
Limited Automata and Regular Languages

Giovanni Pighizzini Andrea Pisoni

Dipartimento di Informatica

Università degli Studi di Milano, Italy

DCFS 2013

London, ON, Canada
July 22–25, 2013

One-Tape Turing Machine

a a b a b̄ b̄.

✻✛ ✲
Very simple but powerful model!

Recursive enumerable languages

◮ No rewritings: two-way finite automata

Regular languages

◮ Linear space:
Context-sensitive languages [Kuroda’64]

◮ Linear time:
Regular languages [Hennie’65]

One-Tape Turing Machine

a a b a b̄ b̄.

✻✛ ✲
Very simple but powerful model!

Recursive enumerable languages

What about restricted versions?

◮ No rewritings: two-way finite automata

Regular languages

◮ Linear space:
Context-sensitive languages [Kuroda’64]

◮ Linear time:
Regular languages [Hennie’65]

One-Tape Turing Machine

a a b a b̄ b̄.

✻✛ ✲
Very simple but powerful model!

Recursive enumerable languages

What about restricted versions?

◮ No rewritings: two-way finite automata

Regular languages

◮ Linear space:
Context-sensitive languages [Kuroda’64]

◮ Linear time:
Regular languages [Hennie’65]

One-Tape Turing Machine

a a b a b̄ b̄.

✻✛ ✲
Very simple but powerful model!

Recursive enumerable languages

What about restricted versions?

◮ No rewritings: two-way finite automata

Regular languages

◮ Linear space:
Context-sensitive languages [Kuroda’64]

◮ Linear time:
Regular languages [Hennie’65]

One-Tape Turing Machine

a a b a b̄ b̄.

✻✛ ✲
Very simple but powerful model!

Recursive enumerable languages

What about restricted versions?

◮ No rewritings: two-way finite automata

Regular languages

◮ Linear space:
Context-sensitive languages [Kuroda’64]

◮ Linear time:
Regular languages [Hennie’65]

Limited Automata [Hibbard’67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer d ≥ 1, a d-limited automaton is

◮ a one-tape Turing machine

◮ which is allowed to rewrite the content of each tape cell only

in the first d visits

◮ End-marked tape

◮ The space is bounded by the input length
(this restriction can be removed without changing the
computational power and the state upper bounds)

Limited Automata [Hibbard’67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer d ≥ 1, a d-limited automaton is

◮ a one-tape Turing machine

◮ which is allowed to rewrite the content of each tape cell only

in the first d visits

◮ End-marked tape

◮ The space is bounded by the input length
(this restriction can be removed without changing the
computational power and the state upper bounds)

Limited Automata [Hibbard’67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer d ≥ 1, a d-limited automaton is

◮ a one-tape Turing machine

◮ which is allowed to rewrite the content of each tape cell only

in the first d visits

◮ End-marked tape

◮ The space is bounded by the input length
(this restriction can be removed without changing the
computational power and the state upper bounds)

Example: Balanced Parentheses

⊲ ⊳(

✻

) ((()))

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳(

✻

) ((()))
−→

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳()

✻

((()))
−→

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳(X

✻

((()))
−→

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳(X

✻

((()))
←−

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳(

✻

X ((()))
←−

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X

✻

X ((()))
←−

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X

✻

X ((()))
←−

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X

✻

X ((()))
−→

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X

✻

((()))
−→

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X (

✻

(()))
−→

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X ((

✻

()))
−→

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X (((

✻

)))
−→

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X ((()

✻

))
−→

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X (((X

✻

))
−→

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X (((X

✻

))
←−

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X (((

✻

X))
←−

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X ((X

✻

X))
←−

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X ((X

✻

X))
−→

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X ((X X

✻

))
−→

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X ((X X)

✻

)
−→

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X ((X X X

✻

)
−→

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X ((X X X

✻

)
←−

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X ((X X

✻

X)
←−

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X ((X

✻

X X)
←−

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X ((

✻

X X X)
←−

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X (X

✻

X X X)
←−

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X (X

✻

X X X)
−→

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X (X

✻

X X X)
−→

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X (X X

✻

X X)
−→

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X (X X X

✻

X)
−→

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X (X X X X

✻

)
−→

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X (X X X X)

✻
−→

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X (X X X X X

✻
←−

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X (X X X X

✻

X

←−

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X (X X X

✻

X X

←−

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X (X X

✻

X X X

←−

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X (X

✻

X X X X

←−

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X (

✻

X X X X X

←−

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X X

✻

X X X X X

←−

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X X X

✻

X X X X

−→

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X X X X

✻

X X X

−→

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X X X X X

✻

X X

−→

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X X X X X X

✻

X

−→

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X X X X X X X

✻
−→

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X X X X X X X

✻
−→

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Example: Balanced Parentheses

⊲ ⊳X X X X X X X X

✻
←−

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Special cases:

(i’) If in (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain X

(iii’) If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

⊲ ⊳X X X X X X X X

✻
←−

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Special cases:

(i’) If in (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain X

(iii’) If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

⊲ ⊳X X X X X X X

✻

X

←−

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Special cases:

(i’) If in (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain X

(iii’) If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

⊲ ⊳X X X X X X

✻

X X

←−

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Special cases:

(i’) If in (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain X

(iii’) If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

⊲ ⊳X X X X X

✻

X X X

←−

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Special cases:

(i’) If in (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain X

(iii’) If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

⊲ ⊳X X X X

✻

X X X X

←−

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Special cases:

(i’) If in (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain X

(iii’) If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

⊲ ⊳X X X

✻

X X X X X

←−

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Special cases:

(i’) If in (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain X

(iii’) If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

⊲ ⊳X X

✻

X X X X X X

←−

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Special cases:

(i’) If in (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain X

(iii’) If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

⊲ ⊳X

✻

X X X X X X X

←−

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Special cases:

(i’) If in (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain X

(iii’) If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

⊲ ⊳

✻

X X X X X X X X

yes!

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Special cases:

(i’) If in (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain X

(iii’) If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

⊲ ⊳X X X X X X X X

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Special cases:

(i’) If in (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain X

(iii’) If in (iii) the left end of the tape is reached then reject

Example: Balanced Parentheses

⊲ ⊳X X X X X X X X

(i) Move to the right to search a closed parenthesis

(ii) Rewrite it by X

(iii) Move to the left to search an open parenthesis

(iv) Rewrite it by X

(v) Repeat from the beginning

Special cases:

(i’) If in (i) the right end of the tape is reached then
scan all the tape and accept iff all tape cells contain X

(iii’) If in (iii) the left end of the tape is reached then reject

Cells can be rewritten only in the first 2 visits!

d -Limited Automata: Computational Power

d = 1: regular languages [Wagner&Wechsung’86]

d ≥ 2: context-free languages [Hibbard’67]

d -Limited Automata: Computational Power

d = 1: regular languages [Wagner&Wechsung’86]

d ≥ 2: context-free languages [Hibbard’67]

d -Limited Automata: Computational Power

d = 1: regular languages [Wagner&Wechsung’86]

d ≥ 2: context-free languages [Hibbard’67]

Our Contributions

d = 1: regular languages [Wagner&Wechsung’86]
Descriptional complexity aspects

d ≥ 2: context-free languages [Hibbard’67]

Our Contributions

d = 1: regular languages [Wagner&Wechsung’86]
Descriptional complexity aspects

d ≥ 2: context-free languages [Hibbard’67]
New transformation

context-free languages → 2-limited automata

based on the Chomsky-Schützenberger Theorem

Simulation of 1-Limited Automata by Finite Automata

◮ Main idea:
transformation of two-way NFAs into one-way DFAs:

[Shepherdson’59]
First visit to a cell: direct simulation
Further visits: transition tables

Finite control of the simulating DFA:

- transition table of the already scanned input prefix

- set of possible current states

◮ Simulation of 1-LAs:

The scanned input prefix is rewritten by a
nondeterministically chosen string

The simulating DFA keeps in its finite control a
sets of transition tables

Simulation of 1-Limited Automata by Finite Automata

◮ Main idea:
transformation of two-way NFAs into one-way DFAs:

[Shepherdson’59]
First visit to a cell: direct simulation
Further visits: transition tables

Finite control of the simulating DFA:

- transition table of the already scanned input prefix

- set of possible current states

◮ Simulation of 1-LAs:

The scanned input prefix is rewritten by a
nondeterministically chosen string

The simulating DFA keeps in its finite control a
sets of transition tables

Simulation of 1-Limited Automata by Finite Automata

◮ Main idea:
transformation of two-way NFAs into one-way DFAs:

[Shepherdson’59]
First visit to a cell: direct simulation
Further visits: transition tables

Finite control of the simulating DFA:

- transition table of the already scanned input prefix

- set of possible current states

◮ Simulation of 1-LAs:

The scanned input prefix is rewritten by a
nondeterministically chosen string

The simulating DFA keeps in its finite control a
sets of transition tables

Simulation of 1-Limited Automata by Finite Automata

◮ Main idea:
transformation of two-way NFAs into one-way DFAs:

[Shepherdson’59]
First visit to a cell: direct simulation
Further visits: transition tables

x y

✻
τx

Finite control of the simulating DFA:

- transition table of the already scanned input prefix

- set of possible current states

◮ Simulation of 1-LAs:

The scanned input prefix is rewritten by a
nondeterministically chosen string

The simulating DFA keeps in its finite control a
sets of transition tables

Simulation of 1-Limited Automata by Finite Automata

◮ Main idea:
transformation of two-way NFAs into one-way DFAs:

[Shepherdson’59]
First visit to a cell: direct simulation
Further visits: transition tables

x y

✻
τx

τx ⊆ Q × Q

(p, q) ∈ τx iff x
✛ p
✲q

Finite control of the simulating DFA:

- transition table of the already scanned input prefix

- set of possible current states

◮ Simulation of 1-LAs:

The scanned input prefix is rewritten by a
nondeterministically chosen string

The simulating DFA keeps in its finite control a
sets of transition tables

Simulation of 1-Limited Automata by Finite Automata

◮ Main idea:
transformation of two-way NFAs into one-way DFAs:

[Shepherdson’59]
First visit to a cell: direct simulation
Further visits: transition tables

x y

✻
τx

τx ⊆ Q × Q

(p, q) ∈ τx iff x
✛ p
✲q

Finite control of the simulating DFA:

- transition table of the already scanned input prefix

- set of possible current states

◮ Simulation of 1-LAs:

The scanned input prefix is rewritten by a
nondeterministically chosen string

The simulating DFA keeps in its finite control a
sets of transition tables

Simulation of 1-Limited Automata by Finite Automata

◮ Main idea:
transformation of two-way NFAs into one-way DFAs:

[Shepherdson’59]
First visit to a cell: direct simulation
Further visits: transition tables

x y

✻
τx

τx ⊆ Q × Q

(p, q) ∈ τx iff x
✛ p
✲q

Finite control of the simulating DFA:

- transition table of the already scanned input prefix

- set of possible current states

◮ Simulation of 1-LAs:

The scanned input prefix is rewritten by a
nondeterministically chosen string

The simulating DFA keeps in its finite control a
sets of transition tables

Simulation of 1-Limited Automata by Finite Automata

◮ Main idea:
transformation of two-way NFAs into one-way DFAs:

[Shepherdson’59]
First visit to a cell: direct simulation
Further visits: transition tables

x y

✻
τx

τx ⊆ Q × Q

(p, q) ∈ τx iff x
✛ p
✲q

Finite control of the simulating DFA:

- transition table of the already scanned input prefix

- set of possible current states

◮ Simulation of 1-LAs:

The scanned input prefix is rewritten by a
nondeterministically chosen string

The simulating DFA keeps in its finite control a
sets of transition tables

Simulation of 1-Limited Automata by Finite Automata

◮ Main idea:
transformation of two-way NFAs into one-way DFAs:

[Shepherdson’59]
First visit to a cell: direct simulation
Further visits: transition tables

x y

✻
τx

τx ⊆ Q × Q

(p, q) ∈ τx iff x
✛ p
✲q

Finite control of the simulating DFA:

- transition table of the already scanned input prefix

- set of possible current states

◮ Simulation of 1-LAs:

The scanned input prefix is rewritten by a
nondeterministically chosen string

The simulating DFA keeps in its finite control a
sets of transition tables

1-Limited Automata → Finite Automata: Upper Bounds

Theorem

Let M be a 1-LA with n states.

◮ There exists an equivalent DFA with 2n·2n
2

states.

◮ There exists an equivalent NFA with n · 2n2

states.

If M is deterministic then there exists an equivalent DFA with no

more than n · (n + 1)n states.

DFA NFA

nondet. 1-LA

det. 1-LA

These upper bounds do not depend on the alphabet size of M!

The gaps are optimal!

1-Limited Automata → Finite Automata: Upper Bounds

Theorem

Let M be a 1-LA with n states.

◮ There exists an equivalent DFA with 2n·2n
2

states.

◮ There exists an equivalent NFA with n · 2n2

states.

If M is deterministic then there exists an equivalent DFA with no

more than n · (n + 1)n states.

DFA NFA

nondet. 1-LA 2n·2n
2

det. 1-LA

These upper bounds do not depend on the alphabet size of M!

The gaps are optimal!

1-Limited Automata → Finite Automata: Upper Bounds

Theorem

Let M be a 1-LA with n states.

◮ There exists an equivalent DFA with 2n·2n
2

states.

◮ There exists an equivalent NFA with n · 2n2

states.

If M is deterministic then there exists an equivalent DFA with no

more than n · (n + 1)n states.

DFA NFA

nondet. 1-LA 2n·2n
2

n · 2n2

det. 1-LA

These upper bounds do not depend on the alphabet size of M!

The gaps are optimal!

1-Limited Automata → Finite Automata: Upper Bounds

Theorem

Let M be a 1-LA with n states.

◮ There exists an equivalent DFA with 2n·2n
2

states.

◮ There exists an equivalent NFA with n · 2n2

states.

If M is deterministic then there exists an equivalent DFA with no

more than n · (n + 1)n states.

DFA NFA

nondet. 1-LA 2n·2n
2

n · 2n2

det. 1-LA n · (n + 1)n n · (n + 1)n

These upper bounds do not depend on the alphabet size of M!

The gaps are optimal!

1-Limited Automata → Finite Automata: Upper Bounds

Theorem

Let M be a 1-LA with n states.

◮ There exists an equivalent DFA with 2n·2n
2

states.

◮ There exists an equivalent NFA with n · 2n2

states.

If M is deterministic then there exists an equivalent DFA with no

more than n · (n + 1)n states.

DFA NFA

nondet. 1-LA 2n·2n
2

n · 2n2

det. 1-LA n · (n + 1)n n · (n + 1)n

These upper bounds do not depend on the alphabet size of M!

The gaps are optimal!

1-Limited Automata → Finite Automata: Upper Bounds

Theorem

Let M be a 1-LA with n states.

◮ There exists an equivalent DFA with 2n·2n
2

states.

◮ There exists an equivalent NFA with n · 2n2

states.

If M is deterministic then there exists an equivalent DFA with no

more than n · (n + 1)n states.

DFA NFA

nondet. 1-LA 2n·2n
2

n · 2n2

det. 1-LA n · (n + 1)n n · (n + 1)n

These upper bounds do not depend on the alphabet size of M!

The gaps are optimal!

Optimality: the Witness Languages

Given n ≥ 1:

.a1 a2 an an+1an+2 a2n a
...

a
...

akn

Ln =

Optimality: the Witness Languages

Given n ≥ 1:

.a1 a2 an an+1an+2 a2n a
...

a
...

akn
| {z }

x1

| {z }

x2

| {z }

xk

Ln = {x1x2 · · · xk | k ≥ 0, x1, x2, . . . , xk ∈ {0, 1}
n
,

Optimality: the Witness Languages

Given n ≥ 1:

.a1 a2 an an+1an+2 a2n a
...

a
...

akn
| {z }

x1

| {z }

x2

| {z }

xk

❳❳❳❳❳❳❳
❆
❆

✘✘✘✘✘✘✘
At least n of these blocks contain the same factor

Ln = {x1x2 · · · xk | k ≥ 0, x1, x2, . . . , xk ∈ {0, 1}
n
,

∃i1 < i2 < · · · < in ∈ {1, . . . , k},

xi1 = xi2 = · · · = xin }

Optimality: the Witness Languages

Given n ≥ 1:

.a1 a2 an an+1an+2 a2n a
...

a
...

akn
| {z }

x1

| {z }

x2

| {z }

xk

❳❳❳❳❳❳❳
❆
❆

✘✘✘✘✘✘✘
At least n of these blocks contain the same factor

Ln = {x1x2 · · · xk | k ≥ 0, x1, x2, . . . , xk ∈ {0, 1}
n
,

∃i1 < i2 < · · · < in ∈ {1, . . . , k},

xi1 = xi2 = · · · = xin }

Example (n = 3): 0 0 1 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 0 1 1

Optimality: the Witness Languages

Given n ≥ 1:

.a1 a2 an an+1an+2 a2n a
...

a
...

akn
| {z }

x1

| {z }

x2

| {z }

xk

❳❳❳❳❳❳❳
❆
❆

✘✘✘✘✘✘✘
At least n of these blocks contain the same factor

Ln = {x1x2 · · · xk | k ≥ 0, x1, x2, . . . , xk ∈ {0, 1}
n
,

∃i1 < i2 < · · · < in ∈ {1, . . . , k},

xi1 = xi2 = · · · = xin }

Example (n = 3): 0 0 1|1 1 0|0 1 1|1 1 0|1 1 0|1 1 1|0 1 1

Optimality: the Witness Languages

Given n ≥ 1:

.a1 a2 an an+1an+2 a2n a
...

a
...

akn
| {z }

x1

| {z }

x2

| {z }

xk

❳❳❳❳❳❳❳
❆
❆

✘✘✘✘✘✘✘
At least n of these blocks contain the same factor

Ln = {x1x2 · · · xk | k ≥ 0, x1, x2, . . . , xk ∈ {0, 1}
n
,

∃i1 < i2 < · · · < in ∈ {1, . . . , k},

xi1 = xi2 = · · · = xin }

Example (n = 3): 0 0 1|1 1 0|0 1 1|1 1 0|1 1 0|1 1 1|0 1 1

How to Recognize Ln: 1-Limited Automata

◮ Nondeterministic strategy:
Guess the leftmost positions of n input blocks
containing the same factor and Verify

◮ Implementation:

1. Mark n tape cells
2. Count the tape modulo n to check whether or not:

◮ the input length is a multiple of n, and
◮ the marked cells correspond to the leftmost symbols of some

blocks of length n

3. Compare, symbol by symbol, each two consecutive blocks of
length n that start from the marked positions

◮ O(n) states

How to Recognize Ln: 1-Limited Automata

0 0 1 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 0 1 1 (n = 3)

◮ Nondeterministic strategy:
Guess the leftmost positions of n input blocks
containing the same factor and Verify

◮ Implementation:

1. Mark n tape cells
2. Count the tape modulo n to check whether or not:

◮ the input length is a multiple of n, and
◮ the marked cells correspond to the leftmost symbols of some

blocks of length n

3. Compare, symbol by symbol, each two consecutive blocks of
length n that start from the marked positions

◮ O(n) states

How to Recognize Ln: 1-Limited Automata

0 0 1 1̂ 1 0 0 1 1 1̂ 1 0 1̂ 1 0 1 1 1 0 1 1 (n = 3)
−→

◮ Nondeterministic strategy:
Guess the leftmost positions of n input blocks
containing the same factor and Verify

◮ Implementation:

1. Mark n tape cells
2. Count the tape modulo n to check whether or not:

◮ the input length is a multiple of n, and
◮ the marked cells correspond to the leftmost symbols of some

blocks of length n

3. Compare, symbol by symbol, each two consecutive blocks of
length n that start from the marked positions

◮ O(n) states

How to Recognize Ln: 1-Limited Automata

0 0 1|1̂ 1 0|0 1 1|1̂ 1 0|1̂ 1 0|1 1 1|0 1 1 (n = 3)
←−

◮ Nondeterministic strategy:
Guess the leftmost positions of n input blocks
containing the same factor and Verify

◮ Implementation:

1. Mark n tape cells
2. Count the tape modulo n to check whether or not:

◮ the input length is a multiple of n, and
◮ the marked cells correspond to the leftmost symbols of some

blocks of length n

3. Compare, symbol by symbol, each two consecutive blocks of
length n that start from the marked positions

◮ O(n) states

How to Recognize Ln: 1-Limited Automata

0 0 1|1̂ 1 0|0 1 1|1̂ 1 0|1̂ 1 0|1 1 1|0 1 1 (n = 3)
−→

◮ Nondeterministic strategy:
Guess the leftmost positions of n input blocks
containing the same factor and Verify

◮ Implementation:

1. Mark n tape cells
2. Count the tape modulo n to check whether or not:

◮ the input length is a multiple of n, and
◮ the marked cells correspond to the leftmost symbols of some

blocks of length n

3. Compare, symbol by symbol, each two consecutive blocks of
length n that start from the marked positions

◮ O(n) states

How to Recognize Ln: 1-Limited Automata

0 0 1|1̂ 1 0|0 1 1|1̂ 1 0|1̂ 1 0|1 1 1|0 1 1 (n = 3)
−→

◮ Nondeterministic strategy:
Guess the leftmost positions of n input blocks
containing the same factor and Verify

◮ Implementation:

1. Mark n tape cells
2. Count the tape modulo n to check whether or not:

◮ the input length is a multiple of n, and
◮ the marked cells correspond to the leftmost symbols of some

blocks of length n

3. Compare, symbol by symbol, each two consecutive blocks of
length n that start from the marked positions

◮ O(n) states

How to Recognize Ln: 1-Limited Automata

0 0 1|1̂ 1 0|0 1 1|1̂ 1 0|1̂ 1 0|1 1 1|0 1 1 (n = 3)
−→

◮ Nondeterministic strategy:
Guess the leftmost positions of n input blocks
containing the same factor and Verify

◮ Implementation:

1. Mark n tape cells
2. Count the tape modulo n to check whether or not:

◮ the input length is a multiple of n, and
◮ the marked cells correspond to the leftmost symbols of some

blocks of length n

3. Compare, symbol by symbol, each two consecutive blocks of
length n that start from the marked positions

◮ O(n) states

How to Recognize Ln: 1-Limited Automata

0 0 1|1̂ 1 0|0 1 1|1̂ 1 0|1̂ 1 0|1 1 1|0 1 1 (n = 3)

◮ Nondeterministic strategy:
Guess the leftmost positions of n input blocks
containing the same factor and Verify

◮ Implementation:

1. Mark n tape cells
2. Count the tape modulo n to check whether or not:

◮ the input length is a multiple of n, and
◮ the marked cells correspond to the leftmost symbols of some

blocks of length n

3. Compare, symbol by symbol, each two consecutive blocks of
length n that start from the marked positions

◮ O(n) states

How to Recognize Ln: Deterministic Finite Automata

◮ Idea:
◮ For each x ∈ {0, 1}n count how many blocks coincide with x
◮ Accept if and only if one of the counters reaches the value n

◮ State upper bound:

Finite control:
a counter (up to n) for each possible block of length n

There are 2n possible different blocks of length n

Number of states double exponential in n

more precisely (2n − 1) · n2
n

+ n

◮ State lower bound:

n2
n

(standard distinguishability arguments)

How to Recognize Ln: Deterministic Finite Automata

◮ Idea:
◮ For each x ∈ {0, 1}n count how many blocks coincide with x
◮ Accept if and only if one of the counters reaches the value n

◮ State upper bound:

Finite control:
a counter (up to n) for each possible block of length n

There are 2n possible different blocks of length n

Number of states double exponential in n

more precisely (2n − 1) · n2
n

+ n

◮ State lower bound:

n2
n

(standard distinguishability arguments)

How to Recognize Ln: Deterministic Finite Automata

◮ Idea:
◮ For each x ∈ {0, 1}n count how many blocks coincide with x
◮ Accept if and only if one of the counters reaches the value n

◮ State upper bound:

Finite control:
a counter (up to n) for each possible block of length n

There are 2n possible different blocks of length n

Number of states double exponential in n

more precisely (2n − 1) · n2
n

+ n

◮ State lower bound:

n2
n

(standard distinguishability arguments)

How to Recognize Ln: Deterministic Finite Automata

◮ Idea:
◮ For each x ∈ {0, 1}n count how many blocks coincide with x
◮ Accept if and only if one of the counters reaches the value n

◮ State upper bound:

Finite control:
a counter (up to n) for each possible block of length n

There are 2n possible different blocks of length n

Number of states double exponential in n

more precisely (2n − 1) · n2
n

+ n

◮ State lower bound:

n2
n

(standard distinguishability arguments)

How to Recognize Ln: Deterministic Finite Automata

◮ Idea:
◮ For each x ∈ {0, 1}n count how many blocks coincide with x
◮ Accept if and only if one of the counters reaches the value n

◮ State upper bound:

Finite control:
a counter (up to n) for each possible block of length n

There are 2n possible different blocks of length n

Number of states double exponential in n

more precisely (2n − 1) · n2
n

+ n

◮ State lower bound:

n2
n

(standard distinguishability arguments)

How to Recognize Ln: Deterministic Finite Automata

◮ Idea:
◮ For each x ∈ {0, 1}n count how many blocks coincide with x
◮ Accept if and only if one of the counters reaches the value n

◮ State upper bound:

Finite control:
a counter (up to n) for each possible block of length n

There are 2n possible different blocks of length n

Number of states double exponential in n

more precisely (2n − 1) · n2
n

+ n

◮ State lower bound:

n2
n

(standard distinguishability arguments)

How to Recognize Ln: Deterministic Finite Automata

◮ Idea:
◮ For each x ∈ {0, 1}n count how many blocks coincide with x
◮ Accept if and only if one of the counters reaches the value n

◮ State upper bound:

Finite control:
a counter (up to n) for each possible block of length n

There are 2n possible different blocks of length n

Number of states double exponential in n

more precisely (2n − 1) · n2
n

+ n

◮ State lower bound:

n2
n

(standard distinguishability arguments)

How to Recognize Ln: Deterministic Finite Automata

◮ Idea:
◮ For each x ∈ {0, 1}n count how many blocks coincide with x
◮ Accept if and only if one of the counters reaches the value n

◮ State upper bound:

Finite control:
a counter (up to n) for each possible block of length n

There are 2n possible different blocks of length n

Number of states double exponential in n

more precisely (2n − 1) · n2
n

+ n

◮ State lower bound:

n2
n

(standard distinguishability arguments)

How to Recognize Ln: Deterministic Finite Automata

◮ Idea:
◮ For each x ∈ {0, 1}n count how many blocks coincide with x
◮ Accept if and only if one of the counters reaches the value n

◮ State upper bound:

Finite control:
a counter (up to n) for each possible block of length n

There are 2n possible different blocks of length n

Number of states double exponential in n

more precisely (2n − 1) · n2
n

+ n

◮ State lower bound:

n2
n

(standard distinguishability arguments)

The state gap between 1-LAs and DFAs is double exponential!

Nondetermism vs. Determinism in 1-LAs

1-LA DFA✲exp expLn: O(n)
states

Ln: ≥ n2
n

states

Nondetermism vs. Determinism in 1-LAs

1-LA DFA✲exp expLn: O(n)
states

Ln: ≥ n2
n

states

det-1-LA

✟✟✟✟✟✟✟✯

exp

Nondetermism vs. Determinism in 1-LAs

1-LA DFA✲exp expLn: O(n)
states

Ln: ≥ n2
n

states

det-1-LA

✟✟✟✟✟✟✟✯

exp

Ln: ≥ exp(n)
states

Nondetermism vs. Determinism in 1-LAs

1-LA DFA✲exp expLn: O(n)
states

Ln: ≥ n2
n

states

det-1-LA

✟✟✟✟✟✟✟✯

exp

❄
exp

Ln: ≥ exp(n)
states

Corollary

Removing nondeterminism from 1-LAs requires exponentially many

states.

Nondetermism vs. Determinism in 1-LAs

1-LA DFA✲exp expLn: O(n)
states

Ln: ≥ n2
n

states

det-1-LA

✟✟✟✟✟✟✟✯

exp

❄
exp

Ln: ≥ exp(n)
states

Corollary

Removing nondeterminism from 1-LAs requires exponentially many

states.

Cfr. Sakoda and Sipser question [Sakoda&Sipser’78]:

How much it costs in states to remove nondeterminism from
two-way finite automata?

More Than One Rewriting

For each d ≥ 2, d -limited automata characterize CFLs [Hibbard’67]

We present a construction of 2-LAs from CFLs based on:

Theorem ([Chomsky&Schützenberger’63])

Every context-free language L ⊆ Σ∗ can be expressed as

L = h(Dk ∩ R)

where, for Ωk = {(1,)1, (2,)2, . . . , (k ,)k}:

◮ Dk ⊆ Ω∗

k is a Dyck language

◮ R ⊆ Ω∗

k is a regular language

◮ h : Ωk → Σ∗ is an homomorphism

Furthermore, it is possible to restrict to non-erasing

homomorphisms [Okhotin’12]

More Than One Rewriting

For each d ≥ 2, d -limited automata characterize CFLs [Hibbard’67]

We present a construction of 2-LAs from CFLs based on:

Theorem ([Chomsky&Schützenberger’63])

Every context-free language L ⊆ Σ∗ can be expressed as

L = h(Dk ∩ R)

where, for Ωk = {(1,)1, (2,)2, . . . , (k ,)k}:

◮ Dk ⊆ Ω∗

k is a Dyck language

◮ R ⊆ Ω∗

k is a regular language

◮ h : Ωk → Σ∗ is an homomorphism

Furthermore, it is possible to restrict to non-erasing

homomorphisms [Okhotin’12]

More Than One Rewriting

For each d ≥ 2, d -limited automata characterize CFLs [Hibbard’67]

We present a construction of 2-LAs from CFLs based on:

Theorem ([Chomsky&Schützenberger’63])

Every context-free language L ⊆ Σ∗ can be expressed as

L = h(Dk ∩ R)

where, for Ωk = {(1,)1, (2,)2, . . . , (k ,)k}:

◮ Dk ⊆ Ω∗

k is a Dyck language

◮ R ⊆ Ω∗

k is a regular language

◮ h : Ωk → Σ∗ is an homomorphism

Furthermore, it is possible to restrict to non-erasing

homomorphisms [Okhotin’12]

From CFLs to 2-LAs

L context-free language, with L = h(Dk ∩ R)

◮ T nondeterministic transducer computing h−1

◮ AD 2-LA accepting the Dyck language Dk

◮ AR finite automaton accepting R

From CFLs to 2-LAs

T✲w ✲z ∈ h−1(w)

L context-free language, with L = h(Dk ∩ R)

◮ T nondeterministic transducer computing h−1

◮ AD 2-LA accepting the Dyck language Dk

◮ AR finite automaton accepting R

From CFLs to 2-LAs

T

AD

✲w ✲z ∈ h−1(w)

L context-free language, with L = h(Dk ∩ R)

◮ T nondeterministic transducer computing h−1

◮ AD 2-LA accepting the Dyck language Dk

◮ AR finite automaton accepting R

From CFLs to 2-LAs

T

AR

AD

✲w ✲z ∈ h−1(w)

L context-free language, with L = h(Dk ∩ R)

◮ T nondeterministic transducer computing h−1

◮ AD 2-LA accepting the Dyck language Dk

◮ AR finite automaton accepting R

From CFLs to 2-LAs

T

AR

AD

✲w z ∈ h−1(w) �
�✒

❅
❅❘

z ∈ R?

❅
❅

z ∈ Dk?

�
�

✲w ∈ L?
∧

L context-free language, with L = h(Dk ∩ R)

◮ T nondeterministic transducer computing h−1

◮ AD 2-LA accepting the Dyck language Dk

◮ AR finite automaton accepting R

From CFLs to 2-LAs

T

AR

AD

✲w z ∈ h−1(w) �
�✒

❅
❅❘

z ∈ R?

❅
❅

z ∈ Dk?

�
�

✲w ∈ L?
∧

w
| {z }

input of T

z = σ1σ2 · · ·σk ∈ h−1(w)

From CFLs to 2-LAs

T

AR

AD

✲w z ∈ h−1(w) �
�✒

❅
❅❘

z ∈ R?

❅
❅

z ∈ Dk?

�
�

✲w ∈ L?
∧

| {z }

input of T

z = σ1σ2 · · ·σk ∈ h−1(w)

####σ1 ##σ2 · · · ###σk

u1 u2 · · · uk

h(σi) = ui

Non erasing homomorphism!

From CFLs to 2-LAs

T

AR

AD

✲w z ∈ h−1(w) �
�✒

❅
❅❘

z ∈ R?

❅
❅

z ∈ Dk?

�
�

✲w ∈ L?
∧

| {z }

input of T

z = σ1σ2 · · ·σk ∈ h−1(w)

####σ1 ##σ2 · · · ###σk

u1 u2 · · · uk

h(σi) = ui

Non erasing homomorphism!
| {z }

(padded) input of AD and AR

From CFLs to 2-LAs

T

AR

AD

✲w z ∈ h−1(w) �
�✒

❅
❅❘

z ∈ R?

❅
❅

z ∈ Dk?

�
�

✲w ∈ L?
∧

| {z }

input of T

z = σ1σ2 · · ·σk ∈ h−1(w)

####σ1 ##σ2 · · · ###σk

u1 u2 · · · uk

h(σi) = ui

Non erasing homomorphism!
| {z }

(padded) input of AD and AR

Not stored into the tape! Each σi is produced “on the fly”

From CFLs to 2-LAs

T

AR

AD

✲w z ∈ h−1(w) �
�✒

❅
❅❘

z ∈ R?

❅
❅

z ∈ Dk?

�
�

✲w ∈ L?
∧

w

From CFLs to 2-LAs

T

AR

AD

✲w z ∈ h−1(w) �
�✒

❅
❅❘

z ∈ R?

❅
❅

z ∈ Dk?

�
�

✲w ∈ L?
∧

w = · · · ui · · ·

✻

ui· · · · · ·· · · · · · · · ·

From CFLs to 2-LAs

T

AR

AD

✲w z ∈ h−1(w) �
�✒

❅
❅❘

z ∈ R?

❅
❅

z ∈ Dk?

�
�

✲w ∈ L?
∧

w = · · · ui · · ·

✻

ui· · · · · ·· · · · · · · · ·

⇓

####σi

⇓

h(σi) = ui

From CFLs to 2-LAs

T

AR

AD

✲w z ∈ h−1(w) �
�✒

❅
❅❘

z ∈ R?

❅
❅

z ∈ Dk?

�
�

✲w ∈ L?
∧

w = · · · ui · · ·

✻

ui· · · · · ·· · · · · · · · ·

⇓

####σi

⇓

h(σi) = ui

⇓

####γi

⇓

γi : first rewriting by AD

From CFLs to 2-LAs

T

AR

AD

✲w z ∈ h−1(w) �
�✒

❅
❅❘

z ∈ R?

❅
❅

z ∈ Dk?

�
�

✲w ∈ L?
∧

w = · · · ui · · ·

✻

ui· · · · · ·· · · · · · · · ·

⇓

####σi

⇓

h(σi) = ui

⇓

####γi

⇓

γi : first rewriting by AD

◮ On the tape, ui is replaced directly by ####γi

◮ One move of AR on input σi is also simulated

From CFLs to 2-LAs

T

AR

AD

✲w z ∈ h−1(w) �
�✒

❅
❅❘

z ∈ R?

❅
❅

z ∈ Dk?

�
�

✲w ∈ L?
∧

w = · · · ui · · ·

✻

ui· · · · · ·· · · · · · · · ·

⇓

####σi

⇓

h(σi) = ui

⇓

####γi

⇓

γi : first rewriting by AD

◮ On the tape, ui is replaced directly by ####γi

◮ One move of AR on input σi is also simulated

Final Remarks: 1-Limited Automata

◮ Nondeterministic 1-LAs can be

double exponentially smaller than one-way deterministic
automata
exponentially smaller than one-way nondeterministic and
two-way deterministic/nondeterminstic automata

◮ Witness languages over a two letter alphabet

What about the unary case?

Theorem

For each prime p, the language (ap2

)∗ is accepted by a

deterministic 1-LAs with p + 1 states, while it needs p2 states to be

accepted by any 2NFA.

We expect state gaps smaller than in the general case

Final Remarks: 1-Limited Automata

◮ Nondeterministic 1-LAs can be

double exponentially smaller than one-way deterministic
automata
exponentially smaller than one-way nondeterministic and
two-way deterministic/nondeterminstic automata

◮ Witness languages over a two letter alphabet

What about the unary case?

Theorem

For each prime p, the language (ap2

)∗ is accepted by a

deterministic 1-LAs with p + 1 states, while it needs p2 states to be

accepted by any 2NFA.

We expect state gaps smaller than in the general case

Final Remarks: 1-Limited Automata

◮ Nondeterministic 1-LAs can be

double exponentially smaller than one-way deterministic
automata
exponentially smaller than one-way nondeterministic and
two-way deterministic/nondeterminstic automata

◮ Witness languages over a two letter alphabet

What about the unary case?

Theorem

For each prime p, the language (ap2

)∗ is accepted by a

deterministic 1-LAs with p + 1 states, while it needs p2 states to be

accepted by any 2NFA.

We expect state gaps smaller than in the general case

Final Remarks: 1-Limited Automata

◮ Nondeterministic 1-LAs can be

double exponentially smaller than one-way deterministic
automata
exponentially smaller than one-way nondeterministic and
two-way deterministic/nondeterminstic automata

◮ Witness languages over a two letter alphabet

What about the unary case?

Theorem

For each prime p, the language (ap2

)∗ is accepted by a

deterministic 1-LAs with p + 1 states, while it needs p2 states to be

accepted by any 2NFA.

We expect state gaps smaller than in the general case

Final Remarks: d -Limited Automata, d ≥ 2

◮ Descriptional complexity aspects

Case d = 2 [P&Pisoni NCMA2013]
Case d > 2 under investigation

◮ Determinism vs. nondeterminism

Deterministic 2-LAs characterize deterministic CFLs
[P&Pisoni NCMA2013]

Infinite hierarchy
For each d ≥ 2 there is a language which is accepted by a
deterministic d -limited automaton and that cannot be
accepted by any deterministic (d − 1)-limited automaton

[Hibbard’67]

Final Remarks: d -Limited Automata, d ≥ 2

◮ Descriptional complexity aspects

Case d = 2 [P&Pisoni NCMA2013]
Case d > 2 under investigation

◮ Determinism vs. nondeterminism

Deterministic 2-LAs characterize deterministic CFLs
[P&Pisoni NCMA2013]

Infinite hierarchy
For each d ≥ 2 there is a language which is accepted by a
deterministic d -limited automaton and that cannot be
accepted by any deterministic (d − 1)-limited automaton

[Hibbard’67]

Thank you for your attention!

