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E
xtEnt of resection remains a critical determinant 
of oncological outcome for patients with high- and 
low-grade glioma.4,21,48 However, realization of the 

true benefit of neurosurgical resection requires a balance 
between surgical cytoreduction and preservation of neuro-
logical function. Multiple approaches have emerged in an 
effort to extend the neurosurgeon’s ability to achieve max-
imal safe resection, including fluorescence guidance,50,59 
direct electrical stimulation (DES),12,14, 15,45 intraoperative 
imaging,43,47,52 and preoperative functional imaging, such 
as functional MRI (fMRI) and diffusion tensor imaging 
(DTI).1,39,58

Ongoing advances in technology have led to widespread 
interest in functional neuroimaging for the preoperative 
planning of glioma surgery.55 The motivation behind this 
interest can be traced directly to the hypothesis that more 
precise mapping of neurological function will improve ex-
tent of resection, mitigate morbidity, and broaden surgical 
indications for lesions in classically eloquent areas. How-
ever, data to support this hypothesis remain scarce.

While fMRI and DTI are excellent didactic and re-
search tools, their clinical utility requires further evidence. 
The foundations of fMRI and DTI are well established 
and there are many reviews detailing the potential of func-

tional neuroimaging in brain tumor surgery.1,7, 10, 11, 17, 39,44 
Therefore, the objective of this review is to detail nuances 
of functional neuroimaging techniques that may limit the 
ability of these techniques to impact neurosurgical on-
cology and to critically appraise the evidence supporting 
fMRI and DTI in glioma surgery for patient selection and 
operative planning.

Review of fMRI and DTI Clinical Utility
fMRI for Patient Selection and Preoperative Planning

The contrast mechanism of fMRI is the ratio of deoxy-
hemoglobin to oxyhemoglobin, known as the blood oxygen 
level–dependent (BOLD) signal. The BOLD signal serves 
as a proxy for neuronal activity and has been proposed for 
preoperative assessment of motor and language mapping. 
The patient is given a series of motor and language tasks 
to perform and changes in BOLD signal are measured to 
infer areas of functional activation.55 More recently, there 
has been interest in using resting-state fMRI (rs-fMRI) to 
perform preoperative mapping. Resting-state fMRI does 
not require patient participation and can be performed un-
der general anesthesia to detect BOLD signal variation be-
tween multiple spatially and functionally distinct resting-
state networks.28,63

ABBREVIATIONS BOLD = blood oxygen level–dependent; CBV = cerebral blood volume; DES = direct electrical stimulation; DTI = diffusion tensor imaging; fMRI = func-

tional MRI; rs-fMRI = resting-state fMRI.
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However, integration of fMRI into preoperative plan-
ning carries limitations. A key concern is the sensitivity 
and specificity of the technique, most notably for language 
mapping. Giussani et al.19 examined this question by syn-
thesizing data from studies that directly compared DES 
and fMRI for language localization in patients with brain 
tumors. The authors identified 9 studies, including 5 that 
reported sensitivity ranging from 59% to 100% and speci-
ficity from 0% to 97%. A limitation of this synthetic study 
was the underlying heterogeneity of the studies, including 
surgical indication, magnet strength, and task protocol. 
Kuchcinski et al.26 remedied these limitations in a cohort 
of 40 glioma patients with 3-T fMRI. Preoperative fMRI 
was compared with the results of DES during awake glio-
ma resection site-by-site using a cortical grid. Using DES 
as the reference, fMRI demonstrated a sensitivity and 
specificity of 37.1% and 83.4%, respectively. While no sta-
tistically significant associations with false-negative fMRI 
signals were identified, oligodendroglioma subtype, tumor 
relative cerebral blood volume (CBV) > 1.5, lower corti-
cal CBV, and distance to the tumor were associated with 
false-positive discrepancies. Similar studies with smaller 
cohorts found higher sensitivity and specificity for motor 
mapping (85%–88% and 81%–87%) than language map-
ping (40%–80% and 74%–84%).2,23,37 A recent meta-anal-
ysis by Metwali et al. synthesized 8 studies (6 for language, 
2 for motor) that directly compared fMRI and DES for 
brain tumor surgery.34 The mean sensitivity and specificity 
of fMRI for the detection of functional motor areas were 
92% (range 87.5%–100%) and 76% (range 68.1%–87.1%), 
respectively. The mean sensitivity and specificity of fMRI 
for the detection of functional language areas were 80% 
(range 64%–100%) and 71.5% (range 50%–89%), respec-
tively.34 Another recent synthetic study by Weng et al. ex-
tended the results of prior meta-analyses by investigating 
the sensitivity and specificity on both a per-site basis (i.e., 
each DES stimulation site was considered a separate data 
point across all patients) and a per-patient basis.57 The per-
site pooled sensitivity and specificity were 67% (95% CI 
51%–80%) and 55% (95% CI 25%–82%), while the per-
patient pooled sensitivity and specificity were 44% (95% 
CI 14%–78%) and 80% (95% CI 54%–93%).57

Advocates of rs-fMRI suggest that the resting-state 
networks elucidated by this technique represent intrinsic 
functional networks and thus can be relied upon to guide 
resection. However, evidence to support this hypothesis re-
mains limited. Cochereau et al.9 investigated this premise 
in a cohort of 98 patients with diffuse low-grade glioma. 
The authors identified a significant association between 
resting-state BOLD signal fluctuations and functional 
cortical units as defined by DES. They also observed sig-
nificant between-patient variability in mapping fidelity 
and an accuracy rate of approximately 80% in the detec-
tion of functionally relevant cortical sites. This finding is 
consistent with other studies that compared DES and rs-
fMRI.18,36,42,63

Taken together, fMRI and rs-fMRI currently appear 
inadequate for standalone preoperative cortical functional 
mapping, particularly as it pertains to language localiza-
tion. A key reason that both fMRI and rs-fMRI may have 
limited sensitivity and specificity when compared to DES 

is that DES provides a more direct assessment of neuronal 
function while fMRI BOLD signal is inherently a proxy 
measure.

A key limitation of fMRI is that it does not offer the 
surgeon the ability to distinguish between compensable 
areas that can be resected and critical areas that should be 
surgically preserved. This can result in the underselection 
of patients for surgery49 and may increase the likelihood 
of partial or subtotal resection due to concern for viola-
tion of cortical areas deemed functional by fMRI. South-
well et al. reported a series of 58 glioma patients with 
unifocal supratentorial disease who underwent glioma 
resection guided by DES within 6 months of undergoing 
a brain biopsy of the same lesion at another institution. 
They achieved an average extent of resection of nearly 
90% with no new postoperative neurological deficits.49 
Their findings suggest that decision-making based solely 
on preoperative structural or functional imaging is likely 
inadequate, particularly for cortical lesions. Intraoperative 
DES, in contrast, offers the ability to accurately identify 
functional brain regions.12,14,15,45 The distinction between 
fMRI and DES is even more pronounced when consider-
ing subcortical functional mapping, where DES has dem-
onstrated clinical utility.16,20 Multiple studies have demon-
strated a reduction in BOLD sensitivity29,33,51 and greater 
susceptibility to physiological noise22,56 when applying 
fMRI to subcortical mapping.

DTI for Patient Selection and Preoperative Planning

DTI enables visualization of white matter tracts, reveal-
ing infiltration and displacement by intracranial lesions 
in order to hypothetically inform surgical planning.1,11,55 
Recently, international, multicenter efforts have emerged 
to systematically validate DTI tractography. Maier-Hein 
et al.30 described the results of an international tractogra-
phy challenge involving 96 distinct submissions from 20 
research groups using a data set with ground-truth white 
matter tracts. The findings of this effort lay bare the current 
limitations of using DTI for surgical planning of gliomas. 
While the authors found that many tractograms contained 
at least 90% of the ground-truth tracts, these tractograms 
included more invalid than valid bundles (i.e., a high false-
positive rate). Pujol et al. presented a similar study more 
directly related to glioma surgery.41 Eight teams from 
international institutions reconstructed the corticospinal 
tract in cases of glioma adjacent to the motor cortex us-
ing multiple tractography approaches with results evalu-
ated by neurosurgeons and DTI experts. A key conclusion 
from this important study was the marked inter-algorithm 
variability, both in the hemisphere containing the tumor 
and in the contralateral hemisphere. Given identical data 
sets, tractograms vary widely based on the reconstruction 
algorithm.41 An additional conclusion from this study was 
relatively poor performance in delineating lateral projec-
tions compared to medial projections, a finding replicated 
by Mandelli et al.31,41 A more recent international effort, 
the 3D Validation of Tractography with Experimental 
MRI challenge, provided three unique data sets, a physical 
phantom, and two ex vivo brain specimens to 9 research 
groups, garnering 176 distinct submissions.46 Schilling et 
al. concluded that the anatomical accuracy of tractography 
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has not substantively improved despite significant advanc-
es in tractography algorithms and methods.46

A second set of studies compare preoperative DTI 
tract reconstructions with intraoperative subcortical 
stimulation. A direct validation of DTI was performed by 
Leclercq et al., in which the authors preoperatively recon-
structed 4 white matter tracts in 10 glioma patients and 
evaluated these DTI tractograms against intraoperative 
subcortical language mapping.27 While positive stimula-
tion sites correlated with DTI tractograms (in 17 of 21 
sites), negative tractograms did not rule out the presence 
of a white matter tract.27 Ostrý et al.38 prospectively en-
rolled 25 patients with solitary supratentorial intracerebral 
lesions compressing or infiltrating the corticospinal tract. 
Pre- and intraoperative corticospinal tract tractography 
was compared with intraoperative subcortical language 
mapping by DES. They observed that intraoperative im-
age distortion occurred in more than one-third of patients, 
rendering DTI unusable in those cases. The authors con-
cluded that DES-based subcortical mapping remains su-
perior to DTI. Prospective studies evaluating DTI-based 
mapping are rare. However, Wu et al.60 conducted a 
prospective study of 328 cerebral gliomas, randomizing 
patients to either DTI and 3D MRI (n = 118) or routine 
neuronavigation (n = 120). In the DTI study arm they ob-
served a significantly higher rate of gross-total resection 
among high-grade glioma patients and higher Karnofsky 
Performance Scale scores for high- and low-grade glioma 
patients. However, this study has important limitations. 
Specifically, the increased gross-total resection rate was 
observed only for high-grade tumors, the routine neuro-
navigation in the control arm did not utilize DES, and the 
study chiefly reported motor function outcomes. Future 
prospective studies should build on the work of Wu et al. 
by reporting more comprehensive functional outcomes 
and using DES-guided resection as the control arm.

Taken together, these studies indicate that DTI is funda-
mentally a structural imaging modality and less a tool for 
functional interrogation. Surgical planning driven solely 
by tractography would be at risk of offering unnecessar-
ily limited resection, as the surgeon may decide to curtail 
his or her operative plan in an effort to spare white matter 
tracts. Additionally, it may drive underselection of patients 
for surgery, as preoperative tractography may falsely con-
vince the surgeon, or the patient, that resection would lead 
to undue morbidity.

Discussion
Given the methodological limitations discussed above, 

we maintain that functional neuroimaging in its current 
form is inadequate for patient selection and surgical plan-
ning in glioma surgery. However, there are opportunities 
to improve and expand the utility of functional neuro-
imaging. First, it must be noted that the clinical studies 
discussed above may not be using technologies and al-
gorithms at the bleeding edge of functional neuroimag-
ing. As advances in functional neuroimaging continue to 
manifest, it remains possible that fMRI and DTI may be 
better poised to inform patient selection and surgical plan-
ning. Second, the integration of multiple noninvasive map-

ping techniques may extend the promise of any individual 
technique. Future studies combining multiple techniques 
are likely nascent.

We posit that there may be intrinsic value to these 
techniques, if applied to the correct use case. Commonly 
reported outcome measures following glioma surgery ac-
count for motor and language function. However, quality 
of life after glioma resection must be considered broad-
ly24,53 and take into account higher-order neurological 
functions such as mentalizing/theory of mind,5,6 atten-
tional processing,25,35 and executive function. It is in the 
elucidation of these higher-order functions that functional 
neuroimaging is most likely to advance the neurosurgi-
cal management of glioma patients. Recent work suggests 
that rs-fMRI61 and DTI,62 in conjunction with DES, may 
be able to map the networks and tracts involved in mental-
izing tasks. Mandonnet et al. similarly used rs-fMRI and 
DTI pre- and postoperatively to illustrate that resection of 
a right temporoparietal glioma disrupted a large-scale net-
work involved in cognitive flexibility.32 This paradigm of 
pre- and postoperative functional neuroimaging could be 
extended to develop strategies of monitoring neuroplasti-
city in glioma surgery, as demonstrated by several longitu-
dinal functional neuroimaging studies.3,8,13,54

We posit that longitudinal functional neuroimaging 
of glioma patients would have both didactic and clinical 
utility. Not only would we extend our understanding of 
network-level neuroplasticity, but we could also use this 
information to personalize future neurosurgical treatment 
of individual patients. This could allow for the evolution of 
iterative, multistage surgical strategies40 that move funda-
mentally closer to the goal of extending neurooncological 
survival through more complete resection while preserv-
ing neurological function.

Conclusions
Technological progress has fundamentally advanced 

neuroimaging, enabling functional neuroimaging to con-
tinue to extend our understanding of the CNS. However, 
these tools are derived from cohort-level statistical models 
and are difficult to apply to individual surgical candidates. 
We agree that advances in algorithms produce functional 
neuroimaging techniques that may be useful adjuncts to 
intraoperative DES but remain skeptical that these mo-
dalities meaningfully impact glioma surgery. To date, 
evidence that preoperative DTI or fMRI improves extent 
of resection, minimizes morbidity, and broadens surgical 
indications in classically eloquent areas remains scarce. 
Further work should focus on carefully designed prospec-
tive comparative studies and on longitudinal functional 
neuroimaging studies to better understand, and possibly 
clinically apply, neuroplasticity in glioma patients.
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