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✻✛ ✲
Very simple but powerful model!

Recursive enumerable languages

◮ No rewritings: two-way finite automata

Regular languages

◮ Linear space:
Context-sensitive languages [Kuroda’64]

◮ Linear time:
Regular languages [Hennie’65]
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Limited Automata [Hibbard’67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer d ≥ 1, a d-limited automaton is

◮ a one-tape Turing machine

◮ which is allowed to rewrite the content of each tape cell only

in the first d visits

◮ End-marked tape

◮ The space is bounded by the input length
(this restriction can be removed without changing the
computational power and the state upper bounds)
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(v) Repeat from the beginning
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Cells can be rewritten only in the first 2 visits!
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Our Contributions

d = 1: regular languages [Wagner&Wechsung’86]
Descriptional complexity aspects

d ≥ 2: context-free languages [Hibbard’67]
New transformation

context-free languages → 2-limited automata

based on the Chomsky-Schützenberger Theorem
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◮ Main idea:
transformation of two-way NFAs into one-way DFAs:

[Shepherdson’59]
First visit to a cell: direct simulation
Further visits: transition tables

Finite control of the simulating DFA:

- transition table of the already scanned input prefix

- set of possible current states

◮ Simulation of 1-LAs:

The scanned input prefix is rewritten by a
nondeterministically chosen string

The simulating DFA keeps in its finite control a
sets of transition tables
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How to Recognize Ln: 1-Limited Automata

◮ Nondeterministic strategy:
Guess the leftmost positions of n input blocks
containing the same factor and Verify

◮ Implementation:

1. Mark n tape cells
2. Count the tape modulo n to check whether or not:

◮ the input length is a multiple of n, and
◮ the marked cells correspond to the leftmost symbols of some

blocks of length n

3. Compare, symbol by symbol, each two consecutive blocks of
length n that start from the marked positions

◮ O(n) states
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How to Recognize Ln: Deterministic Finite Automata

◮ Idea:
◮ For each x ∈ {0, 1}n count how many blocks coincide with x
◮ Accept if and only if one of the counters reaches the value n

◮ State upper bound:

Finite control:
a counter (up to n) for each possible block of length n

There are 2n possible different blocks of length n

Number of states double exponential in n

more precisely (2n − 1) · n2
n

+ n

◮ State lower bound:

n2
n

(standard distinguishability arguments)
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◮ Idea:
◮ For each x ∈ {0, 1}n count how many blocks coincide with x
◮ Accept if and only if one of the counters reaches the value n

◮ State upper bound:

Finite control:
a counter (up to n) for each possible block of length n

There are 2n possible different blocks of length n

Number of states double exponential in n

more precisely (2n − 1) · n2
n

+ n

◮ State lower bound:

n2
n

(standard distinguishability arguments)

The state gap between 1-LAs and DFAs is double exponential!
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Nondetermism vs. Determinism in 1-LAs

1-LA DFA✲exp expLn: O(n)
states

Ln: ≥ n2
n

states

det-1-LA

✟✟✟✟✟✟✟✯

exp

❄
exp

Ln: ≥ exp(n)
states

Corollary

Removing nondeterminism from 1-LAs requires exponentially many

states.

Cfr. Sakoda and Sipser question [Sakoda&Sipser’78]:

How much it costs in states to remove nondeterminism from
two-way finite automata?



More Than One Rewriting

For each d ≥ 2, d -limited automata characterize CFLs [Hibbard’67]

We present a construction of 2-LAs from CFLs based on:

Theorem ([Chomsky&Schützenberger’63])

Every context-free language L ⊆ Σ∗ can be expressed as

L = h(Dk ∩ R)

where, for Ωk = {(1, )1, (2, )2, . . . , (k , )k}:

◮ Dk ⊆ Ω∗

k is a Dyck language

◮ R ⊆ Ω∗

k is a regular language

◮ h : Ωk → Σ∗ is an homomorphism

Furthermore, it is possible to restrict to non-erasing

homomorphisms [Okhotin’12]
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◮ T nondeterministic transducer computing h−1

◮ AD 2-LA accepting the Dyck language Dk

◮ AR finite automaton accepting R
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Final Remarks: 1-Limited Automata

◮ Nondeterministic 1-LAs can be

double exponentially smaller than one-way deterministic
automata
exponentially smaller than one-way nondeterministic and
two-way deterministic/nondeterminstic automata

◮ Witness languages over a two letter alphabet

What about the unary case?

Theorem

For each prime p, the language (ap2

)∗ is accepted by a

deterministic 1-LAs with p + 1 states, while it needs p2 states to be

accepted by any 2NFA.

We expect state gaps smaller than in the general case
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Final Remarks: d -Limited Automata, d ≥ 2

◮ Descriptional complexity aspects

Case d = 2 [P&Pisoni NCMA2013]
Case d > 2 under investigation

◮ Determinism vs. nondeterminism

Deterministic 2-LAs characterize deterministic CFLs
[P&Pisoni NCMA2013]

Infinite hierarchy
For each d ≥ 2 there is a language which is accepted by a
deterministic d -limited automaton and that cannot be
accepted by any deterministic (d − 1)-limited automaton

[Hibbard’67]
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Thank you for your attention!


