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Limitations of Transformers on Clinical Text
Classification

Shang Gao1*, Mohammed Alawad1, M. Todd Young1, John Gounley1, Noah Schaefferkoetter1, Hong Jun

Yoon1, Xiao-Cheng Wu2, Eric B. Durbin3, Jennifer Doherty4, Antoinette Stroup5, Linda Coyle6, Georgia

Tourassi1*

Abstract— Bidirectional Encoder Representations from
Transformers (BERT) and BERT-based approaches are the
current state-of-the-art in many natural language process-
ing (NLP) tasks; however, their application to document
classification on long clinical texts is limited. In this work,
we introduce four methods to scale BERT, which by de-
fault can only handle input sequences up to approximately
400 words long, to perform document classification on
clinical texts several thousand words long. We compare
these methods against two much simpler architectures – a
word-level convolutional neural network and a hierarchical
self-attention network – and show that BERT often cannot
beat these simpler baselines when classifying MIMIC-III
discharge summaries and SEER cancer pathology reports.
In our analysis, we show that two key components of BERT
– pretraining and WordPiece tokenization – may actually be
inhibiting BERT’s performance on clinical text classification
tasks where the input document is several thousand words
long and where correctly identifying labels may depend
more on identifying a few key words or phrases rather
than understanding the contextual meaning of sequences
of text.

Index Terms— BERT, Clinical Text, Deep Learning, Natu-
ral Language Processing, Neural Networks, Text Classifica-
tion

I. INTRODUCTION

Document classification is an essential task in clinical

natural language processing (NLP). In the clinical setting,

labels are often available only at the document level rather

than at the individual word level, such as when unstructured

clinical notes are linked to structured data from electronic

health records (EHRs), and thus document classification is an

essential tool in practical automation of clinical workflows.

Timely classification of key data elements from clinical docu-

ments is extremely important for applications such as precision

medicine, population health surveillance, and research and

policy. Unfortunately, in the clinical setting, human annotation

of EHRs can be extremely time-consuming and expensive due

to the technical nature of the content and the expert knowledge

required to parse it; thus, effective automated classification of

clinical text such as cancer pathology reports and patient notes
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from hospital stays can make meaningful contributions toward

health-related outcomes [1].

Currently, Bidirectional Encoder Representations from

Transformers (BERT) [2] and BERT-based approaches achieve

state-of-the-art performance in many common tasks within

the general NLP community such as question answering,

natural language understanding, and text generation. BERT

is a computationally expensive deep learning approach that

is first pretrained on a very large corpus of unlabelled text

on the order of 1 billion or more words – this pretraining

step typically takes hundreds to thousands of GPU or TPU

hours [3], [4] and allows the model to learn nuanced linguistic

patterns that may be useful for downstream tasks. Once

pretrained, the model is then fine-tuned on a specific task

of interest. To limit the vocabulary size and generalize better

to new words outside the training vocabulary, BERT utilizes

subword-level WordPiece tokens rather that word-level tokens

as input.

Adapting BERT to the task of clinical document classifi-

cation poses non-trivial challenges. First, most BERT-based

implementations have a maximum input length of 512 Word-

Piece tokens, which is roughly equal to 400 words. Unfortu-

nately, clinical documents can very easily exceed this limit –

the average discharge summary in the MIMIC-III dataset is

approximately 2000 word tokens [5]. Second, to maximize

performance, BERT-based models must be pretrained on a

text corpus that is from a similar domain as the downstream

application task. Therefore, clinical practitioners who wish

to apply BERT-based models but do not have access to

the compute or data necessary to pretrain their own models

must rely on downloading existing pretrained models such as

BioBERT [6] or BlueBERT [7]. Some recent work, such as

the Reformer [8] and LongFormer [9] models, adapt BERT

for longer input texts; however, at the time of this study,

there exist no publicly available pretrained weights in the

biomedical and/or clinical domain for these models. For this

reason, we utilize BlueBERT, which is the original BERT

model pretrained on sentences from Pubmed abstracts and

MIMIC-III clinical notes, as the main model for this work.

In this work, we test different methods to adapt BlueBERT

for text classification on long clinical documents – these meth-

ods consist of splitting long documents into smaller chunks,

processing the chunks individually, and then combining the

outputs using max pooling or attention-based methods. We

apply these methods to both the single-label and multilabel
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classification settings. We compare the performance of Blue-

BERT against two strong baselines – a shallow, word-level

convolutional neural network (CNN) [10] and a hierarchical

self-attention network (HiSAN) [11], both of which have

nearly two orders of magnitude fewer learnable parameters

than BERT. We show that BERT actually achieves similar

performance to the CNN and underperforms the HiSAN on

many of the clinical document classification tasks that we test

on. Our contributions are as follows:

• We compare the effectiveness of different ways to adapt

BERT for document classification on long clinical texts

up to several thousand words in length

• We evaluate the effectiveness of BERT on clinical single-

label and multilabel document classification against two

other strong baselines – the CNN and the HiSAN

• We show that a much simpler deep learning model,

the HiSAN, can obtain similar or better performance

compared to BERT on many of our clinical document

classification tasks

• To better understand the weaknesses of BERT in our

tasks, we analyze the attention weights within the HiSAN

and BERT to understand how each model identifies

keywords and show that using WordPiece subword tokens

may be more difficult than using word-level tokens

II. RELATED WORK

While BERT and BERT-based models have achieved state-

of-the-art performance across a wide range of various NLP

tasks including question answering [12], [13], information

extraction [14], [15], and summarization [16], [17], their

applications to long document classification tasks have been

extremely limited. To our knowledge, there exists only one

previous in-depth study on strategies to adapt BERT for

long document classification: Sun et al [18] explore different

techniques for using BERT to classify moderate-length doc-

uments from IMDb reviews, Yelp reviews, Sogou News, and

other similar datasets. The study finds that the best overall

classification accuracy is achieved by using only the first 128

and the last 382 tokens in each document as the input into

BERT and dropping all intermediate content. While other

works [19]–[21] have applied BERT to text classification

related tasks, none explore the problem of long-document

inputs that are longer than BERT’s default max input length

of 512 WordPiece tokens.

There are several reasons that the findings from [18] may

not hold in the clinical document domain. First, most of the

datasets tested in [18] are moderate in length – for example,

only 12.69% of the documents in IMDb exceed 512 tokens

in length, 4.60% in Yelp, and 46.23% in Sogou, and even

in Sogou the average length is only 737 tokens. Thus, it

is uncertain how BERT will perform on datasets such as

MIMIC-III where the average discharge summary is over 2000

tokens long. Second, in clinical documents classification tasks,

the presence of a specific label may be indicated by only a

short phrase that appears only once in the entire document;

therefore, using only the first 128 and the last 382 tokens may

be more detrimental than in a task such as news classification

or sentiment analysis, where context clues may be scattered

throughout the document.

In the clinical and biomedical domain, BERT has been ap-

plied to various tasks that do not include document-level clas-

sification. BioBERT [6], which is pretrained on PubMed ab-

stracts of PMC full-text articles, showed superior performance

on biomedical named entity recognition, relation extraction,

and question answering tasks. ClinicalBERT [22], which

starts with BioBert and then further pretrains on MIMIC-

III clinical notes, showed superior performance on clinical

natural language inference tasks. BlueBERT [7], pretrained

on PubMed abstracts and MIMIC-III clinical notes, achieved

superior performance on biomedical and clinical sentence sim-

ilarity, named entity recognition, relation extraction, and short

document classification tasks. Two common characteristics of

all these tasks are (1) input length is less than or equal to

512 WordPiece tokens and (2) understanding sequences of

words in context is generally critical to the task. In [23],

authors pretrained their own BERT model on Italian clinical

text, applied it to Italian pathology report classification, and

found that BERT underperforms more simple architectures,

but the study focused on short inputs less than 512 WordPiece

tokens in length. BERT has yet to be thoroughly tested

under settings where the input document is several thousand

words long and where correctly identifying labels may depend

more on identifying a few key words or phrases rather than

understanding the contextual meaning of sequences of text.

The current state-of-the-art approaches for clinical docu-

ment classification are generally models that pre-date con-

textual word embedding-based approaches such as BERT.

Clinical NLP approaches often lag behind those used in the

general NLP community partly due to the legal challenges of

releasing open research datasets to promote the development

of new approaches [24], [25]. Recent approaches for clinical

document classification include rule-based methods [26], [27],

traditional machine learning [28], [29], convolutional neural

networks (CNNs) [30], [31], recurrent neural networks (RNNs)

[32], [33], and self-attention networks [11].

In this work, we compare different strategies to adapt BERT

to long documents against existing strong baselines using

discharge summaries from the MIMIC-III dataset and cancer

pathology reports obtained from Louisiana Tumor Registry,

Kentucky Cancer Registry, Utah Cancer Registry, and New

Jersey State Cancer Registry. There are three multilabel clas-

sification tasks for MIMIC-III – diagnostic codes, diagnostic

categories, and procedure codes – and six single-label clas-

sification tasks for the cancer pathology reports – identifying

cancer site, subsite, laterality, behavior, histology, and grade.

III. MATERIALS AND METHODS

A. BERT for Document Classification

In this work, we begin with the assumption that end-users

wish to apply BERT to their document classification tasks but

lack the computational resources and/or training data on the

order of 1B+ words required to pretrain BERT from scratch;

thus, users must start from an available pretrained model.

Because we are working with clinical text documents, we
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utilize BlueBERT [7], which is the BERT model pretrained

on PubMed abstracts and MIMIC-III clinical notes. As the

architecture of BERT has been widely described and explored

in existing literature, we refer the reader to those studies [2],

[34], [35] to learn about the base architecture of the BERT

model.

Because the self-attention mechanism used in BERT has

memory requirements that scale quadratically based off the

sequence length, the original BERT model was primarily de-

signed to handle sentence-length and paragraph-length inputs

and has a maximum input length of 512 WordPiece tokens, or

roughly 400 word tokens. As a result, subsequent BERT-based

models pretrained on different corpora, including BioBERT,

Clinical BERT, and BlueBert, all share this same limitation on

input length. To adapt BERT for long document classification,

we explore the following strategies (illustrated in Figure 1):

1) First 510 WordPiece Tokens Only: For any input docu-

ment, we convert the document into WordPiece tokens and use

only the first 510 tokens. As standard practice for BERT-based

models [2], each token sequence is prepended by the [CLS]

token (used for classification) and appended by the [SEP]

token (marks the end of an input sequence for one or more

input sequences), making a total of 512 tokens, the maximum

input length for BERT. As BERT is already preconfigured for

a wide range of tasks including sequence classification [2], we

use the standard sequence classification setup where the output

of the [CLS] token is then fed into an intermediate dense layer

and a final classification layer. For single-label classification,

the output logits from the classification layer are fed into a

softmax activation, whereas for multilabel classification, the

logits are fed into a sigmoid activation.

We note that this strategy may discard a significant portion

of content for each document that may be useful for classifica-

tion; therefore, we expect that this strategy may perform poorly

due to information loss. However, we include this strategy as

it is useful to establish a baseline.

2) Max Pool Over Logits: In order to capture the content

from the entire document, we utilize a hierarchical approach

in which we split long documents into smaller chunks and

then process each chunk individually using BERT. After

converting an input document into WordPiece tokens, we split

the document into k segments of 510 tokens each. Each

segment is prepended by the [CLS] token and appended by

the [SEP] token so that it is 512 in length. We then utilize the

standard BERT classification setup on each of the k segments,

wherein the first [CLS] token in each segment is passed to an

intermediate dense layer and a final classification layer. This

generates k logit vectors, one for each segment.

Prior to the softmax or sigmoid activation function, we

apply a max pool operation across all k logits to reduce

them into a single logit vector – this max pooled logit vector

represents the maximum logit value for each possible class

across each of the k segments. For single-label classification,

this final max pooled logit vector is passed to a softmax

activation to predict class probabilities, and for multilabel

classification it is passed to a sigmoid activation.

We note that max pooling is performed on the logit vector

because the size of the logit vector is always equal to the

Fig. 1: Process for splitting long documents into smaller

chunks to feed into BERT and methods for combining the

resulting BERT outputs from each chunk into a single classi-

fication decision.

number of possible classes and a higher logit value for a

given class will always indicate that particular class is more

likely to be present. This cannot be said about any other

intermediate representation generated by BERT, where a large

negative value may be just as important as a large positive

value in identifying the presence of a particular class. Thus,

applying max pool to the logit vector minimizes unintentional

information loss.

3) Target Attention: Similar to max pool over logits, we

split the document into k segments of 510 WordPiece tokens

each. Each segment is prepended by the [CLS] token and

appended by the [SEP] token so that it is 512 in length. We

then utilize the BERT model without the classification setup

such that for each of the k segments, we simply generate 512

new contextual token embeddings. From this, we drop the first

[CLS] and last [SEP] token embeddings from each of the k

sequences, then concatenate the k embedding sequences to

form E ∈ R
l×d, where l is the total length of the document

and d is the embedding dimension configured within BERT

(768 in our case).

Next, we utilize an attention mechanism to identify the

token embeddings within E that are most relevant to the target

task. To do this, we utilize a modified version of scaled dot

product attention [36], which is shown in Equation 1:

K = EW k + bk

V = EW v + bv

Target-Attention(E, T ) = softmax(
TK⊤

√
d

)V
(1)

where W k ∈ R
d×d and W v ∈ R

d×d are learnable weight
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matrices and bk ∈ R
d and bk ∈ R

d are learnable bias vectors.

K ∈ R
l×d and V ∈ R

l×d are simple linear transformations

of E. Finally, T ∈ R
1×d is a randomly initialized vector

that is learned through training – this vector represents the

information to look for given the current task.

Essentially, our target attention operation compares each

token embedding in E to the target vector T to identify the

embeddings most relevant to the current task. The output of

our target attention mechanism is D ∈ R
1×d, the final docu-

ment embedding used for classification, which is effectively a

weighted average of the most important embeddings from E.

We pass D to a final dense classification layer; as the previous

strategies, the output logits from the classification layer are fed

into a softmax activation for single-label classification and a

sigmoid activation for multilabel classification.

4) Multilabel Attention: In the multilabel classification set-

ting, we expand our target attention mechanism so that we use

a separate parallel attention mechanism for each possible label.

This increases the expressivity of the attention mechanism so

that the same attention target vector does not need to capture

information for hundreds or thousands of possible labels.

Once again, we split the document into k segments of 510

WordPiece tokens each. Each segment is prepended by the

[CLS] token and appended by the [SEP] token so that it is 512

in length. We use the same procedure from target attention

to generate E ∈ R
l×d, which represents the contextual

embeddings generated by BERT for the all tokens in the

document. We then pass E to a modified version of scaled

dot product attention, shown in Equation 2:

K = EW k + bk

V = EW v + bv

Multilabel-Attention(E,M) = softmax(
MK⊤

√
d

)V

Logits = (Multilabel-Attention(E,M)W c)⊤ + bc

(2)

where W k ∈ R
d×i and W v ∈ R

d×i are learnable weight

matrices and bk ∈ R
i and bk ∈ R

i are learnable bias vectors.

K ∈ R
l×i and V ∈ R

l×i are simple linear transformations of

E. Unlike in target attention where the embedding dimension

of K and V are set to d, the same as E, in multilabel attention

they are reduced to an intermediate dimension i as we found

this reduces overfitting. M ∈ R
c×i is a randomly initialized

matrix that is learned through training, where c is the number

of possible classes – each row of this matrix represents the

most important information for one class.

While in target attention each embedding in E is com-

pared to a single target vector to determine its relevance, in

multilabel attention each embedding in E is simultaneously

compared to a different vector for each possible class to

determine its relevance for that class. The output of multilabel

attention is a matrix O ∈ R
c×i, which we pass to a dense

layer with weights W c ∈ R
i×1 and bias bc ∈ R

c to generate

the logits. Because we only utilize multilabel attention in the

multilabel classification setting, we pass the output logits to a

sigmoid activation to obtain the final class probabilities.

B. Baseline Models

1) Convolutional Neural Network: Our first strong baseline

is a shallow word-level CNN based off [37]. Although a

relatively simple architecture that was originally developed

in 2014, it is still widely used for biomedical and clinical

text classification and has shown strong performance across a

variety of tasks [10], [38]–[40]. For our CNN implementation,

we represent each document using word level embeddings,

which are passed to three parallel 1D convolution layers;

these examine three, four, and five consecutive words at a

time to identify n-grams relevant to the given task. The

outputs from the three convolution layers are concatenated

and passed to a max pool operation that generates a fixed-

length document vector composed of the most important n-

grams in the document. This document vector is passed to a

final dense classification layer that uses softmax for single-

label classification and sigmoid for multilabel classification.

In multilabel classification settings, we also test a multilabel

variant of the CNN, which we refer to as CNN-multilabel

(CNN-ML). In this variant, after the outputs from the three

convolution layers are concatenated, instead of using a max

pool operation, we feed the output to the same multilabel

attention setup that we use for BERT.

2) Hierarchical Self-Attention Network: Our second strong

baseline is the HiSAN network [11], which to our knowledge

is the current state-of-the-art in classifying cancer pathology

reports. Like BERT, this architecture is also based off self-

attention operations, but it is far simpler and has approximately

100x fewer learnable parameters. We use the exact same

implementation as [11] – first, each document is represented

using word level embeddings and then broken into chunks of

ten words each. The HiSAN’s lower hierarchy uses a series

of attention-based operations to generate a fixed-length vector

representation for each ten-word chunk. These representations

are then passed to the HiSAN’s upper hierarchy, which uses

another series of attention-based operations to generate a

fixed-length vector representation of the entire document. This

document vector is passed to a final dense classification layer

that uses softmax for single-label classification and sigmoid

for multilabel classification.

Like with the CNN, in the multilabel classification setting

we test a multilabel variant of the HiSAN, which we refer to

as HiSAN-multilabel (HiSAN-ML). In this variant, we replace

target attention mechanism in the HiSAN’s upper hierarchy

with the same multilabel attention setup that we use for BERT.

C. Datasets

1) MIMIC-III Discharge Summaries: The MIMIC-III dataset

consists of unstructured clinical notes as well as structured

tables related to 49,785 distinct hospital admissions of 38,597

unique adult patients who stayed in the intensive care unit at

Beth Israel Deaconess Medical Center between 2001 and 2012

[5]. Each unique admission is annotated by human experts

with a set of ICD-9 codes that describe the diagnoses and

procedures that occurred during that particular stay. Each

unique admission is also associated with a discharge summary

which summarizes the information from the stay in a single
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TABLE I: Dataset descriptions for each task. We note that document lengths are measured using generic word tokens rather

than BERT’s WordPiece tokens. Converting to WordPiece tokens results in approximately 25% more tokens.

Train
Docs

Val
Docs

Test
Docs

Unique
Labels

Avg Labels
Per Doc

Avg Words
Per Doc

Std Dev Words
Per Doc

MIMIC-III: DX 5-Char 42262 5223 5241 6919 11.7 2061 992
MIMIC-III: DX 3-Char 42262 5223 5241 942 10.8 2061 992
MIMIC-III: Procedure 42262 5223 5241 1990 4.5 2061 992
Pathology Reports: Site 144754 25545 30053 70 1 622 465
Pathology Reports: Subsite 144754 25545 30053 325 1 622 465
Pathology Reports: Laterality 144754 25545 30053 7 1 622 465
Pathology Reports: Histology 144754 25545 30053 578 1 622 465
Pathology Reports: Behavior 144754 25545 30053 4 1 622 465
Pathology Reports: Grade 144754 25545 30053 9 1 622 465

document. For this study, we utilize the discharge summaries

for three multilabel classification tasks – (1) predict the set of

5-character diagnoses codes (DX 5-Char) associated with each

discharge summary, (2) predict the set of unique 3-character

(DX 3-Char) diagnoses categories associated with each dis-

charge summary, which consists of the first three characters

of the full 5-character diagnosis code, and (3) predict the set

of procedure codes associated with each discharge summary.

We note that some admissions have one or more addenda

in addition to the discharge summary; in these situations we

concatenate the information from the addenda to the discharge

summary. Following [31], we perform train/val/test splitting

based off unique patient IDs so that the same patient does not

appear in multiple splits. Statistics regarding this dataset are

available in Table I.

2) SEER Cancer Pathology Reports: The National Cancer

Institute (NCI) Surveillance, Epidemiology, and End Results

(SEER) program works with cancer registries across the

United States to collect and maintain cancer data in order to

support national cancer surveillance. We obtained 1,201,432

cancer pathology reports from the Louisiana, Kentucky, New

Jersey, and Utah SEER cancer registries. Each cancer pathol-

ogy report is associated with a unique tumor ID; one or more

cancer pathology reports may be associated with the same

tumor ID. For each tumor ID, certified tumor registrars (CTRs)

manually assigned ground truth labels for key data elements

– including cancer site, subsite, laterality, behavior, histology,

and grade; for a given tumor ID, labels were assigned based off

all data available for that tumor ID. Because our ground truth

labels are at the tumor level rather than the report level, there

are cases where tumor IDs associated with multiple pathology

reports have labels which do not match the content within

one or more of the individual pathology reports. Therefore,

in this study we only utilize tumor IDs associated with a

single pathology report, yielding a total of 200,352 pathology

reports. We utilize this dataset to perform six single-label

document classification tasks, one for each manually annotated

data element. Statistics regarding this dataset are available in

Table I.

IV. EXPERIMENTS

A. Evaluation Metrics

For multilabel classification tasks on the MIMIC-III dataset,

we follow established metrics from previous work [30]–[32]

and measure performance using precision, recall, and F1 score,

where each possible text-code pair is treated as an independent

prediction:

Precision =
True Positive

True Positives + False Positives
(3)

Recall =
True Positives

True Positives + False Negatives
(4)

F1 = 2 ∗ Precision * Recall

Precision + Recall
(5)

Similarly, for single-label classification tasks on the cancer

pathology reports, we follow established metrics from previous

work [10], [11], [33], [41] and measure performance using

classification accuracy and macro F1 score, in which the F1

score is calculated for each possible class label and then

averaged across all class labels:

Macro F1 =
1

|C|

C∑

Ci

F1(Ci) (6)

where Ci represents the subset of training samples belonging

to class i, and |C| is the total number of possible classes.

Because of the extreme class imbalance inherent in the cancer

pathology report dataset, macro F1 score better captures model

performance on minority classes.

For all metrics, we bootstrap samples from our test set

using a procedure described in Appendix A to generate 95%

confidence intervals. Since computation speed may also be

a consideration in some applications, we report the average

inference time for 1000 documents for each method on the

MIMIC-III dataset utilizing a single Tesla V100 GPU.

B. Dataset Cleaning

For both datasets, we lowercase all text, clean hex and

unicode symbols, replace decimal values and integers larger

than 100, and clean up any deidentification tokens; a more

detailed description is available in Appendix B. For BERT-

based approaches, we utilize the HuggingFace BERT tok-

enizer1 with the vocabulary associated with the pretrained

BlueBERT model2. For the CNN and HiSAN, we train 300-

dimensional word2vec embeddings on each dataset, replacing

unique words appearing in fewer than five documents in each

dataset with an “unknown word” token.

1https://huggingface.co/transformers/index.html
2https://github.com/ncbi-nlp/bluebert
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Fig. 2: Precision, recall, and F1 scores for each model on the MIMIC-III dataset. 95% confidence intervals are shown in red

and calculated using a bootstrapping procedure detailed in Appendix A.

TABLE II: Hyperparameters explored for each model. Optimal

hyperparameters are marked with a * for the MIMIC III tasks

and aˆ for the pathology report tasks.

BERT

Multilabel Attention Dim 100, 200, 300*ˆ, 400, 500
Batch Size 8, 16*ˆ, 32, 64
Adam Learning Rate 5E-6, 1E-5, 2E-5*ˆ, 5E-5

CNN

Filter Size 100, 300ˆ, 500, 1000*
Dropout % 0, 10, 15*, 25, 50ˆ
Multilabel Attention Dim 100, 200, 300, 400*ˆ, 500
Batch Size 32, 64, 128*ˆ, 256
Adam Learning Rate 5E-5, 1E-4*ˆ, 2E-4, 5E-4

HiSAN

Attention Size 400, 512ˆ, 768*, 1024
Attention Heads 4, 8*ˆ, 16
Dropout % 0, 10*ˆ, 15, 25, 50
Multilabel Attention Dim 100, 200, 300, 400*ˆ, 500
Batch Size 32, 64, 128*ˆ, 256
Adam Learning Rate 5E-5, 1E-4*ˆ, 2E-4, 5E-4

C. Hyperparameter Optimization

For all BERT-based approaches, we start from pretrained

weights from BlueBERT Base2 and implement all models

using the Huggingface library1. For the max pool over logits,

target attention, and multilabel attention methods, we limit

the number of segments per document k to a maximum of

10; we note that k is not a tuned hyperparameter but instead

determined based off the average length of our documents and

the memory capacity of our Tesla V100 GPUs.

Hyperparameters for all approaches are optimized using the

validation set of each dataset. Due to the high computational

cost of some of our models, we use a hill-climbing strategy

in which we change a single hyperparameter at a time and

then retrain until model performance stops improving. We

choose the set of hyperparameters with the overall highest

performance across all tasks (average F1 for MIMIC and

average accuracy for pathology reports). We list the range of

hyperparameters explored as well as the optimal hyperparam-

eters in Table II.

D. Results

Figure 2 shows the results of our experiments on the

MIMIC-II dataset dataset. First, we examine the performance

of each model when limited to only the first 510 WordPiece

tokens. We note that for models such as the CNN and HiSAN

that use word token inputs, we convert the first 510 WordPiece

tokens back into word tokens which results in approximately

400 word tokens for each document. We use this first set

of results to address two key questions: (1) how well does

each method perform when using only the first 510 WordPiece

tokens compared to the full document and (2) how well does

BlueBERT compare to our strong baselines when adaptive

methods to fit longer documents isn’t a performance factor?

Our results in Figure 2 suggest that even if we limit all

models to short text segments that fit within BERT’s default

512 WordPiece input limit, BERT does not outperform our

much simpler baselines in two of the three tasks. The CNN

model consistently achieves the best precision scores by a

wide margin on all tasks. We expect that this because the

CNN is designed to memorize the 3-, 4-, and 5-gram word
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Fig. 3: Accuracy (left) and macro F1 scores (right) for each model on the cancer pathology report dataset. 95% confidence

intervals are shown in red and calculated using a bootstrapping procedure detailed in Appendix A.

combinations associated with each label as opposed to learning

more complex sequential patterns; this limits the ability of the

CNN to generalize beyond the n-gram patterns it knows, but

makes it very precise when it does encounter a previously seen

n-gram. The HiSAN and BERT models can both learn more

complex patterns than the CNN and achieve better recall than

the CNN on all tasks at the cost of precision. The HiSAN

model achieves the best recall and F1 scores on the diagnosis

category and full code tasks, whereas BERT achieves the best

recall and F1 score on the procedure task.

Second, we examine the performance of each model using

full documents from the MIMIC-III dataset. We notice that

compared to using only the first 510 WordPiece tokens, using

the full document results in significantly improved perfor-

mance across all metrics. This makes intuitive sense, as on av-

erage, the first 510 WordPiece tokens captures approximately

only the first 25% of each document and critical information

may be located in the remainder of the document.

When using full documents on the MIMIC-III dataset tasks,

our BERT-based approaches do not significantly outperform

our much simpler baselines on any tasks. Once again, the CNN

model consistently achieves the best precision scores by a wide

margin on all tasks. The HiSAN-based approaches achieve

the best recall and F1 scores on most tasks; while the BERT

multilabel attention approach achieves the best recall score on

the diagnostic category task, it is not significantly better than

that of the HiSAN model.

When comparing the different methods for adapting BERT

to longer text documents, the max over logits method con-

sistently outperforms the target attention method in all tasks

and metrics except for precision score in the diagnostic code

task. Interestingly, using multilabel attention has mixed effects

TABLE III: Average time (in seconds) to predict on 1000

full documents from the MIMIC-III dataset. All timing is

performed on a DGX machine using a single V100 GPU.

MIMIC-III
DX 3

MIMIC-III
DX 5

MIMIC-III
Procedure

CNN 8.4413 8.4886 8.4537
CNN Multilabel 18.2624 22.5554 19.0566
HiSAN 8.0586 8.1274 8.1222
HiSAN Multilabel 8.4029 8.6632 8.4700
BlueBERT Base
Max Over Logits

75.1377 75.2986 75.2502

BlueBERT Base
Target Attention

75.8992 76.0667 75.9519

BlueBERT Base
Multilabel Attention

75.8698 77.6511 76.1592

based on both task and model. For the CNN and BERT models,

multilabel attention increases recall at the cost of precision,

whereas for the HiSAN model it increases precision at the

cost of recall. For all models, multilabel attention appears to

help most in the diagnostic category and code tasks while

having mixed results in the procedure task.

Figure 3 shows the results of our experiments on the cancer

pathology reports dataset. After taking into account confidence

intervals, BERT does not achieve statistically better accuracy

or macro F1 scores than the HiSAN on any of the six tasks.

Similar to our results from the MIMIC-III dataset, the max

over logits approach almost always performs better than the

target attention approach on all tasks and metrics.

Finally, Table III shows the average time in seconds to

predict on 1000 full documents from the MIMIC-III dataset.

We see that the BERT-based approaches are almost an order

of magnitude slower than the base CNN and the HiSAN-
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Fig. 4: F1 scores for alternative vocabulary/tokenization setups

on the MIMIC-III dataset (first 510 WordPiece tokens only).

95% confidence intervals are shown in red and calculated using

a bootstrapping procedure detailed in Appendix A.

based models. While inference time may not be the most

critical factor for institutions that only need to perform a

single prediction pass on their data, it may be important

for institutions that have millions of documents or need to

regularly retrain their models on incoming data.

V. DISCUSSION

Our experiments show that BERT generally does not achieve

the best performance on our clinical text classification tasks

compared to the much simpler CNN and HiSAN models. In

this section, we provide evidence for two potential explana-

tions for the weak performance of BERT – attention dilution

and difficulty of subword tokens.

First, one of the key components of BERT’s previous

success is the masked-language modelling pretraining process,

in which the BERT model may learn subtle and complex word

relationships between all possible words in a large unlabelled

text corpus. However, in clinical text classification tasks on

documents in which only very few words contribute toward a

specific label, most of these subtle word relationships may not

be necessary or even relevant to the task at hand. Therefore,

BERT’s attention may actually be diluted away from the

keywords most critical to the task.

To demonstrate this phenomena, we generated three differ-

ent types of attention visualizations. First, we multiplied the

attention weights through both hierarchies of the HiSAN to

show exactly which words the HiSAN focuses on in each

document (first 510 WordPiece tokens only). Second, using

our fine-tuned BlueBERT model (first 510 WordPiece tokens

only), we visualized the attention weights from the very

final layer that are associated with the [CLS] token used

for classification; these weights represent the most important

subword tokens after they have already incorporated contextual

information from other subword tokens based off the 12

self-attention layers of the main BERT model. Third, using

our fine-tuned BlueBERT model (first 510 WordPiece tokens

only), we started from the attention weights from the very final

layer that are associated with the [CLS] token and multiplied

these attention weights through all 12 self-attention layers of

the BERT model; these weights represent the most important

subword tokens accounting for all the inter-word relationships

captured during pretraining and fine-tuning. We provide an

example of these visualizations in Appendix C.

After examining these attention weights over a large number

of documents, we noticed that in general, (1) the attention

weights in the final layer of BERT are more spread out and less

focused on specific biomedical keywords than the attention

weights from the HiSAN, and (2) the attention weights when

accounting for all layers of BERT are even more diluted than

those from the final layer of BERT. While there is usually some

overlap in the attention weights of the HiSAN and BERT, we

found that in a notable number of cases BERT places emphasis

on less relevant tokens such as punctuation and [SEP]. These

visualizations suggest that BERT’s attention is diverted toward

word relationships learned during pretraining as opposed to

the specific keywords relevant to the downstream classification

task.

Second, while the HiSAN and CNN models utilize word-

level tokens as input, BERT uses a WordPiece tokenizer that

splits each word into one or more subword tokens. Whereas

with word level tokens, the HiSAN and CNN can directly

memorize keywords or keyphrases important to each label,

there is an added layer of complexity with WordPiece tokens

in that important keywords may be broken into multiple

wordpiece tokens. Thus, critical keywords or keyphrases will

always be longer when represented as WordPiece tokens

compared to word-level embeddings, thereby increasing the

complexity of the token combinations that a model must learn

to recognize a particular label.

To test this hypothesis, we retrained the CNN and HiSAN

models on the MIMIC-III dataset using the first 512 subword

tokens generated by the final layer of the BlueBERT model

(without any fine-tuning on the MIMIC-III dataset) instead

of using word-level Word2Vec embeddings. Our results are

shown in Figure 4. We see that compared to using word-

level tokens as input, both the CNN and HiSAN trained on

subword token inputs perform worse in overall F1 score across

all three tasks. These results suggest that overall, it may be

more difficult to use subword-level tokens for our MIMIC-III

classification tasks than it is to use word-level tokens.

Finally, we examined differences in the vocabulary and

tokenization setups between BERT and our baseline models as

a source of performance discrepancy. In our main experiments,

we used word embeddings trained directly on the target corpus

for our baseline models, eliminating word tokens appearing

fewer than five times, whereas for BlueBERT we tokenized

using the associated WordPiece vocabulary pretrained on
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Pubmed abstracts and MIMIC-III. Therefore, we tested (1) the

performance of our baseline CNN and HiSAN when utilizing

publicly available word embeddings pretrained on Pubmed and

MIMIC-III [42], and (2) the performance of BlueBERT when

eliminating rare words appearing fewer than five times in the

target corpus (mirroring the original tokenization process for

the CNN and HiSAN). The results of these experiments on

the MIMIC-III dataset (first 510 Wordpiece tokens) are shown

in Figure 4. Using pretrained word vectors generally results

in slightly worse F1 scores for the CNN and HiSAN, but both

models still outperformed BERT in the same two out of three

tasks. Eliminating rare tokens reduced BERT’s F1 score in two

of the three tasks, and in all three tasks the F1 score was worse

than that of the HiSAN. Ultimately, we see that BlueBERT

still does not consistently outperform the CNN and HiSAN

baselines under any of these alternative tokenization setups.

VI. CONCLUSION

In this work, we compared four methods for adapting

BERT, which by default can only take inputs of up to 510

WordPiece subword tokens, to sequence classification on long

clinical texts up to several subword tokens in length; these

methods include using only the first 510 WordPiece tokens,

hierarchical max pool over logits, hierarchical target attention,

and hierarchical multilabel attention. We compare these meth-

ods against two strong baselines, the CNN and the HiSAN.

We evaluted these models on two datasets. The MIMIC-III

clinical notes dataset has three multilabel classification tasks:

diagnosis codes, diagnosis categories, and procedure codes;

and the cancer pathology reports dataset has six single label

classification tasks: site, subsite, laterality, histology, behavior,

and grade.

Our results showed that on most datasets and tasks, the

BERT-based methods performed equal to or worse than the

simpler HiSAN baseline, and in some cases BERT performed

equal to or worse than even the CNN. On the MIMIC-III

dataset, when all models and baselines were limited to the

first 510 WordPiece tokens of each document only, BERT

outperformed in only the recall metric for the procedure

code task. Once we utilized full length documents, BERT

outperformed on only the recall metric for the diagnostic

category task. On the cancer pathology report dataset, BERT

was not statistically better than the HiSAN on any of the

six tasks. Within the four different methods for adapting

BERT to classification on long texts, hierarchical multilabel

attention had the overall strongest performance on multilabel

classification and hierarchical max pool over logits had the

overall strongest performance on single label classification.

In our analysis, we presented evidence for two possible

reasons why BERT underperforms in clinical text classification

tasks. First, our tasks generally have a low signal-to-noise

ratio, in that the presence of a few keywords may be enough

to indicate a particular label. In BERT’s pretraining process,

BERT learns complex and nuanced relations between all words

in the pretraining corpus; however, many of these relationships

may be irrelevant for the classification task and may actually

divert attention away from the critical keywords. Second,

BERT’s WordPiece tokenizer breaks each word token into one

or more subword tokens. This increases the complexity of the

classification task, as now the model must learn to associate

a larger number of subword tokens to each label compared to

a lower number of word-level tokens.

Our results suggest that a pretrained BERT model such as

BioBERT or BlueBERT may not be the best choice for clinical

text classification tasks, and a simple CNN or HiSAN model

may achieve comparable or better accuracy/F1. However,

recent work may address some of BERT’s limitations that

we illustrated. For example, [43] utilizes a novel pretraining

technique that forces BERT to focus on learning knowledge

about entities rather than learning generic syntax and grammar

patterns; this may lead to better performance on downstream

clinical and biomedical classification tasks which are often

knowledge-oriented. Additionally, [8], [9] adapt BERT for

long texts without requiring hierarchical splitting methods,

which may allow the model to learn useful patterns over longer

distances. Lastly, recent work [44] shows that a significant

weakness of BioBERT and BlueBERT is that they utilize the

original WordPiece vocabulary from BERT, generated from

Wikipedia and BooksCorpus; building the WordPiece vocab-

ulary directly on the domain of interest prevents important

keywords from being split into multiple subtokens and leads

to higher accuracy in downstream tasks. Unfortunately, these

approaches have yet to be pretrained on clinical corpora

and then released for public use, and thus we leave further

evaluation of these methods for future work. The code used

for the experiments in our paper will be made available online

after peer review.
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APPENDIX

A. Bootstrapping Confidence Intervals

1) For each model/task, save the model’s predictions on the test set (hereon referred to as the original predictions)

2) Randomly select samples from the test set along with their predicted labels (with replacement) to create a new set of

samples and predicted labels of the same size as the original test set (hereon referred to as bootstrapped set)

3) For cancer pathology reports, calculate accuracy and macro F1 score on bootstrapped set; for MIMIC-III, calculate

precision, recall, and F1 score on bootstrapped set

4) Repeat steps (2) and (3) 1000 times, saving the scores each time

5) Calculate the 95% confidence interval for each metric by finding the 2.5 and 97.5 percentile entry for that metric within

the 1000 runs (since precision, recall, and F1 score are not normally distributed)

B. Data Preprocessing

1) Replace hex and unicode characters with their string equivalents, removing any corrupted codes

2) For pathology reports, remove identifier segments (registry ID, patient ID, document ID, etc) and XML tags

3) For MIMIC-III, replace all deidentifier tokens (e.g., [**NAME**]) with the string “deindentified”

4) Lowercase

5) Replace all instances of decimal values with the string “floattoken”

6) Replace all integers higher than 100 with the string “largeinttoken”

7) Replace all nonalphanerics other than { . ? ! , : ; ( ) % / - + = } with a space

8) If the same non-alphanumeric character repeats consecutively, replace it with a single copy of that character

9) Add a space before and after every non-alphanumeric character

C. Attention Visualizations

Fig. A1: Attention weights and predictions on an example document from the MIMIC-III dataset for the diagnostic category

task. In this figure, we multiply the attention weights through both hierarchies of the HiSAN and show exactly which words the

HiSAN focuses on in each document (first 510 WordPiece tokens only). For this visualization, we sum the attention weights

across all attention heads.
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Fig. A2: Attention weights and predictions on an example document from the MIMIC-III dataset for the diagnostic category

task. In the top, using our fine-tuned BlueBERT model (first 510 WordPiece tokens only), we visualize the attention weights

from the very final layer that are associated with the [CLS] token used for classification; these weights represent the most

important subword tokens after they have already incorporated contextual information from other subword tokens based off the

12 self-attention layers of the main BERT model. In the bottom, we start from the attention weights from the very final layer

that are associated with the [CLS] token and multiply these attention weights through all 12 self-attention layers of the BERT

model; these weights represent the most important subword tokens accounting for all the inter-word relationships captured

during pretraining and fine-tuning. For this visualization, we sum the attention weights across all attention heads.
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