Limited Automata and Regular Languages

Giovanni Pighizzini Andrea Pisoni

Dipartimento di Informatica Università degli Studi di Milano, Italy

DCFS 2013

London, ON, Canada
July 22-25, 2013

One-Tape Turing Machine

Very simple but powerful model!
Recursive enumerable languages

One-Tape Turing Machine

Very simple but powerful model! Recursive enumerable languages

What about restricted versions?

- No rewritings: two-way finite automata Regular languages
- Linear space:

Context-sensitive languages [Kuroda'64]

- Linear time:

Regular languages [Hennie'65]

One-Tape Turing Machine

Very simple but powerful model! Recursive enumerable languages

What about restricted versions?

- No rewritings: two-way finite automata Regular languages
- Linear space:

Context-sensitive languages [Kuroda'64]

- Linear time:

Regular languages [Hennie'65]

One-Tape Turing Machine

Very simple but powerful mode!! Recursive enumerable languages

What about restricted versions?

- No rewritings: two-way finite automata Regular languages
- Linear space:

Context-sensitive languages [Kuroda'64]

- Linear time:

Regular languages [Hennie'65]

One-Tape Turing Machine

Very simple but powerful mode!! Recursive enumerable languages

What about restricted versions?

- No rewritings: two-way finite automata Regular languages
- Linear space:

Context-sensitive languages [Kuroda'64]

- Linear time:

Regular languages [Hennie'65]

Limited Automata [Hibbard'67]

One-tape Turing machines with restricted rewritings

Definition
Fixed an integer $d \geq 1$, a d-limited automaton is

- a one-tape Turing machine
- which is allowed to rewrite the content of each tape cell only
in the first d visits
- End-marked tape
- The space is bounded by the input length
(this restriction can be removed without changing the computational power and the state upper bounds)

Limited Automata [Hibbard'67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \geq 1$, a d-limited automaton is

- a one-tape Turing machine
- which is allowed to rewrite the content of each tape cell only in the first d visits
- End-marked tape
- The space is bounded by the input length (this restriction can be removed without changing the computational power and the state upper bounds)

Limited Automata [Hibbard'67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \geq 1$, a d-limited automaton is

- a one-tape Turing machine
- which is allowed to rewrite the content of each tape cell only in the first d visits
- End-marked tape
- The space is bounded by the input length (this restriction can be removed without changing the computational power and the state upper bounds)

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

$\frac{\square(|x|(\mid(\mid))) \mid \triangleleft}{\dagger}$
(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

\square	(x	((()))	-

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

$>x$	X		((()))	$<$	

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

\triangleright	X	X	$($	$($	$($	$)$	$)$	$)$	\triangleleft

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

| \triangleright | X | X | $($ | $($ | $($ | $)$ | $)$ | $)$ | \triangleleft |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \longrightarrow | | | | | | | | | |

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

\triangleright	x	x	((x	X	X)		

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

\triangleright	X	X	(x	X	X	X	X)	

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

	x	x	(x	X	X	X	X)		\triangleleft

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

	x	x	(x	X	X	X	X)		\triangleleft

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

\triangleright			X	(X	X	X	X		X	\triangleleft

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

| \triangleright | | X | X | (| X | $<$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

\triangleright		x	X	X	X	x	x	X	X		X	\triangleleft

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

\triangleright	X	\triangleleft							
\longrightarrow	\uparrow								

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

D	X	X	X	X	X	X	X	X	X	<	\triangleleft

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Special cases:
(i') If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain X
(iii') If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Special cases:
(i') If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain X
(iii') If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Special cases:
(i') If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain X
(iii') If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Special cases:
(i') If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain X
(iii') If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Special cases:
(i') If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain X
(iii') If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

| \triangleright | X | \triangleleft |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Special cases:
(i') If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain X
(iii') If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

| \triangleright | X | $<$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Special cases:
(i') If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain X
(iii') If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

| \triangleright | X | x | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Special cases:
(i') If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain X

Example: Balanced Parentheses

\triangleright	X	\triangleleft							
\uparrow									

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Special cases:
(i') If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain X
(iii') If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Special cases:
(i') If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain X

Example: Balanced Parentheses

| \triangleright | X | \triangleleft |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Special cases:
(i') If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain X
(iii') If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

| \triangleright | X | \triangleleft |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by X
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by X
(v) Repeat from the beginning

Special cases:
(i^{\prime}) If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain X
(iii') If in (iii) the left end of the tape is reached then reject
Cells can be rewritten only in the first 2 visits!

d-Limited Automata: Computational Power

[Wagner\&Wechsung'86]

d-Limited Automata: Computational Power

$d=1$: regular languages
[Wagner\&Wechsung'86]
[Hibbard'67]

d-Limited Automata: Computational Power

$d=1$: regular languages
[Wagner\&Wechsung'86]
$d \geq 2$: context-free languages
[Hibbard'67]

Our Contributions

$d=1$: regular languages
Descriptional complexity aspects
$d \geq 2$: context-free languages
[Wagner\&Wechsung'86]
[Hibbard'67]

Our Contributions

$d=1$: regular languages
[Wagner\&Wechsung'86]
Descriptional complexity aspects
$d \geq 2$: context-free languages
[Hibbard'67]
New transformation
context-free languages \rightarrow 2-limited automata
based on the Chomsky-Schützenberger Theorem

Simulation of 1-Limited Automata by Finite Automata

- Main idea:
transformation of two-way NFAs into one-way DFAs:
[Shepherdson'59]
- Finite control of the simulating DFA:
transition table of the already scannec input prefix set of possible current states
- Simulation of 1-LAs:

Simulation of 1-Limited Automata by Finite Automata

- Main idea:
transformation of two-way NFAs into one-way DFAs:
- First visit to a cell: direct simulation
[Shepherdson'59]
- Further visits: transition tables
- Finite control of the simulating DFA:
transition table of the already scanned input prefix set of possible current states
- Simulation of 1-LAs:

Simulation of 1-Limited Automata by Finite Automata

- Main idea:
transformation of two-way NFAs into one-way DFAs:
- First visit to a cell: direct simulation
[Shepherdson'59]
- Further visits: transition tables
- Finite control of the simulating DFA:
transition table of the already scanned input prefix set of possible current states
- Simulation of 1-LAs:

Simulation of 1-Limited Automata by Finite Automata

- Main idea:
transformation of two-way NFAs into one-way DFAs:
- First visit to a cell: direct simulation
[Shepherdson'59]
- Further visits: transition tables

- Finite control of the simulating DFA:
transition table of the already scanned input prefix set of possible current states
- Simulation of 1-LAs:

Simulation of 1-Limited Automata by Finite Automata

- Main idea:
transformation of two-way NFAs into one-way DFAs:
[Shepherdson'59]
- First visit to a cell: direct simulation
- Further visits: transition tables

$$
\begin{aligned}
& \tau_{x} \subseteq Q \times Q \\
& (p, q) \in \tau_{x} \text { iff } \quad \underset{\sim}{\leftrightarrows} p
\end{aligned}
$$

- Finite control of the simulating DFA:
transition table of the already scanned input prefix
set of possible current states
- Simulation of 1-LAs:

Simulation of 1-Limited Automata by Finite Automata

- Main idea:
transformation of two-way NFAs into one-way DFAs:
- First visit to a cell: direct simulation
[Shepherdson'59]
- Further visits: transition tables

$$
\begin{aligned}
& \tau_{x} \subseteq Q \times Q \\
& (p, q) \in \tau_{x} \text { iff } \underset{\square}{\leftrightarrows} p
\end{aligned}
$$

- Finite control of the simulating DFA:
- transition table of the already scanned input prefix
- set of possible current states
- Simulation of 1-LAs:

Simulation of 1-Limited Automata by Finite Automata

- Main idea:
transformation of two-way NFAs into one-way DFAs:
- First visit to a cell: direct simulation
[Shepherdson'59]
- Further visits: transition tables

$$
\begin{aligned}
& \tau_{x} \subseteq Q \times Q \\
& (p, q) \in \tau_{x} \text { iff } \quad \times \quad \underset{\sim}{\leftrightarrows} q
\end{aligned}
$$

- Finite control of the simulating DFA:
- transition table of the already scanned input prefix
- set of possible current states
- Simulation of 1-LAs:

Simulation of 1-Limited Automata by Finite Automata

- Main idea:
transformation of two-way NFAs into one-way DFAs:
- First visit to a cell: direct simulation
[Shepherdson'59]
- Further visits: transition tables

$$
\begin{aligned}
& \tau_{x} \subseteq Q \times Q \\
& (p, q) \in \tau_{x} \text { iff } \quad \square \quad \underset{\sim}{\hookrightarrow} q
\end{aligned}
$$

- Finite control of the simulating DFA:
- transition table of the already scanned input prefix
- set of possible current states
- Simulation of 1-LAs:
- The scanned input prefix is rewritten by a nondeterministically chosen string sets of transition tables

Simulation of 1-Limited Automata by Finite Automata

- Main idea:
transformation of two-way NFAs into one-way DFAs:
- First visit to a cell: direct simulation
[Shepherdson'59]
- Further visits: transition tables

$$
\begin{aligned}
& \tau_{x} \subseteq Q \times Q \\
& (p, q) \in \tau_{x} \text { iff } \underset{\sim}{\square} p
\end{aligned}
$$

- Finite control of the simulating DFA:
- transition table of the already scanned input prefix
- set of possible current states
- Simulation of 1-LAs:
- The scanned input prefix is rewritten by a nondeterministically chosen string
■ The simulating DFA keeps in its finite control a sets of transition tables

1-Limited Automata \rightarrow Finite Automata: Upper Bounds

Theorem
Let M be a 1-LA with n states.

- There exists an equivalent DFA with $2^{n \cdot 2^{n^{2}}}$ states.
- There exists an equivalent NFA with $n \cdot 2^{n^{2}}$ states.

If M is deterministic then there exists an equivalent DFA with no more than $n \cdot(n+1)^{n}$ states.

	DFA	NFA
nondet. 1-LA		
det. 1-LA		

These upper bounds do not depend on the alphabet size of M ! The gaps are optimal!

1-Limited Automata \rightarrow Finite Automata: Upper Bounds

Theorem

Let M be a 1-LA with n states.

- There exists an equivalent DFA with $2^{n \cdot 2 n^{n^{2}}}$ states.
- There exists an equivalent NFA with $n \cdot 2^{n^{2}}$ states.

If M is deterministic then there exists an equivalent DFA with no more than $n \cdot(n+1)^{n}$ states.

	DFA	NFA
nondet. 1-LA	$2^{n \cdot 2^{n^{2}}}$	
det. 1-LA		

These upper bounds do not depend on the alphabet size of M ! The gaps are optimal!

1-Limited Automata \rightarrow Finite Automata: Upper Bounds

Theorem

Let M be a 1-LA with n states.

- There exists an equivalent DFA with $2^{n \cdot 2^{n^{2}}}$ states.
- There exists an equivalent NFA with $n \cdot 2^{n^{2}}$ states.

If M is deterministic then there exists an equivalent DFA with no more than $n \cdot(n+1)^{n}$ states.

	DFA	NFA
nondet. 1-LA	$2^{n \cdot 2^{n^{2}}}$	$n \cdot 2^{n^{2}}$
det. 1-LA		

These upper bounds do not depend on the alphabet size of M ! The gaps are optimal!

1-Limited Automata \rightarrow Finite Automata: Upper Bounds

Theorem

Let M be a 1-LA with n states.

- There exists an equivalent DFA with $2^{n \cdot 2^{n^{2}}}$ states.
- There exists an equivalent NFA with $n \cdot 2^{n^{2}}$ states.

If M is deterministic then there exists an equivalent DFA with no more than $n \cdot(n+1)^{n}$ states.

	DFA	NFA
nondet. 1-LA	$2^{n \cdot 2^{n^{2}}}$	$n \cdot 2^{n^{2}}$
det. 1-LA	$n \cdot(n+1)^{n}$	$n \cdot(n+1)^{n}$

These upper bounds do not depend on the alphabet size of M ! The gaps are optimal!

1-Limited Automata \rightarrow Finite Automata: Upper Bounds

Theorem

Let M be a 1-LA with n states.

- There exists an equivalent DFA with $2^{n \cdot 2^{n^{2}}}$ states.
- There exists an equivalent NFA with $n \cdot 2^{n^{2}}$ states.

If M is deterministic then there exists an equivalent DFA with no more than $n \cdot(n+1)^{n}$ states.

	DFA	NFA
nondet. 1-LA	$2^{n \cdot 2^{n^{2}}}$	$n \cdot 2^{n^{2}}$
det. 1-LA	$n \cdot(n+1)^{n}$	$n \cdot(n+1)^{n}$

These upper bounds do not depend on the alphabet size of M !

1-Limited Automata \rightarrow Finite Automata: Upper Bounds

Theorem

Let M be a 1-LA with n states.

- There exists an equivalent DFA with $2^{n \cdot 2^{n^{2}}}$ states.
- There exists an equivalent NFA with $n \cdot 2^{n^{2}}$ states.

If M is deterministic then there exists an equivalent DFA with no more than $n \cdot(n+1)^{n}$ states.

	DFA	NFA
nondet. 1-LA	$2^{n \cdot 2^{n^{2}}}$	$n \cdot 2^{n^{2}}$
$\operatorname{det} .1$-LA	$n \cdot(n+1)^{n}$	$n \cdot(n+1)^{n}$

These upper bounds do not depend on the alphabet size of M ! The gaps are optimal!

Optimality: the Witness Languages

Given $n \geq 1$:

$$
\begin{array}{lllllllllll}
a_{1} & a_{2} & \cdots & a_{n} & a_{n+1} & a_{n+2} & \cdots & a_{2 n} & \cdots & a_{\ldots} & a_{\ldots}
\end{array} \cdots a_{k n}
$$

$$
L_{n}=
$$

Optimality: the Witness Languages

Given $n \geq 1$:

$$
L_{n}=\left\{x_{1} x_{2} \cdots x_{k} \mid \quad k \geq 0, x_{1}, x_{2}, \ldots, x_{k} \in\{0,1\}^{n},\right.
$$

Optimality: the Witness Languages

Given $n \geq 1$:

At least n of these blocks contain the same factor

$$
\begin{aligned}
L_{n}=\left\{x_{1} x_{2} \cdots x_{k} \mid\right. & k \geq 0, x_{1}, x_{2}, \ldots, x_{k} \in\{0,1\}^{n} \\
& \exists i_{1}<i_{2}<\cdots<i_{n} \in\{1, \ldots, k\}, \\
& \left.x_{i_{1}}=x_{i_{2}}=\cdots=x_{i_{n}}\right\}
\end{aligned}
$$

Optimality: the Witness Languages

Given $n \geq 1$:

At least n of these blocks contain the same factor

$$
\begin{aligned}
L_{n}=\left\{x_{1} x_{2} \cdots x_{k} \mid\right. & k \geq 0, x_{1}, x_{2}, \ldots, x_{k} \in\{0,1\}^{n}, \\
& \exists i_{1}<i_{2}<\cdots<i_{n} \in\{1, \ldots, k\}, \\
& \left.x_{i_{1}}=x_{i_{2}}=\cdots=x_{i_{n}}\right\}
\end{aligned}
$$

Example $(n=3): 001110011110110111011$

Optimality: the Witness Languages

Given $n \geq 1$:

At least n of these blocks contain the same factor

$$
\begin{aligned}
L_{n}=\left\{x_{1} x_{2} \cdots x_{k} \mid\right. & k \geq 0, x_{1}, x_{2}, \ldots, x_{k} \in\{0,1\}^{n} \\
& \exists i_{1}<i_{2}<\cdots<i_{n} \in\{1, \ldots, k\}, \\
& \left.x_{i_{1}}=x_{i_{2}}=\cdots=x_{i_{n}}\right\}
\end{aligned}
$$

Example $(n=3): \quad 001|110| 011|110| 110|111| 011$

Optimality: the Witness Languages

Given $n \geq 1$:

At least n of these blocks contain the same factor

$$
\begin{aligned}
L_{n}=\left\{x_{1} x_{2} \cdots x_{k} \mid\right. & k \geq 0, x_{1}, x_{2}, \ldots, x_{k} \in\{0,1\}^{n}, \\
& \exists i_{1}<i_{2}<\cdots<i_{n} \in\{1, \ldots, k\}, \\
& \left.x_{i_{1}}=x_{i_{2}}=\cdots=x_{i_{n}}\right\}
\end{aligned}
$$

Example $(n=3): \quad 001|110| 011|110| 110|111| 011$

How to Recognize L_{n} : 1-Limited Automata

- Nondeterministic strategy: Guess the leftmost positions of n input blocks containing the same factor and Verify
- Implementation:

How to Recognize L_{n} : 1-Limited Automata

$$
001110011110110111011 \quad(n=3)
$$

- Nondeterministic strategy: Guess the leftmost positions of n input blocks containing the same factor and Verify
- Implementation:

How to Recognize L_{n} : 1-Limited Automata

$$
001 \text { î10011̂̂10î10111011 } \quad(n=3)
$$

- Nondeterministic strategy: Guess the leftmost positions of n input blocks containing the same factor and Verify
- Implementation:

1. Mark n tape cells

Count the tape modulo n to check whether or not:

- the input length is a multiple of n, and
- the marked cells correspond to the leftmost symbols of some blocks of length n

3. Compare, symbol by symbol, each two consecutive blocks of length n that start from the marked positions

How to Recognize L_{n} : 1-Limited Automata

$$
001 \text { |̂̂10|011|̂̂1 } 10|\hat{1} 10| 111 \mid 011 \quad(n=3)
$$

- Nondeterministic strategy: Guess the leftmost positions of n input blocks containing the same factor and Verify
- Implementation:

1. Mark n tape cells
2. Count the tape modulo n to check whether or not:

- the input length is a multiple of n, and
- the marked cells correspond to the leftmost symbols of some blocks of length n

3. Compare, symbol by symbol, each two consecutive blocks of length n that start from the marked positions

How to Recognize L_{n} : 1-Limited Automata

$$
\begin{equation*}
001 \text { |̂̂10|011|̂̂10|î } 10|111| 011 \tag{n=3}
\end{equation*}
$$

- Nondeterministic strategy: Guess the leftmost positions of n input blocks containing the same factor and Verify
- Implementation:

1. Mark n tape cells
2. Count the tape modulo n to check whether or not:

- the input length is a multiple of n, and
- the marked cells correspond to the leftmost symbols of some blocks of length n

3. Compare, symbol by symbol, each two consecutive blocks of length n that start from the marked positions

- $O(n)$ states

How to Recognize L_{n} : 1-Limited Automata

$$
\begin{equation*}
001|\hat{1} 10| 011|\hat{1} 10| \hat{1} 10|111| 011 \tag{n=3}
\end{equation*}
$$

- Nondeterministic strategy: Guess the leftmost positions of n input blocks containing the same factor and Verify
- Implementation:

1. Mark n tape cells
2. Count the tape modulo n to check whether or not:

- the input length is a multiple of n, and
- the marked cells correspond to the leftmost symbols of some blocks of length n

3. Compare, symbol by symbol, each two consecutive blocks of length n that start from the marked positions

- $O(n)$ states

How to Recognize L_{n} : 1-Limited Automata

$$
\begin{equation*}
00 \text { 1|̂̂1 } 10 \mid 011 \text { |̂̂1 } 10|\hat{1} 10| 111 \mid 011 \tag{n=3}
\end{equation*}
$$

- Nondeterministic strategy: Guess the leftmost positions of n input blocks containing the same factor and Verify
- Implementation:

1. Mark n tape cells
2. Count the tape modulo n to check whether or not:

- the input length is a multiple of n, and
- the marked cells correspond to the leftmost symbols of some blocks of length n

3. Compare, symbol by symbol, each two consecutive blocks of length n that start from the marked positions

- $O(n)$ states

How to Recognize L_{n} : 1-Limited Automata

$$
001 \text { |̂1 } 10 \mid 011 \text { |̂̂1 } 10|\hat{1} 10| 111 \mid 011 \quad(n=3)
$$

- Nondeterministic strategy: Guess the leftmost positions of n input blocks containing the same factor and Verify
- Implementation:

1. Mark n tape cells
2. Count the tape modulo n to check whether or not:

- the input length is a multiple of n, and
- the marked cells correspond to the leftmost symbols of some blocks of length n

3. Compare, symbol by symbol, each two consecutive blocks of length n that start from the marked positions

- $O(n)$ states

How to Recognize L_{n} : Deterministic Finite Automata

- Idea:
- State upper bound:
- State lower bound:
- $n^{2^{n}}$ (standard distinguishability arguments)

How to Recognize L_{n} : Deterministic Finite Automata

- Idea:
- For each $x \in\{0,1\}^{n}$ count how many blocks coincide with x - Accept if and only if one of the counters reaches the value n
- State upper bound:
- State lower bound:
- $n^{2^{n}}$ (standard distinguishability arguments)

How to Recognize L_{n} : Deterministic Finite Automata

- Idea:
- For each $x \in\{0,1\}^{n}$ count how many blocks coincide with x
- Accept if and only if one of the counters reaches the value n
- State upper bound:
- State lower bound:
- $n^{2^{n}}$ (standard distinguishability arguments)

How to Recognize L_{n} : Deterministic Finite Automata

- Idea:
- For each $x \in\{0,1\}^{n}$ count how many blocks coincide with x
- Accept if and only if one of the counters reaches the value n
- State upper bound:
- State lower bound:
- $n^{2^{n}}$ (standard distinguishability arguments)

How to Recognize L_{n} : Deterministic Finite Automata

- Idea:
- For each $x \in\{0,1\}^{n}$ count how many blocks coincide with x
- Accept if and only if one of the counters reaches the value n
- State upper bound:
- Finite control:
a counter (up to n) for each possible block of length n
- Number of states double exponential in n more precisely $\left(2^{n}-1\right) \cdot n^{2^{n}}+n$
- State lower bound:
- $n^{2^{n}}$ (standard distinguishability arguments)

How to Recognize L_{n} : Deterministic Finite Automata

- Idea:
- For each $x \in\{0,1\}^{n}$ count how many blocks coincide with x
- Accept if and only if one of the counters reaches the value n
- State upper bound:
- Finite control:
a counter (up to n) for each possible block of length n
- There are 2^{n} possible different blocks of length n
more precisely $\left(2^{n}-1\right) \cdot n^{2^{n}}+n$
- State lower bound:
- $n^{2^{n}}$ (standard distinguishability arguments)

How to Recognize L_{n} : Deterministic Finite Automata

- Idea:
- For each $x \in\{0,1\}^{n}$ count how many blocks coincide with x
- Accept if and only if one of the counters reaches the value n
- State upper bound:
- Finite control:
a counter (up to n) for each possible block of length n
- There are 2^{n} possible different blocks of length n
- Number of states double exponential in n more precisely $\left(2^{n}-1\right) \cdot n^{2^{n}}+n$
- State lower bound:

How to Recognize L_{n} : Deterministic Finite Automata

- Idea:
- For each $x \in\{0,1\}^{n}$ count how many blocks coincide with x
- Accept if and only if one of the counters reaches the value n
- State upper bound:
- Finite control:
a counter (up to n) for each possible block of length n
- There are 2^{n} possible different blocks of length n
- Number of states double exponential in n more precisely $\left(2^{n}-1\right) \cdot n^{2^{n}}+n$
- State lower bound:
- $n^{2^{n}}$ (standard distinguishability arguments)

How to Recognize L_{n} : Deterministic Finite Automata

- Idea:
- For each $x \in\{0,1\}^{n}$ count how many blocks coincide with x
- Accept if and only if one of the counters reaches the value n
- State upper bound:
- Finite control:
a counter (up to n) for each possible block of length n
- There are 2^{n} possible different blocks of length n
- Number of states double exponential in n more precisely $\left(2^{n}-1\right) \cdot n^{2^{n}}+n$
- State lower bound:
- $n^{2^{n}}$ (standard distinguishability arguments)

The state gap between 1-LAs and DFAs is double exponential!

Nondetermism vs. Determinism in 1-LAs

$$
\underset{\text { states }}{L_{n}: O(n)} \text { 1-LA } \xrightarrow[\text { DFA }]{\exp _{n}: \geq n^{2^{n}}} \underset{\text { states }}{O}
$$

Nondetermism vs. Determinism in 1-LAs

Nondetermism vs. Determinism in 1-LAs

Nondetermism vs. Determinism in 1-LAs

Corollary

Removing nondeterminism from 1-LAs requires exponentially many states.

Nondetermism vs. Determinism in 1-LAs

Corollary

Removing nondeterminism from 1-LAs requires exponentially many states.

Cfr. Sakoda and Sipser question [Sakoda\&Sipser'78]:
How much it costs in states to remove nondeterminism from two-way finite automata?

More Than One Rewriting

For each $d \geq 2, d$-limited automata characterize CFLs [Hibbard'67]
We present a construction of 2-LAs from CFLs based on:
Theorem ([Chomsky\&Schützenberger'63])
Every context-free language $L \subset \Sigma^{*}$ can be expressed as $L=h\left(D_{k} \cap R\right)$
where, for $\Omega_{k}=\left\{(1,)_{1},(2,)_{2}, \ldots,(k,)_{k}\right\}$

- $D_{k} \subseteq \Omega_{k}^{*}$ is a Dyck language
- $R \subseteq \Omega_{k}^{*}$ is a regular language
- $h: \Omega_{k} \rightarrow \Sigma^{*}$ is an homomorphism

Furthermore, it is possible to restrict to non-erasing
homomorphisms [Okhotin'12]

More Than One Rewriting

For each $d \geq 2, d$-limited automata characterize CFLs [Hibbard'67]
We present a construction of 2-LAs from CFLs based on:
Theorem ([Chomsky\&Schützenberger'63])
Every context-free language $L \subseteq \Sigma^{*}$ can be expressed as

$$
L=h\left(D_{k} \cap R\right)
$$

where, for $\Omega_{k}=\left\{(1,)_{1},(2,)_{2}, \ldots,(k,)_{k}\right\}$:

- $D_{k} \subseteq \Omega_{k}^{*}$ is a Dyck language
- $R \subseteq \Omega_{k}^{*}$ is a regular language
- $h: \Omega_{k} \rightarrow \Sigma^{*}$ is an homomorphism

More Than One Rewriting

For each $d \geq 2, d$-limited automata characterize CFLs [Hibbard'67]
We present a construction of 2-LAs from CFLs based on:
Theorem ([Chomsky\&Schützenberger'63])
Every context-free language $L \subseteq \Sigma^{*}$ can be expressed as

$$
L=h\left(D_{k} \cap R\right)
$$

where, for $\Omega_{k}=\left\{(1,)_{1},(2,)_{2}, \ldots,(k,)_{k}\right\}$:

- $D_{k} \subseteq \Omega_{k}^{*}$ is a Dyck language
- $R \subseteq \Omega_{k}^{*}$ is a regular language
- $h: \Omega_{k} \rightarrow \Sigma^{*}$ is an homomorphism

Furthermore, it is possible to restrict to non-erasing homomorphisms [Okhotin'12]

From CFLs to 2-LAs

L context-free language, with $L=h\left(D_{k} \cap R\right)$

- T nondeterministic transducer computing h^{-1}
- A_{D} 2-LA accepting the Dyck language D_{k}
- A_{R} finite automaton accepting R

From CFLs to 2-LAs

L context-free language, with $L=h\left(D_{k} \cap R\right)$

- T nondeterministic transducer computing h^{-1}
- A_{D} 2-LA accepting the Dyck language D_{k}
- A_{R} finite automaton accepting R

From CFLs to 2-LAs

L context-free language, with $L=h\left(D_{k} \cap R\right)$

- T nondeterministic transducer computing h^{-1}
- A_{D} 2-LA accepting the Dyck language D_{k}
- A_{R} finite automaton accepting R

From CFLs to 2-LAs

L context-free language, with $L=h\left(D_{k} \cap R\right)$

- T nondeterministic transducer computing h^{-1}
- A_{D} 2-LA accepting the Dyck language D_{k}
- A_{R} finite automaton accepting R

From CFLs to 2-LAs

L context-free language, with $L=h\left(D_{k} \cap R\right)$

- T nondeterministic transducer computing h^{-1}
- A_{D} 2-LA accepting the Dyck language D_{k}
- A_{R} finite automaton accepting R

From CFLs to 2-LAs

$$
z=\sigma_{1} \sigma_{2} \cdots \sigma_{k} \in h^{-1}(w)
$$

From CFLs to 2-LAs

$z=\sigma_{1} \sigma_{2} \cdots \sigma_{k} \in h^{-1}(w)$
$h\left(\sigma_{i}\right)=u_{i}$

Non erasing homomorphism!

From CFLs to 2-LAs

$\# \# \# \# \sigma_{1}$	$\# \# \sigma_{2}$	\cdots	$\# \# \# \sigma_{k}$

(padded) input of A_{D} and A_{R}

$$
\begin{aligned}
& z=\sigma_{1} \sigma_{2} \cdots \sigma_{k} \in h^{-1}(w) \\
& h\left(\sigma_{i}\right)=u_{i}
\end{aligned}
$$

Non erasing homomorphism!

From CFLs to 2-LAs

| $\# \# \# \# \sigma_{1} \mid \# \# \sigma_{2}$ | \cdots | $\# \# \# \sigma_{k}$ |
| :--- | :--- | :--- | :--- |

(padded) input of A_{D} and A_{R}
Not stored into the tape!
$z=\sigma_{1} \sigma_{2} \cdots \sigma_{k} \in h^{-1}(w)$
$h\left(\sigma_{i}\right)=u_{i}$

Non erasing homomorphism!

Each σ_{i} is produced "on the fly"

From CFLs to 2-LAs

From CFLs to 2-LAs

$$
w=\cdots u_{i} \cdots
$$

From CFLs to 2-LAs

$\# \# \# \# \sigma_{i}$
$w=\cdots u_{i} \cdots$
\Downarrow

$$
h\left(\sigma_{i}\right)=u_{i}
$$

From CFLs to 2-LAs

$\# \# \# \# \sigma_{i}$
\Downarrow
$\# \# \# \# \gamma_{i}$

$$
\begin{gathered}
w=\cdots u_{i} \cdots \\
\Downarrow
\end{gathered}
$$

$$
h\left(\sigma_{i}\right)=u_{i}
$$

$$
\Downarrow
$$

γ_{i} : first rewriting by A_{D}

From CFLs to 2-LAs

$\# \# \# \# \gamma_{i}$

$$
\begin{gathered}
w=\cdots u_{i} \cdots \\
\Downarrow \\
h\left(\sigma_{i}\right)=u_{i} \\
\Downarrow
\end{gathered}
$$

γ_{i} : first rewriting by A_{D}

- On the tape, u_{i} is replaced directly by $\# \# \# \# \gamma_{i}$

From CFLs to 2-LAs

$$
\# \# \# \# \sigma_{i}
$$

$$
\begin{aligned}
& w=\cdots u_{i} \cdots \\
& \quad \Downarrow \\
& h\left(\sigma_{i}\right)=u_{i} \\
& \quad \Downarrow \\
& \gamma_{i}: \text { first rewriting by } A_{D}
\end{aligned}
$$

- On the tape, u_{i} is replaced directly by $\# \# \# \# \gamma_{i}$
- One move of A_{R} on input σ_{i} is also simulated

Final Remarks: 1-Limited Automata

- Nondeterministic 1-LAs can be
- double exponentially smaller than one-way deterministic automata
- exponentially smaller than one-way nondeterministic and two-way deterministic/nondeterminstic automata
- Witness languages over a two letter alphabet

What about the unary case?

For each prime p, the language $\left(a^{p^{2}}\right)^{*}$ is accepted by a
deterministic 1-LAs with $p+1$ states, while it needs p^{2} states to be accepted by any 2NFA

We expect state gaps smaller than in the general case

Final Remarks: 1-Limited Automata

- Nondeterministic 1-LAs can be
- double exponentially smaller than one-way deterministic automata
- exponentially smaller than one-way nondeterministic and two-way deterministic/nondeterminstic automata
- Witness languages over a two letter alphabet

What about the unary case?

For each prime p, the language $\left(a^{p^{2}}\right)^{*}$ is accepted by a
deterministic 1-LAs with $p+1$ states, while it needs p^{2} states to be accepted by any 2NFA

We expect state gaps smaller than in the general case

Final Remarks: 1-Limited Automata

- Nondeterministic 1-LAs can be
- double exponentially smaller than one-way deterministic automata
- exponentially smaller than one-way nondeterministic and two-way deterministic/nondeterminstic automata
- Witness languages over a two letter alphabet

What about the unary case?

Theorem

For each prime p, the language $\left(a^{p^{2}}\right)^{*}$ is accepted by a deterministic 1-LAs with $p+1$ states, while it needs p^{2} states to be accepted by any 2NFA.

We expect state gaps smaller than in the general case

Final Remarks: 1-Limited Automata

- Nondeterministic 1-LAs can be
- double exponentially smaller than one-way deterministic automata
- exponentially smaller than one-way nondeterministic and two-way deterministic/nondeterminstic automata
- Witness languages over a two letter alphabet

What about the unary case?

Theorem

For each prime p, the language $\left(a^{p^{2}}\right)^{*}$ is accepted by a deterministic 1-LAs with $p+1$ states, while it needs p^{2} states to be accepted by any 2NFA.

We expect state gaps smaller than in the general case

Final Remarks: d-Limited Automata, $d \geq 2$

- Descriptional complexity aspects
- Case $d=2$ [P\&Pisoni NCMA2013]
- Case $d>2$ under investigation
- Determinism vs. nondeterminism
- Deterministic 2-LAs characterize deterministic CFLs
[P\&Pisoni NCN A2013]
- Infinite hierarchy

For each $d \geq 2$ there is a language which is accepted by a
deterministic d-limited automaton and that cannot be
accepted by any deterministic $(d-1)$-limited automaton
[Hibbard'67]

Final Remarks: d-Limited Automata, $d \geq 2$

- Descriptional complexity aspects
- Case $d=2$ [P\&Pisoni NCMA2013]
- Case $d>2$ under investigation
- Determinism vs. nondeterminism
- Deterministic 2-LAs characterize deterministic CFLs
[P\&Pisoni NCMA2013]
- Infinite hierarchy For each $d \geq 2$ there is a language which is accepted by a deterministic d-limited automaton and that cannot be accepted by any deterministic ($d-1$)-limited automaton
[Hibbard'67]

Thank you for your attention!

