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ABSTRACT
In recent years, compressive sensing attracts intensive at-
tentions in the field of statistics, automatic control, data
mining and machine learning. It assumes the sparsity of the
dataset and proposes that the whole dataset can be recon-
structed by just observing a small set of samples. One of the
important approaches of compressive sensing is trace norm
minimization, which can minimize the rank of the data ma-
trix under some conditions. For example, in collaborative
filtering, we are given a small set of observed item ratings of
some users and we want to predict the missing values in the
rating matrix. It is assumed that the users’ ratings are af-
fected by only a few factors and the resulting rating matrix
should be of low rank. In this paper, we analyze the issues
related to trace norm minimization and find an unexpected
result that trace norm minimization often does not work as
well as expected.

1. INTRODUCTION
Compressive sensing has been proposed to solve sparse ma-
trix problem in many fields including machine learning, au-
tomatic control, and image compression. It applies the spar-
sity of the datasets and assumes that the whole datasets can
be recovered by just observing a small set of the data. One
of the important approaches is minimizing the rank of a ma-
trix variable subject to certain constraints. For example, in
collaborative filtering (CF), the objective is to predict the
missing values of a rating matrix. It is assumed that the
ratings are affected by only a few of factors and the rating
matrix should be of low rank. Given that directly minimiz-
ing the rank of the matrix is NP hard, a commonly-used
convex relaxation of the rank function is the trace norm,
defined as the sum of the singular values of the matrix.

Recently, a number of work has shown that the low rank
solution can be recovered exactly by minimizing the trace
norm [12; 6]. Furthermore, trace norm minimization starts
to be widely used in many scenarios, such as multi-task
learning [1; 3], multivariate linear regression [20], matrix
classification formulation [16; 4], multi-class classification [2],
etc. Among all the applications, an important one is matrix
completion [15; 13; 17; 11; 5; 9], which aims at recovering a
low-rank matrix based on a small portion of observed entries.
Recently in [10], the two-way matrix completion problem is
further generalized into a tensor completion problem and
trace norm minimization is adapted to solve the problem.

However, in this paper, we present an unexpected result that
despite its popularity, the trace norm minimization does not
work well in general. We show the limitations of trace norm
minimization in several situations and analyze the reasons
behind the failures. We mainly focus on two issues related to
trace norm minimization. First, only with a small portion of
observed samples, it is difficult to determine whether or not
the real matrix is of low rank. The results will deteriorate
significantly for a high rank matrix. Second, we analyze that
rank minimization or trace norm minimization can lead to
multiple solutions, which may produce unstable results.

The paper is organized as follows. A formal introduction
of trace norm minimization is first given, followed by the
argument of its limitations with examples. Three sets of
experiments are then performed to analyze the empirical
results in applications including collaborative filtering and
image recovery. A conclusion is made with possible future
works of trace norm minimization.

2. TRACE NORM MINIMIZATION
We use capital-bold letters such as X,M as matrices, and
Xij denotes the (i, j)-th element of X. In the problem defi-
nition, we further denote the observed matrix as M and the
observed entries as Mij where (i, j) ∈ Ω. In other words, if
(m, n) /∈ Ω, the value of Mmn is missing.

In compressive sensing [7], matrix completion can be usually
stated as

minimize rank(X)

subject to Xij = Mij (i, j) ∈ Ω
(1)

where M is the observed matrix with some missing values,
and X is the resulting matrix with all missing values filled.
The objective is to find a matrix X which has low rank
after selectively filling the missing values. However, the op-
timization function in Eq. 1 is not convex and may require
intensive computation to obtain the result. As an alterna-
tive, one usually solves the following optimization problem
which is the tightest convex relaxation of Eq. 1.

minimize ‖X‖∗
subject to Xij = Mij (i, j) ∈ Ω

(2)

where ‖X‖∗ is the nuclear norm, or trace norm of the matrix
X, which is the sum of its singular values. A more general
trace norm minimization problem can be stated as

minimize f(X) + λ‖X‖∗ (3)

where λ is a parameter to control the confidence that the
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Table 1: Summary of Jester Recommendation datasets.
Name #Users (#Rows) #Jokes (#Columns) Descriptions

Jester I 24,983 101 Data from 24,983 users who have rated 36 or more jokes
Jester II 23,500 101 Data from 23,500 users who have rated 36 or more jokes
Jester III 24,938 101 Data from 24,938 users who have rated between 15 and 35 jokes

matrix X is of low rank. And f(X) can be any evaluation
function on the matrix X, and in matrix completion, f(X)
can be defined as the difference between Xij and Mij for
(i, j) ∈ Ω.

There are various approaches proposed to solve Eq. 2 or
Eq. 3. For example, they can be formulated as a semidef-
inite program [8; 15]; or some approximation can be em-
ployed to deal with the non-smooth trace norm term [13;
17; 18; 11]. Recently, [9] proposes a subgradient method
to approach the optimal solution; and [5] proposes a fast
and simple algorithm which performs a thresholding in the
singular values to obtain the optimal result. In the experi-
ment section, we will use these two algorithms as examples
to study trace norm minimization.

2.1 Limitations of Trace Norm Minimization
Trace norm minimization has strong mathematical founda-
tions and has been used in various applications such as ma-
trix completion. However, there are still issues related to
this category of approaches.

First, it is not clear what type of matrices can be well re-
covered by trace norm minimization. In practice, we usually
have to assume that the resulting matrix has low rank and
we expect that trace norm minimization can lead to a good
recovery. However, just observing a small set of samples
(e.g., 10% of the matrix entries can be observed), it is diffi-
cult to guarantee that it is of low rank. In [19], it is further
assumed that those rating matrices1 in collaborative filter-
ing are of low rank because it is assumed to be affected by
just a few factors. Later experiment in Section 3 shows that
this assumption may not be valid in all cases. A more pre-
cise criterion is needed to calibrate which type of matrices
are suitable to be recovered by trace norm minimization.

Second, trace norm minimization or rank minimization can
lead to multiple alternative solutions, which make the result
unstable. We illustrate an example in Eq. 4. It is an incom-
plete matrix with one missing value (denoted as “?”). Note
that most of the traditional matrix completion approach will
assign the missing value as 2 because it has more 2s than
4s in the second column. However, to complete the matrix
with rank minimization, we can either fill in the missing
value with 2 or 4. Both solutions lead to a rank-2 matrix.
In other words, there may be multiple solutions that can
induce the recovered matrix to be of the same rank. Intu-
itively, with more missing values, it has higher probability
that there are multiple solutions that can lead to the same
matrix rank. Hence, the result can be very unstable because
it can end up in any of the solutions. We further study this

1those matrices record users’ ratings on a set of items. Each
row describes all the item ratings of one user; each column
represents the ratings of one item among all users.

problem in Section 3.1 and Section 3.3.




1 2 3
1 2 3
1 2 3
1 4 3
1 ? 3


 (4)

3. EXPERIMENTS
In this section, three sets of experiments are devised to an-
alyze the performance of trace norm minimization.

3.1 Synthetic Dataset
We first design a simple matrix as in Eq. 5 and drop part
of the entries with “?” as in Eq. 6. We then apply one
of the state-of-the-art trace norm minimization approaches,
singular value thresholding (SVT [5]), to recover the matrix
as in Eq. 7. It is clear that none of the entry has been
recovered correctly. However, the resulting matrix is of the
same rank as the original matrix. Hence, in the view of
low rank approximation or trace norm minimization, the
objective has been achieved. But in the view of ground
truth, the result is far from satisfactory. This phenomenon
is also analyzed in Section 2.1: trace norm minimization can
lead to multiple unstable solutions. Similar phenomenon is
also studied in tensor completion case in Section 3.3.




2 2 1 1
2 2 1 1
2 2 1 1
2 2 1 1
1 1 2 1


 (5)




2 2 1 1
2 2 1 1
? ? ? 1
1 ? ? 1
1 1 2 1


 (6)




2 2 1 1
2 2 1 1
1 1 2 1
1 1 2 1
1 1 2 1


 (7)

3.2 Collaborative Filtering via Matrix Com-
pletion

In this section, we apply two state-of-the-art trace norm
minimization approaches to perform matrix completion in
collaborative filtering (CF). The two approaches are singular
value thresholding (SVT [5]) and multivariate linear regres-
sion described in [9] (MultiRegression). Both approaches
solve matrix completion with the constraint to minimize the
rank of the final matrix. SVT works well in a simulated
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(a) Jester I (b) Jester II (c) Jester III

Figure 1: Parameter sensitivity

matrix completion dataset [5] and MultiRegression works
well in a multi-task learning application which minimizes the
trace norm of the shared parameter matrix among tasks [9].
In this experiment, we apply the two approaches to tackle
the matrix completion problem in CF. The dataset used
in the experiment is the Jester Recommendation dataset2,
which is known as one of the benchmarks in CF. The dataset
contains three separate sub-datasets which are summarized
in Table 1. The Jester dataset describes millions of con-
tinuous ratings (-10.00 to +10.00) of 100 jokes from 73,421
users, which are collected between April 1999 to May 2003.
As shown in Table 1, most of the users only rate a small por-
tion of the items (sparsity); hence the final matrix should
have good chance to be of low rank, and the two approaches
should work well. In the experiment, 70% of the ratings are
blocked, and we use trace norm minimization to recover the
whole matrix by using the 30% of known ratings.

The experiment results are evaluated by the Mean Absolute
Error (MAE). If pij is the prediction for how user i will rate
item j, the MAE for user i is defined as

MAE =
1

c

c∑
j=1

|r̃ij − pij |

where c is the number of items user i has rated and r̃ij is the
ground truth. MAE for a set of users is the average MAE
over all members of that set. Hence, a small MAE value
indicates a good prediction. Fig. 1 summarizes the results
on 10 runs where in each run we randomly sample 70% of
the matrix entries to be blocked. Since both approaches can
be tuned to control the confidence that the final matrix is
of low rank, we plot the result with the decreasing rank.
Meanwhile, we plot the result of random guessing, which
randomly assign values to the blocked entries.

There are two conclusions can be drawn from Fig. 1. First,
the results given by SVT and MultiRegression almost over-
lap because both of them solve the same optimization func-
tion and MultiRegression embeds SVT as a sub-function3.
Second, the errors evaluated by MAE grow with the de-
creasing ranks. The best results are given when the ranks
are large. When the ranks are smaller than 80, the results
are worse than random guessing. It is important to em-
phasize that although this benchmark dataset should have
good chance to be of low rank (sparse collaborative filtering
matrix as analyzed in [19]), its best result is given with full

2http://eigentaste.berkeley.edu/dataset/
3http://www.public.asu.edu/ jye02/Software/SLEP/index.htm

rank. Thus, a more precise criterion is needed to determine
what type of matrices is suitable to be recovered by trace
norm minimization.

3.3 Image Recovery via Tensor Completion
In [10], trace norm minimization is furthered extended to
handle multidimensional matrix completion, or tensor com-
pletion. More specifically, trace norm minimization is ap-
plied to recover images which are expressed as 3-dimensional
tensors. The experiment results in [10] show that the ap-
proach can effectively recover some blurred images. In this
experiment, we change to another set of images from Cal-
tech 2564 benchmark dataset. Fig. 2(a) and Fig. 3(a) show
the two images used in the experiment. We further erase a
small part of the images as shown in Fig. 2(b) and Fig. 3(b).
The approach in [10] is applied to recover the images by
filling pixels in the blanks, and the results are shown in
Fig. 2(c) and Fig. 3(c) after 2000 iterations. We further
plot Fig. 2(d) and Fig. 3(d) to show that the convergence
of the optimization function of the approach, where x-axis
denotes the number of iterations and y-axis is the value of
the objective function. Hence, although the algorithm has
reached the optimal or near optimal solution as shown in
Fig. 2(d) and Fig. 3(d), the results of the recovered images
are not encouraging. It is important to mention that both of
the images are quite simple especially the one in Fig. 2(a),
which has clear patterns which are similar as the matrix in
Eq. 5. However, traditional trace norm minimization ap-
proach fails to recover the images correctly. The reason of
the poor performance of Fig. 2 is similar as the matrix in
Eq. 5. Trace norm minimization can lead to multiple opti-
mal solutions and end up in any of them; the result can be
arbitrary.

4. CONCLUSION
We study and analyze the limitations of trace norm mini-
mization in matrix completion. First, it is difficult to guar-
antee that the real matrix should be of low rank. Second,
trace norm minimization can lead to arbitrarily satisfied ma-
trix with low rank. Three sets of experiments are analyzed in
the application of collaborative filtering and image recovery.
For example, in collaborative filtering, the performance of
trace norm minimization drops with decreasing matrix rank.
In summary, the paper aims at studying the unexpected is-

4http://www.vision.caltech.edu/Image-
Datasets/Caltech256/
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(a) Original (b) Blurred (c) Recovered (d) Convergence of the Optimization
Function (x-axis is the number of it-
erations; y-axis is the value of the op-
timization function)

Figure 2: Flag Image Recovery

(a) Original (b) Blurred (c) Recovered (d) Convergence of the Optimization
Function (x-axis is the number of iter-
ations; y-axis is the value of the opti-
mization function)

Figure 3: Teddybear Image Recovery

sues when intending to put trace norm minimization into
practice:

• What was unexpected: Although trace norm mini-
mization attracts intensive attentions in the field of
statistics and machine learning, it only works under
a very strict assumption; in other words, it does not
work in general.

• Why it was unexpected: (1) Trace norm minimization
methods make the assumption that the matrices are of
low rank, which may not be true in reality; (2) trace
norm minimization can lead to multiple unstable solu-
tions.

• What was learned: Trace norm minimization does not
work in general. A more in-depth criterion is needed
to determine when it works before using it in practice.

• Possible advice for practitioners: If one intends to
make trace norm minimization into practice, one may
have to study deeply on the objective matrix and make
sure (1) the matrix follows the assumption of trace
norm minimization; (2) it does not have multiple low
rank solutions.

As a future work, a more precise criterion is needed to de-
termine what type of matrices is suitable to be recovered
via trace norm minimization. One of the possibility is to

develop a lower bound to study the number of possible low
rank solutions to a given incomplete matrix, and only use
trace norm minimization when the value of the bound is
small. Another extension is to bring in more constraints to
lead to a better and unique low rank solution. For instance,
the missing value can be filled in with the majority value, in
addition of satisfying the low rank constraint. As an exam-
ple, the missing value in Eq. 4 can be filled with “2” under
the majority-value constraint.
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