Limited Automata and Context-Free Languages

Giovanni Pighizzini Andrea Pisoni

Dipartimento di Informatica Università degli Studi di Milano, Italy

NCMA 2013
Umeå, Sweden
August 13-14, 2013

The Chomsky Hierarchy

1-tape Turing Machines	type 0	
Linear Bounded Automata	type 1	
Pushdown Automata	type 2	
Finite Automata		

Limited Automata [Hibbard'67]

One-tape Turing machines with restricted rewritings
Definition
Fixed an integer $d \geq 1$, a d-limited automaton is

- a one-tape Turing machine
- which is allowed to rewrite the content of each tape cell only in the first d visits

Limited Automata [Hibbard'67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \geq 1$, a d-limited automaton is

- a one-tape Turing machine
- which is allowed to rewrite the content of each tape cell only in the first d visits

Limited Automata [Hibbard'67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \geq 1$, a d-limited automaton is

- a one-tape Turing machine
- which is allowed to rewrite the content of each tape cell only in the first d visits

Computational power

- For each $d \geq 2, d$-limited automata characterize context-free languages
- 1-limited automata characterize regular languages [Wagner\&Wechsung'86]

The Chomsky Hierarchy

1-tape Turing Machines	type 0	
Linear Bounded Automata	type 1	
Pushdown Automata	type 2	
Finite Automata		

The Chomsky Hierarchy

1-tape Turing Machines		type 0
Linear Bounded Automata		
2-Limited Automata	type 1	
Finite Automata		

Our Contributions

- 2-Limited Automata \equiv Pushdown Automata: descriptional complexity point of view
- Determinism vs Nondeterminism

Our Contributions

- 2-Limited Automata \equiv Pushdown Automata: descriptional complexity point of view

2-LAs \rightarrow PDAs
Exponential gap

- Determinism vs Nondeterminism

Our Contributions

- 2-Limited Automata \equiv Pushdown Automata: descriptional complexity point of view

2-LAs \rightarrow PDAs
Exponential gap

PDAs $\rightarrow 2$-LAs
Polynomial upper bound

- Determinism vs Nondeterminism

Our Contributions

- 2-Limited Automata \equiv Pushdown Automata: descriptional complexity point of view

2-LAs \rightarrow PDAs
Exponential gap

PDAs $\rightarrow 2$-LAs
Polynomial upper bound

- Determinism vs Nondeterminism

Our Contributions

- 2-Limited Automata \equiv Pushdown Automata: descriptional complexity point of view

2-LAs \rightarrow PDAs
Exponential gap

PDAs $\rightarrow 2$-LAs
Polynomial upper bound

- Determinism vs Nondeterminism

Deterministic Context-Free Languages \equiv Deterministic 2-LAs

Example: Balanced Parentheses

> (i) Move to the right to search a closed parenthesis
> (ii) Rewrite it by \#
> (iii) Move to the left to search an open parenthesis
> (iv) Rewrite it by \#
> (v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Special cases:
(i') If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain \#
(iii') If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Special cases:
(i^{\prime}) If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain \#
(iii') If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Special cases:
(i') If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain \#
(iii') If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Special cases:
(i^{\prime}) If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain \#
(iii') If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Special cases:
(i') If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain \#
(iii') If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Special cases:
(i^{\prime}) If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain \#
(iii') If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Special cases:
(i') If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain \#
(iii') If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Special cases:
(i^{\prime}) If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain \#
(iii') If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Special cases:
(i') If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain \#
(iii') If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Special cases:
(i^{\prime}) If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain \#
(iii') If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Special cases:
(i') If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain \#
(iii') If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

\square
(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by \#
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by \#
(v) Repeat from the beginning

Special cases:
(i') If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain \#
(iii') If in (iii) the left end of the tape is reached then reject

$$
\text { Each cell is rewritten only in the first } 2 \text { visits! }
$$

Simulation of 2-Limited Automata by Pushdown Automata

Problem

How much it costs, in the description size, the simulation of 2-LAs by PDAs?

Simulation of 2-Limited Automata by Pushdown Automata

Problem

How much it costs, in the description size, the simulation of 2-LAs by PDAs?

This work
Exponential cost!

Transition Tables of 2-LAs

- Fixed a 2-limited automaton
- Transition table τ_{w}
w is a "frozen" string

$$
\tau_{w} \subseteq Q \times\{-1,+1\} \times Q \times\{-1,+1\}
$$

$\left(q, d^{\prime}, p, d^{\prime \prime}\right) \in \tau_{w}$ iff M on a tape segment containing w has a computation path:

- entering the segment in q from d^{\prime}
- exiting the segment in p from $d^{\prime \prime}$

■ left $=-1$, right $=+1$

Transition Tables of 2-LAs

- Fixed a 2-limited automaton
- Transition table τ_{w}
w is a "frozen" string

$$
\tau_{w} \subseteq Q \times\{-1,+1\} \times Q \times\{-1,+1\}
$$

$\left(q, d^{\prime}, p, d^{\prime \prime}\right) \in \tau_{w}$ iff M on a tape segment containing w has a computation path:

- entering the segment in q from d^{\prime}
- exiting the segment in p from $d^{\prime \prime}$

■ left $=-1$, right $=+1$

Transition Tables of 2-LAs

- Fixed a 2-limited automaton
- Transition table τ_{w} w is a "frozen" string

$$
\tau_{w} \subseteq Q \times\{-1,+1\} \times Q \times\{-1,+1\}
$$

$\left(q, d^{\prime}, p, d^{\prime \prime}\right) \in \tau_{w}$ iff M on a tape segment containing w has a computation path:

- entering the segment in q from d^{\prime}
- exiting the segment in p from $d^{\prime \prime}$
- left $=-1$, right $=+1$

Transition Tables of 2-LAs

- Fixed a 2-limited automaton
- Transition table τ_{w} w is a "frozen" string

$$
\tau_{w} \subseteq Q \times\{-1,+1\} \times Q \times\{-1,+1\}
$$

$\left(q, d^{\prime}, p, d^{\prime \prime}\right) \in \tau_{w}$ iff M on a tape segment containing w has a computation path:

- entering the segment in q from d^{\prime}
- exiting the segment in p from $d^{\prime \prime}$
- left $=-1$, right $=+1$

Transition Tables of 2-LAs

- Fixed a 2-limited automaton
- Transition table τ_{w} w is a "frozen" string

$$
\tau_{w} \subseteq Q \times\{-1,+1\} \times Q \times\{-1,+1\}
$$

$\left(q, d^{\prime}, p, d^{\prime \prime}\right) \in \tau_{w}$ iff M on a tape segment containing w has a computation path:

- entering the segment in q from d^{\prime}
- exiting the segment in p from $d^{\prime \prime}$
- left $=-1$, right $=+1$

Simulation of 2-LAs by PDAs

Initial configuration

Simulation of 2-LAs by PDAs

Initial configuration

Simulation of 2-LAs by PDAs

Initial configuration

Some computation steps...

Simulation of 2-LAs by PDAs

Initial configuration

Some computation steps...

Simulation of 2-LAs by PDAs

Initial configuration

Some computation steps...

Simulation of 2-LAs by PDAs

Initial configuration

Some computation steps...

Simulation of 2-LAs by PDAs

Initial configuration

Some computation steps...

Simulation of 2-LAs by PDAs

Initial configuration

Some computation steps...

Simulation of 2-LAs by PDAs

Initial configuration

Some computation steps...

Simulation of 2-LAs by PDAs

Initial configuration

Some computation steps...

Simulation of 2-LAs by PDAs

Initial configuration

Some computation steps...

Simulation of 2-LAs by PDAs

Initial configuration

Some computation steps...

Simulation of 2-LAs by PDAs

Initial configuration

Some computation steps...

Simulation of 2-LAs by PDAs

Initial configuration

After some steps...

Simulation of 2-LAs by PDAs

Initial configuration

After some steps...

Simulation of 2-LAs by PDAs

Initial configuration

After some steps...

Simulation of 2-LAs by PDAs

Initial configuration

After some steps...

Simulation of 2-LAs by PDAs

Initial configuration

After some steps...

Simulation of 2-LAs by PDAs

Initial configuration

After some steps...

Simulation of 2-LAs by PDAs

Simulation of 2-LAs by PDAs

Simulation of 2-LAs by PDAs

Simulation of 2-LAs by PDAs

$\delta(q, g) \ni(p, Z,+1)$ move to the right
\Downarrow

normal mode
push and direct simulation \Downarrow

Simulation of 2-LAs by PDAs

$\delta(q, g) \ni(p, Z,+1)$ move to the right
\Downarrow

normal mode
push and direct simulation
\Downarrow

Simulation of 2-LAs by PDAs

Simulation of 2-LAs by PDAs

$\delta(p, h) \ni(r, H,-1)$
move to the left
\Downarrow

Simulation of 2-LAs by PDAs

$$
\begin{gathered}
\delta(p, h) \ni(r, H,-1) \\
\text { move to the left } \\
\Downarrow
\end{gathered}
$$

Simulation of 2-LAs by PDAs

$\delta(p, h) \ni(r, H,-1)$
move to the left \Downarrow

back mode

Simulation of 2-LAs by PDAs

$\delta(p, h) \ni(r, H,-1)$
move to the left

back mode

Simulation of 2-LAs by PDAs

Simulation of 2-LAs by PDAs

$\delta(r, Z) \ni(q, G,-1)$
move to the left
\Downarrow

Simulation of 2-LAs by PDAs

$$
\delta(r, Z) \ni(q, G,-1)
$$

move to the left \Downarrow

Simulation of 2-LAs by PDAs

$\delta(r, Z) \ni(q, G,-1)$
move to the left
$\triangleright A B|X Y| E|F| G \mid H i \cdots \triangleleft$

back mode

Simulation of 2-LAs by PDAs

$\delta(r, Z) \ni(q, G,-1)$
move to the left

back mode

Simulation of 2-LAs by PDAs

Simulation of 2-LAs by PDAs

$(q,+1, s,-1) \in \tau_{E F}$
exit to the left
\Downarrow

Simulation of 2-LAs by PDAs

Simulation of 2-LAs by PDAs

$(q,+1, s,-1) \in \tau_{E F}$ exit to the left \Downarrow

back mode

Simulation of 2-LAs by PDAs

Simulation of 2-LAs by PDAs

Simulation of 2-LAs by PDAs

$\delta(s, Y) \ni(p, D,+1)$ move to the right
\Downarrow

Simulation of 2-LAs by PDAs

Simulation of 2-LAs by PDAs

$$
\delta(s, Y) \ni(p, D,+1)
$$ move to the right \Downarrow

back mode \Downarrow

Simulation of 2-LAs by PDAs

Simulation of 2-LAs by PDAs

Simulation of 2-LAs by PDAs

Simulation of 2-LAs by PDAs

$(p,-1, r,+1) \in \tau_{E \ldots H}$ exit to the right
\Downarrow

Simulation of 2-LAs by PDAs

Simulation of 2-LAs by PDAs

$$
(p,-1, r,+1) \in \tau_{E \ldots H}
$$

exit to the right
\Downarrow

resume normal mode move to the right
\Downarrow

Simulation of 2-LAs by PDAs

$$
(p,-1, r,+1) \in \tau_{E \ldots H}
$$

exit to the right
\Downarrow

resume normal mode move to the right

Simulation of 2-LAs by PDAs

$$
(p,-1, r,+1) \in \tau_{E \ldots H}
$$

exit to the right
\Downarrow

resume normal mode move to the right

Simulation of 2-LAs by PDAs

$$
(p,-1, r,+1) \in \tau_{E \ldots H}
$$

exit to the right
\Downarrow

resume normal mode move to the right

Simulation of 2-LAs by PDAs

Summing up...

Cost of the simulation

- In the resulting PDA transition tables are used for
- states
- pushdown alphabet
- Exponential upper bound for the size of the resulting PDA
- Optimal

Simulation of 2-LAs by PDAs

Summing up...

Cost of the simulation

- In the resulting PDA transition tables are used for
- states
- pushdown alphabet
- Exponential upper bound for the size of the resulting PDA
- Optimal

Simulation of 2-LAs by PDAs

Summing up...

Cost of the simulation

- In the resulting PDA transition tables are used for
- states
- pushdown alphabet
- Exponential upper bound for the size of the resulting PDA
- Optimal

Simulation of 2-LAs by PDAs

Summing up...

Cost of the simulation

- In the resulting PDA transition tables are used for

■ states

- pushdown alphabet
- Exponential upper bound for the size of the resulting PDA
- Optimal

Determinism vs nondeterminism

- Determinism is preserved by the simulation provided that the input of the PDA is right end-marked
- Double exponential size for the simulation of D2-LAs by DPDAs
- Conjecture this cost cannot be reduced

Simulation of 2-LAs by PDAs

Summing up...

Cost of the simulation

- In the resulting PDA transition tables are used for

■ states

- pushdown alphabet
- Exponential upper bound for the size of the resulting PDA
- Optimal

Determinism vs nondeterminism

- Determinism is preserved by the simulation provided that the input of the PDA is right end-marked
- Double exponential size for the simulation of D2-LAs by DPDAs
- Conjecture: this cost cannot be reduced

Simulation of 2-LAs by PDAs

Summing up...

Cost of the simulation

- In the resulting PDA transition tables are used for

■ states

- pushdown alphabet
- Exponential upper bound for the size of the resulting PDA
- Optimal

Determinism vs nondeterminism

- Determinism is preserved by the simulation provided that the input of the PDA is right end-marked
- Double exponential size for the simulation of D2-LAs by DPDAs
- Conjecture: this cost cannot be reduced

Simulation of Pushdown Automata by 2-Limited Automata

PDAs \rightarrow 2-LAs
Polynomial cost!

(in the description size)

Simulation of Pushdown Automata by 2-Limited Automata

PDAs \rightarrow 2-LAs
Polynomial cost!

DPDAs \rightarrow D2-LAs
 Polynomial cost!

(in the description size)

Simulation of PDAs by 2-LAs

Simulation of PDAs by 2-LAs

Simulation of PDAs by 2-LAs

Simulation of PDAs by 2-LAs

$a|b| c|d| e|f| g|h| i \cdots$

Simulation of PDAs by 2-LAs

Normal form for (D)PDAs:

- at each step, the stack height increases at most by 1
- ϵ-moves cannot push on the stack

Each (D)PDA can be simulated by an equivalent (D)2-LA of polynomial size

Determinism vs Nondeterminism in Limited Automata

Corollary of the simulations
Deterministic 2-LAs \equiv Deterministic Context-Free Languages

On the other hand, the language

$$
L=\left\{a^{n} b^{n} c \mid n \geq 0\right\} \cup\left\{a^{n} b^{2 n} d \mid n \geq 0\right\}
$$

is accepted by a deterministic 3-LA, but it is not a DCFL
Infinite hierarchy [Hibbard'67]
For each $d \geq 2$ there is a language which is accepted by a deterministic d-limited automaton and that cannot be accepted by any deterministic ($d-1$)-limited automaton

Determinism vs Nondeterminism in Limited Automata

Corollary of the simulations

Deterministic 2-LAs \equiv Deterministic Context-Free Languages

On the other hand, the language

$$
L=\left\{a^{n} b^{n} c \mid n \geq 0\right\} \cup\left\{a^{n} b^{2 n} d \mid n \geq 0\right\}
$$

is accepted by a deterministic 3-LA, but it is not a DCFL
Infinite hierarchy [Hibbard'67]
For each $d \geq 2$ there is a language which is accepted by a
deterministic d-limited automaton and that cannot be
accepted by any deterministic ($d-1$)-limited automaton

Determinism vs Nondeterminism in Limited Automata

Corollary of the simulations

Deterministic 2-LAs \equiv Deterministic Context-Free Languages

On the other hand, the language

$$
L=\left\{a^{n} b^{n} c \mid n \geq 0\right\} \cup\left\{a^{n} b^{2 n} d \mid n \geq 0\right\}
$$

is accepted by a deterministic 3-LA, but it is not a DCFL
Infinite hierarchy [Hibbard'67]
For each $d \geq 2$ there is a language which is accepted by a deterministic d-limited automaton and that cannot be accepted by any deterministic $(d-1)$-limited automaton

Futher Investigations

- Descriptional complexity aspects for $d>2$

We conjecture that for $d>2$ the size gap from d-limited automata to PDAs remains exponential

- Descriptional complexity aspects in the unary case
- Unary context-free language are regular [Ginbsurg\&Rice'62]

Futher Investigations

- Descriptional complexity aspects for $d>2$

We conjecture that for $d>2$ the size gap from d-limited automata to PDAs remains exponential

- Descriptional complexity aspects in the unary case
- Unary context-free language are regular [Ginbsurg\&Rice'62]

Futher Investigations

- Descriptional complexity aspects for $d>2$

We conjecture that for $d>2$ the size gap from d-limited automata to PDAs remains exponential

- Descriptional complexity aspects in the unary case
- Unary context-free language are regular [Ginbsurg\&Rice'62]

Futher Investigations

- Descriptional complexity aspects for $d>2$ We conjecture that for $d>2$ the size gap from d-limited automata to PDAs remains exponential
- Descriptional complexity aspects in the unary case
- Unary context-free language are regular [Ginbsurg\&Rice'62]
- Ex: $L_{n}=\left(a^{2^{n}}\right)^{*}$

	size
2-LA	$O(n)$
DPDA	$O(n)$
minimal DFA	2^{n}
minimal 2NFA	2^{n}

Thank you for your attention!

