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A marker strongly associated with outcome (or disease) is often assumed to be effective for classifying persons
according to their current or future outcome. However, for this assumption to be true, the associated odds ratio
must be of a magnitude rarely seen in epidemiologic studies. In this paper, an illustration of the relation between
odds ratios and receiver operating characteristic curves shows, for example, that a marker with an odds ratio of
as high as 3 is in fact a very poor classification tool. If a marker identifies 10% of controls as positive (false
positives) and has an odds ratio of 3, then it will correctly identify only 25% of cases as positive (true positives).
The authors illustrate that a single measure of association such as an odds ratio does not meaningfully describe
a marker’s ability to classify subjects. Appropriate statistical methods for assessing and reporting the
classification power of a marker are described. In addition, the serious pitfalls of using more traditional methods
based on parameters in logistic regression models are illustrated.

biological markers; diagnostic test; logistic regression; odds ratio; ROC curve; screening test

Abbreviations: FPF, false-positive fraction; ROC, receiver operating characteristic; TPF, true-positive fraction.

The idea of using information about a subject to detect
subclinical disease states and to predict future health events
has great appeal. The notion is currently motivating much
biotechnological medical research. We hope to use biomar-
kers derived from new proteomic and genomic technologies
to identify subjects who have or are very likely to develop
cancer or other diseases (1). In addition, we hope to use these
modern technologies and others to make precise diagnoses
and more accurate prognoses of patients with disease, to help
with decisions about treatment, and to monitor response to
treatment. Use of biomarkers and risk factors in this way is
not a new notion in medical practice. Prediction risk scores
are commonly used. Examples include the Framingham risk
score for cardiovascular events (2) and the Gail model risk
score for breast cancer (3). Even more commonly, epidemi-
ologists have identified a myriad of disease-specific risk
factors that have been used alone or in combination in public
health practice. Clinical epidemiologists have analogously

identified a multitude of factors associated with the clinical
course of patients diagnosed with disease.

Statistical evaluation of factors, scores, and biomarkers for
assessing a person’s current status or future health outcome
is the topic of this paper. We use the generic term “marker”
for the factor, score, or biomarker and “outcome” for that
which is predicted or detected. We show that strong statis-
tical associations between outcome and marker do not
necessarily imply that the marker can discriminate between
persons likely to have the outcome and those who do not.
Traditional statistical methods used by epidemiologists to
assess etiologic associations are not adequate to determine
the potential performance of a marker for classifying or
predicting risk for persons (4–7). This important point is not
widely appreciated and may explain to some extent the
disappointing performance of many identified “markers”
when they are used to predict outcome for persons. As we
proceed to develop technologically sophisticated tools for
individual-level prediction and classification, for so-called
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personalized medicine, we must be careful to use appropriate
statistical techniques when evaluating research studies
aimed at assessing their performance. We describe some
appropriate techniques in this paper.

The performance of a marker may change with the circum-
stance in which it is applied. Characteristics of the popula-
tion, or the assay technique (if the marker is a biomarker), for
example, may lead to better or worse performance. It is
important to understand and quantify variations in the
performance of a marker. We show how such questions can
be addressed statistically and the pitfalls of using some
common epidemiologic methods for this purpose. In addi-
tion, we discuss evaluation of a marker in the presence of
other information predictive of outcome, which may include
risk factor data or other markers. The question is how to
evaluate the incremental value of a marker for distinguishing
cases from controls. Again, we show that traditional epide-
miologic methods can lead to false conclusions, and we
describe more appropriate statistical methods.

ASSOCIATION VERSUS CLASSIFICATION

Consider a binary risk factor as a marker. For example,
unopposed estrogen replacement therapy is considered a
strong risk factor for endometrial cancer (8). A relative risk
of about 3.0 is associated with it; that is, in a case-control
study, the odds ratio comparing cases with controls
regarding “ever having used estrogen replacement therapy”
is about 3.0. Reporting the odds ratio or relative risk as a
measure of association is typical in epidemiologic studies of
etiologic risk factors and is now unfortunately common in
studies of predictive markers as well. Refer, for example, to
studies by Cui et al. (9) in a recent issue of Science and by
Rhodes et al. (10) in a recent issue of Journal of the National
Cancer Institute. Examples from other popular journals are
Ridker et al. (11), Zhang et al. (12), Liou et al. (13), and
Hogue et al. (14). Note that the goals of etiologic risk factor
studies are quite different from those in the sorts of studies
we consider here, where markers are to be used for classi-
fying persons. Therefore, the statistical considerations also
differ between such studies.

The accuracy or validity of a binary marker for classifying
persons is better summarized in a case-control study by
reporting its true-positive fraction (TPF, also known as sensi-
tivity) and its false-positive fraction (FPF, also known as 1-
specificity). These are defined as follows: TPF = Prob[marker
positive | outcome positive] and FPF = Prob[marker positive |
outcome negative]. Because there are two types of errors
(misclassifying positives and negatives), the study results
should reflect both of these errors. A perfect marker will have
TPF = 1 and FPF = 0. Obviously, to have confidence in the
prediction that a marker makes, TPF and FPF should be close
to these ideal values. The general public often expects that a
marker offer reasonably accurate classification and confident
prediction.

However, a marker can be useful even if FPF and TPF are
less than ideal. The criteria by which the marker is judged
useful depend entirely on the context in which it is to be
used. For example, a marker for screening a healthy popula-
tion for cancer needs to have an extremely low FPF because

workup procedures such as biopsy that follow a positive
screening test are generally invasive and expensive. Given
that cancer is a rare disease in the population tested, even a
low FPF will result in huge numbers of people undergoing
unnecessary, costly procedures. Using a utility function,
Baker (15) argues that FPF needs to be below 2 percent when
screening for prostate cancer and recommends that TPF
exceed 50 percent. The considerations are different for a
prognostic marker, that is, a marker measured in people
with disease used to predict an aspect of their prognosis.
For example, van de Vijver et al. (16) evaluated a gene-
expression profile of tumor tissue in stage I or II breast
cancer patients as a prognostic marker for distant metastases
within 5 years. A prognostic marker of poor outcome should
have high sensitivity, particularly if additional therapy will
be instituted in only those patients who test positive. van de
Vijver et al. estimated TPF to be equal to 92 percent for the
gene-expression signature. Unfortunately, the FPF estimate
was rather high at 42 percent. Whether it would be accept-
able for 42 percent of good-prognosis patients to undergo
unnecessary additional therapy would be a key factor in
deciding on the usefulness of the marker.

The odds ratio (OR) can be written as a simple function of
(FPF, TPF) (5, 17): OR = {TPF/(1 – TPF)} × {(1 – FPF)/
FPF}. Figure 1 shows this relation. Accuracy points (FPF,
TPF) that yield the same value of the odds ratio are shown.
Observe that an odds ratio of 3.0 is not consistent with an
“accurate” marker. Suppose, for example, that a marker
labels 10 percent of controls (outcome negatives) as positive
and that the associated odds ratio is 3.0. We see from figure
1 that it identifies only about 25 percent of the cases
(outcome positives); that is, 75 percent of the cases are not
detected by the marker. As another example, suppose that a
marker with an odds ratio of 3.0 detects 80 percent of cases.
The plot shows that it must mislabel almost 60 percent of the
controls. Clearly, this marker is not useful for individual-
level classification or prediction. The figure shows that even
weakly accurate markers are associated with odds ratios (or
relative risks) far larger than those traditionally considered
strong in epidemiologic studies of association. For reason-
able classification accuracy of, say, FPF = 0.10 and TPF =
0.80, the odds ratio is huge: 36.0. Note, however, that even if
an odds ratio as large as 36.0 is reported, one cannot
conclude that the marker has good accuracy since a variety
of (FPF, TPF) values are consistent with it. For example,
FPF may be unacceptably large; note that (FPF = 0.50,
TPF = 0.973) also yields an odds ratio of 36.0.

When the marker, denoted now by X, is continuous, its
association with outcome status, D = 1 for case and D = 0 for
control, is also often summarized with an odds ratio.
Consider the following logistic regression model: Prob(D =
1|X) = exp(α + βX)/{1 + exp(α + βX)}. The odds ratio per
unit increase in X is given by exp(β). The size of the odds
ratio depends on the units in which X is measured. In figure
2, we have scaled X so that a unit increase represents the
difference between the 16th and 84th percentiles of X in the
controls (i.e., two standard deviations = one unit). The distri-
bution of X in controls is represented as normal with mean 0,
which is general in the sense that data can always be trans-
formed to this scale. Assuming that, for cases, X is normally

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article/159/9/882/167475 by guest on 16 August 2022



884   Pepe et al.

 Am J Epidemiol   2004;159:882–890

distributed with the same standard deviation, figure 2 shows
their separation from controls for various values of the odds
ratio. We see again that values of the odds ratio considered
large in traditional epidemiologic studies are derived from
marker distributions that largely overlap (figure 2).

Receiver operating characteristic (ROC) curves corre-
sponding to each of the pairs of marker distributions in

figure 2 are shown in figure 3. Each point on an ROC curve
represents the decision criterion that is positive if X exceeds
a threshold c. The FPF and TPF values associated with that
criterion are one point on the curve, and, by varying c from
∞ to –∞, the (FPF, TPF) points corresponding to all possible
thresholds are shown. Although they appear similar, figure 1
differs from figure 3. Figure 1 concerns binary markers only,
with many different markers represented on the same curve
if their odds ratios are the same. The odds ratios shown here
in figure 3 relate to a unit increase in a continuous marker,
and the ROC curve concerns different decision criteria
resulting from considering all possible thresholds for a single
continuous marker.

We see from figure 3 that, when the odds ratio associated
with a unit increase in X is 3.0, regardless of the threshold
chosen, the (FPF, TPF) values associated with the corre-
sponding decision criterion generally would not be adequate
for individual-level classification. In fact, unless the odds
ratio per unit increase in X is at least 16.0, marker-based
decision criteria seem very inaccurate. Even with an odds
ratio of 16.0, a marker-based criterion that yields a 10
percent FPF at a threshold fails to detect over 40 percent of
cases when that threshold is used. As another example, it
will falsely detect as many as 30 percent of controls if a
threshold that yields 80 percent of the cases is used.

Frequently, continuous markers are grouped to form cate-
gorical covariates. For each of the marker distributions
shown in figure 2, we also categorized the marker on the
basis of the quartile cutpoints from the controls. The odds
ratios for each quartile relative to the lowest quartile are
shown in table 1. The solid-circle points on the ROC curves
in figure 3 are those associated with using each of the three
quartile cutpoints to classify subjects as positive or negative
for disease. Similar to our observations for the binary and

FIGURE 1. Correspondence between the true-positive fraction
(TPF) and the false-positive fraction (FPF) of a binary marker and the
odds ratio. Values of (TPF, FPF) that yield the same odds ratio are
connected.

FIGURE 2. Probability distributions of a marker, X, in cases (solid curves) and controls (dashed curves) consistent with the logistic model log-
itP(D = 1|X) = α + βX. It has been assumed that X has a mean of 0 and a standard deviation of 0.5 in controls so that a unit increase represents
the difference between the 84th and 16th percentiles of X in controls. The marker is normally distributed, with the same variance in cases. The
odds ratio (OR) per unit increase in X is shown.
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continuous marker settings, even if the magnitude of the
odds ratio for an upper quartile versus the lowest quartile is
large, the corresponding points on the ROC curves show a
poor ability to classify cases and controls. For example,
when the odds ratio for the upper quartile versus the lowest
quartile is 4.1, and if we use the upper quartile to define a
positive test result, then only 45 percent of cases are
correctly classified whereas 25 percent of controls are
incorrectly identified.

In summary, there are two key points to make based on the
information in figures 1, 2, and 3. The first, as stated previ-

ously, is that markers for which the odds ratios are consid-
ered strong in traditional epidemiologic research are not
adequate for discriminating between those persons who do
and do not have an outcome of interest. Extremely strong
associations are needed. The second is that odds ratios in and
of themselves do not characterize the discriminatory
capacity of a marker. The odds ratio is a simple scalar
measure of association between marker and outcome. It does
not characterize the discrimination between cases and
controls that can be achieved by a marker since many
different pairs of TPFs and FPFs are consistent with a partic-
ular odds ratio value. Neither does it relate to the notion of
utility (15). In the next section, we discuss alternatives to the
odds ratio that can be used to evaluate markers in case-
control studies.

HOW TO QUANTIFY DISCRIMINATION IN A CASE-
CONTROL STUDY

Classification error rates

Characterization of the discriminatory capacity of a binary
marker has already been addressed in this paper. The TPFs
and FPFs provide a description. Although predictive values
are also of interest, where positive predictive value = P[D =
1 | marker positive] and negative predictive value = P[D = 0
| marker negative], these entities essentially require either a
cohort study design in which the sample prevalence reflects
the population prevalence or some external estimates of
prevalence that pertain to the population from which cases
and controls are drawn. On the other hand, TPF and FPF are
defined conditional on outcome status and so can be esti-
mated from a case-control study in which sampling depends
on outcome. Diagnostic likelihood ratios have also been
promoted as measures to characterize the accuracy of a
binary marker (18) but are not very popular in practice.

It is interesting that characterization of accuracy requires
two parameters, for example, TPF and FPF, whereas associ-
ation measures such as the odds ratio or correlation coeffi-
cient (for continuous markers) are generally one
dimensional. Characterization with (FPF, TPF) acknowl-

FIGURE 3. True- vs. false-positive fractions associated with dichot-
omous categorization of the continuous marker according to the deci-
sion criteria X > c for the six scenarios shown in figure 2. Each curve
corresponds to one scenario. Points on the curve correspond to dif-
ferent choices of threshold c ∈ (–∞, ∞). Solid circles represent points
associated with using each quartile as the threshold criterion.

TABLE 1.   Odds ratios for each quartile* relative to the first quartile corresponding to the pairs of 
continuous marker distributions shown in figure 2 

* Quartiles are based on the marker distributions in controls.
† Odds ratio per one-unit increase in X shown in figure 2.

Odds ratio per
 unit of X†

Quartile

1 2 3 4

1.5 Reference 1.2 1.4 1.7

2 Reference 1.4 1.7 2.4

3 Reference 1.6 2.3 4.1

9 Reference 2.6 5.2 17.4

16 Reference 3.2 7.9 38.7

25 Reference 3.8 10.8 73.7
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edges that false-positive and false-negative errors are not
equivalent and must be reported separately (19).

ROC curves

The ROC curve is the natural generalization of (FPF, TPF)
to accommodate settings in which the marker is continuous.
It describes the whole set of potential (FPF, TPF) combina-
tions possible with positivity criteria based on the marker.
The raw distributions and ROC curves for two pancreatic
cancer biomarkers are shown in figures 4 and 5, respectively
(20). Observe that the ROC curve does not depend on how
the marker is coded. Changing the units in which the marker
is measured has no impact on its ROC curve in contrast to
logistic regression models in which, as noted above, the odds
ratio must be interpreted according to a unit increase in the
value of X. Moreover, ROC curves provide a natural
common scale for comparing different markers even when
they are measured in completely different units. For
example, a marker that measures a serum concentration can
be compared with one that measures spectral height at a
given mass/charge ratio derived from protein mass spec-
trometry. In contrast, because odds ratios are interpreted per
unit increase in the marker, odds ratios for two markers may
not be comparable. This is a key advantage of ROC curves.

MODIFIERS OF PREDICTOR PERFORMANCE

A variety of factors (or covariates) may affect how well a
marker performs. For example, higher breast density makes
mammographic readings less accurate (21). Factors other
than those that are subject related are often important, too.

The assay technique or the expertise of the lab technician can
affect how well a biomarker performs. In audiology, the
location in which the hearing test is conducted can affect the
capacity of the test to detect hearing loss. If one can establish
which covariates influence the performance of a marker, this

FIGURE 4. Frequency distributions of two markers for pancreatic cancer. Refer to Wieand et al. (20) for a description of source data.

FIGURE 5. Receiver operating characteristic (ROC) curves for the
pancreatic cancer markers shown in figure 4.

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article/159/9/882/167475 by guest on 16 August 2022



Limitations of the Odds Ratio for Marker Evaluation   887

 Am J Epidemiol   2004;159:882–890

information may be used to optimize the marker measure-
ment. On the other hand, it can suggest settings or popula-
tions for which the marker is less useful and where
alternative markers should be sought.

Not traditional effect modification

We continue to denote the marker by X and the covariates
that may affect the performance of the marker by Z. In epide-
miology, one typically uses a logistic regression model with
statistical interaction between covariates and the marker of
interest to evaluate whether “effect modification” occurs.
Mathematically, we write logitP[D = 1|X, Z] = α + β1X +
β2Z + β3XZ. Evaluating the size and significance of β3, the
interaction term, asks whether the odds ratio associated with
X varies with Z. However, since we have already established
that the odds ratio does not properly characterize marker
performance, it follows that this approach does not address
questions about Z affecting the performance of X as a
marker.

As an example, consider the data shown in table 2, where
X and Z are binary. The marker X is being considered as a
screening device, and, to make the discussion concrete,
suppose that the covariate Z is gender (Z = 1 for females).
The odds ratio associated with X is exactly the same for
males and females. That is, Z is not an effect modifier in the
sense that it alters the association between X and disease D
when association is parameterized by the odds ratio.
However, it seems that, at least for the purposes of disease
screening, X performs better for females than for males.
Almost all cases are detected in both circumstances (TPF =
0.97 and TPF = 0.94), but twice as many controls screen
positive in the male population, where FPF = 0.06, versus in
the female population, where FPF = 0.03. For widespread
screening of healthy populations, it is critical to keep the
number of false-positive results extremely low, and the
lower FPF observed in females makes it a better screening
marker in that population.

Statistical assessment

How then should one assess whether a covariate affects the
performance of a marker? When the marker is binary, one
can simply determine to what extent the TPFs vary with Z
and to what extent the FPFs vary with Z. We already made
this assessment informally for the data shown in table 2.
Formal statistical techniques can be applied to test a hypoth-
esis such as H0 : FPF(Z = 1) = FPF(Z = 0) or to quantify the
difference between FPF(Z = 1) and FPF(Z = 0). The FPFs
and TPFs are binomial proportions, and the usual techniques
of Pearson chi-square statistics and so forth can be applied.
Inference about FPFs uses data for controls (D = 0) only;
inference about TPFs uses data for cases (D = 1) only. For
example, in table 2, comparison of FPFs yields p = 0.002
from a chi-square test. Writing FPF(Z) = P(X = 1|D = 0, Z),
we see that logistic regression techniques can be applied to
data for controls with the marker as the dependent variable
and covariates Z as the independent variables to establish
how FPF varies with Z. Regression techniques may be pref-
erable when there are multiple components to Z or if Z is
continuous. Similarly, logistic regression can be applied to
data for the cases to establish how TPF(Z) = P(X = 1|D = 1,
Z) varies with Z. Refer to Leisenring et al. (22), Smith and
Hadgu (23), and Pepe (24, section 3.5) for illustrations.

For a continuous marker, one needs to determine whether
the ROC curves for X vary with Z. If Z is dichotomous, one
can plot separate ROC curves for X by using data for the two
groups or circumstances defined by Z. Statistical techniques
to compare ROC curves have been developed and are
included in some software packages such as Stata (25). Data
for prostate-specific antigen reported by Etzioni et al. (26)
are shown in figure 6 for men less than 65 years of age and
men 65 years of age or older. Although the study measured
prostate-specific antigen repeatedly over time, we use only
those data for the last time point (prior to diagnosis for
cases). The classic statistic for comparing two ROC curves is
the difference in the areas under the empirical ROC curves.
The difference is not statistically significant (p = 0.44).
Thus, there is no evidence in this sample that age affects the
capacity of prostate-specific antigen to distinguish cases
with prostate cancer from age-matched controls.

Similar techniques can be used to compare the perfor-
mances of two different markers in the same population. The
ROC curves in figure 4 for CA-125 and CA-19-9 (20) are
statistically significantly different (p < 0.01). This p value is
based on the difference in empirical areas under the ROC
curves applied to paired data (27). Methods based on
comparing ROC curves over a relevant subinterval of FPFs
are described by Pepe (24, p. 110) and are probably more
appropriate for comparing screening markers (19).

As mentioned earlier in the discussion about evaluating
covariate effects on binary markers, regression techniques
are appropriate when Z is multidimensional or continuous.
The same is true for continuous markers, but now regression
models for ROC curves must be used. Some regression
modeling methods for ROC curves have been described. A
variety of illustrations are provided by Pepe (24, chapter 6).
This area of statistical methodology is relatively new, and

TABLE 2.   Data* showing that a covariate (Z) can affect the 
performance of X as a marker (for disease D) but is not 
necessarily an effect modifier in the usual sense of having 
odds ratios that vary with Z

* For illustration, data are shown for 1,000 subjects with Z = 0 and
for 1,000 subjects with Z = 1. The common odds ratio is (47 × 97)/
9 = 506.6 when Z = 0 and Z = 1.

† FPF, false-positive fraction; TPF, true-positive fraction.

Covariate

Z = 0 Z = 1

Marker D = 0 D = 1 D = 0 D = 1

X = 0 846 3 873 6

X = 1 54 97 27 94

(FPF†, TPF†) (0.06, 0.97) (0.03, 0.94)

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article/159/9/882/167475 by guest on 16 August 2022



888   Pepe et al.

 Am J Epidemiol   2004;159:882–890

methods are evolving rapidly. Refer to Cai and Pepe (28) and
Dodd and Pepe (29) for more recent work.

THE INCREMENTAL VALUE OF A MARKER

Now we discuss another way in which covariates are often
considered. Suppose that there are some established markers
(or predictors) for the outcome that we denote by X1. In
considering a new candidate marker, X2, we want to assess
how much classification is improved by using X2 in addition
to X1 (4). Alternatively, we can ask whether there is predic-
tive information in X2 that cannot be explained by associa-
tions with X1. For the purposes of illustration, suppose that
CA-19-9 is an established biomarker for pancreatic cancer
and we want to determine the additional contribution of CA-
125 to classification accuracy. Here, X1 is CA-19-9 and X2 is
CA-125. One common approach is to treat X1 and X2 as cova-
riates in a logistic regression model,

logitP(D = 1|X1, X2) = α + β1X1 + β2X2, (1)

and interpret exp(β2) as the odds ratio for the strength of the
association between X2 and the outcome, D, after
“accounting for” the associations with X1. We do not dispute
this approach. However, as mentioned earlier, a measure of
association is not a characterization of the accuracy of
prediction. Using the data displayed in figure 4, we estimate
that exp(β2) = 2.54 (p = 0.002), a statistically significant
association between CA-125 and pancreatic cancer after
controlling for CA-19-9.

Figure 7 shows the ROC curves for classifying subjects as
having or not having pancreatic cancer by using CA-19-9
alone and by using the combination of predictors CA-19-9
and CA-125. If we assume that equation 1 fits the data
reasonably well, it is known that the linear combination
β1X1 + β2X2 is the best way to combine the markers for
discriminating cases from controls (30). We see that CA-125
adds little to the capacity of CA-19-9 to discriminate
between pancreatic cancer cases and controls. For example,
if we are content to accept a 5 percent FPF, we can detect 68
percent of cases by using CA-19-9 alone and 71 percent by
using the combination. The tangible benefit of adding the
new marker CA-125 to the existing marker CA-19-9 appears
to be minimal for the purposes of classification. That is, the
independent contribution of CA-125 to classification is
negligible despite its strong association with disease status
that is independent of its association with CA-19-9.

In our experience, this phenomenon—that a marker
displaying an independent association considered strong by
traditional epidemiologic standards does not contribute
meaningfully to improved classification—is rather common.
Another illustration is provided by Kattan (4). This finding is
quite consistent with the observations made earlier.
Extremely strong associations are required for meaningful
classification accuracy. Again, the important message is that,
for statistical evaluation of markers for classification, tech-
niques should be used that directly address classification
accuracy (e.g., ROC curves) rather than traditional logistic
regression techniques for assessing associations.

FIGURE 6. Total prostate-specific antigen for 71 prostate cancer
cases and 70 age-matched controls in the Beta-Carotene and Retin-
A (CARET) study, Fred Hutchinson Cancer Research Center, Seat-
tle, Washington (coordinating center), 1985–1996. Receiver operat-
ing characteristic (ROC) curves for subjects aged <65 years and ≥65
years are shown.

FIGURE 7. Receiver operating characteristic (ROC) curves for
classifying subjects as having or not having pancreatic cancer by
using the pancreatic cancer marker CA-19-9 alone and by using the
combination of predictors CA-19-9 and CA-125. The combination
score is β1X1 + β2X2 = 1.03log(CA-19-9) + 0.93log(CA-125).
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DISCUSSION

The work for this paper was stimulated by the observa-
tion that many studies of predictive/diagnostic markers
continue to use statistical methods based on the odds ratio
or relative risk, despite the fact that such methods are not
suited to the task of evaluating classification accuracy.
Others have mentioned that the odds ratio does not quantify
the classification accuracy of a marker (4–7). We have
presented a more detailed discussion, demonstrating the
pitfalls of using the odds ratio to evaluate markers, to eval-
uate covariate effects on marker performance, and to eval-
uate the incremental value of a marker over existing
predictors. In addition, we have suggested more appro-
priate techniques that can be used to address these ques-
tions statistically. References to the literature hopefully
will facilitate more widespread adoption of proper methods
in practice.

Although the odds ratio does not characterize a marker’s
accuracy for classifying persons, its association with the
relative risk has long made it valuable for characterizing
population variations in risk. A binary marker with a rela-
tive risk of 3, say, can be used to identify a population with
the risk factor that has three times the risk as the popula-
tion without the risk factor. This method may be used to
target prevention or screening strategies. Moreover, clin-
ical trials can often be conducted more efficiently in such
populations. However, as we have noted, such a marker
will be a very inaccurate tool for classifying or predicting
risk for individual subjects. Markers proposed for classi-
fying or predicting risk in individual subjects must be held
to a much higher standard than merely being associated
with outcome. Their sensitivities and specificities must
be shown to be adequate through appropriate statistical
evaluations.
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