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High-dimensional contingency tables tend to be sparse, and standard goodness-of-fit statistics such as X> cannot be used without pooling
categories. As an improvement on arbitrary pooling, for goodness of fit of large 2" contingency tables, we propose classes of quadratic
form statistics based on the residuals of margins or multivariate moments up to order r. These classes of test statistics are asymptotically
chi-squared distributed under the null hypothesis. Further, the marginal residuals are useful for diagnosing lack of fit of parametric models.
We show that when r is small (r = 2, 3), the proposed statistics have better small-sample properties and are asymptotically more powerful
than X? for some useful multivariate binary models. Related to these test statistics is a class of limited-information estimators based on
low-dimensional margins. We show that these estimators have high efficiency for one commonly used latent trait model for binary data.
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1. INTRODUCTION

It is common in the social sciences to encounter 2" con-
tingency tables, where n can be as large as several hundreds.
These tables arise from, for instance, collecting the responses
of a sample of individuals to a survey, a personality inven-
tory, or an educational test consisting of n items, each with
two possible responses. For instance, Chang, D’Zurilla, and
Maydeu-Olivares (1994) considered modeling the responses of
393 individuals to the Beck Hopelessness Scale (BHS) (Beck,
Weissman, Lester, and Trexler 1974), a set of n = 20 true-or-
false questions used to predict depression, suicidal ideation, and
suicidal intent. There are 229 (>10°) cells in the contingency
table.

A researcher confronted with the problem of modeling such a
2" contingency table faces several challenges. Perhaps the most
important challenge is how to assess the overall goodness of fit
of the hypothesized model. For large n, binary contingency ta-
bles most often become sparse, and the empirical type I error
rates of X? and G test statistics do not match their expected
rates under their asymptotic null distribution. This problem can
be overcome by generating the empirical sampling distribu-
tion of the statistic using the parametric bootstrap method (e.g.,
Collins, Fidler, Wugalter, and Long 1993; Bartholomew and
Tzamourani 1999). However, this approach may be very time-
consuming if the researcher is interested in comparing the fit of
several models.

If, as is often the case, the overall tests suggests significant
misfit, then a second challenge that a researcher must confront
is to identify the source of the misfit. Inspecting cell residu-
als is often not very useful toward this aim. It is difficult to find
trends when inspecting these residuals, and even for moderate n
the number of residuals that need to be inspected is too large.
And perhaps most important, Bartholomew and Tzamourani
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(1999) pointed out that because the cell frequencies are inte-
gers and the expected frequencies in large tables must be very
small, the resulting residuals will be either very small or very
large. To overcome these two challenges, numerous authors,
particularly in psychometrics, have advocated using residuals
for pairs and triplets of variables to assess the goodness of fit in
2" contingency tables. Key references in this literature include
works by Reiser (1996), Reiser and Lin (1999), Reiser and
VandenBergh (1994), Bartholomew and Tzamourani (1999),
and Bartholomew and Leung (2002).

A third challenge that a researcher may face when deal-
ing with large binary tables is a parameter estimation prob-
lem. Take, for instance, latent trait models (for an overview,
see Bartholomew and Knott 1999), which are extremely popu-
lar in the social sciences. If the distribution of the latent traits
is assumed to be multivariate normal, as is most often the case,
then computing the binary pattern probabilities becomes very
difficult as the number of latent traits increases. However, es-
timation for these models using only univariate and bivariate
information is relatively straightforward. There is a long tradi-
tion in psychometrics of using estimation methods that use in-
formation only from the low-order marginals of the table (e.g.,
Christoffersson 1975; Muthén 1978, 1984, 1993). Here we re-
fer to testing and estimation methods that use only the informa-
tion contained in the low-order margins of the contingency table
as limited-information methods. There have also been some
proposals in statistics in using limited-information methods
(Joe 1997, chap. 10). Limited-information methods naturally
yield limited-information testing procedures, whose asymptotic
properties are well known (see Christoffersson 1975; Muthén
1978, 1993; Maydeu-Olivares 2001). However, the asymptotic
distribution of full-information test statistics when the parame-
ters have been estimated using limited-information procedures
has never been studied.

What is needed is a unified treatment of limited- and full-
information estimation and testing in 2" contingency tables.
We provide such a framework in this article under multivari-
ate Bernoulli (MVB) sampling. In Section 2 we provide a
convenient representation of the MVB distribution using its
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joint moments. From the asymptotic distribution of sample
joint moments (marginal proportions), we obtain the asymp-
totic distribution of marginal residuals. In Section 3 we pro-
pose a family of limited information quadratic form statistics
based on these marginal residuals to assess the goodness of
fit of simple null hypotheses. These statistics are asymptot-
ically chi-squared distributed under the null hypothesis, and
Pearson’s full-information X? statistic is a special case of this
family. In Section 4, we extend the results of Section 3 to
composite null hypotheses, the common situation for applica-
tions. We consider two classes of estimators: minimum vari-
ance full-information estimators, such as maximum likelihood,
and consistent and asymptotically normal estimators, includ-
ing limited-information estimators. We propose a family of
limited-information goodness-of-fit test statistics whose mem-
bers are asymptotically chi-squared distributed for both classes
of estimators. To study asymptotic power of our new statistics,
we derive results for the asymptotic distribution under a se-
quence of local alternatives for testing one form of a nested
null model. In Section 5 we propose a family of limited-
information estimators that is closely linked to our proposed
family of limited-information goodness-of-fit tests. These esti-
mators are computationally advantageous when the multivari-
ate binary probabilities are difficult to compute. We show that
these estimators are highly efficient for one common latent trait
model. In Section 6 we include an example of binary item re-
sponse data from Bartholomew and Knott (1999) and a sum-
mary from the BHS to illustrate our results. Finally, in Section 7
we provide conclusions and a discussion of further research.

2. MULTIVARIATE BERNOULLI DISTRIBUTIONS
AND ASYMPTOTIC DISTRIBUTION OF
SAMPLE MOMENTS

In this section we characterize the MVB distribution in terms
of multivariate moments and define the notation used in the
remainder of the article. Consider an n-dimensional random
vector Y = (Y1, ..., Y,) of Bernoulli random variables, with
wi=Pr(Y;=1),i=1,...,n, and joint distribution

my=Pr(Yi=y;,i=1,...,n),
(L
yi €{0, 1}.

y:(yls"'syn)»

When we consider a parametric model with parameter vec-
tor #, we write my(#) for an individual probability and 7 (@)
for the vector of 2" joint probabilities. One convenient way
of ordering the elements of m (@) is by order of the values of
y1=0,1,...,n, and by lexicographic ordering within a con-
stant sum. An example with n = 3 is given later.

The n-variate Bernoulli distribution may be alternatively
characterized by the (2" — 1)-dimensional vector & of its
joint moments (Teugels 1990), &’ = (&), @}, ...,x},)’, where
#) = (71, ....7), w2 is the (5)-dimensional vector of bi-
variate noncentral moments with elements E(Y;Y;) =
Pr(Y; =1,Y;=1) =7y, j < i, and so on, up to @, =
EYi---Y)=Pr(Y1=---=Y,=1).

There is a (2" — 1) x 2" matrix T of 1’s and 0’s, of full row
rank, such that & = Tx. T is an upper triangular matrix if & is
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ordered as described earlier. For example, for n = 3, we have

i 01001101
b 001 01 0 1 1) 700
3 000 1 01 1 1]|]Two
010
7'112:00001001?’0‘
713 0000010171“0
73 000O0O0O0OT1 1 101
011
123 00000O0O0OGOQ 1/

The first column of T is a column of 0’s, so we can partition T =
(0 T) and write # = T with = = ("%). Because ..o =
1 — 1’5, the inverse relationship between 7 and 7 is

= (1) (1)

Alternatively, T can be partitioned according to the partition-
ing of 7,

/4 1 Tnl
%) TnZ

. = . .
Ty Thn

Furthermore, the vector of joint moments of the MVB distrib-
ution up to order < n, denoted by 7, = (&}, ..., })’, can be
written as

n,=T,x,

where T, = (T, ..., T,,)’. Note that by definition, &, = 1.
For a random sample of size N from (1), let p and p de-

note the 2"-dimensional vector of cell proportions, and the

(2" — 1)-dimensional vector of sample joint moments. Then we

have
VN@ - 1)=TVN@p - ). @
Because
VN — 1) -5 N, T),
where I' =D — i’ and D = diag(z) (Agresti 1990), it follows
from (2) that

NP -7) -5 N0, 8), E=TIT.

Let p, and pj, be any two elements of p (not necessarily uni-
variate proportions). Then the elements of E are of the form
Nvar(pg) = 75,(1 — 74) and N cov(pa, Pp) = Taup — TaTtp, SO
that, for example, when n > 3, for i #j, j = k, Nvar(p;) =
frij(l — 7'[1]) and NCOV([.Jij,I.?k) = 7TU — ﬁijj:t'k = JT,](I — frk);
whereas for i, j, and k distinct, N cov(pjj, p) = Tijk — Tjj7Tk.

Also, let p, be the vector of sample moments up to order r,

with dimension s = s(r) = Y_/_; (). Then we have

d Lol —
VN@p,—7,)—>N@©0,E), E,=TIT,. (3

Because T, is of full row rank s, E, is also of full rank s (see
Rao 1973, p. 30).
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3. LIMITED INFORMATION TESTS OF
SIMPLE NULL HYPOTHESES

Consider a simple null hypothesis Hy:m = mo versus Hj:
1t # mo. The two statistics most widely used in this situation
are the likelihood ratio test statistic, G2 = 2N > cpelnlpe/mc],
and Pearson’s test statistic, X% = Nzc(pc — m.)z/(nc). Un-
der the null hypothesis (e.g., Agresti 1990), G* = X +
op(l)—d> X22n_1- However, in sparse tables, when N/2" is
small, the empirical distribution of these statistics is not well
approximated by their limiting chi-squared distribution (e.g.,
Koehler and Larntz 1980), with X> having a better small-sample
performance than GZ.

The poor approximation of X2 to its reference asymptotic
distribution in sparse 2" tables can be attributed to the fact
that the mean and variance of its reference asymptotic dis-
tribution are 2" — 1 and 2(2" — 1), but E(X?) = 2" — 1 and
var(X?) =2(2" = D+ N71[2-2.2" = 22" + 3" 7 7!] (Read
and Cressie 1988, pp. 176—179). Thus the discrepancy between
the empirical variance of X2 and its variance under its reference
asymptotic distribution can be large when some probabilities
7. are small, and for sparse tables with . < 27", the type |
error X2 will be larger than the o level based on its asymptotic
critical value.

We show in the Appendix that X? is a member (with r = n)
of the family of test statistics

L-=N@p,—n,)E  (p,— 7)), r=1,...,n. @

r

That is, X> can be written as the weighted discrepancy between
the sample and expected joint moments of the MVB distribu-
tion,

X>=Np-7)E"'p-n).

But because large samples are needed to accurately estimate the
high-order joint sample moments in X2, as an alternative to X2
in sparse tables we propose using L,, with r depending on the
size n of the model relative to sample size N. From (3), un-
der Hy, the quadratic form statistic L, converges in distribution
toa st(r) distribution as N — co. We also show in the Appendix
that L, is invariant to the relabeling of the categories indexed by
Oand 1.

Only probabilities up to min{2r, n} enter in the computation
of L,, and the O(N—1) term of var(L,) is most influenced by the
smallest marginal probability of dimension min{2r, n}. Hence
we would expect L, for small r to have a distribution closer to
chi-squared for small N even when there are some small prob-
abilities ..

If the L, test suggests significant misfit, then marginal resid-
uals can be inspected to identify the source of the misfit. Again,
letting p, be an arbitrary marginal proportion, the standardized
residual is ~/N(py — 774)/~/Eaas Where &4, is the ath diagonal
element of =. The asymptotic distribution of this residual is
standard normal.

To illustrate the small-sample behavior of L,, r = 1,2,3,
against X> = L, Table 1 summarizes simulated type I errors us-
ing the asymptotic o = .05-level critical values. For null MVB
distributions, we use examples from the exchangeable beta—
binomial MVB model with Bernoulli parameter n and depen-
dence parameter y [see Joe 1997, sec. 7.1, and our eq. (6)].
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Table 1. Type | Errors Using Asymptotic o = .05-Level Critical Values
for X2, Ly, L, and L3

mv) n N X2 Ly Lo Ls
(.5, .5) 5 100 .054 .049 .051 .055
5 1,000 .053 .053 .051 .052
10 100 .230 .051 .055 .084
10 1,000 .089 .051 .049 .055
(.8, .5) 5 100 .071 .053 .057 .066
5 1,000 .056 .049 .054 .053
10 100 .326 .056 .081 142
10 1,000 .140 .052 .053 .065

NOTE: 10* replications; MVB probabilities from model (6). The number of cells is 32 and 1,024
for n=5 and 10.

Table 1 has two different null MVB distributions; the one based
on (n,y) = (.8,.5) has much smaller 7. values than the one
based on (1, y) = (.5, .5). Table 1 clearly demonstrates the the-
ory referred to earlier. Note that the asymptotic critical values
for L; and L; are quite good even for small N /2" ratios; they are
not as good for L3 and are much worse for X*> = L, as sparse-
ness increases. Thus, for increasingly large and sparse tables,
lower r values must be used to ensure accurate type I errors,
particularly in models with some small probabilities.

Bartholomew and Leung (2002) proposed a statistic for test-
ing both simple and composite hypotheses that is closely related
to L,. Their statistic can be written as

N(p2 — 12) (diag(E2)) ™ (P2 — 72),

where Z, denotes the asymptotic covariance matrix of
V/N(p2 — 7t5). This statistic is not asymptotically chi-squared
distributed even in the case of simple null hypotheses.
Bartholomew and Leung (2002) used the first three moments
of this statistic to approximate its sampling distribution using a
chi-squared distribution.

We now consider the power of L, for different r. To do so,
we derive the asymptotic distribution of L, under a sequence of
local alternatives for a parametric MVB model. This is a stan-
dard approach for a power comparison; it avoids the simulations
needed to get finite-sample critical values of X? for power cal-
culations for a sequence of sample sizes.

Let (@) be a parametric MVB model with parameters 6. Let
Hy:0 =0y, and let the family of local alternatives be

Hiy:0=00+¢/VN. (5)

Let § = 873590,0)6. Under (5), from Bishop, Fienberg, and
Holland (1975, p. 471), we have

VN(@p — o) LN N8, Dy — wom() and

VN, — mor)] —5 N(T,8, E,9).

where E,9 = T,(Dg — mom()T,. Therefore, under (5), the lim-
iting distributions of X? and L, are noncentral chi-squared
distributed as N — oo. The noncentrality parameter for X2
is §'Dy, 1§, and the noncentrality parameter for L, is A, =
(T,8) Er_ol (T,d). Hence the power of L, under the sequence
of local alternatives at level « is the probability that a x’ f(k,)
random variable exceeds the upper (100« )th percentile from the
chi-squared distribution with s =) ";_, ('l') degrees of freedom.
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To illustrate the power of the L, statistics, we compute the
asymptotic power of X2 and L, (r = 1, 2, 3) under the local al-
ternatives for families of parametric MVB models. There are a
number of parametric MVB models for which @ consists of uni-
variate and bivariate parameters. A simple one is the multivari-
ate binary beta—binomial model [see (7.4) in Joe 1997], which
is a two-parameter exchangeable MVB model. For this model,
with 7 being the marginal Bernoulli parameter and y being the
dependence parameter [correlation is y /(1 + y)], the joint dis-
tribution in dimension # is

T+ in T 1 =0+
= (1 +iy)
k=0,...,n, yi+--+y=k (6)

Ty =my(n,y) =

3

Table 2 gives a representative summary of the asymptotic
power results. For (6), # = (1, y); hence L; has no power when
€1 = 0 (or univariate margins for alternative same as the null),
but for €1 # 0, L1 has more power than X2. Forn=3, Lj is the
same as X2, so they have same power, and for n > 3, L3 has
more power than X2. Forn>2, Ly always has more power
than X2. When €1 #0 and y > 0, Ly is most powerful, and
when €] = 0, L, is most powerful. These results may be a little
surprising, because one might expect more asymptotic power
when more information is used (higher ), but note that all of
the information in the beta—binomial MVB distribution can be
summarized in the bivariate margins (r = 2).

We did a power analysis for another model to show that X
sometimes has more asymptotic power. We considered an MVB
distribution with higher-order dependence parameters; one sim-
ple model for this is the Bahadur representation [see (7.21)
in Joe 1997] in the exchangeable case with up to third-order
terms. This model has one univariate parameter, one bivariate
parameter, and one trivariate parameter. In this case L, and L3
sometimes have more power than X but not always; among
our arbitrary choices of parameter vectors and directions of de-
partures from the null, X> was most powerful approximately
50% of the time. Also, L3 is sometimes more powerful than L,

Table 2. Power of X2, Ly, Lo, and L3 at Level o = .05 for a Sequence

of Local Alternatives
n n Y €1 €2 X2 L1 Lg L3
5 5 0 1.0 1.0 .890 .952 .966 .920
5 5 A 1.0 1.0 .648 .858 .809 .700
5 5 3 1.0 1.0 .398 .697 .553 .443
5 .6 .3 1.0 1.0 441 718 .600 488
5 2 3 1.0 1.0 .554 .896 722 .606
5 5 0 0 2.0 972 .050 .995 .983
5 5 A 0 2.0 .608 .050 774 .661
5 5 3 0 2.0 .202 .050 .287 .223
5 2 .3 0 2.0 .158 .050 212 173
10 5 0 5 5 21 .542 .561 .296
10 5 A 5 5 .073 .295 197 118
10 5 3 5 5 .060 A77 .106 .078
10 .6 3 5 5 .061 .184 114 .081
10 2 3 5 5 .063 272 .126 .087
10 5 0 0 1.0 .256 .050 .952 .708
10 5 A 0 1.0 .083 .050 .278 153
10 5 3 0 1.0 .057 .050 .089 .069
10 2 3 0 1.0 .056 .050 .078 .065

NOTE: MVB probabilities from model (6); the number of cells is 32 for n=5 and 1,024 for n=10.
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and is definitely more powerful if the local alternative makes no
change to the univariate and bivariate parameters.

The results of the power comparisons and small-sample be-
havior show the usefulness of the class of L, statistics for the
case of an MVB parametric model and a simple null hypothesis.
In small samples and sparse tables, the L, statistics for small r
are much more convenient than L, = X2, because the asymp-
totic chi-squared approximation is valid for much smaller N.

4. LIMITED-INFORMATION TESTS OF COMPOSITE
NULL HYPOTHESES

In the preceding section we considered goodness-of-fit tests
that can be used for MVB parametric models 7 (@) for a fixed
a priori vector @ of dimension g. In practice, in most applica-
tions for multivariate binary data, one is interested in comparing
one or more MVB models where # is estimated from the data
(i.e., composite null hypotheses). In this section we consider
the hypotheses Hy: m = m (#) for some @ versus H : 7 # m ()
for any 6, and we study the analogs of the L, statistics in (4)
when parameters are estimated via maximum likelihood or an-
other estimation method. To do this, throughout this section we
assume that A = 9m(0)/00’ is a 2" x g matrix with full col-
umn rank ¢, so that the model is identifiable. We also assume
that the usual regularity conditions on the model are satisfied,
so as to fulfill the consistency and asymptotic normality of the
0 estimates.

We first consider the case where the g-dimensional vector
is estimated using a consistent and asymptotically normal min-
imum variance estimator, such as the maximum likelihood esti-
mator (MLE) or the minimum chi-squared estimator.

4.1 Maximum Likelihood and Asymptotic Minimum
Variance Estimators

Suppose that we have a sample of size N. Let 9 be the
MLE or another consistent minimum variance estimator. Then
(Bishop et al. 1975),

VN@ —6) =BV/N(p — () +0,(1),

. . (7
B=Z AD ",
and /N — 0)—d>N(0,I_1), where T :AA/D_IA is the
Fisher information matrix. Lettingé =p —w () =p — w (#) —
A —60) + op(N_l/ 2) denote the vector of cell residuals,
we have Wé—d>N(0, ¥),X=(1I-ABITJI—-ABY =T —
AT 'A. )
For the marginal residuals, €, = p, — w.(0) = T,é,
JNé, ~L5 N, £,), where

T, =T,3T,.=E, - AT 'Al ®)
and
dm,(0) I (0)
Ar - 8;/ :Tr 80, :TrA (9)

is an s X g matrix.

For an index a that is a subset of {1, ..., n} of size <r, the
standardized marginal residual J/Né ralV Zraa (é) is asymptot-
ically standard normal. The marginal residuals should be useful
for assessing the source of the misfit of a model.
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We next consider testing composite null hypotheses of the
model using limited information up to the r-dimensional joint
moments. If a model has many parameters, then different para-
meter vectors could lead the same margins of order r, and the
model would be not identified from the joint moments up to
order r. Let rg be the smallest integer » such that the model is
(locally) identified from the joint moments up to order r. Then,
for r > ry, the matrix A, is of full column rank ¢. For our the-
ory, we make the assumption that A, is of full column rank.
Note that this assumption implies that g < s. However, this as-
sumption is introduced only for succinctness in our presenta-
tion. When this assumption does not hold, limited-information
statistics based on lower-order marginals could still be consid-
ered (see Reiser 1996). Also, for our theory, we exclude the
case g = 5. (This happens for example with a log-linear model
with interactions terms up to rth order only, in which case our
statistic would become 0.)

We could consider the statistic

N(p, — m,(0)) T (p, — 7,(0)),

where fj is the Moore—Penrose inverse of Er(é). Under Hy,
this is asymptotically chi-squared distributed with degrees of
freedom equal to the rank of X,, which is between s — g and s.
With r = 2, this is the statistic proposed by Reiser (1996). How-
ever, from studying X, for some MVB models, we discovered
that it sometimes has a small nonzero singular value (not due
to sparseness), so that computation of fj is not always stable.
Hence we propose an alternative quadratic form statistic, with
degrees of freedom s — g < rank(X,), based on a matrix that
has X, as a generalized inverse.

Asin Browne (1984), consider an s x (s — g) orthogonal com-
plement to A,, say Aﬁc), such that Aﬁ”)'Ar =0. Then, from (8),
VNAY®, =AY /N(p, — 7-(0)) has asymptotic covariance
matrix

AT A = A E A, (10)

Thus,

VNAYE, —LN(0, A E,A). (11)

Next, let
C,=C(0) =AY AYE,AL) ALY

and note that C, is invariant to the choice of orthogonal com-
plement. (If Aﬁc) is a full-rank orthogonal complement, then so
is Aﬁ")A for a nonsingular matrix A.) It is straightforward to
verify that C, = C,.X,C,; that is, X, is a generalized inverse of
C,. Letting 6, = C,(é), we then define

M, =M,0) =NeA([A)E,AY) ' [AY]e,

N
= N(p, — 7,0))C,(p — 7,(8)).
From (11) and Slutsky’s theorem, under Hy,

12)

d
M, — st_ @
where the degrees of freedom are obtained from a result of Rao
(1973, p. 30) using the fact that Aﬁc) is of full column rank s — ¢
and hence C, is also of rank s — g. Furthermore, using a result
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of Khatri (1966) [or Rao (1973, p. 77)], C, can be alternatively
written as

C,=C@O)=8"-2"1AAETA)IAE. (13)

Now consider the boundary case of this family of test sta-
tistics, M;,. From the results in the Appendix, M, can be writ-
ten as a quadratic form in the cell residuals as M, = N(p —
7 (6))T(p — w(6)) and M, =X* —N(p — 7 (8))'V(p — 7 (9))
with V.= V(8), where V(0) =D 'A(A'D-'A)"'A’D~!. But
Pp- n(@))/ D~ !A is the score vector or gradient in maximum
likelihood estimation, so that it is O for the MLE, or M,, = X2
when 6 is the MLE. But for other minimum variance asymp-
totically normal estimators, M,, and X2 are equivalent only as-
ymptotically, with M, < X?.

Similar to L,, M, is invariant to the relabeling of the cate-
gories indexed by O and 1, provided that one stays inside the
same parametric model. (The proof is outlined in the App.)

To illustrate the finite-sample performance of M,, consider

the following model with 8 = (&/, '), & = (1, ..., o), B =
(B1, ..., By, and multivariate binary probabilities:
my(a, B) =Pr(Y1=y1,...., Yy =yn)
e @tBx)y;
(14)

co N
=/_OO]1] md’(x)d&

where ¢ (x) is the standard normal density. This is the logit-
normit model (Bartholomew and Knott 1999), also known as
two-parameter logistic model with a normally distributed latent
trait (e.g., Lord and Novick 1968).

Table 3 gives the means, variances, and empirical rejec-
tion rates at o = .20, .10, .05, .01 for M,, M3, and X2 with
maximum likelihood estimation of a logit-normit model for a
five-variable model and an eight-variable model with N = 100
and N = 1,000. Numerical optimization used a quasi-Newton
routine with analytic derivatives. Computations used 48-point
Gauss—Hermite quadrature for the integrals (14) and their deriv-
atives with respect to «; and B;; this is computationally faster,
and it matched computations of MLEs to four decimal places
when Romberg integration was used with accuracy 1076 in (14)
and their derivatives. The tabulated results are based on the sim-
ulations for which the iterations for maximum likelihood esti-
mation converged; see comments of Bartholomew and Knott
(1999) regarding nonconvergence. As can be seen in this ta-
ble, similar to L, versus X2, the M, statistics have small-sample
distributions closer to the asymptotic one in the sparse high-
dimensional case, especially in the extreme upper tail; in par-
ticular, asymptotic critical values of X are not reliable in this
case.

4.2 Consistent and Asymptotically Normal Estimators

When the n-dimensional probabilities may be too difficult to
compute, other simpler estimation methods, such as the limited-
information estimation methods described in Section 5, must
be considered. In this section we consider limited-information
testing of composite hypotheses when the model parameters are
estimated using some alternative +/N-consistent estimator 0.

We assume that 6 satisfies

VN@ —0) =HVN(p — (8)) + 0p(1) (15)



1014

Journal of the American Statistical Association, September 2005

Table 3. Small-Sample Distribution for X2, Mo, and M3; MVB Probabilities for a Logit-Normit Latent Trait Model:
Mean, Variance, and Exceedances of Asymptotic Upper .2, .1, .05, and .01 Quantiles

n N Statistic df Mean Variances oa=.2 a=.1 oa=.05 a=.01
5 100 X2 21 21 104 .21 14 .10 .05
Mo 5 4.9 8.6 18 .09 .04 .006
Ms 15 15 33 19 .10 .06 .02
5 1,000 X2 21 21 46 .20 1 .06 .02
Mo 5 5.0 10 .20 .10 .05 .009
Ms 15 15 30 .20 .10 .05 .01
8 100 X2 239 235 2x10° .22 .20 .19 .16
Mo 20 20 40 .20 1 .06 .012
Ms 76 76 300 .25 .18 13 .06
8 1,000 X2 239 240 1 x 104 .27 .23 .21 A7
Mo 20 20 39 .20 .09 .05 .009
Ms 76 76 160 19 .10 .05 .015
8 2,500 X2 239 240 5x 108 .27 .22 .18 12
Mo 20 20 4 .20 .10 .05 .009
Ms 76 76 160 19 .10 .05 .009

NOTE: 104 replications. Convergence rates were 63% for n=8 and N = 100, 69% for n=5 and N = 100, and >90% for other cases. (a; 8) =

(=1,-.5,0,.5,1;1,1.3,1.6,1.9,2.2) for n=5; (a; ) =

for some ¢ x 2" matrix H; see Section 5 for some examples. We

derive the asymptotic distribution of the vector of cell residuals,

e=p-— Jt(0) for (15). Note that 7t(0) —m(0) = A(0 0) +

op(N™ 1/2y = AH(p w(6))+o0,(N~ 1/2) Because p — 7t(0)

[p—m@)]—[n (0) 7 (0)], we have that /Né = I— AH) (p—

7 (0)) +0p(1), and the asymptotic covariance matrix of V/Né is
=I-AH)I'd- AH).

Next, we consider moments up to order r only, where r > rg
(with rg as defined in Sec. 4.1). Let the vector of residuals of
the moments be €, = p, — n,(#). Because €, = T,e€, the as-
ymptotic distribution of these marginal residuals is [using (9)]

JNe, ~L N, $,), with

3, = (T, — A,H)[(T, — A, H). (16)

To test composite null hypotheses with this class of estimators,
we may use the M, = M, (0) statistic (12) with 6 in place of 0.
This is because if Aﬁc) isan s x (s — g) orthogonal complement
to A,, then \/IVAﬁc)’ér = Aﬁc)’\/ﬁ(pr — 7,(0)) has asymptotic
covariance matrix

Aﬁc)’): A(c) A(c)/— A(c)

the same as the right side of (10).

Thus we have shown that under Hy, M, is asymptotically
xZ g if 0 is any +/N-consistent estimator of 6. In particular, we
have shown that the full-information test statistic M,, = M,,(é)
is asymptotically Xzzn - for this large class of consistent esti-

mators. Note that with X2 9) representmg the X? statistic based
on @, the results in the Appendix, with 0 replacing 0, imply that
Mn(0) < X2(0), that is, for a ~/N-consistent espmator that is
not the MLE, the asymptotic distribution of X%() is stochasti-
cally larger than Xzz,,_ =g

4.3 Asymptotic Distribution Under Local Alternatives and
Power Comparison of X? and M,

Similar to Section 3, we can compare the asymptotic power
of X? and M, under a sequence of local alternatives. There are
several ways of specifying the null and alternative hypothe-
ses; we take the special case where the null hypothesis is a

(-1,-.5,.5,1,—-1,-.5,5,1; .5,.9,1.3,1.6,1.6,1.3,.9,.5) for n=8.

nested model with parameters to be estimated, because in fitting
models to categorical data, one often checks whether a simpler
(nested) version of a model explains the data adequately.

We let m(#) denote an MVB model. For the submodel or
nested model, we suppose that the parameterization is of the
form @ = (9, 0%)’, where 6, = B1.

For testing, the hypotheses are

Hy: (0}, p1"Y versus H;:(07,05) . (17)
For a sequence of local alternatives, we take 6y = (0’]0, Bol")’
as a “true” model and let Oy = (0, Bol’ + wyy’)’ be the se-
quence of alternative parameter values, with v/ Nwy — €. y is
a nonconstant vector that sums to 0 (for identifiability). Let

= (0}, Bo)' and 6" = (', B)’, and let Oy (same dimension
as 00) be the MLE (or an asymptotic minimum variance esti-
mator) based on the null model, assuming a random sample of
size N from x (). Under the foregoing sequence of local al-
ternatives, Oy —> 05 and %, 0y) BN X..(05). For the vector of

residuals,
VN, —m,Oy)) = VN{p,—

Taking expected values, the first term is 0 in expectation, and
expanding the second term leads to

O+, (0n) — 7, (O]}

VNE[x,(0y) — 7+(B)]
= /Nlm,(0y) — 7,(80)] — VNE[m,(By) — 7,(80)]
_ ﬁ[i’éf—%w —00)
22’0 r,("’;; @y — 03) + 0, (o — 0:;”)]
AT |y e
-t o
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where, from the Appendix,
ez =1limvNE(@y — 05)

o dlogmy (@10, fol) ,0my(010, Pol)
=clZepI ) 3(2’1,2?)/ == 8;)2 —
y

19)

and Z(6;) is the Fisher information matrix for the model 7 (9)
under the null hypothesis. Note that §, = T8, where § is com-
puted like 8,, with & replacing &, in (18).

Under the sequence of local alternatives,

VN®, — 7,00) -5 NG, Z).

For the comparison with the usual chi-squared statistic,

VN —mBn) -5 NG, D),

using an argument analogous to that earlier.

Using standard results for noncentral distributions (e.g., Rao
1973), noncentrality parameters for X% and M, (r > ry) are
S’Dal 8 [Do = diag(m (010, Bol1)))] and §/.C,3,, and the degrees
of freedom are 2" — 1 — g and s — g. The power calculations
are then like those in Section 3.2. The power under local al-
ternatives can be computed in a similar way for other consis-
tent estimators. If the estimator is written as a solution to a set
of estimating equations vazl ¥(0,y;) (Godambe 1991), then
in (A.4) the inverse information matrix is replaced by —Dy, (9),
where Dy, = E[dy/30'], and 8¢/00 is replaced by .

To illustrate our discussion, for the logit-normit model (14)
with Ho: B = B1, the powers for X> and M, (r = 2,3) were
computed under sequences of local alternatives. The model un-
der the null hypothesis is known in the educational testing lit-
erature as a one-parameter logistic (or Rasch) model with a
normally distributed latent trait (e.g., Thissen 1982). Table 4
gives some representative results showing that both M> and M3
are more powerful than X2, with M, the most powerful of the
three. Note that model (14) is identified from the univariate
and bivariate moments for n > 3. As a check on the asymptotic
power results, we performed simulations to compare the power
for finite N. The relative comparisons were analogous to those
in Table 4; the rate of convergence to the asymptotic power as
N increases depends on the null parameter vector and direction
of local alternative.
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In summary, for this commonly used model for multivariate
binary data, we have shown that the newly proposed M, sta-
tistics for small r have more power than the X? statistic. The
technique used in this section can be used more generally to
assess the power of M, for other full and nested models. Fu-
ture investigations of power properties of M, for other models
should aid the development of guidelines for models in which
M, is highly effective.

5. LIMITED-INFORMATION ESTIMATION

In this section we consider consistent estimators that are
limited-information estimators; that is, they are based on low-
dimensional margins. A simple class of such estimators is based
on weighted least squares (WLS) of the moment residuals up to
order r. The results of Section 4.2 apply to these estimators.

Consider the estimator @ that is the minimum of

Fr=F,0) =, —m:0)Wp, —m.6)),  (20)

where W LN W = W(0), a positive-definite matrix. Obvious
choices for W in (20) are W =1, W = (diag(E,))_l, and
W= E;] , where E, indicates that Z, is consistently evaluated

using sample proportions. Alternatively, we could also mini-
mize

Fr(8) = (pr — () W(0)(p, — m,(9)). 2

If > rp and A, is of full rank ¢, and if some other mild
regularity conditions are satisfied (e.g., Browne 1984; Satorra
1989; Ferguson 1996), then 6 is consistent and

VN@ - 0) = KVN(p, — 7,8)) + 0p(1)
=KT,v/N(p -z (8)) +0,(1),

where K = (A/WA,)~'A’W. Note that (22) has the form of
(15). Furthermore, we have

(22)

VN@ —0) -4 N0, KE, K 23)
and
VN, —7,0) -S> N0, 0 - AKE, A AK)), (4)

because, from (16), i, = (T, — AKT)I'(T, — A, KT,) =
I-AKEI-AK).

Table 4. Power of X2, My, and M3 at Level « = .05 for a Sequence of Local Alternatives,
Model (14) and Hypothesis (17), € = 10

n o ﬁ Yy X2 M> Mj3
-1,-5,0,.51 1.0 -.6,-.3,0,.3,.6 131 .136 104
-1,-5,0,.5,1 1.5 -.6,-3,0,.3,.6 118 120 .095
-1,-.5,0,.51 2.0 -.6,-.3,0,.3,.6 .097 .098 .081
-1,-5,0,.51 1.0 0,-.6,.3,-6,.9 .220 .358 .251
-1,-5,0,.51 1.5 0,-6,.3 -.6,.9 192 .31 219
-1,-.5,0,.51 2.0 0,-.6,.3,-.6,.9 147 .230 .165

8 -1,-5,.5,1,-1,-5, .51 1.0 -6,-3,.3,.6,.6,.3 -3 -6 122 .286 163

-1,-5,.5,1,-1,-5,.5,1 1.5 -.6,-.3,.3.6,.6,.3 -3 -6 .106 .229 .136
-1,-5,.5,1,-1, -5, .51 2.0 -.6,-3,.3.,.6,.3 -3 -6 .087 165 106
-1,-5,.5,1,-1,-5, .51 1.0 -6,-3,3.9 .3 -3,.6,-.9 176 .489 .270
-1,-5,.5,1,-1,-5,.5,1 1.5 -6,-3.3.9.3,-3,.6,-9 146 .392 216
-1,-5,.5,1,-1,-5, .51 2.0 -6,-3,3.9 .3, -3,.6,-.9 112 .270 .155
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For the spec1al case where W(0) = '“’1 (0), with W in (20)
corresponding to E, ! there are some s1mp11ﬁcat10ns of the re-
sults. Equations (23) and (24) simplify to

VN@ —0) -5 N©, (ALESTA)TY,

VN(p, — m,(8)) (25)

d < — —_— _
~>N(0,2, =2, - A(AE;'A)TTAL),

and we obtain the optimal estimator within the class of the form
of WLS in the residuals of moments up to order r. In this case
we can also define a simpler form Q, in place of Mr(é) in (12)
that looks more like L, in (4),

0, =N(p, — m,(0)) 7(9)).

From the theory of quadratic forms on normal random vari-
ables (Rao 1973, sec. 3b.4) and Slutsky’s theorem, Q, is as-
ymptotically chi-squared distributed, because & 12, =1I-
ETA(ALESA)TIAL [with E, in (25)] is 1dempotent

Another way to show thlS asymptotic result, with the degrees
of freedom, is as follows. Equation (26) can be considered a
special case of

M. =M,®) = N(p, — ,(0))C,(p, —

g pr - (26)

w(9)),

where 6, is C,(0) given by (13) evaluating all of the deriva-
tive matrices using consistent parameter estimates and consis-
tently estimating the marginal probabilities in E, using sample
proportions. By Slutsky’s theorem and the results of Section 4,
M. is asymptotically st ¢ under Hy. The estimator obtained

by minimizing (20) satisfies s (Pr — nr(0)) WAr = 0/ from the
gradient of (20), and for W = ”-:‘—1 (27) becomes (26) as
the second term (after sub/stitution for C ») becomes 0. Hence
NF.(0)=Q, =M. when W=E".

Limited-information methods have been considered mainly
for estimating normit-normit (see Bartholomew and Knott
1999) and related latent trait models. Computing cell proba-
bilities is difficult in these models, because they may involve
high-dimensional normal integrals. However, these models can
be estimated from the univariate and bivariate Bernoulli sam-
ple moments avoiding altogether the need of high-dimensional
normal integrals (see Takane and de Leeuw 1987). The use
of limited-information methods to estimate the normit-normit
model (also known as the multidimensional normal ogive
model) was first proposed by Christoffersson (1975), who min-
imized F» with W= E; !, He also showed that for this particu-

27)

lar estimator, NF,(9) is asymptotically chi-squared distributed.
Other multistage approaches based on the information con-
tained in the univariate and bivariate margins of the table have
been proposed to estimate latent trait models (see Joreskog
1994; Lee, Poon, and Bentler 1995; Maydeu-Olivares 2001;
Muthén 1978, 1984, 1993).

Here we have placed Christoffersson’s (1975) results in the
general context of the family of estimators (20). Within this
general framework, we find that minimizing F, with W= Z, E-1
is equivalent to minimizing the minimum modified chi- squared
function N Zf:l (pe — 7e)?/pe. However, for large n such as
n > 25, Christoffersson’s estimator becomes unattractive, be-
cause a large weight matrix must be inverted. Furthermore,

Journal of the American Statistical Association, September 2005

large samples may be needed to estimate the fourth-order prob-
abilities involved in E, using sample proportions. Alterna-
tively, we could minimize F» in (20) with W= (diag("'.:'.\'g))_1
or W = I, or (21) with W(0) = (diag(Ez(O))’] . These estima-
tors are extremely attractive from a computational standpoint,
but they are not asymptotically efficient even within the class
of estimators relying only on univariate and bivariate informa-
tion.

It is interesting to compare the asymptotic efficiency of al-
ternative members of this class of estimators. Table 5 provides
some results for model (14) comparing the asymptotic rela-
tive efficiency (ARE) of estimators relative to the MLE for
the weighted residual moments least squares F, with W =1
(r=2,3), F, with W=E E) (r_2 3), and F, with W=
The AREs in Table 5 are based on the average of 100 sets
of parameters for (14); for n = 5,8, with the «;’s random
with uniform(—2,2) distribution and the B;’s random with
uniform(1, 2) distribution. AREs were calculated based on di-
agonal entries and determinants of asymptotic covariance ma-
trices. The matrices involved in the calculations in Table 5 are
as follows:

(a) The asymptotic covariance matrix of the MLE is 7!
from (7).

(b) With W =1 for unweighted least squares (ULS), the
asymptotic covariance matrix of 6 is (ALA,)” 1A A X
(AA)~

(c) With W = "5_1 , the asymptotic covariance matrix of 0
is (ALE,A)7 L

Note that the estimators in (b) are highly efficient and that
the WLS estimators in (c) with r = 2,3 are very highly effi-
cient with efficiency in the .99-1.00" range. Note that ULS

Table 5. Comparison of AREs for WLS/ULS Estimators With Maximum
Likelihood; Average Over 100 Simulations

n Estimator Quantity  avg(ARE) SD(ARE)  min(ARE)
5 ULS(r=2) a; .96 .06 70
Bi .93 .07 67
det!/10 .96 .02 92
5 ULS(r=3) o .94 .07 65
Bi 87 .06 63
det!/10 93 .02 .88
5 ULS(r=n) o 78 13 35
Bi 74 14 35
det!/10 .80 .05 70
5  WLS(r=2) o .99 .01 .98
Bi .99 .01 .97
det!/10 .99 .01 .99
8 ULS(r=2) o .94 .06 65
Bi 89 .08 57
det!/20 93 .02 .89
8 ULS(r=3) o .91 10 59
Bi 81 .07 54
det!/20 .88 .02 84
8 ULS(r=n) o 62 14 16
Bi 62 .16 19
det!/20 65 .04 57

NOTE: The «;’s are random with uniform(—2,2) distribution, and the B;’s are random with
uniform(1, 2) distribution. AREs were calculated based on diagonal entries and determinants
of asymptotic covariance matrices. For WLS, .99 means > .99, and the AREs of WLS(r = 2) for
n=28and WLS(r =3) for n=5, 8 are at least as good as WLS(r = 2) for n=5. Also the AREs
for WLS(r =n) are 1.
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with r = n has worse efficiency than ULS with r = 2, 3. The
r = n case is probably worse, because it weights the small
n-dimensional probabilities the same as the larger ones. For
r =2, 3, the marginal probabilities tend not to vary as much.
We also did finite-sample (& in the range of hundreds to thou-
sands) comparisons of the estimators in (b) and (c), and found
that the comparisons are similar to the AREs; the MLE is only
marginally better in terms of mean squared error.

6. NUMERICAL EXAMPLES

A common task in the social sciences is to measure unobserv-
able constructs, such as cognitive abilities, personality traits,
and social attitudes, by administering a set of items written to
be indicators of the unobservable constructs (see Bartholomew
1998). The BHS dataset that we described in Section 1 is an
example of this practice. Before we present brief results for the
BHS example, we present results for a nonsparse dataset where
the asymptotic p values of X are likely to be accurate.

6.1 The Social Life Feelings Scale 10

Our nonsparse example is taken from Bartholomew and
Knott (1999, pp. 97-98), who used data from an original study
reported by Schuessler (1982). The data consist of the responses
of N = 1,490 German respondents to n = 5 binary questions
intended to measure economic self-determination (the Social
Life Feelings Scale 10). Their responses were collected in a
25 = 32 contingency table. Bartholomew and Knott (1999)
used maximum likelihood to estimate a logit-normit latent trait
model (14), where the latent trait is the unobservable construct
being measured.

To illustrate the use of limited-information estimation, Ta-
ble 6 provides our maximum likelihood and bivariate ULS
(r = 2) estimates. Our MLE parameter estimates and standard
errors (SEs) agree with those reported by Bartholomew and
Knott (1999). In terms of model fit, we obtained the results pro-
vided in Table 7. The M, statistics based on MLEs and bivari-
ate ULS are similar and lead to the same conclusions. Note that
X% = Ms with r =n = 5 for maximum likelihood estimation
only, from results in Section 4. Unlike Bartholomew and Knott
(1999), we did not pool cells in computing X>. Nevertheless,
our p value agrees with those reported by these authors.

Clearly, the model does not fit well in this situation, and we
proceed to identify the source of the misfit using the MLEs.
From the standardized cell residuals, the binary patterns that
show significant misfitare (1001 1), (0011 1),(10110),

Table 6. Values of MLEs and Bivariate ULS Estimators for the
Data Example From Bartholomew and Knott (1999)

MLE ULS(r=2)
Parameter Estimate SE Estimate SE
o —-2.35 13 —-2.57 .18
oo .80 .06 .80 .06
o3 .99 09 1.00 .10
oy —.67 13 —.63 11
o5 -1.10 07 -1.10 .08
B 1.20 .15 1.44 .20
B2 71 .09 .73 .09
B3 1.53 17 1.56 .18
Ba 2.55 41 2.34 .35
Bs .92 .10 .93 1
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Table 7. Values of Goodness-of-Fit Statistics for the Data Example
From Bartholomew and Knott (1999)

Estimator Statistic Value df p value
MLE X2 38.9 21 .01
MLE Mo 15.7 5 .01
MLE My 27.9 15 .02
ULS(r=2) Ms 413 21 .01
ULS(r=2) Mo 16.5 5 .01
ULS(r=2) Mz 291 15 .02
MLE X2 (item 1 deleted) 17.7 7 .01
MLE X2 (item 2 deleted) 12.0 7 .10
MLE X? (item 3 deleted) 15.2 7 .03
MLE X2 (item 4 deleted) 19.4 7 .01
MLE X2 (item 5 deleted) 6.0 7 .55
MLE M, (item 1 deleted) 3.9 2 14
MLE My (item 2 deleted) 10.6 2 .01
MLE M, (item 3 deleted) 7.7 2 .02
MLE M, (item 4 deleted) 9.1 2 .01
MLE Mo (item 5 deleted) 1.9 2 .38

NOTE: For MLE estimation, X? = Ms.

(11110),and (1 111 1). These residuals suggest that the
model does not fit well for item 4. However, the standardized
marginal residuals up to third order (see Sec. 4.1) present a very
different picture. Significant marginal residuals are obtained for
(1,5), 3,5), (1,2,4), (1,2,5), (1,3,5), and (1,4, 5), clearly
suggesting that the model does not fit well for item 5. To verify
both conjectures, we fitted a logit-normit model to all five com-
binations of four items. The results, presented in the second part
of Table 7, clearly indicate that economic self-determination is
best measured by the first four items of this scale, as suggested
by the marginal residuals.

6.2 Beck Hopelessness Scale

As suggested by Beck et al. (1974), for 12 of the variables
on the BHS a 1 was assigned if the respondent endorsed the
item, and 0 was assigned otherwise. The remaining nine items
were inverse-coded; O was assigned if the item was endorsed,
and 1 was assigned otherwise. With this coding, the correla-
tions among all binary variables are positive. For these data,
the bivariate marginal tables are not sparse, but some trivari-
ate marginal tables have some small counts. We estimated a
logit-normit model to these data using maximum likelihood and
bivariate ULS estimation. We found that M, was 231.5 with
the former and 239.2 with the latter, with 170 degrees of free-
dom, so the model does not fit well (p < .002). There were
20 univariate and bivariate significant residuals (o = .05). Item
20 had the largest univariate residual and was involved in the
largest bivariate residual. Thus the residual analysis suggests
deleting this item. After removing this item, the model fits bet-
ter: M, = 183.7 and 187.3 on 152 degrees of freedom for MLE
and ULS, p &~ .03. For this model, the MLE of the intercepts
(a’s) ranged from —6.2 (SE = 1.2) to .21 (.12), and the MLE
of the slopes (8’s) ranged from .32 (.15) to 4.2 (1.0).

7. DISCUSSION AND CONCLUSIONS

A serious challenge faced by a researcher confronted with
modeling 2" contingency tables for large n is how to test the
goodness of fit of the model, because the empirical distribution
of the usual goodness-of-fit statistics is not well approximated
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by its asymptotic distribution in large and sparse tables. In the
past, two general solutions to this problem have been proposed:
resampling methods and pooling cells. Resampling methods
may be too time-consuming when fitting models that are com-
putationally intensive, whereas pooling cells in large and sparse
tables may not make best use of the multivariate structure and
may yield statistics with unknown sampling distribution. Here
we have proposed an alternative approach, limited-information
testing.

Our approach is based in the observation that MVB mod-
els can be equivalently specified as a set of restrictions on the
2" cell probabilities or on the 2" — 1 set of joint moments of
the distribution. We propose using only a subset of the moment
restrictions to test the fully specified model (hence the term
“limited-information testing”). Because we advocate choosing
a set of low-order joint moments for testing, our approach
amounts to pooling cells in a systematic way, so that the re-
sulting statistics have a known (asymptotic) distribution.

Toward this aim, we have proposed two families of test sta-
tistics, L, and M,, where r denotes the highest-order at which
testing is performed. L, is a family of test statistics suitable for
testing parametric hypotheses with a priori determined para-
meter values, and M, is a family of test statistics suitable for
testing parametric hypotheses where the parameters are to be
estimated from the data. In large and sparse 2" tables, L, for
small  (r = 1,2, 3) should be used instead of X2, because the
former have more precise empirical type I errors and may be
asymptotically more powerful than the latter. Similarly, with
estimated model parameters, M, for small r should be used to
test composite parametric hypotheses instead of X2, because the
former have more precise empirical type I errors and may be
asymptotically more powerful than the latter. Theoretically, the
asymptotic variances of L, and M, are influenced by the small-
est marginal probability of dimension min{2r, n}. This property,
combined with our simulation results, suggest that the asymp-
totic null distribution of M, and L, can be acceptable if the
rth-order margins are not sparse, and that larger sample sizes
are needed as r increases for the null asymptotics to be valid.
Note that L, and M, have no power to distinguish among mod-
els with the same margins up to order r but different higher-
order margins.

If the model is identified from the margins up to order r
(A has full column rank ¢) and s(r) > ¢, and if a consistent and
asymptotically normal estimator is used, then M, is asymptoti-
cally x Sz(r)_ o with degrees of freedom equal to the total number
of multivariate moments used for testing minus the number of
parameters being estimated. A special case of M, is M,,. This is
a full-information statistic that can be used to assess the good-
ness of fit to the table cells under the same conditions stated
earlier. For minimum variance consistent and asymptotically
normal estimators, M, is asymptotically equal to X2. In partic-
ular, in the case of maximum likelihood estimation, M,, = X2,

After assessing the overall goodness of fit of a model, then if
this is poor, it is necessary to determine the source of the misfit.
Following Reiser (1996), we suggest using marginal residuals
that are asymptotically standard normal. As our numerical ex-
ample illustrates, the use of these residuals can be much more
informative than using cell residuals.
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In practice, we recommend using M for testing composite
hypotheses when the model is identified using only univariate
and bivariate information. Only up to bivariate sample moments
and up to four-way model probabilities are involved in the com-
putation of M. As aresult, its asymptotic distribution under the
null and alternative hypotheses should be well approximated
with samples of a few hundred observations even for large
models. This is the case in our simulations for the logit-normit
model where, in addition, highest power is obtained with M>.
Additional Monte Carlo simulations are needed to determine
the sample size needed for M, to yield accurate type I errors for
different parametric models and for an increasing number of
observed variables. Also, additional work is needed to investi-
gate the use of a quadratic form statistic like M, when s > ¢ but
A, is not of full column rank ¢ (i.e., the model is not identified
from MVB moments up to order r).

In this article we have also considered limited-information
estimators. In psychometrics, multistage estimators that use the
information contained in the univariate and bivariate margins of
the table are often used to estimate models for which computing
cell probabilities is difficult. Popular software packages such
as LISREL (Joreskog and Sorbom 2001), EQS (Bentler 1995),
and MPLUS (Muthén and Muthén 2001) implement these esti-
mators to estimate normit-normit and related latent trait mod-
els. Here we have provided a full-information test statistic, M,,,
which can be used to assess the goodness of fit of models es-
timated using these sequential procedures. Also, we have con-
sidered a class of one-stage estimators obtained by minimizing
F, in (20), which includes both limited- and full-information
estimators. This class of estimators is related to the class of
goodness-of-fit test statistics M,..

In choosing among limited-information estimators, for com-
putational reasons we recommend estimators based on univari-
ate and bivariate information. Our small-sample simulations
with the logit-normit model suggest that the MLE is only mar-
ginally better in terms of mean squared error than the bivariate
ULS estimator. Similar simulation results have been obtained
by Finger (2002) using the normit-normit model. More research
is needed using a variety of models to investigate the empirical
behavior of limited-information estimators relative to MLEs.

As n gets larger, certain computational details must be con-
sidered to manage the computations within available computer
memory. In future research, we will provide other related ap-
proaches that are computationally simpler. Also, here we have
not covered sparse multidimensional tables in which the cate-
gorical variables take more than two values. Our results extend
readily to this case, which we will discuss in a separate report.

APPENDIX: PROOFS

A1 Lp=X2and Mn(8) < X2(8) With Equality for the
Maximum Likelihood Estimator
We claim that X2 = N(p — )’ 2~ (p — ), which is the definition
of L, because m;, = and E, = E.. To see this, let é=p — 7, € =
p — 7, and e = p — 7. Because é = Té¢,

Np-#)E2 \p-7)=NT'E"1T¢. (A1)
Letting D = diag(%), & = T(D — ##/)T’ and
=7 =) @ + 105 )T, (A2)
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where Do = 7(y...0. Thus (A.1) is the same as N(é’ﬁ_lé+é’1Dal 1¢).
Because e can be partitioned as € = (eg, €')’, where ey = —1’&, then

(A.1) becomes
N@Dé+ Dy 'ed) =Ne'D~le=x>.

For My, let & = p — (@) = py — ma(d), € =p — 7

€ =p — 7 (0) for an estimator @, so that
en =Cn(é)v
Co=2""—z27 A, A E7 AT AL ET]

EUNCIVN LN IRINCD

M, = N&'Cpé,

We claim that

M, =NeU@®), U=U@®),
where
U=U@®=D""-D'AAD"'A)"1AD,
so that
M,=X*@)—N&'Ve, V=V(@),
where

V@)=D'AAD 1A TaD L.

Let hats on matrices denote evaluation at . For the proof of the
claim from the foregoing algebraic result for X2 and L,, ¢E le=
&D~!é. With partitioning of A’ = (A A’), we have A, = TA.
Thus, from (A.2), A} E =1 Ay, in the deﬁnmon of C, for M, equals
AD! + lDall/)A, evaluated at @. But because A =0/, 'A =
—Ap,and A, E “IA, =AD" 1A até. Similarly, because é = T&,

¢ETIA, =TT (D! +1D, )T~ TA
=¢D 1A +eoDy Ay =¢D A, (A3)
where eq = —1’é. Hence the claim is established.

Finally, (A.3) is 0 if @ is the MLE, because it is the vector of score
equations that the MLE satisfies. So M, = X2 for the MLE.

A.2 Invariance to 0—1 Labeling

For any statistical procedure with binary data, it is important to
check on the effect of the labeling of categories. We first prove the
invariance for L,. If the 01 labeling is reversed, then & (in the or-
dering described in Sec. 2) is completely reversed; that is, the proba-
bility vector becomes Am, where A is a 2" x 2" matrix that has 1’s
in the (i,2" — i) positions for all i and 0’s elsewhere. Lete=p —
and e, = p, — . Under the relabeling, e, = Tre - T,Ae = A;kTre,
where A is an s(r) x s(r) matrix, with entries in {—1,0, 1}, such
that A*A* = I The entries of A come from the expansion of

]_[](1 , in terms of the MVB moments, over different subsets
{i1, .. zk} of size 1 to r; the factor of 1 cancels from the differencing
of p and x. If the relabeling is done twice, then we have

Tre=T,AAe=AT,Ae=A A T,e,

which shows that A¥A¥ = I. Furthermore with the relabeling, T =
diag(m) —wn’ — ATA’, E, =T, T, - AFE,A}, and
= e, > A (AT IET N AN T A e, =€l E e,
which establishes the invariance.
For the relabeling for a parametric MVB family and M, sup-
pose that the relabeling changes 6 to @, with invertible Jacobian
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J =00/00 . We just summarize the effect of the relabeling on all
of the matrices and vectors in M.,

A—>AAY., A, > AMAT. G A TIc.(anH T

>60r. p-m®) > Aflp—m, )

It follows that M, is invariant to the 0—1 relabeling.

A.3 Local Alternatives: Expected Value of the Maximum
Likelihood Estimator

Consider a parametric family f(y; #), which can be continuous or
discrete, where f is a density relative to measure v (Lebesgue or count-
ing measure). This section concerns a limit of the expected value of the
MLE for a sequence of local alternatives when the null hypothesis is
a nested submodel of a certain form. The usual regularity conditions
are assumed to hold. The technique of derivation can be used for other
forms of nested model (e.g., some of the parameters fixed under Hy)),
but we cannot obtain a result to be used for all forms of nested sub-
models.

For the submodel, we suppose that the parametrization is of the form
0 = (6),0,)", where 6, = 1. We obtain the MLE based on the sub-
model and derive its distribution under local alternatives in the full
model. That is, the hypotheses are

HO:(O/l,ﬁl/)/ versus Hi: (0’1,0/2)/.

For a sequence of local alternatives, we take 8 = (8, Bo1’) as a
“true” model, and let O = (0, fol’ + wny’)’ be the sequence of
alternative parameter values. Here p is a nonconstant vector that sums
to O (for identiﬁability)

Let 05 = (07, Bo)’ and " = (8, B)’, and write the density
for Hy as f*( 0%) = f(; (0, B1)). Let £(6*;y) = logf*(y; 6%),
£=100/00%, and ¥ = 0%¢/00* 30*'.

Suppose that the MLE 97;, is a solution of L(8*) = ivzl £(0*,
yin) =0, where y, ..., ynn is a random sample from f(-; 0 ). Take
an expansion of L about 03 to get

0= Zé(élv;yi/v)
=Y £OF: yiv) + Y L3 yin) On — %) + 0p (10 — 0511
or

VN@yN -6}
=[-~! Zé'(oa*:yim]_lzv—”zzéwé;yw) +op(1).
Under the sequence of local alternatives,
—NTUY T E O ) S T6)).

where T is the Fisher information matrix for the model f*(-; 0*).
Hence, under the usual regularity conditions for asymptotic maximum

likelihood,
VNE@y — 0% = [ZOF)] " VNE@F: YN +op(D). (A4

Taking an expansion of f(y; (8, Bol’ +wny’)’) about 6 leads to

5 5 ’ e
E[£65: yin)] ~ /5(03;y)[f(y; 00 Bo1)) +wny %} dv(y)
. 3
—un [ {0507 3= v,

Finally, if ~/Nwy — ¢, then (A.4) becomes (as N — 00)

A )
VNE@y - 03) — [Z0%)] ! / {05y’ —fdv<y> (A5)
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For a discrete model (v corresponding to counting measure), write
f(y;0) = my(6), where y may be a vector (e.g., a binary vector of di-
mension n). Then (A.5) becomes (19).

[Received February 2004. Revised November 2004.]
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