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ABSTRACT

Context. Force-free extrapolations are widely used to study the magnetic field in the solar corona based on surface measurements.
Aims. The extrapolations assume that the ratio of internal energy of the plasma to magnetic energy, the plasma β, is negligible. Despite
the widespread use of this assumption observations, models, and theoretical considerations show that β is of the order of a few percent
to more than 10%, and thus not small. We investigate what consequences this has for the reliability of extrapolation results.
Methods. We use basic concepts starting with force and energy balance to infer relations between plasma β and free magnetic energy
to study the direction of currents in the corona with respect to the magnetic field, and to estimate the errors in the free magnetic energy
by neglecting effects of the plasma (β � 1). A comparison with a 3D magneto-hydrodynamics (MHD) model supports our basic
considerations.
Results. If plasma β is of the order of the relative free energy (the ratio of the free magnetic energy to the total magnetic energy)
then the pressure gradient can balance the Lorentz force. This is the case in solar corona, and therefore the currents are not properly
described. In particular, the error in terms of magnetic energy by neglecting the plasma is of the order of the free magnetic energy, so
that the latter cannot be reliably determined by an extrapolation.
Conclusions. While a force-free extrapolation might capture the magnetic structure and connectivity of the coronal magnetic field,
the derived currents and free magnetic energy are not reliable. Thus quantitative results of extrapolations on the location and amount
of heating in the corona (through current dissipation) and on the energy storage of the magnetic field (e.g. for eruptive events) are
limited.
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1. Introduction

Measuring the magnetic field in the outer atmosphere of the Sun
is very difficult and not yet achieved on a routine basis. While
ideas for advanced instrumentation exist (e.g. Peter et al. 2012a),
so far we are restricted to coronagraphic observations above the
limb (Lin et al. 2000, 2004) or radio data (e.g. White 2005). Both
of these methods are still limited in resolution and coverage of
coronal features. However, magnetic field measurement at suffi-
cient resolution would be key to understanding the heating and
dynamics of the corona because they would provide the crucial
information about currents that heat the corona through Ohmic
dissipation and the free magnetic energy to be converted during
eruptive events, such as flares and coronal mass ejections that
govern space weather.

For the chromosphere a few such measurements exist (e.g.
Solanki et al. 2003; Lagg et al. 2004), but for the corona
we mostly rely on extrapolations of the magnetic field from
measurements mostly in the photosphere (e.g. Wiegelmann &
Sakurai 2012; Wiegelmann et al. 2014). These extrapolations as-
sume that the magnetic field fully dominates the plasma in the
corona in terms of energy, i.e. that plasma β comparing the inter-
nal (viz. thermal) energy of the plasma to the magnetic energy
density is negligible, β � 1, see (1). With this assumption one
can build algorithms to calculate the coronal magnetic field and
deduce currents and free magnetic energy, even though different
methods do not give consistent results (see Sect. 5.3).

However, observations, modelling, and theory do not really
support that β � 1. In his textbook, Priest (1982) writes “a mag-
netic field of 10 G and a density of 1016 m−3 [is] characteristic of
an active region” (his Sect. 6.4.2). Taking these numbers at face
value, and employing the typical coronal temperature of 1 MK,
one finds β ≈ 0.35. While this magnetic field estimate is realis-
tic (cf. Sect. 2), the density might be a factor of five to ten too
high. Still for temperatures of active region loops of about 3 MK
(Reale 2014), one would then end up with a value of β & 0.1.

For the quiet Sun, Schrijver & van Ballegooijen (2005) pro-
vided evidence that in the upper atmosphere plasma β can be
even of order unity. While one might argue that these quiet Sun
results are not directly transferable to active regions, our discus-
sion in Sect. 2 shows that the quiet Sun is not just an exception.
Based on published studies employing different techniques, we
conclude that β is not necessarily small in the corona, but is sev-
eral percent to more than 10%.

This finding, i.e. that plasma β is non-negligable, has severe
consequences for force-free extrapolations of the magnetic field.
This is especially true if plasma β is of the same order as the free
energy of the magnetic field, which is the case, as we discuss in
Sect. 3. Actually, it is not sufficient that β � 1 only on average,
but this has to be fulfilled throughout the whole volume under
consideration. The main consequences for force-free extrapola-
tions of this are twofold. Firstly, the currents do not have to be
field-aligned and are not constrained (Sect. 4), and secondly, the
free magnetic energy as derived from the extrapolation is not
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reliable (Sect. 5). Therefore, one has to be careful not to over-
interpret quantitative results on heating through current dissipa-
tion or on energy storage of the magnetic field based on force-
free extrapolations.

This paper mainly relys on basic considerations concern-
ing the force and energy balance. However, the figures com-
pare these basic results to a 3D magneto-hydrodynamics (MHD)
model of the corona above an evolved active region by Bingert &
Peter (2011), and we find that the numerical simulation supports
our basic arguments (for details of the model we refer to the orig-
inal paper). This 3D MHD model includes an energy equation
accounting for radiative losses and heat conduction. Therefore,
the pressure derived from that model can be trusted (cf. Peter
2015), which is essential when calculating plasma β. This trust
is further supported by these types of models, reproducing e.g.
the width of coronal loops (Peter & Bingert 2012), the 3D struc-
ture of loops (Bourdin et al. 2013), or the patterns of loops in an
emerging active region (Chen et al. 2014).

2. Constraints on plasma β in the corona
from observations, models, and theory

The plasma β is a dimensionless number comparing the gas pres-
sure p and the energy density of the magnetic field B,

β =
p

B2/(2µ0)
, (1)

with the magnetic permeability µ0. Because the pressure essen-
tially is the internal energy density (apart of a factor of 3/2 for a
monoatomic ideal gas), β compares the internal energy density
to the magnetic energy density in a plasma.

The magnetic field in the corona is difficult to observe di-
rectly and consequently β is not well constrained by observa-
tions. However, the technique of coronal seismology allows us
to obtain access at least to the (average) magnetic field along
an oscillating coronal loop (Edwin & Roberts 1983). The ap-
plicability of this method to the real Sun and what this aver-
age value actually means has been confirmed, for example by
De Moortel & Pascoe (2009) and Chen & Peter (2015). To ob-
tain the pressure, in studies of coronal seismology the density
and temperature are derived using extreme UV spectroscopy or
imaging (or in the worst case they are just assumed to be at the
canonical coronal values for the density of n ≈ 109 cm−3 and
the temperature of T ≈ 1 MK). Typically, in coronal seismology
long loops (100 Mm to 200 Mm long) are studied and magnetic
field strengths of some 5 G to 20 G are found, which is consis-
tent with direct coronagraphic measurements using the Zeeman
effect (Lin et al. 2000, 2004).

Here we just highlight three studies, basically reflecting the
findings in coronal seismology (for a review see Nakariakov &
Verwichte 2005). Guo et al. (2015) find in a cool (0.65 MK) and
dilute (5 × 108 cm−3) loop system a field strength of about 8 G,
corresponding to β ≈ 0.02. In a hotter (1.05 MK) and denser
(2 × 109 cm−3) loop Nakariakov & Ofman (2001) find a mag-
netic field of about 13 G, corresponding to β ≈ 0.05. For a larger
sample of a dozen loops, White & Verwichte (2012) find a range
of magnetic field strengths from about 3 G to 20 G. While they
did not employ a density analysis, when using a typical coronal
density of 109 cm−3, this corresponds to values of β in the range
of 0.4 to 0.01. So based on these observations of coronal seis-
mology, in general, plasma β ranges from a few percent to more
than 10 %, which is not very small.

Fig. 1. Plasma β in a 3D MHD model. The plot shows a 2D histogram
of β according to (1) as a function of temperature in the computational
domain (above 5 Mm). The yellow-red dashed line indicates the median
variation (here similar to the mean variation). The solid blue lines show
the 25 and 75 percentiles, i.e. half of the data points are in between these
lines. The colour bar shows the frequency in the histogram. Data based
on the model presented in Bingert & Peter (2011); see Sect. 2.

One of the major references when it comes to giving support
to the assumption that β should be small is the group of mod-
els by Gary (2001). Even recent reviews (e.g. Wiegelmann &
Sakurai 2012) use this as the sole justification that β would be
small. Most quoted is Fig. 3 of Gary (2001), which shows β as
a function of height for two models as extreme cases, one for a
field-coming out of the middle of the umbra and one from a plage
region. At a height of some 40 Mm, i.e. at the apex of a typical
coronal loop of 120 Mm length, β is 0.004 and 0.1 for the umbra
and plage case, respectively. However, fieldlines from the centre
of the umbra are not associated with coronal loops, and thus the
line Gary (2001) shows for the plage region might be more typi-
cal for coronal loops. Therefore, even the study by Gary (2001),
usually used to argue for a very small β in the corona, actually
does indicate that β is not so small.

A good estimate for β can also be inferred from 3D
MHD models. If these models include a proper description of the
energy equation, in particular, accounting for heat conduction
and radiative losses, they give a realistic estimate for the coro-
nal pressure and can provide a good match to the observed real
Sun (Peter 2015). These models show a wide range of plasma β
in the corona, with a median value of β ≈ 0.1 around temper-
atures of about 1 MK (Peter et al. 2006, Fig. 12). In emerging
active regions where the magnetic field is comparably strong,
the 3D MHD models show small values of β ≈ 0.003 (based on
data from Chen et al. 2015), but in general β is larger. In par-
ticular, Peter et al. (2006) showed that in bright regions in the
corona above an active region β is not small, but can reach val-
ues even above unity. Small but non-negligible values of β ≈ 0.1
are also found in the coronal part (T from 1 MK to 1.5 MK) of
the 3D MHD model of an evolved active region by Bingert &
Peter (2011). This and the considerable scatter of β values in the
corona is illustrated in Fig. 1.

Besides the above approaches through observations and
modelling, one can also estimate plasma β based on basic the-
oretical considerations by combining results from heating pro-
cesses and scaling laws. In their model, to heat the upper atmo-
sphere through Alfvén waves, van Ballegooijen et al. (2011) give
a parameterisation for the volumetric heat input, H, depending
on the magnetic field in the loop, B, and loop length L. Their
Eq. (63) reads H ∝ B0.55L−0.92. At the same time, following
Rosner et al. (1978) one can find scaling relations determining
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the temperature T and density n based on H and L. In the form of
Peter et al. (2012b), these read n ∝ H4/7L1/7 and T ∝ H2/7L4/7.
Combining these and using the coefficients quoted in the original
papers, one finds

β = 0.1
( B

13 G

)−1.53 ( L
100 Mm

)−0.07

· (2)

The above mentioned values of magnetic field in coronal loops
as derived from coronal seismology or coronagraphic observa-
tions using the Zeeman effect range from 5 G to 20 G. Therefore
with (2) this consideration supports the finding that β is not small
from a theoretical perspective also.

The conclusion from this overview of active region observa-
tions and models is that we can expect plasma β to be somewhere
in the range from a few percent to 10%. So in contrast to com-
monly used statements that the corona is a low-beta plasma, we
see that β is mostly smaller than unity, but not negligibly small.
In particular, the 3D MHD models show that one has to be care-
ful with a general statement because depending on the structure,
β might range from very small values below 0.01, to values sig-
nificantly above 1, even in bright patches of the corona. Such
large values for plasma β have been discussed before in the con-
text of the quiet Sun (Schrijver & van Ballegooijen 2005), so it
should not be too surprising that active regions also show non-
negligible values for β.

3. Free energy in force-free extrapolations

A potential magnetic field Bpot satisfies ∇·Bpot = 0 and ∇ ×
Bpot = 0 and is a state of minimum energy under the con-
straint that the normal component of the field at the photospheric
boundary is prescribed. If the magnetic field is forced away from
this state, the magnetic energy available for conversion into ki-
netic and internal energy (i.e. acceleration and heating) is the
free magnetic energy, Efree. This is the difference between the
actual magnetic energy, Emag and the magnetic energy of the po-
tential field (with the same boundary conditions for the normal
component of B), Epot. Here the energies are integrated over a
volume, e.g. a full active region under investigation.

Because the spatial distribution of the magnetic field can-
not be measured directly in the corona (with some exceptions),
mainly (non-linear) force-free extrapolations are employed to es-
timate the magnetic energy, Emag (see Sect. 4). In the following,
we provide a non-exhaustive list of examples for such studies
that provide information on free energy. For these, we give val-
ues for the relative free energy Efree in percent, where

Efree =
Emag − Epot

Emag
· (3)

Here the index free refers to free energy and not to force-free ex-
trapolation. This quantity is positive because for a given normal
component of the magnetic field at the boundary, the potential
field is the solution with the minimum magnetic energy.

Force-free extrapolations evaluate this free energy in a given
volume, and of course, depending on the volume, one would
find different values. Representing the huge variety of force-free
models (see e.g. review by Wiegelmann & Sakurai 2012) we
quote the results from extrapolations of three different structures:
a normal (non-flaring) active region, a flaring active region, and
a small highly twisted part of an active region. The maximum
magnetic energy in a volume for a specified magnetic field at its
lower boundary is given by the energy of an open field configu-
ration. The maximum free magnetic energy Efree is about 100%,

and this maximum also applies to force-free extrapolations (e.g.
Amari et al. 2000). While exceptions of large free magnetic ener-
gies exist (e.g. up to 60% in a flaring active region; Thalmann &
Wiegelmann 2008), typically force-free extrapolations all show
relative free energies of some 10%.

As a sample for a normal active region, we quote Thalmann
et al. (2012) who find a free magnetic energy Efree of about 7% to
14%. The domain they investigated covers about 180 × 98 Mm2

in the horizontal directions, basically encompassing the whole
active region. One might expect a higher level of free energy
for a flaring active region just before a flare. While Sun et al.
(2012) find a free energy of almost 50% two days before an
X-class flare, just a few hours before the flare the free energy
was at only 20% (the authors did not specify the volume but it
probably encompasses the whole active region). Thus even in a
flaring active region the level of free energy is modest. This is
also true for a twisted subvolume in an active region. Thalmann
et al. (2014) investigated the region of strong braiding identi-
fied in the images of the High-resolution Coronal Imager (Hi-C)
rocket flight (Cirtain et al. 2013). However, even in a small vol-
ume of 13 × 7 × 4 Mm3 they found the free energy Efree of the
order of only 5%. These low values for the free energy are not
simply an artefact of one particular method. Comparing major
codes for force-free extrapolations De Rosa et al. (2009) found
that they all give small values in the range of 5% to 25% (full
active region, 90 × 90 Mm2 in the horizontal directions).

These values for the free magnetic energy in force-free ex-
trapolations are also found in 3D MHD simulations. In the model
of an evolved active region by Bingert & Peter (2011), which we
use as an example throughout, we find a free magnetic energy
of about 10% when integrating over the whole computational
domain covering the active region (here the free energy is domi-
nated by the lower part of the computational box).

The conclusion from this overview of extrapolation models
is that the (relative) free magnetic energy in the corona ranges
mostly from 5% to 10% in an active region. This might be
slightly higher in flaring regions, but probably not (much) higher
than 20%. These values should be considered as upper limits
because they depend on the volume selected for integrating the
energies. When extending the volume to include, e.g. neighbour-
ing non-active parts, where the free magnetic energy is lower, the
(relative) free energy of the whole volume decreases.

4. Local force balance and currents

We first check what role the plasma β plays in the force balance
and what implications this has for the currents derived from a
force-free extrapolation. This is a local treatment in the sense
that we investigate the forces at a given spot somewhere in the
corona, e.g. at the location of a bright coronal loop.

The ideal momentum balance in a static case reads

0 = − ∇p︸︷︷︸
(a)

+ ρg︸︷︷︸
(b)

− ∇
B2

2µ0︸ ︷︷ ︸
(c)

+
1
µ0

(B · ∇)B︸        ︷︷        ︸
(d)

. (4)

Here p is the pressure, ρ the density, g the gravitational accelera-
tion, B the magnetic field, and B = |B|. We separated the Lorentz
force f L = j × B into the magnetic pressure gradient and the
magnetic tension, i.e. terms (c) and (d).

The plasma β introduced in (1) compares the gas and mag-
netic pressure, i.e. basically terms (a) and (c), (d) in (4). In gen-
eral in a low-β environment the magnetic force dominates the
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pressure gradient1. In the stationary case, in most situations a hy-
drostatic equilibrium governs the variation along magnetic field
lines (at least for structures with constant cross section), so the
terms (a) and (b) in (4) are of the same order, implying that the
gravitational term (b) would also be small if β is small.

Therefore in a low-β regime the gradient of the magnetic
pressure (c) has to be balanced by the magnetic tension force (d)
alone. This is also true when flows are present as long as these
are subsonic because then the kinetic energy is still even smaller
than the internal energy. Consequently we have

∇
B2

2µ0
≈

1
µ0

(B · ∇)B ⇔ j × B ≈ 0. (5)

This condition applies only approximately, i.e. to the order of
β, where we still have to define what this means (see Sect. 4.1).
Because this implies that all forces are small, solutions to this
state are called force-free.

To satisfy the condition (5), the following two (not mutually
exclusive) options exist:

(a): j is roughly parallel to B;

(b): j is small, but not necessarily aligned with B. (6)

Seeking force-free solutions of (5), research focuses on op-
tion (6a), as e.g. outlined in the introduction of the review by
Wiegelmann & Sakurai (2012). For these kinds of force-free
extrapolations the possibility (6b) of small currents not aligned
with the magnetic field is largely ignored.

However, because the condition (5), j × B ≈ 0, has to be
fulfilled only approximately to the extent that the gas can bal-
ance the magnetic forces to the order of β, one can have either
large currents at small angles (between j and B), or one could
have small currents at arbitrary angles. The latter solution is not
the same as a potential field where j = 0 and the Lorentz force
vanishes. Instead, we have seen in Sect. 2 that plasma β is up to
10% and can in some places of the bright corona even reach val-
ues above 1 (see Sect. 2 and Peter et al. 2006). Thus there can be
non-negligable Lorentz forces in the corona.

The main implication following from the two options in (6)
is that they can lead to significantly different results for the cur-
rents in the system, and thus for the expected heating rates de-
rived from an extrapolation. Likewise, if the currents are very
different between the two options, the free magnetic energy for
these two options will also be very different. Therefore selecting
option (6a), j || B, makes a choice that might provide answers in
terms of currents and free magnetic energy that are far from a
unique answer.

4.1. What does “small currents” mean?

We now investigate to what extent the plasma can balance the
Lorentz forces due to small currents that are not parallel to the
magnetic field. This is similar to asking when option (6b) ap-
plies, i.e. when the currents are small.

To accomplish this, we decompose the magnetic field into a
part that is a potential field Bpot (for the given boundary condi-
tions) and a second part that we call the free magnetic field, Bfree,

B = Bpot + Bfree. (7)

1 However, if B = B0 + B1 and p = p0 + p1, B0 and p0 are constant in
space, and B1 � B0 and p1 � p0, even for β � 1, it might well be that
the pressure gradient equals the Lorentz force. This is because in this
case the forces, i.e. the gradients, depend only on B1 and p1, while β
mainly compares B0 and p0.

Similar to (3), here the index free refers to the magnetic field
corresponding to the free magnetic energy, and not to the force-
free extrapolation.

The free magnetic field Bfree corresponds to the current sys-
tem that is not necessarily parallel to the magnetic field. By def-
inition we have ∇ × Bpot = 0, and the currents are given by
j = (∇ × Bfree)/µ0. Since here we consider case (6b), we as-
sume that these currents j are not (predominantly) aligned with
the magnetic field.

Considering only the pressure gradient and the Lorentz force
(terms a, c, d), we can write the force balance (4) as

∇p =
1
µ0

(∇ × Bfree) × B. (8)

Dividing this by the magnetic energy density B2/(2µ0) and be-
cause here we investigate the small currents not aligned with the
magnetic field, we find the order of magnitude estimation

Bfree

B
≈

1
2
β. (9)

As long as Bfree is smaller than Bpot, the free magnetic energy
is ≈2 BfreeBpot/(2µ0). For this local analysis of the force balance
we consider the relative free energy Efree as defined in (3) locally,
i.e. we evaluate it in a small volume around the location where
Bfree and Bpot are taken. For an order-of-magnitude estimation,
we only consider the absolute value because locally Efree can
be negative (see also Sect. 4.2). With this approach, it follows
from (3) that Bfree/B ≈ |Efree|/2. Thus from (9) we find the re-
lation between the relative free energy and plasma β to satisfy
option (6b),

|Efree| ≈ β. (10)

This relation, based on a local force balance, is only an order-of-
magnitude estimation. The comparison with a 3D MHD model
in Sect. 4.2 shows that there |Efree| is larger than β, typically by a
factor of about five.

From the relation in (10) it follows that as long as the rela-
tive free energy Efree (3) is of the order of plasma β (or smaller),
the currents not parallel to the magnetic field are small enough,
so that the plasma can balance the resulting Lorentz force. In
this case, even the parallel currents are not constrained, and
a force-free extrapolation would not capture the component of
the (small) currents that is parallel to the magnetic field (see
Appendix A).

The corresponding currents must be dominated by those cor-
responding to the non-linear force-free modelling only if the rel-
ative free energy are significantly larger than plasma β. Then
option (6a) would apply and the currents would have to be
(roughly) parallel to the magnetic field.

However, from the discussion in Sects. 2 and 3 and the
MHD model in Fig. 2, it is clear that the relative free magnetic
energy is of the order of plasma β, so that the condition (10) is
satisfied. From this discussion, we conclude, that (in most cases)
the free energy is consistent with currents not parallel to the
magnetic field. Therefore the currents are not necessarily par-
allel to B, and consequently the currents derived from (most)
force-free extrapolations are only reliable in stating that the field
is close to potential. Therefore estimations of e.g. the localisation
of plasma heating based on the currents from force-free extrap-
olations are not reliable either.
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Fig. 2. Relation between plasma β and relative free magnetic energy
Efree in a 3D MHD model. For the 2D histogram plasma β (1) is calcu-
lated at each grid cell of the computational domain (above 5 Mm) and
the free energy Efree is evaluated according to (3) in the volume of the
same respective cell. Here we plot the absolute values, |Efree|. The po-
tential field required for this is calculated using the vertical component
of the magnetic field in the 3D model at a height of 5 Mm, which is
(roughly) the base of the corona in that model. The yellow-red dashed
line indicates the median variation (here similar to the mean variation).
The solid blue lines show the 25 and 75 percentiles, i.e. half of the data
points are in between these lines. For comparison, the straight green line
shows a linear relation β = Efree. The colour bar shows the frequency
in the 2D histogram. Data based on the model presented in Bingert &
Peter (2011); see Sect. 4.2.

4.2. Free energy and plasma β in a 3D MHD simulation

To illustrate the relation between the (local) relative free energy
Efree and plasma β as derived in (10), we show a 2D histogram
of this based on the 3D MHD model of Bingert & Peter (2011)
in Fig. 2. Just as with (10), here Efree is evaluated in one grid cell
of the simulation when compared to β at that same grid cell. As
for the order-of-magnitude estimation above, we plot the abso-
lute values of Efree. The respective histograms for the positive
and negative values alone look basically identical to those for
absolute values shown in Fig. 2.

The histogram in Fig. 2 shows that typically |Efree| is several
(typically about five) times larger than β (most entries in the his-
togram are to the right of the green line indicating |Efree| = β).
Furthermore, the volume with positive values of Efree is about a
factor of 1.5 larger than that with negative values. Consequently,
when considering the whole volume Efree is positive, as should
be. As mentioned already in Sect. 3, for this model we find
Efree ≈ 0.1 when considering the whole domain.

In general, the 3D MHD model supports the order-of-
magnitude estimation in (10), even though it clearly shows that
mostly |Efree| is larger than β.

4.3. Currents in a 3D MHD simulation

The relation of the currents to the magnetic field, i.e. the two
options (6a) and (6b) can be directly investigated in a 3D
MHD model. In an MHD model the plasma is also considered,
i.e. the model fully accounts for the fact that β is not small in
general. In the 3D MHD model by Bingert & Peter (2011) we
employ here, the free magnetic energy integrated over the whole
volume is about 10%. This is comparable to the values found for

Fig. 3. Angle γJB between current and magnetic field in a 3D
MHD model. The plot shows a 2D histogram of the angle as a func-
tion of temperature in the computational domain (above 5 Mm). The
yellow-red dashed line indicates the median variation, the white-black
dashed line the mean variation. The solid blue line shows the 75 per-
centile, i.e. still 25% of all data points have angles above the blue line.
The colour bar shows the frequency in the histogram. Data based on the
model presented in Bingert & Peter (2011); see Sect. 4.3.

typical solar active regions based on force-free extrapolations
(cf. Sect. 3) and thus this active region model should be a good
representation of the real Sun in terms of the available free mag-
netic energy and currents.

In Fig. 3 we show the distribution of the angle γJB between
the current j and the magnetic field B in that 3D MHD model.
While in general the angles are small, the mean angle in the
coronal part of the computational domain around T ≈ 1 MK is
about 15◦, and 25% of the coronal volume (from T ≈ 1 MK to
1.5 MK) has angles above 30◦. In the corona we even find angles
of almost 90◦, i.e. currents that are almost perpendicular to the
magnetic field.

This comparison to a 3D MHD models confirms that the cur-
rents in the corona are not necessarily parallel to the magnetic
field as would be required for option (6a) when assuming that β
is very small. Instead, when accounting for the effects of the
plasma, β is not necessarily small (cf. Sect. 2, Fig. 1) and the
currents are not be parallel to the magnetic field, in line with
option (6b).

5. Global energy considerations and accuracy

In contrast to the local treatment discussed in Sect. 4, the follow-
ing considerations apply to the energy contained in a volume. In
this sense this is non-local or global. As outlined in Sect. 3, the
volume considered by force-free extrapolations typically ranges
from a several Mm3 to the better part of an active region.

Based on the virial theorem (e.g. Priest 1982, Sect. 2.8.4) in
a stationary state the energy balance following from the momen-
tum balance requires that the total energy within a volume, Etot,
is solely determined by an integral of properties at its surface, S ,

0 = Etot + S . (11)

As before, an uppercase E refers to the volume integral of the
respective energy density. The exact form of S is not of inter-
est here, but it can be found, for example in Eq. (2.66) in Priest
(1982).

For the following we only consider the magnetic and the in-
ternal (viz. thermal) energy,

Etot = Emag + Eint. (12)
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Other terms, such as the kinetic or gravitational energy, Ekin or
Egrav, only strengthen the arguments given below because they
increase the non-magnetic contributions to the total energy. In
general, we have Ekin . Eint because the flows are mostly sub-
sonic. In most situations Egrav is of the order of Eint reflecting
hydrostatic equilibrium (along field lines).

We rewrite (11) to give

0 = Emag + Eint + S , (13)

and introduce

δ =
Eint

Emag
· (14)

Because the internal energy basically is the pressure, this quan-
tity is approximately the (average) plasma β (1),

δ ≈
3
2
β. (15)

With (14) we can rewrite (13) to give

0 = Emag(1 + δ) + S . (16)

For a (non-linear) force-free extrapolation, one assumes that the
magnetic field has to balance itself, so other forces (and ener-
gies) are negligible and thus δ = 0. Consequently, the minimum
magnetic energy of the force-free extrapolation, Eff , is given by
the surface term,

Eff = −S . (17)

Comparing with (16) and using (15), we find the relative error of
the force-free extrapolation (in terms of energy) with respect to
the true magnetic field to be

Eerr =
Emag − Eff

Emag
≈

3
2
β. (18)

This implies that we can determine the magnetic energy through
a force-free extrapolation only to the order of plasma β. Because
force-free extrapolations neglect the existence of the plasma, it is
clear that this should be a limiting factor for the accuracy of the
magnetic energy. The above estimate is a conservative estimate
because the gravitational and kinetic energy also contribute to
this uncertainty, so that the true error could easily also be a factor
of two to three larger than estimated in (18).

If β → 0, which is equivalent to fully ignore the effects
of the plasma in the corona, the magnetic field is in a truly
force-free state. Then the accuracy is limited only by the ac-
curacy of the algorithm used for the force-free extrapolation
(Sect. 5.3). However, on the real Sun plasma β is not arbitrar-
ily small. Instead, observations, theory, and numerical simula-
tions show values for β in the corona ranging from a few to
10% (see Sect. 2). Therefore we can expect the magnetic field
deduced from extrapolations to be accurate only within some
10% in terms of magnetic energy.

In force-free extrapolations the free magnetic energy is only
of the order of 10% of the magnetic energy (see Sect. 3).
Considering that the force-free extrapolation can be accurate
only to some 10%, this implies that the derived free magnetic
energy is not well constrained. Basically this says that the re-
sults from a force-free extrapolation are consistent with a poten-
tial field (in terms of energy). Thus one should not use the free
energy derived from a force-free extrapolation for a quantitative
analysis.

5.1. When can we trust force-free extrapolations?

We now turn to a quantitative measure of when a force-free ex-
trapolation would give results in terms of free magnetic energy
that can be trusted. To accomplish this, we define a free-β, βf ,
that in analogy to plasma-β compares the pressure (or internal
energy) to the free energy of the magnetic field,

βf =
p

(B2 − B2
pot) / (2µ0)

· (19)

With the relative free energy Efree = (B2−B2
pot) /B2 as defined

in (3), free β reads

βf =
p

Efree B2/(2µ0)
=

β

Efree
· (20)

Finally with (18) we find the ratio of the error of the force-free
extrapolation (by neglecting the impact of the plasma) to the rel-
ative free energy to be

Eerr

Efree
=

3
2
βf . (21)

The conclusion is that as long as the free β as defined in (19) is
of unity or even larger, βf & 1, then the error of the force-free
extrapolation (because of the presence of the plasma) is at least
as big as the difference of the extrapolated field from a potential
field. In other words, within the errors the extrapolated field is
the same as a potential field (in terms of energy).

If βf & 1, then the Lorentz force is also not large compared
to the other terms in the momentum equation, but is balanced
by the pressure gradient. The condition for this was in (10) that
Efree ≈ β. Then it follows from (20) that βf ≈ 1 proving the
above statement.

Only if βf is significantly below unity, we can trust the mag-
netic energy (and thus the free energy) derived from a force-free
extrapolation. Similarly, we can trust the currents derived from a
force-free extrapolation, and thus any conclusions drawn on the
distribution of (Ohmic) heating in the corona based on this, only
if βf is significantly below unity (cf. Appendix A).

In general, plasma β ranges from several percent to 10% (see
Sect. 2). The relative free energy Efree is the order of 10% for nor-
mal active regions and might reach about 50% in flaring active
regions (see Sect. 3). With this, based on (20) the free β is not
significantly below unity, but typically is approximately unity in
normal active regions and maybe βf ≈ 0.2 in flaring active re-
gions. Therefore the trust in the free magnetic energy derived
from force-free extrapolations should be limited.

5.2. Comparison to 3D MHD models

With our estimations in Sects. 2 and 3 that plasma β and the rela-
tive free energy Efree are of the same order, we would expect the
free β is of order unity. While those are only estimations, one can
use a 3D MHD accounting for the magnetic field and the plasma
for a closer check.

Again, we use the results from the 3D simulation of Bingert
& Peter (2011) to calculate free β. To accomplish this, we per-
form a potential field extrapolation using the vertical magnetic
field from the 3D model at a height of 5 Mm which is (roughly)
the base of the corona in that model. Together with the actual
magnetic field in the MHD model, we then calculate the free en-
ergy Efree according to (3) in the volume of each grid cell of the
computation. Finally, we use the plasma β from the model and
evaluate the free β at each grid cell according to (20).
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Fig. 4. Free β in a 3D MHD model. The plot shows a 2D histogram of βf
as defined in (19) as a function of the temperature in the computational
domain (above 5 Mm). The yellow-red dashed line indicates the median
variation (here similar to the mean variation). The solid blue lines show
the 25 and 75 percentiles, i.e. half of the data points are in between these
lines. The colour bar shows the frequency in the histogram. Data based
on the model presented in Bingert & Peter (2011); see Sect. 5.2.

In Fig. 4 we show the resulting distribution of βf in the
3D MHD model. This demonstrates that in the coronal part of
the computational domain, where the temperatures reach values
of the order of 1 MK to 1.5 MK, free β has values of the or-
der of βf ≈ 1. Thus the numerical model confirms the estima-
tion for βf at the end of Sect. 5.1 for a non-flaring active region.
Consequently, according to (21) the free magnetic energy is of
the order of the error in magnetic energy if neglecting the effcets
of the plasma. This supports our conclusion from Sect. 5.1 that
one cannot fully trust force-free extrapolations in terms of free
magnetic energy.

5.3. Accuracy of force-free extrapolations

The above discussion does not consider the accuracy of the
method to perform the force-free extrapolation. Few analytical
solutions of highly symmetric and comparably simple magnetic
configurations exist (e.g., Low & Lou 1990; Titov & Démoulin
1999). If compared to these, force-free extrapolations can re-
cover the true magnetic energy from the analytical solution only
to some 10% if only the lower boundary, i.e., the surface mag-
netic field is specified (based on six algorithms investigated by
Schrijver et al. 2006). In particular, different methods “will not
necessarily converge to the correct, or even the same, solution”
(Metcalf et al. 2008). A comparison of a dozen methods of ex-
trapolation using the same data set of an observed active re-
gion magnetic field provides free magnetic energies in the range
of 3% to 25% (De Rosa et al. 2009). This does not reflect a real
error because the true magnetic field in the corona is not known
in these cases. Still, it shows that the scatter between the differ-
ent methods is considerable and that the error solely introduced
by the extrapolation might be at least roughly 20%.

It would interesting to directly compare force-free extrapo-
lations to 3D MHD models. For this approach, one could use
the magnetic field at the base of the corona in the MHD model
to perform the extrapolation. In particular, when using different
MHD models, such as for an evolved (Bingert & Peter 2011) or
an emerging active region (Chen et al. 2014), the comparison
to the magnetic field and the free energy from the extrapola-
tion could provide a further test to the accuracy and reliability
of force-free extrapolations. This kind of study however, is far
beyond the scope of the present investigation.

The arguments in this paper address only the principle dif-
ficulty of force-free extrapolations due to the fact that plasma
β is not vanishing in the corona. The errors introduced by the
extrapolation algorithms make things worse.

6. Possible progress

To overcome the limitations of force-free extrapolations, some
progress might be achieved by combining the measured surface
magnetic field and the observed loop orientation in the minimi-
sation process (Aschwanden et al. 2012; Malanushenko et al.
2012, 2014). This would result in solutions where the magnetic
energy is not minimised (for the given vector magnetic field at
the boundary), but where the magnetic field might be closer to
the true field on the Sun.

A direct step forward to account for the effects of the gas
pressure would be to perform magneto-hydrostatic (MHS) mod-
els (e.g. Ruan et al. 2008). However, these models have the se-
rious shortcoming that they cannot account for the history and
evolution of the corona. This memory of the magnetic field
is accounted for by magneto-frictional models (e.g. Cheung &
DeRosa 2012), but they neglect the presence of plasma and es-
sentially face problems similar to the force-free extrapolations
discussed here.

To account for the presence of plasma and history of the
magnetic evolution, one has to employ 3D MHD models. Driven
by observational data, that is the magnetic field at the solar sur-
face as a function of time, such models can represent observed
coronal structures, as demonstrated by Bourdin et al. (2013).
While that model used only line-of-sight magnetograms, the
models by Chen et al. (2014, 2015) have been driven by the full
vector of the magnetic field at the surface as well as by the ve-
locity field. Thus full 3D MHD models driven by the observed
vector magnetic field are within reach. At the moment such data-
driven 3D MHD models, including global coronal models (e.g.
Riley et al. 2011), do not produce fully realistically looking coro-
nae. One reason for this is that time-step limitations restrict the
solar time covered by the models (Peter 2015). With further im-
provements of methods and computational resources, such mod-
els might provide the progress needed for a more reliable deter-
mination of currents and free energy in the solar corona.

7. Conclusions

We investigated the limitations of force-free extrapolations as a
consequence of neglecting the impact of the plasma by assuming
plasma β to be negligibly small. We find that observations, mod-
els, and theory do not really support this assumption, and that β
is of the order of a few percent to 10% or even more.

In our theoretical investigation we define a free β, βf , in (19),
which is the ratio of the plasma β to the (relative) free magnetic
energy Efree. If βf & 1, i.e. if the free energy is not substantially
larger than plasma β, we draw the following conclusions:

– The error of the force-free extrapolation in terms of magnetic
energy is of the same order as the difference of the true mag-
netic field to a potential field. This is to say that a potential
extrapolation is as accurate as a force-free extrapolation.

– The free magnetic energy derived from the extrapolated field
is within the errors of the force-free extrapolation. Therefore
the free magnetic energy derived from a force-free extrapo-
lations cannot be trusted.
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– The currents are not constrained at all in a force-free extrapo-
lation because they do not have to be parallel to the magnetic
field.

On the Sun and for extrapolations of (non-flaring) active regions
in general we provided evidence that free β is of order unity,
βf ≈ 1. Even in a flaring active region βf is not be significantly
below unity. Thus the above conclusions apply to force-free ex-
trapolations of solar active regions.

Still, one might extract important information on the mag-
netic connectivity and topology from a force-free extrapolation.
However, the quantitative results on the amount of the free mag-
netic energy available and on the currents to locate the regions
of energy deposition cannot really be trusted. Approaches going
beyond current force-free extrapolations are needed (cf. Sect. 6)
to possibly overcome these limitations.

Acknowledgements. We would like to thank Sven Bingert and Feng Chen for
help in providing data for the comparison to 3D MHD models. Sincere thanks
are due to Bernd Inhester and Thomas Wiegelmann for discussions on the ex-
trapolations. We kindly acknowledge comments by Karel Schrijver, in partic-
ular, his suggestion to give an outlook on possible progress. We also thank
the referee for constructive comments helping to improve the paper. J.W. ac-
knowledges funding from the People Programme (Marie Curie Actions) of the
European Union’s Seventh Framework Programme (FP7/2007-2013) under REA
grant agreement No. 623609. L.P.C. acknowledges funding by the Max-Planck
Princeton Center for Plasma Physics. R.H.C.’s contribution was carried out in
the context of Deutsche Forschungsgemeinschaft SFB 963 “Astrophysical Flow
Instabilities and Turbulence” (Project A16).

Appendix A: Reliability of field-parallel currents
in a force-free extrapolation

The following discussion shows that if plasma β (1) is of the
same order as the free energy of the magnetic field Efree (3),
then the currents parallel to the magnetic field in general need
not be dominated by those of a force-free extrapolation alone.
Following (20) the above condition β ≈ Efree is equivalent to the
free-β being of order unity, βf ≈ 1.

In the discussion in Sect. 4 we show that the Lorentz force
due to (small) currents that are perpendicular to the magnetic
field B can be balanced by the plasma as long as β is of the order
of the free energy (10). One can decompose the currents j asso-
ciated with the true magnetic field into a part jff associated with
the magnetic field from the force-free extrapolation that is par-
allel to B and another part jL that is associated with the Lorentz
force being balanced by the plasma and that is not necessarily
aligned with B. These two parts, jff and jL, would correspond
to the two options in (6). The part balanced by the plasma can
be further separated into a component perpendicular j⊥L and a
component parallel j ||L to B. Thus, one can write the currents as-
sociated with the true magnetic field as

j = jff + j⊥L + j ||L. (A.1)

The currents of the true magnetic field, j = ∇ × B/µ0, are di-
vergence free, ∇ · j = 0 (because the divergence of a curl is
zero). Likewise, the currents of the force-free field alone satis-
fies ∇ · jff = 0, and consequently also ∇ · ( j⊥L + j ||L ) = 0. The
component j⊥L is determined through the pressure gradient ∇p
balancing the Lorentz force j⊥L × B, and in general ∇ · j⊥L , 0.

Assuming that the only parallel currents are those of the
force-free extrapolation (i.e. j ||L = 0) would imply ∇ · j⊥L = 0,
which cannot be met in general. Therefore the assumption j ||L = 0
does not apply; in general, j ||L , 0. This argument also suggests
that the parallel j ||L and perpendicular j⊥L currents associated with
the Lorentz force balanced by the plasma are likely to have sim-
ilar magnitudes (because ∇ · j ||L + ∇ · j⊥L = 0).

The current introduced by the non-zero plasma β therefore
has components both perpendicular and parallel to the magnetic
field, neither of which are captured by a force-free extrapolation.
In particular this raises doubts for quantitative studies where one
uses the currents derived from an extrapolation to investigate the
location and magnitude of the heating in the corona.
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