 26.9 6.2 12.6 11.9 17.6 48.7 29.5 22.9 

PM2.5 + H2O 30.7 33.5 79.5 30.2 41.2 27.3 33.5 86.4 50.3 43.5 
1Aerosol liquid water content (ALWC) is calculated using E-AIM from temperature at KIST, the 50th percentile of RH across 1135 
the AirKorea sites in Figure 1b, and the speciated PM2.5 components from Figure 2. 
 

 
Figure 3. Mean vertical profiles of a) observed sulfate, b) observed nitrate, c) model sulfate, and d) model nitrate for the 
descents into Olympic Park for each meteorological period. The observations (solid lines) and model (dashed lines) are binned 1140 
to the nearest 0.5 km below 2 km.  
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Figure 4. a) Mean hourly modeled vs. observed nitrate derived from PM2.5 observations in the GEOS-Chem gridbox and KIST 1145 
speciated composition as described in Section 4 for May 1 to June 7, 2016. The gray shading indicates the observed 25th to 
75th percentile across the grid box. The model sensitivity studies are described in Section 5. b) Mean model nitric acid diurnal 
cycle. c) Mean model reactions that produce HNO3 as described in Section 3. 
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 1150 

 
Figure 5. Modeled and observed ɛNO3 as a function of RH below 1.5 km for the domain of Fig. 3. Median ɛNO3 as a function 
of equally size-binned RH is overlaid (squares). The haze buildup (5/24-5/26) is shown in gray for the observations and dark 
red for the model. 
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 1155 
Figure 6. Mean vertical profiles of a) HNO3, b) NO2, c) OH, and d) production of HNO3 (pHNO3) for the same domain as Fig. 
3 but accounting for the availability of OH, NO2, and HNO3 observations. The horizontal bars show the observed and modeled 
standard deviations. The number of points in each altitude bin are shown in panel a). 
 

 1160 
Figure 7. Gridded HNO3 from the observations a), model b), and the percent difference c) along the flight tracks at the model 
resolution and below 2 km. Map tiles by Stamen Design, under CC BY 3.0. Data by © OpenStreetMap contributors under 
ODbL. 
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Figure 8. Plot of binned observations of NOx (right axis), total nitrate (TNO3 = HNO3 + pNO3), sum of peroxy nitrates (ΣPNs), 1165 
and sum of alkyl- and multi-functional nitrates (ΣANs) (left axis for TNO3, ΣPNs, and ΣANs), normalized to background 
subtracted CO. The background CO from Nault et al. (2018) of 200 ppbv was used. The photochemical age was calculated 
using propene and one of its photochemical products, propene hydroxynitrate (Section S3). Data are binned between 0 and 5 
equivalent hr between 11am to 4pm KST below 1km for the SMA (127 to 127.7oN, 37.2 to 37.7oN). The fit for NOx (dotted 
gray curve) is an exponential decay, leading to a first order rate of 0.31 hr-1, which represents the loss of NOx via the production 1170 
of oxidized compounds, such as TNO3. The best fit for TNO3(t) from Eq. 3 (dotted blue curve) includes this production and 
solves for first order loss, which is assumed to be equivalent to the TNO3 deposition rate (Section S3). Red curves represent 
solutions for TNO3(t) from Eq. 3, assuming different deposition velocities (Vd) discussed in Section 5.2. 
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Figure 9. Mean diurnal cycle from May 1 to June 7, 2016 for a) ozone and b) NO2 for the AirKorea sites within the GEOS-
Chem gridbox (Fig. 1b) and for c) NO and d) NOx at Olympic Park. The gray shading represents the standard deviation across 
the AirKorea sites. The solid gray line is the AirKorea site closest to Olympic Park, and the dashed line is the measurement 
from the EPA (Table 2) at Olympic Park. The sensitivity study (blue line) is described in Section 5.3.  1180 
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Figure 10. a) Mean diurnal cycle for the mixed layer height (MLH) from the model and observations from May 1 to June 7, 1185 
2016, and b) sensible heat flux (HFLUX) from the model. The MLH is given for the ceilometers (CLH) at Olympic Park 
(black) and at Seoul National University (gray). 
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Figure 11. a) Transport/Haze period timeseries of modeled and observed hourly nitrate fraction of PM2.5, b) modeled 1190 
production of HNO3 from N2O5 (R2) and NO2 (R4), c) ozone, d) and NO2. The sensitivity studies are described in Section 6. 
The gray shaded regions represent 8pm to 8am. 
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Figure 12. Sulfate oxidation ratio (SOR = =5%&'

=5%&''=C&
) as a function of RH at Olympic Park and from aircraft below 1km for the 1195 

same domain as Fig. 3. The squares highlight the data during the Transport/Haze period. 
 

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ground
Observations

SO
R

Model

RH, %

with SO  + aerosol

RH, %

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 20 40 60 80 100 0 20 40 60 80 100

Aircraft
Observations

2

SO
R

RH, %

Model with SO  + aerosol2

https://doi.org/10.5194/acp-2021-946
Preprint. Discussion started: 7 January 2022
c© Author(s) 2022. CC BY 4.0 License.



42 
 

 
Figure 13. Composition of model PM2.5 during the Transport/Haze period. The foreign and local contributions and model 
sensitivity test including heterogeneous uptake of SO2 to aerosol (Het SO2) are calculated as discussed in Section 6. The total 1200 
PM2.5 excluding aerosol liquid water content (ALWC) is given for each simulation. 
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