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Abstract. The mesoscale variability of water vapour (WV) in

the troposphere is a highly complex phenomenon and mod-

elling and monitoring the WV distribution is a very impor-

tant but challenging task. Any observation technique that can

reliably provide WV distribution is essential for both mon-

itoring and predicting weather. The global navigation satel-

lite system (GNSS) tomography technique is a powerful tool

that builds upon the critical ground-based GNSS infrastruc-

ture (e.g. Continuous Operating Reference Station – CORS

– networks) that can be used to sense the amount of WV.

Previous research shows that the 3-D WV field from GNSS

tomography has an uncertainty of 1 hPa. However, all the

models used in GNSS tomography heavily rely on a priori

information and constraints from non-GNSS measurements.

In this study, 3-D GNSS tomography models are investigated

based on a limited constrained approach – i.e. horizontal and

vertical correlations between voxels were not introduced, in-

stead various a priori information were added into the sys-

tem. A case study is designed and the results show that pro-

posed solutions are feasible by using a robust Kalman filter-

ing technique and effective removal of linearly dependent ob-

servations and parameters. Discrepancies between reference

wet refractivity data derived from the Australian Numerical

Weather Prediction (NWP) model (ACCESS) and the GNSS

tomography model using both simulated and real data are

4.2 ppm (mm km−1) and 6.2 ppm (mm km−1), respectively,

which are essentially in the same order of accuracy.

1 Introduction

The distribution and dynamics of water vapour (WV) is

closely associated with meteorological phenomena, such as

long persistent rainfalls, tropical cyclones, mid-latitude cy-

clonic storms and thunder storms that are ongoing challenges

for synoptic meteorology (Ahrens and Samson, 2010). These

severe weather phenomena can potentially cause destructive

damage to society and the economy and hence play a criti-

cal role in weather forecasting. Improving the understanding

of WV distribution is important (Le Marshall et al., 2010),

not only for meteorology, but also for an effective usage

of the global navigation satellite system (GNSS) technology

for precise positioning. For example, tropospheric effects are

one of the important atmospheric errors that need to be re-

moved or mitigated in both high-accuracy differential posi-

tioning and precise point positioning (Wielgosz et al., 2012).

GNSS tomography is based on the inverse Radon trans-

form theory and it has been intensively investigated by a

number of research groups and universities across the globe

(Bender et al., 2011; Perler et al., 2011; Brenot et al., 2012;

Flores et al., 2000). A special working group on troposphere

tomography model integration has been set up recently by

the International Association of Geodesy (i.e. IAG WG4.3.2)

to coordinate this IAG initiative (Rohm et al., 2012). In ad-

dition, the GNSS tomography is an extended service of the

Ground-Based Augmentation System (GBAS). The standard

approach to establish GNSS tomography models is to divide

the troposphere into a 3-D voxel structure over the area of the

GNSS CORS network coverage. The intercepted distance of

a GPS ray passing through the voxel of concern is used in the
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design matrix for the calculation of the refractivity (Fig. 1).

The design matrix is then inverted to estimate unknown wet

refractivity values (Flores et al., 2000).

The major challenge of the tomography is to obtain a

stable solution, in the presence of the ill-conditionedness

(high condition number) and ill-posedness of the inverse pro-

cess. Possible solutions can be broadly divided into two cat-

egories: (1) increasing the number of pseudo-observations

(and decreasing the condition number, i.e. reducing the im-

pact of the observation noise on final results) by adding hor-

izontal and/or top layer constraints (Rohm and Bosy, 2009;

Perler et al., 2011; Hirahara, 2000; Flores et al., 2000; Bender

et al., 2011); (2) extending the observation system with ad-

ditional observations in the zenith direction, point observa-

tions, and radiosonde and radiometer profiles (Perler et al.,

2011). As a consequence, all solutions listed in approach (1)

are similar in the sense that refractivity values are given for

all voxels in the model even though not all are intercepted by

GNSS signals (Perler et al., 2011).

In addition to the studies of tomography observation sys-

tem, the 3-D model structure has been investigated (e.g. by

ETH Zurich tomography research group). Perler et al. (2011)

recently showed that it is feasible to indirectly calculate the

coefficients of a wet refractivity trilinear spline function in-

stead of the wet refractivity inside each voxel. The most

common inversion technique applied in GNSS tomography

is based on a singular value decomposition (SVD) technique

that allows for complete A matrix inversion (Rohm and Bosy,

2009). A slightly different approach was proposed by Bender

et al. (2011) whereby an algebraic reconstruction technique

is applied to estimate refractivity in an iterative way. Each

iteration step updates wet refractivity only in voxels that are

actually intercepted by the GNSS signals.

In this study, to overcome the ill-conditionedness of

the inverse tomography problem without applying explicit

constraints, the SVD method proposed by Xu (1998) and

Lynch (2005) is used. The novelty in this approach is that the

information provided in the observation matrix is used ex-

clusively and singular values in the design matrix are sensi-

bly selected. This paper aims to extend the previous research

(e.g. Rohm and Bosy, 2011; Bosy et al., 2012; Rohm, 2012,

2013) by the new concept of a robust Kalman filter. Unlike

all predecessors, the solution of the tomography model pre-

sented in this paper is not affected by some of the usually

applied implicit constraints (i.e. no horizontal and no vertical

constraints are applied), and it does not rely on additional ob-

servations (i.e. there is no need for NWP observations). It de-

livers solutions only for voxels that are intercepted by GNSS

signals with a full variance–covariance matrix. The robust

Kalman filter allows for variations of the refractivity field in

time and reduces the noise propagation from the data into

the output parameters. This technique is discussed in Sect. 4.

GNSS signal delay and the tomography model structure is

presented in Sects. 2 and 3, respectively. Case study inves-

tigation using real and simulated data is performed in order

Figure 1. The signal from satellite (modelled as a straight line BA)

intersects with the horizontal plane given by three points (0, 1 and 2)

at the pierce point P . The distance (dR
S

(m)) between the pierce

point P and the GNSS station (A) is an element of the design matrix

in the tomography processing.

to assess the quality and effectiveness of the new approach

proposed. Conclusions and summary are given in the closing

section of the paper.

2 GNSS signal delay

GNSS carrier frequencies reside in a microwave spec-

trum reserved for navigation (L-band, 1–2 GHz) (Hofmann-

Wellenhof et al., 2008). Such spectrum’s allocation is de-

signed to minimise signal attenuation in the atmosphere, and

hence allows for all-weather operation of the system. The

microwave signal’s refractivity in the neutral atmosphere is

given as in Böhm and Schuh (2013), adopted after Essen and

Froome (1951):

N0 = k1
R

Md
· ρ +

(

k′
2

e

T
+ k3

e

T 2

)

· Z−1
v = Nh + Nw, (1)

where ρ is the density of air (mixed, dry + wet)

(Kleijer, 2004) (kg m−3), R is an universal gas constant

(J mol−1 K−1), Md is a molar mass of dry air (mol kg−1), e is

the water vapour partial pressure (hPa), T is the temperature

(K), k1, k2 and k′
2 are known empirical coefficients (Rüeger,

2002a, b), Z−1
d is an inverse compressibility factor for dry air

and Z−1
v is an inverse compressibility factor for water vapour,

respectively (both values are assumed to be 1 in this study).

The analysis in this paper is focused only on the phase speed

changes of the GNSS signals’ propagation (delay) in the neu-

tral atmosphere, hence signal bending is neglected, and no

effects on the signal’s energy are considered.

Tomography processing assumes that a signal is suffi-

ciently modelled as a straight line between the satellite and
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the receiver and that the slant total delay (STD) in neutral at-

mosphere is given by the following equation (Kleijer, 2004):

STD =
∫

N0 ·ds =
∫

Nh ·ds+
∫

Nw ·ds = SHD+SWD, (2)

where SHD is the slant dry delay, and SWD is the slant

wet delay. Usually tomography models utilise the SWD to

reconstruct the water vapour distribution. The SWD is re-

trieved from GNSS troposphere estimates ZTD (e.g. Bosy

et al., 2012) using Saastamoinen (Saastamoinen, 1972) dry

delay model, fed with pressure values interpolated (Bosy et

al., 2010) from ACCESS model and Niell mapping function

(Niell, 1996).

3 Model structure

The tomography technique is founded on the theory of the

Radon transform and its inverse (Kak and Slaney, 2001). In

principle any function’s integral along the path line, executed

along an infinite number of lines, could be converted into the

distribution of the medium affecting the signal path. Accord-

ing to the Radon principle (Kak and Slaney, 2001), a single

scanning ray SWDn from a satellite to a receiver is given as

SWDn = 10−6
m

∑

i=1

Nwm dmn, (3)

where Nwm is the wet refractivity in the voxel m (for the

exemplary model structure see Fig. 2) and dmn is the inter-

cepted distance in the voxel m of signal n.

The full functional model of the tomography solution in a

matrix form is given as

[

SWD

Nwapriori

]

=
[

Ainner Aouter

Aapriori Aapriori_outer

]

·
[

Nw

Now

]

+ v. (4)

The observations in Eq. (4) (SWDs) are appended with an

a priori value of refractivity Nwapriori. The design matrix A

consists of four blocks: Ainner is the matrix containing dis-

tances in the inner model and Aouter is the equivalent matrix

for the outer model (Fig. 2), Aapriori is the matrix contain-

ing value 1 when there are external observations and value 0

when there are no external observations in the voxel for inner

model, Aapriori_outer is a similar matrix for the outer model.

The unknowns Nw and Now are the wet refractivities in the

inner model and the water vapour refractivity in the outer

model, respectively.

The general equation for tomography using relation

Eq. (4) in the matrix notation is given as

SWD = A · Nw + v. (5)

Equation (5) is ill-conditioned (no explicit constraints, with

a limited number of observations) and ill-posed (a limited

Figure 2. A skeleton of the exemplary horizontal (a) and vertical

(b) structures of the TOMO2 model.

number of observations). Therefore, an effective inversion

of matrix A is a central problem of all GNSS tomography

applications.

The unconstrained tomography solution studies (Rohm,

2012) show that it is feasible to obtain precise wet refrac-

tivity exclusively from the GNSS SWD observations using

stacked observations from at least ten 1 h consecutive epochs.

However, ten hours is too long a time period to be repre-

sented by a single refractivity field. It is therefore convenient

to use a Kalman filter which makes it possible to include a

dynamic model of the troposphere. This is the focus of the

next section.

4 Kalman filter application

A classic Kalman filter formulation follows the notation

given in Grewal et al. (2001) whereby observations and pro-

cess are separated. In this study, the process is set to be a

wet refractivity field Nwk+1
with the time evolution given as

a linear dynamic system (Yang, 2010):

Nwk+1
= 8k · Nwk

+ wk, (6)

where 8k+1 is a state transition matrix (in this study it is

an identity matrix 8k+1 = I ). The wk parameter is the noise

with the characteristics of mean E(wk) = 0 and covariance

E(wk wT
k ) = Qk , which is called the dynamic disturbance

noise matrix. The observation linear model for epoch k is

given by Eq. (5):

SWDk = Ak · Nwk
+ νk, (7)

where SWDk are uncorrelated normally distributed ob-

servations, and measurement noise νk has mean E(vk) = 0

and covariance E(vk vT
k ) = R. However, in a robust Kalman

filter observations are assumed to be of a normal distri-

bution contaminated with outliers (Yang, 2010), therefore

E(vk vT
k ) = RR and the observation covariance matrix needs

to be iteratively adjusted. The prediction step of Kalman fil-

tering is given as a set of equations:

N̂wk
(−) = 8k · N̂wk−1

(+) (8)

Pk(−) = 8k · Pk−1(+) · 8
T
k + Qk, (9)
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where N̂wk
(−) and N̂wk−1

(+) are the predicted and the cor-

rected estimates of wet refractivity in the voxels of the GNSS

tomography model. The matrix Pk(−) is the prediction and

Pk−1(+) the correction of the covariance matrix of the esti-

mated state.

The Kalman gain matrix K is

K = Pk(−)AT
k

(

Ak Pk(−)AT
k + RR

k

)−1
. (10)

The covariance matrix RR
k of the robust Kalman filter is cal-

culated using the following equation:

RR
k = (diag(p1, . . . ,pm))−1 , (11)

where

pi = p for |ri | ≤
σ · c
√

p
(12)

pi =
cσ

√
p

|ri |
for |ri | ≥

σ · c
√

p
, (13)

where p is the weight of the observation, and the parameter

ri is a posteriori residual value calculated via

rk = Ak · N̂w(+) − SWDk, (14)

where c = 1.5 is a scaling factor and σ is a reference variance

(usually 1 mm).

Usually, a robust Kalman filter is applied to observations

contaminated with outliers, to minimise or remove their im-

pact by increasing the selected observations’ variances in the

estimation process. Therefore, the process of estimating RR
k

is iterative and might need to be repeated several times.

In the paper by Koch and Yang (1998) downweighting

is applied on the parameters. However, in this study, to be

consistent with the previously developed SVD methodology

(Rohm and Bosy, 2011; Rohm, 2012, 2013) the downweight-

ing of the parameters is not used. In this paper the structure of

a design matrix A is evaluated to reveal and remove linearly

dependent observations (in a numeric sense). This technique

reduces matrix A condition number and improves inversion

stability. The design matrix A filtering process follows the

methodology developed by Rohm (2013), based on the work

of Xu (1998) and Lynch (2005). In essence, matrix A is de-

composed into three matrices (Strang and Borre, 1997):

A = U 6V T =
[

u1 . . . ux . . . um

]

·

















s1 0

. . .

sx
. . .

0 smn

















·
[

v1 . . . vx . . . vn

]T
(15)

where U and V are a set of orthonormal bases and 6 is a

set of singular values (sx). A condition number of any matrix

(e.g. matrix A) is calculated as (Anderson et al., 1999)

cond(A) =
sx

s1
, (16)

where x is the rank of matrix A.

Previous investigation by Rohm (2013) shows that the

uncertainty expressed as a covariance of wet refractivity is

linked with the singular values on the diagonal of matrix 6.

The smaller the singular value considered in the design ma-

trix (A) inversion (Eq. 10) the stronger the amplification of

observation uncertainty RR
k . The last, useful singular value

(sx) considered in the processing is found using functional

analysis of singular values function (Xu, 1998; Lynch, 2005;

Hansen and O’Leary, 1993), this method to improve the ma-

trix condition number is named truncated singular values de-

composition (TSVD). The new filtered Ã matrix is obtained

by composing the A matrix back according to the equation:

Ã =
[

u1 . . . ux

]

·







s1

. . .

sx






·
[

v1 . . . vx

]T
. (17)

To reflect the changes in the design matrix A observation ma-

trices SWD and R have to be converted to the matrices SW̃D

and R̃ to eliminate the linearly dependent observations (op-

erator T in Eq. 20). The identification of linearly dependent

rows (f ) is based on comparing rows from matrices A and Ã

according to the following equation:

f, such that mean
(

Ai,1..j − Ãi,1..j

)T

≥ 2 · SD
(

Ai,1..j − Ãi,1..j

)T

. (18)

Consequently, the Kalman filter sequence as shown in Koch

and Yang (1998) for filtering observations will be trans-

formed to the following sequence:

Ã = TSVD(A) (19)

SW̃D = T (SWD), R̃R
k = T

(

RR
k

)

(20)

N̂wk
(+) = N̂wk

(−) + Kk

(

SW̃Dk − Ãk N̂wk
(−)

)

(21)

rk = Ãk · N̂wk
(+) − SW̃Dk (22)

R̃R
k = (diag(p1, . . . , pm))−1 (23)

K = Pk(−) ÃT
k

(

Ãk Pk(−) ÃT
k + R̃R

k

)−1
(24)

Pk(+) = Pk(−) + Kk Ãk Pk(−) (25)

N̂wk
(−) = 8k · N̂wk−1

(+) (26)

Pk(−) = 8k · Pk−1(+) · 8
T
k + Qk. (27)

The robust estimation process of wet refractivity starts with

the filtering of matrix A to produce Ã (Eq. 19), as well as

truncating observations SWD to obtain SW̃D (Eq. 20). Ini-

tial estimates of parameters N̂wk
are calculated via Eq. (21).

Afterwards, residuals rk are derived, which form the base

for downweighting of the outliers (Eqs. 22, 12, 13) and cal-

culation of R̃R
k matrix. The following step consist of calcu-

lating the Kalman gain K̄ (Eq. 19). Equations (21)–(24) are

repeated several times to remove outliers from observations.

This operation is followed by an update step (Eq. 25), and the

propagation of covariance and parameters to the next epoch
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Figure 3. The TOMO2 tomography model voxel settings superimposed on the wet refractivity field of 6 March 2010, 03:30 UTC. The wet

refractivity field is the output of tomography model in the RG2SAD mode.

(Eqs. 26 and 27). The initial covariance Pk(−) was calcu-

lated using errors estimates published in one of the previous

papers (Rohm, 2012).

The matrix Qk adds a noise to each voxel in a covariance

matrix Pk−1. The amount of noise in each element of matrix

Qk(qm,i for the inner domain and qo,i for the outer domain) is

driven by three factors: (1) location in the model h (height);

(2) time since last update t ; and (3) location in inner or outer

model, according to the following formula:

Q = diag
(

q1,i . . . qm,i q1,o . . . ql,o

)

, (28)

where

qm,i =
(

1 − exp− t
T

·exp
)

· σ 2
h,i (29)

ql,o = σ 2
o , (30)

where exp is the base of the natural logarithm.

In this study, uncertainty parameters σ 2
h,i and σ 2

o are cal-

culated from NWP model outputs, interpolated to the tomog-

raphy model voxels. The performance analysis takes into ac-

count vertical variability of the wet refractivity as well as

time autocorrelations of these parameters. Therefore, the in-

put parameters for Eqs. (29) and (30) are essentially antic-

ipated wet refractivity variations in the model space and in

the time domain. In a more general case (without access to

NWP data) the uncertainty parameters may be derived from

climatological data.

5 Case study

To demonstrate the capability of this new GNSS tomography

model TOMO2 (introduced in this paper), a case study based

on simulated and real data is performed and the results are

validated against NWP model outputs.

5.1 NWP model

The meteorological data covers ACCESS-R model outputs

(analysis run) with the time resolution of 6 h and spatial out-

line covering Australia and a ∼ 20◦ buffer zone. The model

is based on the UK Meteorological Office Unified Model,

and a number of data sources are used to produce fore-

casts (e.g. COSMIC, AIRS, SYNOP) (Le Marshall et al.,

2010). The model in the horizontal plane contains 229 nodes,

with the grid spacing of 0.375◦ (∼ 37.5 km) and the model

utilises in the vertical direction terrain following hybrid

(pressure/height) coordinates with 50 levels. This study, from

all possible NWP model parameters, considers only pressure,

temperature and WV partial pressure (given as a mixing ra-

tio) (Fig. 3).

5.2 GNSS stations network

Two ZTD data sets, with the same time, terrain and identical

receiver network settings are prepared, one is simulated and

the other one is real data. The same tomographic model setup

is used. The time span covered by this case study is limited

to 325 epochs of ZTD estimation between 3 March 2010 and

9 March 2010, whereby each ZTD epoch covers an inter-

val of 30 minutes. GNSS observations from 45 stations were

taken during the development, transition and dissipation of

a heavy hail storm (Choy et al., 2011). The GNSS network

employed in this study (GPSnet) (Fig. 3) is owned and op-

erated by the Victorian Government Department of Sustain-

ability and Environment (Victoria, Australia). Standard GP-

Snet stations are equipped with Trimble NetR5 receivers and

high-quality antennas (mostly TRM55971.00). A few Inter-

national GNSS Service (IGS) stations were also processed,

with receivers/antennas from other manufacturers (e.g. Le-

ica, Ashtech). The inter-receiver distance is roughly 50 km

www.atmos-meas-tech.net/7/1475/2014/ Atmos. Meas. Tech., 7, 1475–1486, 2014
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in the investigated case. Terrain undulation, especially in the

east mountainous part of Victoria, is in favour of tomography

because of large height differences (the voxels close to the

ground are crossed by slant delays from other stations), some

receivers are located on the mountains’ peaks (e.g. MTBU –

Mount Buller 1600 m). The troposphere in the vertical direc-

tion, above a network of the GNSS receivers, is divided into

a number of cuboids (in this study called voxels, see Fig. 2),

from ground level to 10 km with increasing layer thickness

(varying between 500 and 1700 m), whereas the last voxel

spans from 10 to 15 km and has 5 km thickness. The hori-

zontal plane of the tomography model consists of six voxels

in the north direction and 12 voxels in the east direction (to

accommodate the model outline to the GPSnet shape). As a

consequence of the vertical and horizontal settings, the size

of each voxel is approximately 75 km × 45 km × 0.5 ∼ 5 km,

which roughly represents the average inter-station distance.

Pressure, temperature and water vapour produced by the

ACCESS-R model (1) are utilised to separate wet and dry

delays (pressure), and (2) act as a reference value for to-

mography model reliability investigation (water vapour). To

separate wet and dry delays, pressure values from eight

NWP model nodes (four below, four above) surrounding

GNSS stations are interpolated to the antenna reference

point. The NWP acts as a supplementary pressure data source

as ground-based pressure observations at the GNSS stations

are not available. The second use of NWP model outputs is

realised via interpolating water vapour partial pressure and

temperature values from NWP model nodes to the tomogra-

phy’s voxel centre points (Bosy et al., 2010, 2012). Alterna-

tively the pressure and temperature values are obtained from

the global pressure and temperature (GPT) model (Boehm

et al., 2007) and water vapour pressure is calculated from

UNB3m (Leandro et al., 2008). At the time of experiments

the GPT2 (Lagler et al., 2013) model had not yet been intro-

duced, so the consistency between pressure, temperature and

water vapour content from the two different models (UNB3m

and GPT) was assumed.

5.3 Simulated slant delays

The first data set comprises wet refractivities NR derived

from NWP temperature and WV interpolated to the centre of

each voxel of the tomography model. Then, using simple an-

alytical ray tracing (Rohm, 2013; Rohm and Bosy, 2009) the

signal intercepting distances in each voxel of the inner Ainner

and the outer models Aouter (Eq. 4) are calculated, along with

observations SWDS (Eq. 7). Uncertainty of the ray tracing

through the model of unknown precision (there is no impar-

tial measure of weather model parameter precision) remains

unidentified. Therefore, all elements of the covariance matrix

RR (Eq. 11) are of equal weight (1 mm). The NWP model

data and the simulated slant delays also constitute the refer-

ence data.

The simulated data were reprocessed to take into account

random noise and bias (0.025 and 0.007 m, respectively). The

proposed values are based on previous tests comparing the

simulated and observed slant delays (Bosy et al., 2012). The

degradation is distributed randomly regardless of the satellite

elevation angle, the receiver position and the time of the day.

5.4 Real GNSS data

The second data set consists of the real observations from

a GNSS network processed with the Bernese GPS Software

5.0 (Dach et al., 2007). Only GPS observations are consid-

ered. The wide/narrow lane (L5/L3) GPS processing pro-

cedure is applied (Dach et al., 2007). The ambiguities are

solved with the wide-lane L5 (98 % success rate)/narrow-

lane L3 (90 % success rate) strategy. Final coordinates are

estimated with the minimum constraint conditions imposed

on the translation parameters of coordinates and velocities of

IGS reference stations (MOBS, HOB2, STR1 and CEDU).

The mean accuracy of the solutions in the horizontal di-

rections and in the vertical direction, based on repeatability

score, are 1.5 and 4 mm, respectively.

The troposphere estimates in 30 min resolution are ob-

tained in the next processing step by fixing the translation

parameters of the network (the solution inherited from pre-

cise geodynamic studies) and pre-eliminating the velocities

as well as the coordinates from weekly solution (removing

from normal equations). In Bernese GPS software the stan-

dard approach to estimate the ZTD (Dach et al., 2007) is

used. The ZTD parameters are estimated as corrections to

an a priori standard atmosphere model using piecewise lin-

ear functions. The Niell (1996) mapping function is used to

parameterise the mapping of troposphere delays to the verti-

cal direction. The atmospheric gradients (Dach et al., 2007)

are estimated at the same time resolution as the total delay.

The adopted processing setup is not an optimal configuration

(state of the art mapping functions are not used) to estimate

troposphere parameters. However, it is a common approach

used in Bernese 5.0 GPS Software. Output TRO and TRP

files comprise the most important part of the second data set.

This set also includes pressure parameters interpolated to the

antenna heights from the NWP model, and final station co-

ordinates as well as precise orbits from IGS. The dry part is

subtracted from the total delay based on the Saastamoinen

model of dry delay (Saastamoinen, 1972) with pressure val-

ues from the NWP model.

In this study SWDs are calculated using either the zenith

part of the delay or the zenith delay and horizontal gradients

(Boehm and Schuh, 2007); in either case the double differ-

enced residuals (Manning et al., 2014) are not considered.

The gradients show large variability in the zenith direction

and are significant (statistically speaking). The north com-

ponent varies between −2.2 and 2.5 mm, whereas the east

component oscillates between −2.4 and 3.5 mm. The esti-

mation formal errors are relatively small, the average value
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Figure 4. Total bias of estimated parameters over 325 epochs, for

different levels of Kalman filter robustness (ASD, observation re-

moval + design matrix reconditioning + downweighting; ASO,

observation removal + design matrix reconditioning + no down-

weighting; OOO, no observation removal + no design matrix re-

conditioning + no downweighting).

Figure 5. Standard deviation of estimated parameters over

325 epochs, for different level of Kalman filter robustness (ASD,

ASO, OOO).

is 0.1 mm. The observations in the slant direction for the wet

part of the delay SWDG (Eq. 7) are determined by applying

the wet Niell mapping function (Niell, 1996). Therefore the

SWDG are not uncorrelated and the mapping function used to

map the delay from zenith to slant direction contains implicit

information on the vertical distribution of WV.

Using simple analytical ray tracing (Rohm, 2013; Rohm

and Bosy, 2009) the signal interception distance in each

voxel of the inner and outer models (elements of matrix Ak ,

Eq. 7) are calculated. The uncertainty measures (11)RR are

based on the estimated error of particular ZTD value by ap-

plying the law of variance propagation (Rohm, 2012).

5.5 Tomography processing results discussion

A number of test runs of the tomography model are per-

formed to precisely assess the impact of particular method-

ological improvements. The following major groups of set-

tings are adopted with regard to observations: (1) simulated

observations (M) (with and without a noise); (2) real ob-

servations with gradients (R); and finally (3) real observa-

tions without gradients (Z). Furthermore, experiments are

grouped together according to the a priori models adopted.

The following settings are considered: (1) NWP-derived

outer model values for all epochs and NWP-derived inner

model values for the first value (as an initial value) (N ) and as

an alternative with the same settings for outer model and all

epochs for inner model (W ); (2) NWP-derived outer model

values for all epochs and UNB3m- and GPT-derived inner

model for the first epoch (G1) and with a reverse settings, first

Figure 6. Total bias of estimated parameters over 325 epochs, for

two different a priori modes (G0, GPT + UNB3m outer (all epochs)

and NWP inner (first epoch); G1, NWP outer (all epochs) and GPT

+ UNB3m inner (first epoch)), and one type of observation (R, real

with gradients).

Figure 7. Standard deviation of estimated parameters over

325 epochs, for two different a priori modes (G0, GPT + UNB3m

outer (all epochs) and NWP inner (first epoch); G1, NWP outer (all

epochs) and GPT + UNB3m inner (first epoch)), and one type of

observation (R, real with gradients).

epoch inner NWP, all epochs outer GPT + UNB3m (G0);

(3) NWP-derived outer model values for all epochs and

UNB3m- and GPT-derived inner model for all epochs (G2)

and fully independent from NWP data with all epochs popu-

lated using GPT + UNB3m data (G1P). To assess the impact

of the innovative robust Kalman filter processing procedure,

the following three levels of validation are adopted: (1) firstly

all equations related to the observation selection criteria are

applied including: SWD observation removal (Eq. 20) (S);

reconditioning of matrix A (Eqs. 17 and 18) (A) and down-

weighting of selected observations (Eqs. 11, 23, 24) (D); (2)

secondly the downweighting scheme is not applied (O) but

observation removal (S) and reconditioning (A) is, (3) thirdly

no robust improvements of the Kalman filter are considered

(OOO), so the filter runs like a classic Kalman filter.

The experiment setup is shown in Table 1. In total 21 dif-

ferent settings are investigated, and the most significant re-

sults are presented in Table 2. The solutions for all 325

epochs are depicted in Figs. 4–15. Figures 4, 6, 8, 10, 12

present the mean bias of the tested solution against reference

data, whereas Figs. 5, 7, 9, 11, 13 show the mean standard

deviation of the tested solution against reference data. Fig-

ures 14 and 15 present detailed vertical structure of bias and

standard deviation. The major outcomes of these experiments

are summarised below.

The most important conclusion drawn from the set of ex-

periments is that the a priori value Nwapriori for inner model

(N, W, G0, G1, G2, G1P) is the main factor in all processing
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Table 1. The list of tested tomographic solutions. The naming conventions explained in two bottom rows.

Tested combinations

RNASD, RNASO, RNOOO ZNASD, ZNASO, ZNOOO M1NASD, M1NASO, M1NOOO

RG1ASD, RG1ASO, RG1OOO M2NASD, M2NASO, M2NOOO

RG2ASD, RG2ASO, RG2OOO

RWASD, RG0ASD, RG1PASD

Naming convention (example)

SWD type A priori type Reconditioning SWD removal Downweighting

R N A S D

Real observations with gradients (R), with a priori observations from NWP model in outer

model (for all epochs) and inner model (initial epoch) (N), in Kalman filter A matrix recon-

ditioning (A), SWD removal and downweighting (D) has been used.

Observations

SWD type A priori type

R, Real observations with gradients N, NWP outer (all epochs) and inner

Z, Real observations without gradients (first epoch)

M1, Simulated observations without noise W, NWP outer and inner (all epochs)

M2, Simulated observations with G1, NWP outer (all epochs) and GPT +
realistic noise UNB3m inner (first epoch)

G0, GPT + UNB3m outer (all epochs)

and NWP inner (first epoch)

G2, NWP outer (all epochs) and GPT +
UNB3m inner (all epochs)

G1P, GPT + UNB3m outer and inner (all

epochs)

Kalman filter improvements

Reconditioning SWD removal Downweighting

A – Yes S – Yes D – Yes

0 – No 0 – No 0 – No

schemes. Figures 4–15 show that whenever the a priori value

for all epochs and all voxels is set (compare RG2ASD and

ZG2ASD to RNASD and ZNASD, in Table 1), even with

a simple deterministic model such as UNB3m and GPT the

quality of the reconstruction is much higher than in all other

cases. The values in Table 2 show also higher accuracy of

the G2 solution. The experiments using different combina-

tions and “intensity” of a priori data (G0, G1P, G1, G2, N,

W) show that there is very limited impact of quality of outer

model data (RG0ASD and RG1ASD, Figs. 6 and 7), but

clearly the retrieval quality increases with larger number of a

priori data (RG1ASD and RG2ASD, Figs. 8 and 9; RNASD

and RWASD, Figs. 10 and 11). Comparing retrieval based on

UNB3m and GPT only (RG1PASD in Figs. 12 and 13) with

retrieval based on NWP only (RWASD in Figs. 12 and 13),

we may see that solution quality converges after 150 epoch

and is essentially similar. Introducing initial values into the

tomography system (Eq. 4) can effectively stabilise the to-

mography solution. In this study the initial wet refractivity

field is a function of the day of the year, latitude, longitude

and altitude. The variance of the a priori observations in

Eq. (17) is set to rather large value (i.e. 30 mm km−1). Hence,

the results show that the quality of the a priori observations

is not an issue for tomography reconstruction.

The second most important outcome of this research is that

the robust filtering helps to reduce noise in outputs. Clearly,

the solid red line showing the standard deviation of the real

data solution in Fig. 5 (RNASD) is much lower than the one

with partial robust algorithms (RNASO) and no robust proce-

dures in place (RNOOO). However, the difference between

the last two is not significant which in turn means that the

most significant improvement in real-time data processing is

due to the downweighting not reconditioning. The same ef-

fect is visible when the processing covers the real observa-

tions with a large number of a priori data (RG2ASD – the

dark blue line in Fig. 9). However, the effect is not strong,

at least in the solution scatter. In terms of systematic errors,

the mean difference is effectively removed by the robust al-

gorithm (RG2ASD) as depicted in Fig. 8.
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Table 2. Set of the quality measures for investigated models; bias

is a mean discrepancy between reference wet refractivity (from the

ACCESS-R model) and refractivity retrieved from TOMO2 model,

standard deviation (SD) is a measure of scatter for discrepancies

between reference wet refractivity (from the ACCESS-R model)

and refractivity retrieved from the TOMO2 model, a posteriori rms

of SWD observations rms(SWDk − Ak · Nwk ) and mean processing

uncertainty as in Eq. (25). Statistics derived using only retrieval for

inner model. The number of resolved voxels per layer varies be-

tween 33 % (bottom layer) to more than 80 % above 4000 m.

Model and Validation by NWP A posteriori Processing

observation Bias SD rms of uncertainty

setup [ppm] [ppm] SWD [mm] SD [ppm]

RG1PASD 0.5 6.2 13 4.2

RWASD −0.1 5.8 12 4.4

RG0ASD −0.4 8.7 31 4.3

RG1ASD −0.1 8.8 31 4.2

RG2ASD 0.5 6.2 13 4.2

ZG2ASD 0.4 6.7 12 4.1

ZNASD −0.2 8.0 28 3.7

M1G2ASD −0.1 4.2 5 2.9

M1NASD −0.2 4.4 9 2.5

M2NASD −0.3 6.4 13 2.7

RNASD −0.5 8.8 31 4.3

RNASO −1.2 12.4 10 2.8

RNOOO −1.1 12.4 10 2.7

UNB3mGPT 3.5 7.2 – –

The third conclusion is that the best achievable perfor-

mance using this tomography model and simulated observa-

tions (without noise) is 4.2 mm km−1 (Table 2) (M1G2ASD

shown in Fig. 14 in the third panel). However, introduction

of the realistic noise and bias to the observations (0.025 m of

the random noise and 0.007 m of the bias) results in tomogra-

phy quality degradation to 6.4 mm km−1 (Table 2, M2NASD,

Fig. 14, second panel). In comparison, the quality of the to-

mography retrieval based on real data (Table 2, RG2ASD) is

6.2 mm km−1, (dark blue line in Fig. 9). This suggests that

both solutions (real, RG2ASD, and simulated, M2NASD)

converge to the same solution with similar bias and standard

deviation measures; hence all real data outliers are effectively

filtered out. The retrieval quality presented separately for

each layer (Figs. 14 and 15), measured as a mean and stan-

dard deviation solution departure from NWP based profile,

shows reasonably high agreement in mid-troposphere (above

2 km) and significant bias and large scatter in the lower sec-

tion of the profile (below 2 km). The wet refractivity con-

verted to water vapour (Fig. 15) using inversion of Eq. (1)

and temperature profile from NWP, shows that the standard

deviation of retrieval is close to 2 hPa in the middle part of the

troposphere. The obtained results confirm that station sepa-

ration and cut-off angle limits the number of signal intersec-

tions in the troposphere boundary layer and hence the tomog-

raphy model uses a priori data as a solution in this section of

atmosphere.

Figure 8. Total bias of estimated parameters over 325 epochs, for

two different a priori modes: G1, NWP outer(all epochs) and GPT

+ UNB3m inner (first epoch); G2, NWP outer (all epochs) and GPT

+ UNB3m inner (all epochs), and one type of observation (R, real

with gradients).

Figure 9. Standard deviation of estimated parameters over

325 epochs, for two different a priori modes: G1, NWP outer (all

epochs) and GPT + UNB3m inner (first epoch); G2, NWP outer

(all epochs) and GPT + UNB3m inner (all epochs), and one type of

observation (R, real with gradients).

 

Figure 10. Total bias of estimated parameters over 325 epochs, for

two different a priori modes: N, NWP outer (all epochs) and inner

(first epoch); W, NWP outer and inner (all epochs), and one type of

observation (R, real with gradients).

Another important issue clearly visible is that there is not

much difference between the tomography solution fed by the

observations with and without gradients (Table 2, RG2ASD

6.2 mm km−1 standard deviation, ZG2ASD 6.7 mm km−1

standard deviation). The same level of bias has been also ob-

served for both types of measurements (Table 2, RG2ASD

0.5 mm km−1 and ZG2ASD 0.4 mm km−1 bias). Using ei-

ther data type leads to the same a posteriori errors of obser-

vations and uncertainties. Therefore, using gradients in the

signal delay modelling does not improve the solution in this

model setup.

Many authors (Bender et al., 2011; Manning et al., 2014;

Perler et al., 2011; Rohm, 2012) report that the tomography

quality varies between 4 to 10 mm km−1 and is lower for the

bottom level of troposphere and increases with height until
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Figure 11. Standard estimated parameters over 325 epochs, for two

different a priori modes: N, NWP outer (all epochs) and inner (first

epoch), W, NWP outer and inner (all epochs), and one type of ob-

servation (R, real with gradients).

  

Figure 12. Total bias of estimated parameters over 325 epochs, for

two different a priori modes: G1P, GPT + UNB3m outer and inner

(all epochs); W, NWP outer and inner (all epochs), and one type of

observation (R, real with gradients).

  

Figure 13. Standard deviation of estimated parameters over

325 epochs, for two different a priori modes: G1P, GPT + UNB3m

outer and inner (all epochs); W, NWP outer and inner (all epochs),

and one type of observation (R, real with gradients).

the amount of water vapour is lower than the sensitivity of the

method. This suggests that the effectiveness of the tomogra-

phy method in resolving the vertical structure of troposphere

needs further investigation. In this study to validate when-

ever this method has some advantage over a deterministic

model, we simply subtract GPT and UNB3m wet refractivity

from NWP derived refractivities and calculate the statistics

such as standard deviation and bias. The results in Table 2

(UNB3mGPT) shows that the standard deviation is slightly

higher than that of the tomography model (7.2 mm km−1),

but the bias is much higher (3.5 mm km−1). Hence, the to-

mography processing has the advantage over the determinis-

tic models; the question remains of whether the level of the

obtained quality is satisfactory for meteorological and posi-

tioning applications.

 9 

Figure 14. Vertical structure of standard deviation and bias for wet

refractivity estimates over 325 epochs, for number of a priori modes

(N, NWP inner and outer; G2, UNB3m and GPT inner, NWP outer),

types of observations (R, real with gradients; M1, simulated with-

out noise; M2, simulated with realistic noise) and external models

(UNB3MGPT, deterministic climatology-based model).

 1 

Figure 15. Vertical structure of standard deviation and bias for wa-

ter vapour estimates over 325 epochs, for number of a priori modes

(N, NWP inner and outer; G2, UNB3m and GPT inner, NWP outer),

types of observations (R, real with gradients; M1, simulated with-

out noise; M2, simulated with realistic noise) and external models

(UNB3MGPT, deterministic climatology-based model).

6 Conclusions

In this paper, the new GNSS tomography model TOMO2

is presented. This model employs a robust Kalman filter to

solve the limited constraint (i.e. the correlation between vox-

els are not applied) tomography problem. This study demon-

strates that the real slant wet delay data set is affected by

noise and outliers and the estimated zenith delay uncertain-

ties are overly optimistic. Therefore, the real GNSS data re-

quire advanced processing beyond the ordinary Kalman fil-

ter. In this study, both the robust Kalman filter and a trun-

cation of the design matrix (with TSVD method) are inves-

tigated to limit the noise impact on the model updates. The

estimations of wet refractivities and their associated uncer-

tainties in the troposphere above a network of GNSS re-

ceivers for selected voxels can be determined through these

methods. Results show that the STD discrepancy between

the reference wet refractivity and the tomography model out-

puts is of the order of 6.2 mm km−1 (or ppm), which is the

equivalent to 2 hPa of WV. The results are in good agree-

ment with GNSS tomography simulation studies with an in-

termediate level of noise of 5.2 mm km−1 (or ppm) (Bosy

et al., 2012). The most important contribution of this paper

is an effective GNSS tomography reconstruction without us-

ing implicit constraints, which allows for a quicker tomogra-

phy model response to the changing environment conditions.
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The limited constraint approach investigated in this research

produces more realistic wet refractivity uncertainties that are

unbiased by inner constraints. The results presented in this

paper shows the current level of quality achievable with to-

mographic reconstruction. Further discussion with the me-

teorological community is needed to investigate an efficient

way to assimilate the GNSS tomography outputs into NWP

models.
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Kroszczyński, K., Figurski, M. (2012) Results of the application

of tropospheric corrections from different troposphere models for

precise GPS rapid static positioning, Acta Geophysica, 60, 1236–

1257, 1997.

Xu, P.: Truncated SVD methods for discrete linear ill-posed prob-

lems, Geophys. J. Int., 135, 505–551, 1998.

Yang, Y.: Adaptively robust kalman filters with applications in nav-

igation, in: Sciences of Geodesy – I, edited by: Xu, G., Springer,

Berlin, Heidelberg, 49–82, 2010.

Atmos. Meas. Tech., 7, 1475–1486, 2014 www.atmos-meas-tech.net/7/1475/2014/


